101
|
Xiong W, Yu S, Liu K, Gong S. Loss of cochlear ribbon synapses in the early stage of aging causes initial hearing impairment. Am J Transl Res 2020; 12:7354-7366. [PMID: 33312372 PMCID: PMC7724364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/11/2020] [Indexed: 06/12/2023]
Abstract
Hearing loss can occur with aging. However, there remains debate about which cochlear component is the most susceptible to aging insult and the consequent pathological events responsible for age-related hearing loss. In this study, we used C57BL/6J mice to mimic the process of aging, and the auditory brainstem response (ABR) thresholds of aging mice were examined at different stages of aging (1, 2, 4, and 6 months [M]). The lifespan of 4 M was considered to be the early stage of aging. Immunostaining combined with laser confocal microscopy was employed to identify RIBEYE/CtBP2, a marker of cochlear ribbon synapses, and a quantitative analysis of the synaptic ribbon was carried out. The function of the ribbon synapse was estimated by amplitude alterations of ABR wave I. Furthermore, endocytosis of the inner hair cells was also detected using the fluorescence labeling dye FM1-43. We found that the loss of ribbon synapses in the early stage of aging occurred prior to hair cell or auditory nerve loss and was the initial pathological change. Additionally, the loss of ribbon synapses, including the quantity and function of synapses, was found to correspond to the elevations of the hearing threshold across frequencies. Moreover, a significant reduction in the endocytosis function of the inner hair cells was identified in the early stage of aging. Therefore, our study indicated that the reduction of cochlear ribbon synapses occurred at an early stage of aging and could be responsible for the consequent hearing loss.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University Beijing, China
| | - Shukui Yu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University Beijing, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University Beijing, China
| |
Collapse
|
102
|
Almishaal A, Mathur PD, Franklin L, Shi K, Haller T, Martinovic A, Hirschmugl K, Earl BR, Zhang C, Yang J, Deans MR, Firpo MA, Park AH. Role of cochlear synaptopathy in cytomegalovirus infected mice and in children. Int J Pediatr Otorhinolaryngol 2020; 138:110275. [PMID: 32828018 PMCID: PMC8663027 DOI: 10.1016/j.ijporl.2020.110275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Determine whether a murine model of cytomegalovirus (CMV) and CMV- infected children show evidence of synaptopathy. STUDY DESIGN Murine model of CMV infection and case series. SUBJECTS AND METHODS C57 BL/6 mice were inoculated with murine-CMV (mCMV). Auditory function was assessed using Auditory Brainstem Response (ABR) and distortion product otoacoustic emission (DPOAE) testing. Temporal bones from mCMV-infected mice were used for both ribbon synapse and hair cell quantification. Four groups of children (non-CMV normal hearing, non-CMV hearing impaired, CMV normal hearing and CMV hearing impaired) underwent ABRs between 2014 and 2018. The outcomes included raw amplitude, wave I:V amplitude ratio, absolute latency, and interpeak latency. RESULTS Mice at 8 weeks post mCMV infection had higher ABR and DPOAE (P < 0.05) thresholds and increased outer hair cell loss compared to uninfected mice and mCMV-infected mice at 4 and 6 weeks post infection, indicating progressive hearing loss. A reduction in the wave I amplitude and synaptic counts were noted earlier at 4 weeks in CMV-infected mice (P < 0.05). The human data indicated that the wave I:V amplitude ratio was lower on average in CMV-infected groups when compared to the uninfected cohorts. The wave I:V amplitude ratio for the click and 4k stimuli were not significantly different between the congenital CMV-infected and uninfected children with normal or with hearing loss. CONCLUSION This study suggests mCMV infection results in a synaptopathy before hair cell damage. Additional studies need to be performed to determine whether this effect is also observed in CMV-infected children. LEVEL OF EVIDENCE Animal studies and basic science- NA; human studies: level 4.
Collapse
Affiliation(s)
- Ali Almishaal
- College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Pranav Dinesh Mathur
- Otonomy Inc, San Diego, CA, USA; Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Lesley Franklin
- Department of Audiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin Shi
- Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA
| | - Travis Haller
- Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA
| | | | - Kayla Hirschmugl
- Hearing and Speech Center, Children's National, Washington. D.C., USA
| | - Brian R Earl
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Chong Zhang
- Department of Internal Medicine- Epidemiology, University of Utah, UT, USA
| | - Jun Yang
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael R Deans
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA; Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA
| | | | - Albert H Park
- Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA.
| |
Collapse
|
103
|
Valenzuela CV, Lee C, Mispagel A, Bhattacharyya A, Lefler SM, Payne S, Goodman SS, Ortmann AJ, Buchman CA, Rutherford MA, Lichtenhan JT. Is cochlear synapse loss an origin of low-frequency hearing loss associated with endolymphatic hydrops? Hear Res 2020; 398:108099. [PMID: 33125982 DOI: 10.1016/j.heares.2020.108099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023]
Abstract
There is a strong association between endolymphatic hydrops and low-frequency hearing loss, but the origin of the hearing loss remains unknown. A reduction in the number of cochlear afferent synapses between inner hair cells and auditory nerve fibres may be the origin of the low-frequency hearing loss, but this hypothesis has not been directly tested in humans or animals. In humans, measurements of hearing loss and postmortem temporal-bone based measurements of endolymphatic hydrops are generally separated by large amounts of time. In animals, there has not been a good objective, physiologic, and minimally invasive measurement of low-frequency hearing. We overcame this obstacle with the combined use of a reliable surgical approach to ablate the endolymphatic sac in guinea pigs and create endolymphatic hydrops, the Auditory Nerve Overlapped Waveform to measure low-frequency hearing loss (≤ 1 kHz), and immunohistofluorescence-based confocal microscopy to count cochlear synapses. Results showed low- and mid-(1-4 kHz) frequency hearing loss at all postoperative days, 1, 4, and 30. There was no statistically significant loss of cochlear synapses, and there was no correlation between synapse loss and hearing function. We conclude that cochlear afferent synaptic loss is not the origin of the low-frequency hearing loss in the early days following endolymphatic sac ablation. Understanding what is, and is not, the origin of a hearing loss can help guide preventative and therapeutic development.
Collapse
Affiliation(s)
- Carla V Valenzuela
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, USA
| | - Abby Mispagel
- Program in Audiology and Communication Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Shannon M Lefler
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Shelby Payne
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Shawn S Goodman
- Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - Amanda J Ortmann
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, Saint Louis, MO 63110, USA; Department of Otolaryngology, University of Rochester, Rochester, NY, USA
| | - Craig A Buchman
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Mark A Rutherford
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Jeffery T Lichtenhan
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, Saint Louis, MO 63110, USA; Program in Audiology and Communication Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
104
|
White PM. Perspectives on Human Hearing Loss, Cochlear Regeneration, and the Potential for Hearing Restoration Therapies. Brain Sci 2020; 10:E756. [PMID: 33092183 PMCID: PMC7589617 DOI: 10.3390/brainsci10100756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Most adults who acquire hearing loss find it to be a disability that is poorly corrected by current prosthetics. This gap drives current research in cochlear mechanosensory hair cell regeneration and in hearing restoration. Birds and fish can spontaneously regenerate lost hair cells through a process that has become better defined in the last few years. Findings from these studies have informed new research on hair cell regeneration in the mammalian cochlea. Hair cell regeneration is one part of the greater problem of hearing restoration, as hearing loss can stem from a myriad of causes. This review discusses these issues and recent findings, and places them in the greater social context of need and community.
Collapse
Affiliation(s)
- Patricia M White
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
105
|
Manohar S, Adler HJ, Chen GD, Salvi R. Blast-induced hearing loss suppresses hippocampal neurogenesis and disrupts long term spatial memory. Hear Res 2020; 395:108022. [PMID: 32663733 PMCID: PMC9063718 DOI: 10.1016/j.heares.2020.108022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Acoustic information transduced by cochlear hair cells is continuously relayed from the auditory pathway to other sensory, motor, emotional and cognitive centers in the central nervous system. Human epidemiological studies have suggested that hearing loss is a risk factor for dementia and cognitive decline, but the mechanisms contributing to these memory and cognitive impairments are poorly understood. To explore these issues in a controlled experimental setting, we exposed adult rats to a series of intense blast wave exposures that significantly reduced the neural output of the cochlea. Several weeks later, we used the Morris Water Maze test, a hippocampal-dependent memory task, to assess the ability of Blast Wave and Control rats to learn a spatial navigation task (memory acquisition) and to remember what they had learned (spatial memory retention) several weeks earlier. The elevated plus maze and open field arena were used to test for anxiety-like behaviors. Afterwards, hippocampal cell proliferation and neurogenesis were evaluated using bromodeoxyuridine (BrdU), doublecortin (DCX), and Neuronal Nuclei (NeuN) immunolabeling. The Blast Wave and Control rats learned the spatial navigation task equally well and showed no differences on tests of anxiety. However, the Blast Wave rats performed significantly worse on the spatial memory retention task, i.e., remembering where they had been two weeks earlier. Deficits on the spatial memory retention task were associated with significant decreases in hippocampal cell proliferation and neurogenesis. Our blast wave results are consistent with other experimental manipulations that link spatial memory retention deficits (long term memory) with decreased cell proliferation and neurogenesis in the hippocampus. These results add to the growing body of knowledge linking blast-induced cochlear hearing loss with the cognitive deficits often seen in combat personnel and provide mechanistic insights into these extra auditory disorders that could lead to therapeutic interventions.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Henry J Adler
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| |
Collapse
|
106
|
Shen N, Zhou L, Lai B, Li S. The Influence of Cochlear Implant-Based Electric Stimulation on the Electrophysiological Characteristics of Cultured Spiral Ganglion Neurons. Neural Plast 2020; 2020:3108490. [PMID: 32963515 PMCID: PMC7490630 DOI: 10.1155/2020/3108490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/22/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background Cochlear implant-based electrical stimulation may be an important reason to induce the residual hearing loss after cochlear implantation. In our previous study, we found that charge-balanced biphasic electrical stimulation inhibited the neurite growth of spiral ganglion neurons (SGNs) and decreased Schwann cell density in vitro. In this study, we want to know whether cochlear implant-based electrical stimulation can induce the change of electrical activity in cultured SGNs. Methods Spiral ganglion neuron electrical stimulation in vitro model is established using the devices delivering cochlear implant-based electrical stimulation. After 48 h treatment by 50 μA or 100 μA electrical stimulation, the action potential (AP) and voltage depended calcium current (I Ca) of SGNs are recorded using whole-cell electrophysiological method. Results The results show that the I Ca of SGNs is decreased significantly in 50 μA and 100 μA electrical stimulation groups. The reversal potential of I Ca is nearly +80 mV in control SGN, but the reversal potential decreases to +50 mV in 50 μA and 100 μA electrical stimulation groups. Interestingly, the AP amplitude, the AP latency, and the AP duration of SGNs have no statistically significant differences in all three groups. Conclusion Our study suggests cochlear implant-based electrical stimulation only significantly inhibit the I Ca of cultured SGNs but has no effect on the firing of AP, and the relation of I Ca inhibition and SGN damage induced by electrical stimulation and its mechanism needs to be further studied.
Collapse
Affiliation(s)
- Na Shen
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shufeng Li
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| |
Collapse
|
107
|
Keithley EM. Pathology and mechanisms of cochlear aging. J Neurosci Res 2020; 98:1674-1684. [PMID: 31066107 PMCID: PMC7496655 DOI: 10.1002/jnr.24439] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Presbycusis, or age-related hearing loss (ARHL), occurs in most mammals with variations in the age of onset, rate of decline, and magnitude of degeneration in the central nervous system and inner ear. The affected cochlear structures include the stria vascularis and its vasculature, spiral ligament, sensory hair cells and auditory neurons. Dysfunction of the stria vascularis results in a reduced endocochlear potential. Without this potential, the cochlear amplification provided by the electro-motility of the outer hair cells is insufficient, and a high-frequency hearing-loss results. Degeneration of the sensory cells, especially the outer hair cells also leads to hearing loss due to lack of amplification. Neuronal degeneration, another hallmark of ARHL, most likely underlies difficulties with speech discrimination, especially in noisy environments. Noise exposure is a major cause of ARHL. It is well-known to cause sensory cell degeneration, especially the outer hair cells at the high frequency end of the cochlea. Even loud, but not uncomfortable, sound levels can lead to synaptopathy and ultimately neuronal degeneration. Even in the absence of a noisy environment, aged cells degenerate. This pathology most likely results from damage to mitochondria and contributes to degenerative changes in the stria vascularis, hair cells, and neurons. The genetic underpinnings of ARHL are still unknown and most likely involve various combinations of genes. At present, the only effective strategy for reducing ARHL is prevention of noise exposure. If future strategies can improve mitochondrial activity and reduce oxidative damage in old age, these should also bring relief.
Collapse
Affiliation(s)
- Elizabeth M. Keithley
- Division of Otolaryngology ‐ Head and Neck SurgeryUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
108
|
Varela-Nieto I, Murillo-Cuesta S, Calvino M, Cediel R, Lassaletta L. Drug development for noise-induced hearing loss. Expert Opin Drug Discov 2020; 15:1457-1471. [PMID: 32838572 DOI: 10.1080/17460441.2020.1806232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Excessive exposure to noise is a common occurrence that contributes to approximately 50% of the non-genetic hearing loss cases. Researchers need to develop standardized preclinical models and identify molecular targets to effectively develop prevention and curative therapies. AREAS COVERED In this review, the authors discuss the many facets of human noise-induced pathology, and the primary experimental models for studying the basic mechanisms of noise-induced damage, making connections and inferences among basic science studies, preclinical proofs of concept and clinical trials. EXPERT OPINION Whilst experimental research in animal models has helped to unravel the mechanisms of noise-induced hearing loss, there are often methodological variations and conflicting results between animal and human studies which make it difficult to integrate data and translate basic outcomes to clinical practice. Standardization of exposure paradigms and application of -omic technologies will contribute to improving the effectiveness of transferring newly gained knowledge to clinical practice.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain
| | - Silvia Murillo-Cuesta
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain
| | - Miryam Calvino
- Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Otorhinolaryngology, La Paz University Hospital , Madrid, Spain
| | - Rafael Cediel
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Animal Medicine and Surgery, Complutense University of Madrid , Madrid, Spain
| | - Luis Lassaletta
- Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Otorhinolaryngology, La Paz University Hospital , Madrid, Spain
| |
Collapse
|
109
|
Reiss LA. Cochlear implants and other inner ear prostheses: today and tomorrow. CURRENT OPINION IN PHYSIOLOGY 2020; 18:49-55. [PMID: 32905432 DOI: 10.1016/j.cophys.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cochlear implants (CIs) are implantable auditory prostheses designed to restore access to sound in deaf individuals via direct electrical stimulation of the auditory nerve. While CIs have been successful in restoring speech perception to many deaf patients, outcomes are variable and speech recognition in noise remains a problem. This chapter will review the factors underlying this variability, and discuss significant recent innovations to address these issues including neural health preservation, characterization, and regeneration, and other inner ear prostheses. The emerging role of central auditory plasticity will also be discussed. Together, these advances will point to the likely future directions for advancing the next generation of CIs and other inner ear prostheses.
Collapse
Affiliation(s)
- Lina Aj Reiss
- Oregon Health & Science University, Otolaryngology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mailcode NRC04, OHSU, Portland 97239, United States
| |
Collapse
|
110
|
Hockley A, Berger JI, Palmer AR, Wallace MN. Nitric oxide increases gain in the ventral cochlear nucleus of guinea pigs with tinnitus. Eur J Neurosci 2020; 52:4057-4080. [PMID: 32686192 DOI: 10.1111/ejn.14913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/21/2022]
Abstract
Previous work has led to the hypothesis that, during the production of noise-induced tinnitus, higher levels of nitric oxide (NO), in the ventral cochlear nucleus (VCN), increase the gain applied to a reduced input from the cochlea. To test this hypothesis, we noise-exposed 26 guinea pigs, identified evidence of tinnitus in 12 of them and then compared the effects of an iontophoretically applied NO donor or production inhibitor on VCN single unit activity. We confirmed that the mean driven firing rate for the tinnitus and control groups was the same while it had fallen in the non-tinnitus group. By contrast, the mean spontaneous rate had increased for the tinnitus group relative to the control group, while it remained the same for the non-tinnitus group. A greater proportion of units responded to exogenously applied NO in the tinnitus (56%) and non-tinnitus groups (71%) than a control population (24%). In the tinnitus group, endogenous NO facilitated the driven firing rate in 37% (7/19) of neurons and appeared to bring the mean driven rate back up to control levels by a mechanism involving N-methyl-D-aspartic acid (NMDA) receptors. By contrast, in the non-tinnitus group, endogenous NO only facilitated the driven firing rate in 5% (1/22) of neurons and there was no facilitation of driven rate in the control group. The effects of endogenous NO on spontaneous activity were unclear. These results suggest that NO is involved in increasing the gain applied to driven activity, but other factors are also involved in the increase in spontaneous activity.
Collapse
Affiliation(s)
- Adam Hockley
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK.,Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Joel I Berger
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mark N Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
111
|
Feng S, Yang L, Hui L, Luo Y, Du Z, Xiong W, Liu K, Jiang X. Long-term exposure to low-intensity environmental noise aggravates age-related hearing loss via disruption of cochlear ribbon synapses. Am J Transl Res 2020; 12:3674-3687. [PMID: 32774726 PMCID: PMC7407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Noise pollution is a major public hazard. Previous studies have shown that environmental noise affects the reorganization of the auditory cortex and leads to behavioral abnormality; however, the effects of long-term environmental noise exposure on the inner ear and hearing remain to be elucidated. In this study, we simulated environmental noise with a long-term 70 dB sound pressure level "white" noise, observed its effect on the inner ears of C57BL/6J mice, and developed an in vitro model for mechanistic studies. We found that environmental noise increased the hearing threshold, decreased the auditory response amplitude, and aggravated the range and extent of age-related hearing loss (ARHL), especially in the intermediate frequency band in mice. Cochlear ribbon synapse is the primary site of inner ear injury caused by environmental noise. We also verified, through an in vitro simulation of the excitatory toxicity of glutamate and aging effects, that the activation of NLRP3 inflammasome plays a vital role in the cochlear ribbon synaptic damage. Our results show that long-term exposure to low-intensity environmental noise can lead to hearing loss via the disruption of ribbon synapses, which is caused by an inflammatory reaction. Additionally, environmental noise can further aggravate the progression of ARHL. This study expounded the pathogenesis of the inner ear damage caused by environmental noise exposure and provides a new direction for the prevention and treatment of hearing loss.
Collapse
Affiliation(s)
- Shuai Feng
- Department of Otolaryngology, The First Affiliated Hospital of China Medical UniversityShenyang 110001, China
| | - Le Yang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong No. 2 Provincial People’s Hospital, Southern Medical UniversityGuangzhou 510000, China
| | - Lian Hui
- Department of Otolaryngology, The First Affiliated Hospital of China Medical UniversityShenyang 110001, China
| | - Yangtuo Luo
- Department of Otolaryngology, The First Affiliated Hospital of China Medical UniversityShenyang 110001, China
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
| | - Wei Xiong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
| | - Xuejun Jiang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical UniversityShenyang 110001, China
| |
Collapse
|
112
|
Search for Electrophysiological Indices of Hidden Hearing Loss in Humans: Click Auditory Brainstem Response Across Sound Levels and in Background Noise. Ear Hear 2020; 42:53-67. [PMID: 32675590 DOI: 10.1097/aud.0000000000000905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Recent studies in animals indicate that even moderate levels of exposure to noise can damage synaptic ribbons between the inner hair cells and auditory nerve fibers without affecting audiometric thresholds, giving rise to the use of the term "hidden hearing loss" (HHL). Despite evidence across several animal species, there is little consistent evidence for HHL in humans. The aim of the study is to evaluate potential electrophysiological changes specific to individuals at risk for HHL. DESIGN Participants forming the high-risk experimental group consisted of 28 young normal-hearing adults who participated in marching band for at least 5 years. Twenty-eight age-matched normal-hearing adults who were not part of the marching band and had little or no history of recreational or occupational exposure to loud sounds formed the low-risk control group. Measurements included pure tone audiometry of conventional and high frequencies, distortion product otoacoustic emissions, and electrophysiological measures of auditory nerve and brainstem function as reflected in the click-evoked auditory brainstem response (ABR). In experiment 1, ABRs were recorded in a quiet background across stimulus levels (30-90 dB nHL) presented in 10 dB steps. In experiment 2, the ABR was elicited by a 70 dB nHL click stimulus presented in a quiet background, and in the presence of simultaneous ipsilateral continuous broadband noise presented at 50, 60, and 70 dB SPL using an insert earphone (Etymotic, ER2). RESULTS There were no differences between the low- and high-risk groups in audiometric thresholds or distortion product otoacoustic emission amplitude. Experiment 1 demonstrated smaller wave-I amplitudes at moderate and high sound levels for high-risk compared to low-risk group with similar wave III and wave V amplitude. Enhanced amplitude ratio V/I, particularly at moderate sound level (60 dB nHL), suggesting central compensation for reduced input from the periphery for high-risk group. The results of experiment 2 show that the decrease in wave I amplitude with increasing background noise level was relatively smaller for the high-risk compared to the low-risk group. However, wave V amplitude reduction was essentially similar for both groups. These results suggest that masking induced wave I amplitude reduction is smaller in individuals at high risk for cochlear synaptopathy. Unlike previous studies, we did not observe a difference in the noise-induced wave V latency shift between low- and high-risk groups. CONCLUSIONS Results of experiment 1 are consistent with findings in both animal studies (that suggest cochlear synaptopathy involving selective damage of low-spontaneous rate and medium-spontaneous rate fibers), and in several human studies that show changes in a range of ABR metrics that suggest the presence of cochlear synaptopathy. However, without postmortem examination by harvesting human temporal bone (the gold standard for identifying synaptopathy) with different noise exposure background, no direct inferences can be derived for the presence/extent of cochlear synaptopathy in high-risk group with high sound over-exposure history. Results of experiment 2 demonstrate that to the extent response amplitude reflects both the number of neural elements responding and the neural synchrony of the responding elements, the relatively smaller change in response amplitude for the high-risk group would suggest a reduced susceptibility to masking. One plausible mechanism would be that suppressive effects that kick in at moderate to high levels are different in these two groups, particularly at moderate levels of the masking noise. Altogether, a larger scale dataset with different noise exposure background, longitudinal measurements (changes due to recreational over-exposure by studying middle-school to high-school students enrolled in marching band) with an array of behavioral and electrophysiological tests are needed to understand the complex pathogenesis of sound over-exposure damage in normal-hearing individuals.
Collapse
|
113
|
Optimizing Auditory Brainstem Response Acquisition Using Interleaved Frequencies. J Assoc Res Otolaryngol 2020; 21:225-242. [PMID: 32648066 DOI: 10.1007/s10162-020-00754-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/12/2020] [Indexed: 12/11/2022] Open
Abstract
Auditory brainstem responses (ABRs) require averaging responses to hundreds or thousands of repetitions of a stimulus (e.g., tone pip) to obtain a measurable evoked response at the scalp. Fast repetition rates lead to changes in ABR amplitude and latency due to adaptation. To minimize the effect of adaptation, stimulus rates are sometimes as low as 10 to 13.3 stimuli per second, requiring long acquisition times. The trade-off between reducing acquisition time and minimizing the effect of adaptation on ABRs is an especially important consideration for studies of cochlear synaptopathy, which use the amplitude of short latency responses (wave 1) to assess auditory nerve survival. It has been proposed that adaptation during ABR acquisition can be reduced by interleaving tones at different frequencies, rather than testing each frequency serially. With careful ordering of frequencies and levels in the stimulus train, adaptation in the auditory nerve can be minimized, thereby permitting an increase in the rate at which tone bursts are presented. However, widespread adoption of this stimulus design has been hindered by lack of available software. Here, we develop and validate an interleaved stimulus design to optimize the rate of ABR measurement while minimizing adaptation. We implement this method in an open-source data acquisition software tool that permits either serial or interleaved ABR measurements. The open-source software library, psiexperiment, is compatible with widely used ABR hardware. Consistent with previous studies, careful design of an interleaved stimulus train can reduce ABR acquisition time by more than half, with minimal effect on ABR thresholds and wave 1 latency, while improving measures of wave 1 amplitude.
Collapse
|
114
|
Evaluation of cochlear activity in normal-hearing musicians. Hear Res 2020; 395:108027. [PMID: 32659614 DOI: 10.1016/j.heares.2020.108027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The present study compared wave I amplitude of auditory brainstem responses (ABRs), a potential indicator of cochlear synaptopathy, among musicians and non-musicians with normal audiograms. DESIGN Noise exposure background (NEB) was evaluated using an online questionnaire. Two-channel ABRs were recorded from the left ear using click stimuli. One channel utilized an ipsilateral tiptrode, and another channel utilized an ipsilateral mastoid electrode. ABRs were collected at 90, 75, and 60 dBnHL. A mixed model was used to analyze the effect of group, electrodes, and stimulus levels on ABR wave I amplitude. STUDY SAMPLE 75 collegiate students with normal hearing participated in the study and were grouped into a non-music major group (n = 25), a brass major group (n = 25), and a voice major group (n = 25). RESULTS The NEB was negatively associated with the action potential (AP) and ABR wave I amplitude for click intensity levels at 75 dBnHL. The mean amplitude of the ABR wave I was not significantly different between the three groups. CONCLUSION The weak negative association of AP and ABR wave I amplitude with NEB cannot be solely attributed to evidence of cochlear synaptopathy in humans as the possibility of hair cell damage cannot be ruled out. Future research should investigate the effects of reduced cochlear output on the supra-threshold speech processing abilities of student musicians.
Collapse
|
115
|
Couth S, Prendergast G, Guest H, Munro KJ, Moore DR, Plack CJ, Ginsborg J, Dawes P. Investigating the effects of noise exposure on self-report, behavioral and electrophysiological indices of hearing damage in musicians with normal audiometric thresholds. Hear Res 2020; 395:108021. [PMID: 32631495 DOI: 10.1016/j.heares.2020.108021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 01/11/2023]
Abstract
Musicians are at risk of hearing loss due to prolonged noise exposure, but they may also be at risk of early sub-clinical hearing damage, such as cochlear synaptopathy. In the current study, we investigated the effects of noise exposure on electrophysiological, behavioral and self-report correlates of hearing damage in young adult (age range = 18-27 years) musicians and non-musicians with normal audiometric thresholds. Early-career musicians (n = 76) and non-musicians (n = 47) completed a test battery including the Noise Exposure Structured Interview, pure-tone audiometry (PTA; 0.25-8 kHz), extended high-frequency (EHF; 12 and 16 kHz) thresholds, otoacoustic emissions (OAEs), auditory brainstem responses (ABRs), speech perception in noise (SPiN), and self-reported tinnitus, hyperacusis and hearing in noise difficulties. Total lifetime noise exposure was similar between musicians and non-musicians, the majority of which could be accounted for by recreational activities. Musicians showed significantly greater ABR wave I/V ratios than non-musicians and were also more likely to report experience of - and/or more severe - tinnitus, hyperacusis and hearing in noise difficulties, irrespective of noise exposure. A secondary analysis revealed that individuals with the highest levels of noise exposure had reduced outer hair cell function compared to individuals with the lowest levels of noise exposure, as measured by OAEs. OAE level was also related to PTA and EHF thresholds. High levels of noise exposure were also associated with a significant increase in ABR wave V latency, but only for males, and a higher prevalence and severity of hyperacusis. These findings suggest that there may be sub-clinical effects of noise exposure on various hearing metrics even at a relatively young age, but do not support a link between lifetime noise exposure and proxy measures of cochlear synaptopathy such as ABR wave amplitudes and SPiN. Closely monitoring OAEs, PTA and EHF thresholds when conventional PTA is within the clinically 'normal' range could provide a useful early metric of noise-induced hearing damage. This may be particularly relevant to early-career musicians as they progress through a period of intensive musical training, and thus interventions to protect hearing longevity may be vital.
Collapse
Affiliation(s)
- Samuel Couth
- Manchester Centre for Audiology and Deafness, University of Manchester, UK.
| | | | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, UK
| | - David R Moore
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Communication Sciences Research Center, Cincinnati Children's Hospital Medical Centre, OH, USA
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Psychology, Lancaster University, UK
| | | | - Piers Dawes
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Linguistics, Macquarie University, Sydney, Australia
| |
Collapse
|
116
|
黄 丽. [Hidden hearing loss and early identification]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2020; 34:668-671. [PMID: 32791650 PMCID: PMC10133119 DOI: 10.13201/j.issn.2096-7993.2020.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 04/30/2023]
Abstract
The symptoms of hidden hearing loss(HHL) are concealed, mainly manifested as defects in the threshold upper auditory function, which are related to noise exposure, aging and drug damage. There is no definite evidence to prove that whether the three factors participate in mechanism of synaptic damage in the cochlea. The clinical audiological characteristics of HHL are mostly as follows: the normal threshold of PTA and the wave response of ABR; the amplitude of the CAP of ABR wave Ⅰ or ECochG is lower at medium and high stimulation intensity; the lower speech recognition rate under noise, etc. Ultra-high frequency pure tone audiometry, a series of objective audiological examinations, such as ABR, ECochG and frequency-following response, speech audiometry under noise, noise exposure questionnaire evaluation were applied to detect HHL at early stage.
Collapse
Affiliation(s)
- 丽辉 黄
- 首都医科大学附属北京同仁医院 北京市耳鼻咽喉科研究所 耳鼻咽喉头颈外科学教育部重点实验室(首都医科大学)(北京,100005)
| |
Collapse
|
117
|
Basta D, Gröschel M, Strübing I, Boyle P, Fröhlich F, Ernst A, Seidl R. Near-infrared-light pre-treatment attenuates noise-induced hearing loss in mice. PeerJ 2020; 8:e9384. [PMID: 32596055 PMCID: PMC7305775 DOI: 10.7717/peerj.9384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2020] [Indexed: 12/02/2022] Open
Abstract
Noise induced hearing loss (NIHL) is accompanied by a reduction of cochlear hair cells and spiral ganglion neurons. Different approaches have been applied to prevent noise induced apoptosis / necrosis. Physical intervention is one technique currently under investigation. Specific wavelengths within the near-infrared light (NIR)-spectrum are known to influence cytochrome-c-oxidase activity, which leads in turn to a decrease in apoptotic mechanisms. It has been shown recently that NIR can significantly decrease the cochlear hair cell loss if applied daily for 12 days after a noise exposure. However, it is still unclear if a single NIR-treatment, just before a noise exposure, could induce similar protective effects. Therefore, the present study was conducted to investigate the effect of a single NIR-pre-treatment aimed at preventing or limiting NIHL. The cochleae of adult NMRI-mice were pre-treated with NIR-light (808 nm, 120 mW) for 5, 10, 20, 30 or 40 minutes via the external ear canal. All animals were noised exposed immediately after the pre-treatment by broad band noise (5–20 kHz) for 30 minutes at 115 dB SPL. Frequency specific ABR-recordings to determine auditory threshold shift were carried out before the pre-treatment and two weeks after the noise exposure. The amplitude increase for wave IV and cochlear hair cell loss were determined. A further group of similar mice was noise exposed only and served as a control for the NIR pre-exposed groups. Two weeks after noise exposure, the ABR threshold shifts of NIR-treated animals were significantly lower (p < 0.05) than those of the control animals. The significance was at three frequencies for the 5-minute pre-treatment group and across the entire frequency range for all other treatment groups. Due to NIR light, the amplitude of wave four deteriorates significantly less after noise exposure than in controls. The NIR pre-treatment had no effect on the loss of outer hair cells, which was just as high with or without NIR-light pre-exposure. Relative to the entire number of outer hair cells across the whole cochlea, outer hair cell loss was rather negligible. No inner hair cell loss whatever was detected. Our results suggest that a single NIR pre-treatment induces a very effective protection of cochlear structures from noise exposure. Pre-exposure of 10 min seems to emerge as the optimal dosage for our experimental setup. A saturated effect occurred with higher dosage-treatments. These results are relevant for protection of residual hearing in otoneurosurgery such as cochlear implantation.
Collapse
Affiliation(s)
- Dietmar Basta
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Moritz Gröschel
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Ira Strübing
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | | | - Felix Fröhlich
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Arne Ernst
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Rainer Seidl
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| |
Collapse
|
118
|
Keshishzadeh S, Garrett M, Vasilkov V, Verhulst S. The derived-band envelope following response and its sensitivity to sensorineural hearing deficits. Hear Res 2020; 392:107979. [DOI: 10.1016/j.heares.2020.107979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
|
119
|
Shehorn J, Strelcyk O, Zahorik P. Associations between speech recognition at high levels, the middle ear muscle reflex and noise exposure in individuals with normal audiograms. Hear Res 2020; 392:107982. [DOI: 10.1016/j.heares.2020.107982] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
|
120
|
Bramhall NF, Niemczak CE, Kampel SD, Billings CJ, McMillan GP. Evoked Potentials Reveal Noise Exposure-Related Central Auditory Changes Despite Normal Audiograms. Am J Audiol 2020; 29:152-164. [PMID: 32182128 DOI: 10.1044/2019_aja-19-00060] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose Complaints of auditory perceptual deficits, such as tinnitus and difficulty understanding speech in background noise, among individuals with clinically normal audiograms present a perplexing problem for audiologists. One potential explanation for these "hidden" auditory deficits is loss of the synaptic connections between the inner hair cells and their afferent auditory nerve fiber targets, a condition that has been termed cochlear synaptopathy. In animal models, cochlear synaptopathy can occur due to aging or exposure to noise or ototoxic drugs and is associated with reduced auditory brainstem response (ABR) wave I amplitudes. Decreased ABR wave I amplitudes have been demonstrated among young military Veterans and non-Veterans with a history of firearm use, suggesting that humans may also experience noise-induced synaptopathy. However, the downstream consequences of synaptopathy are unclear. Method To investigate how noise-induced reductions in wave I amplitude impact the central auditory system, the ABR, the middle latency response (MLR), and the late latency response (LLR) were measured in 65 young Veterans and non-Veterans with normal audiograms. Results In response to a click stimulus, the MLR was weaker for Veterans compared to non-Veterans, but the LLR was not reduced. In addition, low ABR wave I amplitudes were associated with a reduced MLR, but with an increased LLR. Notably, Veterans reporting tinnitus showed the largest mean LLRs. Conclusions These findings indicate that decreased peripheral auditory input leads to compensatory gain in the central auditory system, even among individuals with normal audiograms, and may impact auditory perception. This pattern of reduced MLR, but not LLR, was observed among Veterans even after statistical adjustment for sex and distortion product otoacoustic emission differences, suggesting that synaptic loss plays a role in the observed central gain. Supplemental Material https://doi.org/10.23641/asha.11977854.
Collapse
Affiliation(s)
- Naomi F. Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland
| | | | - Sean D. Kampel
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
| | - Curtis J. Billings
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Garnett P. McMillan
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland
| |
Collapse
|
121
|
Fan L, Zhang Z, Wang H, Li C, Xing Y, Yin S, Chen Z, Wang J. Pre-exposure to Lower-Level Noise Mitigates Cochlear Synaptic Loss Induced by High-Level Noise. Front Syst Neurosci 2020; 14:25. [PMID: 32477075 PMCID: PMC7235317 DOI: 10.3389/fnsys.2020.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
The auditory sensory organs appear to be less damaged by exposure to high-level noise that is presented after exposure to non-traumatizing low-level noise. This phenomenon is known as the toughening or conditioning effect. Functionally, it is manifested by a reduced threshold shift, and morphologically by a reduced hair cell loss. However, it remains unclear whether prior exposure to toughening noise can mitigate the synaptic loss induced by exposure to damaging noise. Since the cochlear afferent synapse between the inner hair cells and primary auditory neurons has been identified as a novel site involved in noise-induced cochlear damage, we were interested in assessing whether this synapse can be toughened. In the present study, the synaptic loss was induced by a damaging noise exposure (106 dB SPL) and compared across Guinea pigs who had and had not been previously exposed to a toughening noise (85 dB SPL). Results revealed that the toughening noise heavily reduced the synaptic loss observed 1 day after exposure to the damaging noise. Although it was significant, the protective effect of the toughening noise on permanent synaptic loss was much smaller. Compared with cases in the control group without noise exposure, coding deficits were seen in both toughened groups, as reflected in the compound action potential (CAP) by signals with amplitude modulation. In general, the pre-exposure to the toughening noise resulted in a significantly reduced synaptic loss by the high-level noise. However, this morphological protection was not accompanied by a robust functional benefit.
Collapse
Affiliation(s)
- Liqiang Fan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Chunyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yazhi Xing
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhengnong Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jian Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,School of Communication Sciences and Disorders, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
122
|
Wei W, Shi X, Xiong W, He L, Du ZD, Qu T, Qi Y, Gong SS, Liu K, Ma X. RNA-seq Profiling and Co-expression Network Analysis of Long Noncoding RNAs and mRNAs Reveal Novel Pathogenesis of Noise-induced Hidden Hearing Loss. Neuroscience 2020; 434:120-135. [PMID: 32201268 DOI: 10.1016/j.neuroscience.2020.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 12/16/2022]
Abstract
Noise-induced hidden hearing loss (NIHHL), one of the family of conditions described as noise-induced hearing loss (NIHL), is characterized by synaptopathy following moderate noise exposure that causes only temporary threshold elevation. Long noncoding RNAs (lncRNAs) mediate several essential regulatory functions in a wide range of biological processes and diseases, but their roles in NIHHL remain largely unknown. In order to determine the potential roles of these lncRNAs in the pathogenesis of NIHHL, we first evaluated their expression in NIHHL mice model and mapped possible regulatory functions and targets using RNA-sequencing (RNA-seq). In total, we identified 133 lncRNAs and 522 mRNAs that were significantly dysregulated in the NIHHL model. Gene Ontology (GO) showed that these lncRNAs were involved in multiple cell components and systems including synapses and the nervous and sensory systems. In addition, a lncRNA-mRNA network was constructed to identify core regulatory lncRNAs and transcription factors. KEGG analysis was also used to identify the potential pathways being affected in NIHHL. These analyses allowed us to identify the guanine nucleotide binding protein alpha stimulating (GNAS) gene as a key transcription factor and the adrenergic signaling pathway as a key pathway in the regulation of NIHHL pathogenesis. Our study is the first, to our knowledge, to isolate a lncRNA mediated regulatory pathway associated with NIHHL pathogenesis; these observations may provide fresh insight into the pathogenesis of NIHHL and may pave the way for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Wei Wei
- Department of Otology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Xi Shi
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; The Institute of Audiology and Speech Science of Xuzhou Medical College, Xuzhou 221004, China
| | - Wei Xiong
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lu He
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zheng-De Du
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Tengfei Qu
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yue Qi
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Xiulan Ma
- Department of Otology, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| |
Collapse
|
123
|
Kamerer AM, Kopun JG, Fultz SE, Neely ST, Rasetshwane DM. Reliability of Measures Intended to Assess Threshold-Independent Hearing Disorders. Ear Hear 2020; 40:1267-1279. [PMID: 30882533 PMCID: PMC6745005 DOI: 10.1097/aud.0000000000000711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Recent animal studies have shown that noise exposure can cause cochlear synaptopathy without permanent threshold shift. Because the noise exposure preferentially damaged auditory nerve fibers that processed suprathreshold sounds (low-spontaneous rate fibers), it has been suggested that synaptopathy may underlie suprathreshold hearing deficits in humans. Recently, several researchers have suggested measures to identify the pathology or pathologies underlying suprathreshold hearing deficits in humans based on results from animal studies; however, the reliability of some of these measures have not been assessed. The purpose of this study was to assess the test-retest reliability of measures that may have the potential to relate suprathreshold hearing deficits to site(s)-of-lesion along the peripheral auditory system in humans. DESIGN Adults with audiometric normal hearing were tested on a battery of behavioral and physiologic measures that included (1) thresholds in quiet (TIQ), (2) thresholds in noise (TIN), (3) frequency-modulation detection threshold (FMDT), (4) word recognition in four listening conditions, (5) distortion-product otoacoustic emissions (DPOAE), (6) middle ear muscle reflex (MEMR), (7) tone burst-elicited auditory brainstem response (tbABR), and (8) speech-evoked ABR (sABR). Data collection for each measure was repeated over two visits separated by at least one week. The residuals of the correlation between the suprathreshold measures and TIQ serve as functional and quantitative proxies for threshold-independent hearing disorders because they represent the portion of the raw measures that is not dependent on TIQ. Reliability of the residual measures was assessed using intraclass correlation (ICC). RESULTS Reliability for the residual measures was good (ICC ≥ 0.75) for FMDT, DPOAEs, and MEMR. Residual measures showing moderate reliability (0.5 ≤ ICC < 0.75) were tbABR wave I amplitude, TIN, and word recognition in quiet, noise, and time-compressed speech with reverberation. Wave V of the tbABR, waves of the sABR, and recognition of time-compressed words had poor test-retest reliability (ICC < 0.5). CONCLUSIONS Reliability of residual measures was mixed, suggesting that care should be taken when selecting measures for diagnostic tests of threshold-independent hearing disorders. Quantifying hidden hearing loss as the variance in suprathreshold measures of auditory function that is not due to TIQ may provide a reliable estimate of threshold-independent hearing disorders in humans.
Collapse
Affiliation(s)
| | - Judy G. Kopun
- Boys Town National Research Hospital, Omaha, NE 68131
| | - Sara E. Fultz
- Boys Town National Research Hospital, Omaha, NE 68131
| | | | | |
Collapse
|
124
|
The ongoing search for cochlear synaptopathy in humans: Masked thresholds for brief tones in Threshold Equalizing Noise. Hear Res 2020; 392:107960. [PMID: 32334105 DOI: 10.1016/j.heares.2020.107960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/28/2022]
Abstract
This study aimed to advance towards a clinical diagnostic method for detection of cochlear synaptopathy with the hypothesis that synaptopathy should be manifested in elevated masked thresholds for brief tones. This hypothesis was tested in tinnitus sufferers, as they are thought to have some degree of synaptopathy. Near-normal-hearing tinnitus sufferers and their matched controls were asked to detect pure tones with durations of 5, 10, 100, and 200 ms presented in low- and high-level Threshold Equalizing Noise. In addition, lifetime noise exposure was estimated for all participants. Contrary to the hypothesis, there was no significant difference in masked thresholds for brief tones between tinnitus sufferers and their matched controls. Masked thresholds were also not related to lifetime noise exposure. There are two possible explanations of the results: 1) the participants in our study did not have cochlear synaptopathy, or 2) synaptopathy does not lead to elevated masked thresholds for brief tones. This study adds a new approach to the growing list of behavioral methods that attempted to detect potential signs of cochlear synaptopathy in humans.
Collapse
|
125
|
Warren B, Fenton GE, Klenschi E, Windmill JFC, French AS. Physiological Basis of Noise-Induced Hearing Loss in a Tympanal Ear. J Neurosci 2020; 40:3130-3140. [PMID: 32144181 PMCID: PMC7141877 DOI: 10.1523/jneurosci.2279-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/19/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022] Open
Abstract
Acoustic overexposure, such as listening to loud music too often, results in noise-induced hearing loss. The pathologies of this prevalent sensory disorder begin within the ear at synapses of the primary auditory receptors, their postsynaptic partners and their supporting cells. The extent of noise-induced damage, however, is determined by overstimulation of primary auditory receptors, upstream of where the pathologies manifest. A systematic characterization of the electrophysiological function of the upstream primary auditory receptors is warranted to understand how noise exposure impacts on downstream targets, where the pathologies of hearing loss begin. Here, we used the experimentally-accessible locust ear (male, Schistocerca gregaria) to characterize a decrease in the auditory receptor's ability to respond to sound after noise exposure. Surprisingly, after noise exposure, the electrophysiological properties of the auditory receptors remain unchanged, despite a decrease in the ability to transduce sound. This auditory deficit stems from changes in a specialized receptor lymph that bathes the auditory receptors, revealing striking parallels with the mammalian auditory system.SIGNIFICANCE STATEMENT Noise exposure is the largest preventable cause of hearing loss. It is the auditory receptors that bear the initial brunt of excessive acoustic stimulation, because they must convert excessive sound-induced movements into electrical signals, but remain functional afterward. Here we use the accessible ear of an invertebrate to, for the first time in any animal, characterize changes in auditory receptors after noise overexposure. We find that their decreased ability to transduce sound into electrical signals is, most probably, due to changes in supporting (scolopale) cells that maintain the ionic composition of the ear. An emerging doctrine in hearing research is that vertebrate primary auditory receptors are surprisingly robust, something that we show rings true for invertebrate ears too.
Collapse
Affiliation(s)
- Ben Warren
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom,
| | - Georgina E Fenton
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Elizabeth Klenschi
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - James F C Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
126
|
Warren B, Fenton GE, Klenschi E, Windmill JFC, French AS. Physiological Basis of Noise-Induced Hearing Loss in a Tympanal Ear. J Neurosci 2020. [PMID: 32144181 DOI: 10.3760/cma.j.cn112137-20200803-02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Acoustic overexposure, such as listening to loud music too often, results in noise-induced hearing loss. The pathologies of this prevalent sensory disorder begin within the ear at synapses of the primary auditory receptors, their postsynaptic partners and their supporting cells. The extent of noise-induced damage, however, is determined by overstimulation of primary auditory receptors, upstream of where the pathologies manifest. A systematic characterization of the electrophysiological function of the upstream primary auditory receptors is warranted to understand how noise exposure impacts on downstream targets, where the pathologies of hearing loss begin. Here, we used the experimentally-accessible locust ear (male, Schistocerca gregaria) to characterize a decrease in the auditory receptor's ability to respond to sound after noise exposure. Surprisingly, after noise exposure, the electrophysiological properties of the auditory receptors remain unchanged, despite a decrease in the ability to transduce sound. This auditory deficit stems from changes in a specialized receptor lymph that bathes the auditory receptors, revealing striking parallels with the mammalian auditory system.SIGNIFICANCE STATEMENT Noise exposure is the largest preventable cause of hearing loss. It is the auditory receptors that bear the initial brunt of excessive acoustic stimulation, because they must convert excessive sound-induced movements into electrical signals, but remain functional afterward. Here we use the accessible ear of an invertebrate to, for the first time in any animal, characterize changes in auditory receptors after noise overexposure. We find that their decreased ability to transduce sound into electrical signals is, most probably, due to changes in supporting (scolopale) cells that maintain the ionic composition of the ear. An emerging doctrine in hearing research is that vertebrate primary auditory receptors are surprisingly robust, something that we show rings true for invertebrate ears too.
Collapse
Affiliation(s)
- Ben Warren
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom,
| | - Georgina E Fenton
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Elizabeth Klenschi
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - James F C Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
127
|
Han S, Du Z, Liu K, Gong S. Nicotinamide riboside protects noise-induced hearing loss by recovering the hair cell ribbon synapses. Neurosci Lett 2020; 725:134910. [PMID: 32171805 DOI: 10.1016/j.neulet.2020.134910] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Nicotinamide riboside (NR) has been proved to protect the hearing. To achieve animal models of temporary threshold shift (TTS) and permanent threshold shift (PTS) respectively, evaluate the dynamic change of ribbon synapse before and after NR administration. METHODS Mice were divided into control group, noise exposure (NE) group and NR group. The noise was exposed to NE and NR group, and NR was injected before noise exposure. Auditory brainstem response (ABR), ribbon synapse count and cochlear morphology were tested, as well as the concentration of hydrogen peroxide (H2O2) and ATP. RESULTS Ribbon synapse count decrease with the intensity of noise exposure, and the cochlear morphology remains stable during TTS and was damaged during PTS. NR promotes the oxidation resistance to protect the synapse and the inner ear morphology. CONCLUSION Our findings suggest that TTS mice are more vulnerable to noise, and NR can promote the recovery of the synapse count to protect the animals' hearing.
Collapse
Affiliation(s)
- Shuguang Han
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
128
|
Tepe V, Papesh M, Russell S, Lewis MS, Pryor N, Guillory L. Acquired Central Auditory Processing Disorder in Service Members and Veterans. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:834-857. [PMID: 32163310 DOI: 10.1044/2019_jslhr-19-00293] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose A growing body of evidence suggests that military service members and military veterans are at risk for deficits in central auditory processing. Risk factors include exposure to blast, neurotrauma, hazardous noise, and ototoxicants. We overview these risk factors and comorbidities, address implications for clinical assessment and care of central auditory processing deficits in service members and veterans, and specify knowledge gaps that warrant research. Method We reviewed the literature to identify studies of risk factors, assessment, and care of central auditory processing deficits in service members and veterans. We also assessed the current state of the science for knowledge gaps that warrant additional study. This literature review describes key findings relating to military risk factors and clinical considerations for the assessment and care of those exposed. Conclusions Central auditory processing deficits are associated with exposure to known military risk factors. Research is needed to characterize mechanisms, sources of variance, and differential diagnosis in this population. Existing best practices do not explicitly consider confounds faced by military personnel. Assessment and rehabilitation strategies that account for these challenges are needed. Finally, investment is critical to ensure that Veterans Affairs and Department of Defense clinical staff are informed, trained, and equipped to implement effective patient care.
Collapse
Affiliation(s)
- Victoria Tepe
- Department of Defense Hearing Center of Excellence, JBSA Lackland, TX
- The Geneva Foundation, Tacoma, WA
| | - Melissa Papesh
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Shoshannah Russell
- Walter Reed National Military Medical Center, Bethesda, MD
- Henry Jackson Foundation, Bethesda, MD
| | - M Samantha Lewis
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
- School of Audiology, Pacific University, Hillsboro, OR
| | - Nina Pryor
- Department of Defense Hearing Center of Excellence, JBSA Lackland, TX
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH
| | - Lisa Guillory
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia
| |
Collapse
|
129
|
Zhang Z, Fan L, Xing Y, Wang J, Aiken S, Chen Z, Wang J. Temporary Versus Permanent Synaptic Loss from Repeated Noise Exposure in Guinea Pigs and C57 Mice. Neuroscience 2020; 432:94-103. [PMID: 32114095 DOI: 10.1016/j.neuroscience.2020.02.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/07/2020] [Accepted: 02/23/2020] [Indexed: 01/14/2023]
Abstract
A single brief noise exposure can cause a significant loss of cochlear afferent synapses without causing permanent threshold shift. Previously we reported that the initial synaptic loss is partially reversible in Guinea pigs, indicating that synaptic loss can be categorized as either temporary or permanent. Since synaptic loss is biased to innervating auditory nerve fibers (ANFs) with low spontaneous spike rates (SSR), which are critical to the coding of in-background noise, coding-in-noise deficits (CIND) have been predicted to result from noise-induced synaptic damage. However, recent study of the noise masking of amplitude-modulation (AM) evoked compound action potentials (CAP) tailed to find evidence for such deficits in either mice or Guinea pigs. The present study sought to determine the effects of repeated noise exposure on temporary and permanent synaptic loss in Guinea pigs and C57 mice, whether such effects were additive, and whether repeated noise exposure induced CIND in Guinea pigs. The results show that the second noise exposure caused much less temporary synaptic loss and no additional permanent loss in Guinea pigs; however, an additional permanent loss was seen after the second noise was in the mice, although it was not significant. In Guinea pigs, the observed increased masking of the AM CAP provides evidence for CIND after repeated noise exposure.
Collapse
Affiliation(s)
- Zhen Zhang
- Otolaryngology Research Institute, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liqiang Fan
- Otolaryngology Research Institute, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yazhi Xing
- Otolaryngology Research Institute, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiping Wang
- Otolaryngology Research Institute, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Steve Aiken
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, Canada
| | - Zhengnong Chen
- Otolaryngology Research Institute, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jian Wang
- Otolaryngology Research Institute, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; School of Communication Sciences and Disorders, Dalhousie University, Halifax, Canada.
| |
Collapse
|
130
|
Harrison RT, Bielefeld EC. Assessing Hidden Hearing Loss After Impulse Noise in a Mouse Model. Noise Health 2020; 21:35-40. [PMID: 32098929 PMCID: PMC7050230 DOI: 10.4103/nah.nah_38_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: There are several key differences between impulse and continuous noise: the nature of the noise itself, the cochlear and neuronal structures affected, the severity to which they damage the auditory system, and the period of time in which damage occurs. Notably, no work on hidden hearing loss after impulse noise exposure has been done to this point, though it has been extensively studied after continuous noise. Hidden hearing loss manifests physiologically with reductions in suprathreshold amplitudes of the first wave of the auditory brainstem response, while auditory thresholds can remain relatively normal. Objective: This study aimed to assess the extent to which, if at all, hidden hearing loss is present after exposure to impulse noise in C57BL6/J mice. Methods: Thirty-one C57BL6/J mice were used in the experiment, in accordance with IACUC protocols. Auditory brainstem responses were recorded before and after noise exposures. The noise exposures consisted of 500 impulses at 137 dB peSPL. Results: Suprathreshold amplitude reductions in the P1 wave of the mouse auditory brainstem response were seen, but only at frequencies with significant threshold shift. Conclusion: These amplitude changes were consistent with hidden hearing loss, and we conclude that impulse noise can cause hidden hearing loss, but future studies are required to determine the specific mechanisms involved and if they parallel those of hidden hearing loss after continuous noise.
Collapse
Affiliation(s)
- Ryan T Harrison
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH 43220, USA
| | - Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH 43220, USA
| |
Collapse
|
131
|
Katsumi S, Sahin MI, Lewis RM, Iyer JS, Landegger LD, Stankovic KM. Intracochlear Perfusion of Tumor Necrosis Factor-Alpha Induces Sensorineural Hearing Loss and Synaptic Degeneration in Guinea Pigs. Front Neurol 2020; 10:1353. [PMID: 32116980 PMCID: PMC7025643 DOI: 10.3389/fneur.2019.01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a proinflammatory cytokine that plays a prominent role in the nervous system, mediating a range of physiologic and pathologic functions. In the auditory system, elevated levels of TNF-α have been implicated in several types of sensorineural hearing loss, including sensorineural hearing loss induced by vestibular schwannoma, a potentially fatal intracranial tumor that originates from the eighth cranial nerve; however, the mechanisms underlying the tumor's deleterious effects on hearing are not well-understood. Here, we investigated the effect of acute elevations of TNF-α in the inner ear on cochlear function and morphology by perfusing the cochlea with TNF-α in vivo in guinea pigs. TNF-α perfusion did not significantly change thresholds for compound action potential (CAP) responses, which reflect cochlear nerve activity, or distortion product otoacoustic emissions, which reflect outer hair cell integrity. However, intracochlear TNF-α perfusion reduced CAP amplitudes and increased the number of inner hair cell synapses without paired post-synaptic terminals, suggesting a pattern of synaptic degeneration that resembles that observed in primary cochlear neuropathy. Additionally, etanercept, a TNF-α blocker, protected against TNF-α-induced synaptopathy when administered systemically prior to intracochlear TNF-α perfusion. Findings motivate further investigation into the harmful effects of chronically elevated intracochlear levels of TNF-α, and the potential for etanercept to counter these effects.
Collapse
Affiliation(s)
- Sachiyo Katsumi
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Mehmet I Sahin
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Rebecca M Lewis
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Janani S Iyer
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
| | - Lukas D Landegger
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
132
|
Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca 2+-permeable AMPA receptors. Proc Natl Acad Sci U S A 2020; 117:3828-3838. [PMID: 32015128 DOI: 10.1073/pnas.1914247117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Exposure to loud sound damages the postsynaptic terminals of spiral ganglion neurons (SGNs) on cochlear inner hair cells (IHCs), resulting in loss of synapses, a process termed synaptopathy. Glutamatergic neurotransmission via α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type receptors is required for synaptopathy, and here we identify a possible involvement of GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) using IEM-1460, which has been shown to block GluA2-lacking AMPARs. In CBA/CaJ mice, a 2-h exposure to 100-dB sound pressure level octave band (8 to 16 kHz) noise results in no permanent threshold shift but does cause significant synaptopathy and a reduction in auditory brainstem response (ABR) wave-I amplitude. Chronic intracochlear perfusion of IEM-1460 in artificial perilymph (AP) into adult CBA/CaJ mice prevented the decrease in ABR wave-I amplitude and the synaptopathy relative to intracochlear perfusion of AP alone. Interestingly, IEM-1460 itself did not affect the ABR threshold, presumably because GluA2-containing AMPARs can sustain sufficient synaptic transmission to evoke low-threshold responses during blockade of GluA2-lacking AMPARs. On individual postsynaptic densities, we observed GluA2-lacking nanodomains alongside regions with robust GluA2 expression, consistent with the idea that individual synapses have both CP-AMPARs and Ca2+-impermeable AMPARs. SGNs innervating the same IHC differ in their relative vulnerability to noise. We found local heterogeneity among synapses in the relative abundance of GluA2 subunits that may underlie such differences in vulnerability. We propose a role for GluA2-lacking CP-AMPARs in noise-induced cochlear synaptopathy whereby differences among synapses account for differences in excitotoxic susceptibility. These data suggest a means of maintaining normal hearing thresholds while protecting against noise-induced synaptopathy, via selective blockade of CP-AMPARs.
Collapse
|
133
|
Lee C, Valenzuela CV, Goodman SS, Kallogjeri D, Buchman CA, Lichtenhan JT. Early Detection of Endolymphatic Hydrops using the Auditory Nerve Overlapped Waveform (ANOW). Neuroscience 2020; 425:251-266. [PMID: 31809731 PMCID: PMC6935415 DOI: 10.1016/j.neuroscience.2019.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023]
Abstract
Endolymphatic hydrops is associated with low-frequency sensorineural hearing loss, with a large body of research dedicated to examining its putative causal role in low-frequency hearing loss. Investigations have been thwarted by the fact that hearing loss is measured in intact ears, but gold standard assessments of endolymphatic hydrops are made postmortem only; and that no objective low-frequency hearing measure has existed. Yet the association of endolymphatic hydrops with low-frequency hearing loss is so strong that it has been established as one of the important defining features for Ménière's disease, rendering it critical to detect endolymphatic hydrops early, regardless of whether it serves a causal role or is the result of other disease mechanisms. We surgically induced endolymphatic hydrops in guinea pigs and employed our recently developed objective neural measure of low-frequency hearing, the Auditory Nerve Overlapped Waveform (ANOW). Hearing loss and endolymphatic hydrops were assessed at various time points after surgery. The ANOW detected low-frequency hearing loss as early as the first day after surgery, well before endolymphatic hydrops was found histologically. The ANOW detected low-frequency hearing loss with perfect sensitivity and specificity in all ears after endolymphatic hydrops developed, where there was a strong linear relationship between degree of endolymphatic hydrops and severity of low-frequency hearing loss. Further, histological data demonstrated that endolymphatic hydrops is seen first in the high-frequency cochlear base, though the ANOW demonstrated that dysfunction begins in the low-frequency apical cochlear half. The results lay the groundwork for future investigations of the causal role of endolymphatic hydrops in low-frequency hearing loss.
Collapse
Affiliation(s)
- C Lee
- Washington University School of Medicine in St. Louis, Department of Otolaryngology, Saint Louis, MO, USA
| | - C V Valenzuela
- Washington University School of Medicine in St. Louis, Department of Otolaryngology, Saint Louis, MO, USA
| | - S S Goodman
- University of Iowa, Department of Communication Sciences and Disorders, Iowa City, IA, USA
| | - D Kallogjeri
- Washington University School of Medicine in St. Louis, Department of Otolaryngology, Saint Louis, MO, USA
| | - C A Buchman
- Washington University School of Medicine in St. Louis, Department of Otolaryngology, Saint Louis, MO, USA
| | - J T Lichtenhan
- Washington University School of Medicine in St. Louis, Department of Otolaryngology, Saint Louis, MO, USA.
| |
Collapse
|
134
|
C Kohrman D, Wan G, Cassinotti L, Corfas G. Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035493. [PMID: 30617057 DOI: 10.1101/cshperspect.a035493] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hidden hearing loss (HHL), a recently described auditory disorder, has been proposed to affect auditory neural processing and hearing acuity in subjects with normal audiometric thresholds, particularly in noisy environments. In contrast to central auditory processing disorders, HHL is caused by defects in the cochlea, the peripheral auditory organ. Noise exposure, aging, ototoxic drugs, and peripheral neuropathies are some of the known risk factors for HHL. Our knowledge of the causes and mechanisms of HHL are based primarily on animal models. However, recent clinical studies have also shed light on the etiology and prevalence of this cochlear disorder and how it may affect auditory perception in humans. Here, we review the current knowledge regarding the causes and cellular mechanisms of HHL, summarize information on available noninvasive tests for differential diagnosis, and discuss potential therapeutic approaches for treatment of HHL.
Collapse
Affiliation(s)
- David C Kohrman
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Luis Cassinotti
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
135
|
Fernandez KA, Guo D, Micucci S, De Gruttola V, Liberman MC, Kujawa SG. Noise-induced Cochlear Synaptopathy with and Without Sensory Cell Loss. Neuroscience 2019; 427:43-57. [PMID: 31887361 DOI: 10.1016/j.neuroscience.2019.11.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 11/28/2022]
Abstract
Prior work has provided extensive documentation of threshold sensitivity and sensory hair cell losses after noise exposure. It is now clear, however, that cochlear synaptic loss precedes such losses, at least at low-moderate noise doses, silencing affected neurons. To address questions of whether, and how, cochlear synaptopathy and underlying mechanisms change as noise dose is varied, we assessed cochlear physiologic and histologic consequences of a range of exposures varied in duration from 15 min to 8 h and in level from 85 to 112 dB SPL. Exposures delivered to adult CBA/CaJ mice produced acute elevations in hair cell- and neural-based response thresholds ranging from trivial (∼5 dB) to large (∼50 dB), followed by varying degrees of recovery. Males appeared more noise vulnerable for some conditions of exposure. There was little to no inner hair cell (IHC) loss, but outer hair cell (OHC) loss could be substantial at highest frequencies for highest noise doses. Synapse loss was an early manifestation of noise injury and did not scale directly with either temporary or permanent threshold shift. With increasing noise dose, synapse loss grew to ∼50%, then declined for exposures yielding permanent hair cell injury/loss. All synaptopathic, but no non-synaptopathic exposures produced persistent neural response amplitude declines; those additionally yielding permanent OHC injury/loss also produced persistent reductions in OHC-based responses and exaggerated neural amplitude declines. Findings show that widespread cochlear synaptopathy can be present with and without noise-induced sensory cell loss and that differing patterns of cellular injury influence synaptopathic outcomes.
Collapse
Affiliation(s)
- Katharine A Fernandez
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Guo
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Micucci
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA
| | - Victor De Gruttola
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
136
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
137
|
Residual Cochlear Function in Adults and Children Receiving Cochlear Implants: Correlations With Speech Perception Outcomes. Ear Hear 2019; 40:577-591. [PMID: 30169463 DOI: 10.1097/aud.0000000000000630] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Variability in speech perception outcomes with cochlear implants remains largely unexplained. Recently, electrocochleography, or measurements of cochlear potentials in response to sound, has been used to assess residual cochlear function at the time of implantation. Our objective was to characterize the potentials recorded preimplantation in subjects of all ages, and evaluate the relationship between the responses, including a subjective estimate of neural activity, and speech perception outcomes. DESIGN Electrocochleography was recorded in a prospective cohort of 284 candidates for cochlear implant at University of North Carolina (10 months to 88 years of ages). Measurement of residual cochlear function called the "total response" (TR), which is the sum of magnitudes of spectral components in response to tones of different stimulus frequencies, was obtained for each subject. The TR was then related to results on age-appropriate monosyllabic word score tests presented in quiet. In addition to the TR, the electrocochleography results were also assessed for neural activity in the forms of the compound action potential and auditory nerve neurophonic. RESULTS The TR magnitude ranged from a barely detectable response of about 0.02 µV to more than 100 µV. In adults (18 to 79 years old), the TR accounted for 46% of variability in speech perception outcome by linear regression (r = 0.46; p < 0.001). In children between 6 and 17 years old, the variability accounted for was 36% (p < 0.001). In younger children, the TR accounted for less of the variability, 15% (p = 0.012). Subjects over 80 years old tended to perform worse for a given TR than younger adults at the 6-month testing interval. The subjectively assessed neural activity did not increase the information compared with the TR alone, which is primarily composed of the cochlear microphonic produced by hair cells. CONCLUSIONS The status of the auditory periphery, particularly of hair cells rather than neural activity, accounts for a large fraction of variability in speech perception outcomes in adults and older children. In younger children, the relationship is weaker, and the elderly differ from other adults. This simple measurement can be applied with high throughput so that peripheral status can be assessed to help manage patient expectations, create individually-tailored treatment plans, and identify subjects performing below expectations based on residual cochlear function.
Collapse
|
138
|
Occupational Noise Exposure and Risk for Noise-Induced Hearing Loss Due to Temporal Bone Drilling. Otol Neurotol 2019; 39:693-699. [PMID: 29889779 DOI: 10.1097/mao.0000000000001851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Noise-induced hearing loss is one of the most common occupational hazards in the United States. Several studies have described noise-induced hearing loss in patients following mastoidectomy. Although otolaryngologists care for patients with noise-induced hearing loss, few studies in the English literature have examined surgeons' occupational risk. METHODS Noise dosimeters and sound level meters with octave band analyzers were used to assess noise exposure during drilling of temporal bones intraoperatively and in a lab setting. Frequency specific sound intensities were recorded. Sound produced using burrs of varying size and type were compared. Differences while drilling varying anatomic structures were assessed using drills from two manufacturers. Pure tone audiometry was performed on 7 to 10 otolaryngology residents before and after a temporal bone practicum to assess for threshold shifts. RESULTS Noise exposure during otologic drilling can exceed over 100 dB for short periods of time, and is especially loud using large diameter burrs > 4 mm, with cutting as compared with diamond burrs, and while drilling denser bone such as the cortex. Intensity peaks were found at 2.5, 5, and 6.3 kHz. Drilling on the tegmen and sigmoid sinus revealed peaks at 10 and 12.5 kHz. No temporary threshold shifts were found at 3 to 6 kHz, but were found at 8 to 16 kHz, though this did not reach statistical significance. CONCLUSION This article examines noise exposure and threshold shifts during temporal bone drilling. We were unable to find previous descriptions in the literature of measurements done while multiple people drilling simultaneously, during tranlabyrinthine surgery and a specific frequency characterization of the change in peach that appears while drilling on the tegmen. Hearing protection should be considered, which would still allow the surgeon to appreciate pitch changes associated with drilling on sensitive structures and communication with surgical team members. As professionals who specialize in promoting the restoration and preservation of hearing for others, otologic surgeons should not neglect hearing protection for themselves.
Collapse
|
139
|
Escabi CD, Frye MD, Trevino M, Lobarinas E. The rat animal model for noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3692. [PMID: 31795685 PMCID: PMC7480078 DOI: 10.1121/1.5132553] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rats make excellent models for the study of medical, biological, genetic, and behavioral phenomena given their adaptability, robustness, survivability, and intelligence. The rat's general anatomy and physiology of the auditory system is similar to that observed in humans, and this has led to their use for investigating the effect of noise overexposure on the mammalian auditory system. The current paper provides a review of the rat model for studying noise-induced hearing loss and highlights advancements that have been made using the rat, particularly as these pertain to noise dose and the hazardous effects of different experimental noise types. In addition to the traditional loss of auditory function following acoustic trauma, recent findings have indicated the rat as a useful model in observing alterations in neuronal processing within the central nervous system following noise injury. Furthermore, the rat provides a second animal model when investigating noise-induced cochlear synaptopathy, as studies examining this in the rat model resemble the general patterns observed in mice. Together, these findings demonstrate the relevance of this animal model for furthering the authors' understanding of the effects of noise on structural, anatomical, physiological, and perceptual aspects of hearing.
Collapse
Affiliation(s)
- Celia D Escabi
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Mitchell D Frye
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Monica Trevino
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Edward Lobarinas
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
140
|
Lee JH, Lee MY, Chung PS, Jung JY. Photobiomodulation using low-level 808 nm diode laser rescues cochlear synaptopathy after acoustic overexposure in rat. JOURNAL OF BIOPHOTONICS 2019; 12:e201900145. [PMID: 31240853 DOI: 10.1002/jbio.201900145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
A certain degree of noise can cause hearing problems without a permanent change in the hearing threshold, which is called hidden hearing loss and results from partial loss of auditory synapses. Photobiomodulation (PBM) enhances neural growth and connections in the peripheral nervous systems. In this study, we assessed whether PBM could rescue cochlear synaptopathy after acoustic overexposure in rat. PBM was performed for 7 days after noise exposure. The auditory brainstem responses (ABRs) were acquired before and after noise exposure using a tone and a paired-click stimulus. Auditory response to paired click sound with short time interval was performed to evaluate auditory temporal processing ability. In the result, hearing threshold recovered 2 weeks after noise exposure in both groups. Peak wave 1 amplitude of the ABR and ABR recovery threshold did not recover in the noise only group, whereas it fully recovered in the noise + PBM group. The number of synaptic ribbons was significantly different in the control and noise only groups, while there was no difference between the control and noise + PBM group. These results indicate that PBM rescued peak wave 1 amplitude and maintained the auditory temporal processing ability resulting from a loss of synaptic ribbons after acoustic overexposure.
Collapse
Affiliation(s)
- Jae-Hun Lee
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea
- Interdiscriplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, South Korea
| | - Min Young Lee
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea
- Interdiscriplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, South Korea
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, Cheonan, South Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea
- Interdiscriplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, South Korea
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, Cheonan, South Korea
| | - Jae Yun Jung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea
- Interdiscriplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, South Korea
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, Cheonan, South Korea
| |
Collapse
|
141
|
Bielefeld EC, Harrison RT, Riley DeBacker J. Pharmaceutical otoprotection strategies to prevent impulse noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3790. [PMID: 31795721 DOI: 10.1121/1.5132285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the ongoing challenges for hearing researchers is successful protection of the ear from noise injury. For decades, the most effective methods have been based on modifying the acoustic properties of the noise, either by reducing noise output from various sources, interfering in the acoustic exposure path with environmental controls, or altering the noise dose for the individual with personal hearing protection devices. Because of the inefficiencies of some of the acoustic modification procedures, pharmaceutical otoprotection is targeted at making the cochlea less susceptible to injury. Short-duration, high-level impulse noises, typically caused by small-scale explosions, cause different sets of injuries in the ear than long-duration, low-variance noise exposures. Therefore, the expectation is that the ears exposed to impulse noise may need different pharmaceutical interventions, both in type of compounds used and the time course of administration of the compounds. The current review discusses four different classes of compounds that have been tested as impulse noise otoprotectants. In the process of describing those experiments, particular emphasis is placed on the acoustic properties of the impulses used, with the goal of providing context for evaluating the relevance of these different models to human impulse noise-induced hearing loss.
Collapse
Affiliation(s)
- Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, Ohio 43220, USA
| | - Ryan T Harrison
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, Ohio 43220, USA
| | - J Riley DeBacker
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, Ohio 43220, USA
| |
Collapse
|
142
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
143
|
Bramhall NF, McMillan GP, Gallun FJ, Konrad-Martin D. Auditory brainstem response demonstrates that reduced peripheral auditory input is associated with self-report of tinnitus. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3849. [PMID: 31795660 DOI: 10.1121/1.5132708] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tinnitus is one of the predicted perceptual consequences of cochlear synaptopathy, a type of age-, noise-, or drug-induced auditory damage that has been demonstrated in animal models to cause homeostatic changes in central auditory gain. Although synaptopathy has been observed in human temporal bones, assessment of this condition in living humans is limited to indirect non-invasive measures such as the auditory brainstem response (ABR). In animal models, synaptopathy is associated with a reduction in ABR wave I amplitude at suprathreshold stimulus levels. Several human studies have explored the relationship between wave I amplitude and tinnitus, with conflicting results. This study investigates the hypothesis that reduced peripheral auditory input due to synaptic/neuronal loss is associated with tinnitus. Wave I amplitude data from 193 individuals [43 with tinnitus (22%), 150 without tinnitus (78%)], who participated in up to 3 out of 4 different studies, were included in a logistic regression analysis to estimate the relationship between wave I amplitude and tinnitus at a variety of stimulus levels and frequencies. Statistical adjustment for sex and distortion product otoacoustic emissions (DPOAEs) was included. The results suggest that smaller wave I amplitudes and/or lower DPOAE levels are associated with an increased probability of tinnitus.
Collapse
Affiliation(s)
- Naomi F Bramhall
- Department of Veterans Affairs (VA) Rehabilitation Research and Development Service (RR&D), National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon 97239, USA
| | - Garnett P McMillan
- Department of Veterans Affairs (VA) Rehabilitation Research and Development Service (RR&D), National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon 97239, USA
| | - Frederick J Gallun
- Department of Veterans Affairs (VA) Rehabilitation Research and Development Service (RR&D), National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon 97239, USA
| | - Dawn Konrad-Martin
- Department of Veterans Affairs (VA) Rehabilitation Research and Development Service (RR&D), National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon 97239, USA
| |
Collapse
|
144
|
Spankovich C, Le Prell CG. The role of diet in vulnerability to noise-induced cochlear injury and hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4033. [PMID: 31795697 DOI: 10.1121/1.5132707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The influence of dietary nutrient intake on the onset and trajectory of hearing loss during aging and in mediating protection from challenges such as noise is an important relationship yet to be fully appreciated. Dietary intake provides essential nutrients that support basic cellular processes related to influencing cellular stress response, immune response, cardiometabolic status, neural status, and psychological well-being. Dietary quality has been shown to alter risk for essentially all chronic health conditions including hearing loss and tinnitus. Evidence of nutrients with antioxidant, anti-inflammatory, and anti-ischemic properties, and overall healthy diet quality as otoprotective strategies are slowly accumulating, but many questions remain unanswered. In this article, the authors will discuss (1) animal models in nutritional research, (2) evidence of dietary nutrient-based otoprotection, and (3) consideration of confounds and limitations to nutrient and dietary study in hearing sciences. Given that there are some 60 physiologically essential nutrients, unraveling the intricate biochemistry and multitude of interactions among nutrients may ultimately prove infeasible; however, the wealth of available data suggesting healthy nutrient intake to be associated with improved hearing outcomes suggests the development of evidence-based guidance regarding diets that support healthy hearing may not require precise understanding of all possible interactions among variables. Clinical trials evaluating otoprotective benefits of nutrients should account for dietary quality, noise exposure history, and exercise habits as potential covariates that may influence the efficacy and effectiveness of test agents; pharmacokinetic measures are also encouraged.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
145
|
Kamerer AM, Kopun JG, Fultz SE, Allen C, Neely ST, Rasetshwane DM. Examining physiological and perceptual consequences of noise exposure. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3947. [PMID: 31795718 PMCID: PMC6881192 DOI: 10.1121/1.5132291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 05/08/2023]
Abstract
The consequences of noise exposure on the auditory system are not entirely understood. In animals, noise exposure causes selective synaptopathy-an uncoupling of auditory nerve fibers from sensory cells-mostly in fibers that respond to high sound levels. Synaptopathy can be measured physiologically in animals, but a direct relationship between noise exposure and synaptopathy in humans has yet to be proven. Sources of variability, such as age, indirect measures of noise exposure, and comorbid auditory disorders, obfuscate attempts to find concrete relationships between noise exposure, synaptopathy, and perceptual consequences. This study adds to the ongoing effort by examining relationships between noise exposure, auditory brainstem response (ABR) amplitudes, and speech perception in adults of various ages and audiometric thresholds and a subset of younger adults with clinically normal hearing. Regression models including noise exposure, age, hearing thresholds, and sex as covariates were compared to find a best-fitting model of toneburst ABR wave I amplitude at two frequencies and word recognition performance in three listening conditions: background noise, time compression, and time compression with reverberation. The data suggest the possibility of detecting synaptopathy in younger adults using physiological measures, but that age and comorbid hearing disorders may hinder attempts to assess noise-induced synaptopathy.
Collapse
Affiliation(s)
- Aryn M Kamerer
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Judy G Kopun
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Sara E Fultz
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Carissa Allen
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Stephen T Neely
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | |
Collapse
|
146
|
Liang Q, Shen N, Lai B, Xu C, Sun Z, Wang Z, Li S. Electrical Stimulation Degenerated Cochlear Synapses Through Oxidative Stress in Neonatal Cochlear Explants. Front Neurosci 2019; 13:1073. [PMID: 31680814 PMCID: PMC6803620 DOI: 10.3389/fnins.2019.01073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Neurostimulation devices use electrical stimulation (ES) to substitute, supplement or modulate neural function. However, the impact of ES on their modulating structures is largely unknown. For example, recipients of cochlear implants using electroacoustic stimulation experienced delayed loss of residual hearing over time after ES, even though ES had no impact on the morphology of hair cells. In this study, using a novel model of cochlear explant culture with charge-balanced biphasic ES, we found that ES did not change the quantity and morphology of hair cells but decreased the number of inner hair cell (IHC) synapses and the density of spiral ganglion neuron (SGN) peripheral fibers. Inhibiting calcium influx with voltage-dependent calcium channel (VDCC) blockers attenuated the loss of SGN peripheral fibers and IHC synapses induced by ES. ES increased ROS/RNS in cochlear explants, but the inhibition of calcium influx abolished this effect. Glutathione peroxidase 1 (GPx1) and GPx2 in cochlear explants decreased under ES and ebselen abolished this effect and attenuated the loss of SGN peripheral fibers. This finding demonstrated that ES induced the degeneration of SGN peripheral fibers and IHC synapses in a current intensity- and duration-dependent manner in vitro. Calcium influx resulting in oxidative stress played an important role in this process. Additionally, ebselen might be a potential protector of ES-induced cochlear synaptic degeneration.
Collapse
Affiliation(s)
- Qiong Liang
- Department of Otolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, China.,National Health Commission Key Laboratory of Hearing Medicine, Shanghai, China
| | - Na Shen
- Department of Otolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, China.,National Health Commission Key Laboratory of Hearing Medicine, Shanghai, China.,Department of Otolaryngology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Shanghai, China
| | - Changjian Xu
- Shanghai Cochlear Engineering Technology Research Center, Shanghai, China
| | - Zengjun Sun
- Shanghai Cochlear Engineering Technology Research Center, Shanghai, China
| | - Zhengmin Wang
- Department of Otolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, China.,National Health Commission Key Laboratory of Hearing Medicine, Shanghai, China
| | - Shufeng Li
- Department of Otolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, China.,National Health Commission Key Laboratory of Hearing Medicine, Shanghai, China
| |
Collapse
|
147
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
148
|
Lin X, Li G, Zhang Y, Zhao J, Lu J, Gao Y, Liu H, Li GL, Yang T, Song L, Wu H. Hearing consequences in Gjb2 knock-in mice: implications for human p.V37I mutation. Aging (Albany NY) 2019; 11:7416-7441. [PMID: 31562289 PMCID: PMC6782001 DOI: 10.18632/aging.102246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023]
Abstract
Human p.V37I mutation of GJB2 gene was strongly correlated with late-onset progressive hearing loss, especially among East Asia populations. We generated a knock-in mouse model based on human p.V37I variant (c.109G>A) that recapitulated the human phenotype. Cochlear pathology revealed no significant hair cell loss, stria vascularis atrophy or spiral ganglion neuron loss, but a significant change in the length of gap junction plaques, which may have contributed to the observed mild endocochlear potential (EP) drop in homozygous mice lasting lifetime. The cochlear amplification in homozygous mice was compromised, but outer hair cells' function remained unchanged, indicating that the reduced amplification was EP- rather than prestin-generated. In addition to ABR threshold elevation, ABR wave I latencies were also prolonged in aged homozygous animals. We found in homozygous IHCs a significant increase in ICa but no change in Ca2+ efficiency in triggering exocytosis. Environmental insults such as noise exposure, middle ear injection of KCl solution and systemic application of furosemide all exacerbated the pathological phenotype in homozygous mice. We conclude that this Gjb2 mutation-induced hearing loss results from 1) reduced cochlear amplifier caused by lowered EP, 2) IHCs excitotoxicity associated with potassium accumulation around hair cells, and 3) progression induced by environmental insults.
Collapse
Affiliation(s)
- Xin Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Jingjing Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Yunge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Geng-Lin Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| |
Collapse
|
149
|
β-Secretase BACE1 Is Required for Normal Cochlear Function. J Neurosci 2019; 39:9013-9027. [PMID: 31527119 DOI: 10.1523/jneurosci.0028-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Cleavage of amyloid precursor protein (APP) by β-secretase BACE1 initiates the production and accumulation of neurotoxic amyloid-β peptides, which is widely considered an essential pathogenic mechanism in Alzheimer's disease (AD). Here, we report that BACE1 is essential for normal auditory function. Compared with wild-type littermates, BACE1-/- mice of either sex exhibit significant hearing deficits, as indicated by increased thresholds and reduced amplitudes in auditory brainstem responses (ABRs) and decreased distortion product otoacoustic emissions (DPOAEs). Immunohistochemistry revealed aberrant synaptic organization in the cochlea and hypomyelination of auditory nerve fibers as predominant neuropathological substrates of hearing loss in BACE1-/- mice. In particular, we found that fibers of spiral ganglion neurons (SGN) close to the organ of Corti are disorganized and abnormally swollen. BACE1 deficiency also engenders organization defects in the postsynaptic compartment of SGN fibers with ectopic overexpression of PSD95 far outside the synaptic region. During postnatal development, auditory fiber myelination in BACE1-/- mice lags behind dramatically and remains incomplete into adulthood. We relate the marked hypomyelination to the impaired processing of Neuregulin-1 when BACE1 is absent. To determine whether the cochlea of adult wild-type mice is susceptible to AD treatment-like suppression of BACE1, we administered the established BACE1 inhibitor NB-360 for 6 weeks. The drug suppressed BACE1 activity in the brain, but did not impair hearing performance and, upon neuropathological examination, did not produce the characteristic cochlear abnormalities of BACE1-/- mice. Together, these data strongly suggest that the hearing loss of BACE1 knock-out mice represents a developmental phenotype.SIGNIFICANCE STATEMENT Given its crucial role in the pathogenesis of Alzheimer's disease (AD), BACE1 is a prime pharmacological target for AD prevention and therapy. However, the safe and long-term administration of BACE1-inhibitors as envisioned in AD requires a comprehensive understanding of the various physiological functions of BACE1. Here, we report that BACE1 is essential for the processing of auditory signals in the inner ear, as BACE1-deficient mice exhibit significant hearing loss. We relate this deficit to impaired myelination and aberrant synapse formation in the cochlea, which manifest during postnatal development. By contrast, prolonged pharmacological suppression of BACE1 activity in adult wild-type mice did not reproduce the hearing deficit or the cochlear abnormalities of BACE1 null mice.
Collapse
|
150
|
Abstract
Over 450 million people worldwide suffer from hearing loss, leading to an estimated economic burden of ∼$750 billion. The past decade has seen significant advances in the understanding of the molecular mechanisms that contribute to hearing, and the environmental and genetic factors that can go awry and lead to hearing loss. This in turn has sparked enormous interest in developing gene therapy approaches to treat this disorder. This review documents the most recent advances in cochlear gene therapy to restore hearing loss, and will cover viral vectors and construct designs, potential routes of delivery into the inner ear, and, lastly, the most promising genes of interest.
Collapse
Affiliation(s)
- Lawrence Lustig
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Omar Akil
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94117
| |
Collapse
|