101
|
Yao D, Lin Z, Wu J. Near-Infrared Fluorogenic Probes with Polarity-Sensitive Emission for in Vivo Imaging of an Ovarian Cancer Biomarker. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5847-5856. [PMID: 26910257 DOI: 10.1021/acsami.5b11826] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lysophosphatidic acid (LPA, cutoff values ≥ 1.5 μM) is an effective biomarker for early stage ovarian cancer. The development of selective probes for LPA detection is therefore critical for early clinical diagnosis. Although current methods have been developed for the detection of LPA in solution, they cannot be used for tracking LPA in vivo. Here, we report a near-infrared (NIR) fluorescent probe that can selectively respond to LPA based on polarity-sensitive emission at a very low detection limit of 0.5 μM in situ. This probe exhibits a marked increase of fluorescence at 720 nm upon binding to LPA, allowing the direct visualization of LPA in vitro and in vivo without interference from other biomolecules. Moreover, the probe containing two arginine-glycine-aspartic acid units can be efficiently taken up by cancer cells based on an αvβ3 integrin receptor targeting mechanism. It also exhibits excellent biocompatibility and high pH stability in live cells and in vivo. Confocal laser scanning microscopy and flow cytometric imaging of SKOV-3 cells have confirmed that our probe can be used to image LPA in live cells. In particular, its NIR turn-on fluorescence can be used to effectively monitor LPA imaging in a SKOV-3 tumor-bearing mouse model. Our probe may pave the way for the detection of cancer-related biomarkers and even for early stage cancer diagnosis.
Collapse
Affiliation(s)
- Defan Yao
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology , Shanghai 200237, China
| | - Zhi Lin
- College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Junchen Wu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
102
|
Tweedy L, Knecht DA, Mackay GM, Insall RH. Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis. PLoS Biol 2016; 14:e1002404. [PMID: 26981861 PMCID: PMC4794234 DOI: 10.1371/journal.pbio.1002404] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine.
Collapse
Affiliation(s)
- Luke Tweedy
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | | | | |
Collapse
|
103
|
Volden PA, Skor MN, Johnson MB, Singh P, Patel FN, McClintock MK, Brady MJ, Conzen SD. Mammary Adipose Tissue-Derived Lysophospholipids Promote Estrogen Receptor-Negative Mammary Epithelial Cell Proliferation. Cancer Prev Res (Phila) 2016; 9:367-78. [PMID: 26862086 DOI: 10.1158/1940-6207.capr-15-0107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 01/27/2016] [Indexed: 01/05/2023]
Abstract
Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiologic and pathologic processes, including cancer. LPA is converted from lysophosphatidylcholine (LPC) by the secreted phospholipase autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA levels. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA axis) signaling to breast cancer is poorly understood. Using murine mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. Cancer Prev Res; 9(5); 367-78. ©2016 AACR.
Collapse
Affiliation(s)
- Paul A Volden
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Maxwell N Skor
- Department of Medicine, The University of Chicago, Chicago, Illinois. Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois
| | | | | | | | - Martha K McClintock
- Department of Psychology, The University of Chicago, Chicago, Illinois. Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
| | - Matthew J Brady
- Department of Medicine, The University of Chicago, Chicago, Illinois. Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois.
| | - Suzanne D Conzen
- Department of Medicine, The University of Chicago, Chicago, Illinois. Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois. Institute for Mind and Biology, The University of Chicago, Chicago, Illinois. Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
104
|
G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling. Int J Mol Sci 2016; 17:215. [PMID: 26861299 PMCID: PMC4783947 DOI: 10.3390/ijms17020215] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/13/2022] Open
Abstract
A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)-AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K-AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted.
Collapse
|
105
|
Seo EJ, Kwon YW, Jang IH, Kim DK, Lee SI, Choi EJ, Kim KH, Suh DS, Lee JH, Choi KU, Lee JW, Mok HJ, Kim KP, Matsumoto H, Aoki J, Kim JH. Autotaxin Regulates Maintenance of Ovarian Cancer Stem Cells through Lysophosphatidic Acid-Mediated Autocrine Mechanism. Stem Cells 2016; 34:551-64. [PMID: 26800320 DOI: 10.1002/stem.2279] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
Ovarian cancer shows high mortality due to development of resistance to chemotherapy and relapse. Cancer stem cells (CSCs) have been suggested to be a major contributor in developing drug resistance and relapse in ovarian cancer. In this study, we isolated CSCs through sphere culture of A2780, SKOV3, OVCAR3 epithelial ovarian cancer cells and primary ovarian cancer cells from patients. We identified heat-stable factors secreted from ovarian CSCs stimulated migration and proliferation of CSCs. Mass spectrometry and ELISA analysis revealed that lysophosphatidic acid (LPA) was significantly elevated in CSC culture media compared with non-CSC culture media. Treatment of CSCs with LPA resulted in augmented CSC characteristics such as sphere-forming ability, resistance to anticancer drugs, tumorigenic potential in xenograft transplantation, and high expression of CSC-associated genes, including OCT4, SOX2, and aldehyde dehydrogenase 1. Treatment of CSCs with LPA receptor 1-specific inhibitors or silencing of LPA receptor 1 expression abrogated the LPA-stimulated CSC properties. Autotaxin, an LPA-producing enzyme, is highly secreted from ovarian CSCs, and pharmacological inhibition or knockdown of autotaxin markedly attenuated the LPA-producing, tumorigenic, and drug resistance potentials of CSCs. Clinicopathological analysis showed a significant survival disadvantage of patients with positive staining of autotaxin. In addition, we further identified that AKT1 activity was upregulated in ovarian CSCs through an LPA-dependent mechanism and silencing of AKT1 expression led to suppression of CSC characteristics. These results suggest that autotaxin-LPA-LPA receptor 1-AKT1 signaling axis is critical for maintaining CSC characteristics through an autocrine loop and provide a novel therapeutic target for ovarian CSCs.
Collapse
Affiliation(s)
- Eun Jin Seo
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Yang Woo Kwon
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Il Ho Jang
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Dae Kyoung Kim
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Soo In Lee
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Eun Jung Choi
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Ki-Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University, Yangsan, Republic of Korea
| | - Dong-Soo Suh
- Department of Obstetrics and Gynecology, Pusan National University, Yangsan, Republic of Korea
| | - Jeong Hee Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Kyung Un Choi
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jae Won Lee
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hyuck Jun Mok
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hirotaka Matsumoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Jae Ho Kim
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University, Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
106
|
Kühn T, Floegel A, Sookthai D, Johnson T, Rolle-Kampczyk U, Otto W, von Bergen M, Boeing H, Kaaks R. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med 2016; 14:13. [PMID: 26817443 PMCID: PMC4730724 DOI: 10.1186/s12916-016-0552-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/05/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND First metabolomics studies have indicated that metabolic fingerprints from accessible tissues might be useful to better understand the etiological links between metabolism and cancer. However, there is still a lack of prospective metabolomics studies on pre-diagnostic metabolic alterations and cancer risk. METHODS Associations between pre-diagnostic levels of 120 circulating metabolites (acylcarnitines, amino acids, biogenic amines, phosphatidylcholines, sphingolipids, and hexoses) and the risks of breast, prostate, and colorectal cancer were evaluated by Cox regression analyses using data of a prospective case-cohort study including 835 incident cancer cases. RESULTS The median follow-up duration was 8.3 years among non-cases and 6.5 years among incident cases of cancer. Higher levels of lysophosphatidylcholines (lysoPCs), and especially lysoPC a C18:0, were consistently related to lower risks of breast, prostate, and colorectal cancer, independent of background factors. In contrast, higher levels of phosphatidylcholine PC ae C30:0 were associated with increased cancer risk. There was no heterogeneity in the observed associations by lag time between blood draw and cancer diagnosis. CONCLUSION Changes in blood lipid composition precede the diagnosis of common malignancies by several years. Considering the consistency of the present results across three cancer types the observed alterations point to a global metabolic shift in phosphatidylcholine metabolism that may drive tumorigenesis.
Collapse
Affiliation(s)
- Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, D-69120, Heidelberg, Germany.
| | - Anna Floegel
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114, D-14558, Nuthetal, Germany.
| | - Disorn Sookthai
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, D-69120, Heidelberg, Germany.
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, D-69120, Heidelberg, Germany.
| | - Ulrike Rolle-Kampczyk
- Department of Metabolomics, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, D-04318, Leipzig, Germany.
| | - Wolfgang Otto
- Department of Proteomics, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, D-04318, Leipzig, Germany.
| | - Martin von Bergen
- Department of Metabolomics, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, D-04318, Leipzig, Germany. .,Department of Proteomics, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, D-04318, Leipzig, Germany. .,University of Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg East, Denmark.
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114, D-14558, Nuthetal, Germany.
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, D-69120, Heidelberg, Germany.
| |
Collapse
|
107
|
Kedziora KM, Leyton-Puig D, Argenzio E, Boumeester AJ, van Butselaar B, Yin T, Wu YI, van Leeuwen FN, Innocenti M, Jalink K, Moolenaar WH. Rapid Remodeling of Invadosomes by Gi-coupled Receptors: DISSECTING THE ROLE OF Rho GTPases. J Biol Chem 2016; 291:4323-33. [PMID: 26740622 DOI: 10.1074/jbc.m115.695940] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 01/15/2023] Open
Abstract
Invadosomes are actin-rich membrane protrusions that degrade the extracellular matrix to drive tumor cell invasion. Key players in invadosome formation are c-Src and Rho family GTPases. Invadosomes can reassemble into circular rosette-like superstructures, but the underlying signaling mechanisms remain obscure. Here we show that Src-induced invadosomes in human melanoma cells (A375M and MDA-MB-435) undergo rapid remodeling into dynamic extracellular matrix-degrading rosettes by distinct G protein-coupled receptor agonists, notably lysophosphatidic acid (LPA; acting through the LPA1 receptor) and endothelin. Agonist-induced rosette formation is blocked by pertussis toxin, dependent on PI3K activity and accompanied by localized production of phosphatidylinositol 3,4,5-trisphosphate, whereas MAPK and Ca(2+) signaling are dispensable. Using FRET-based biosensors, we show that LPA and endothelin transiently activate Cdc42 through Gi, concurrent with a biphasic decrease in Rac activity and differential effects on RhoA. Cdc42 activity is essential for rosette formation, whereas G12/13-mediated RhoA-ROCK signaling suppresses the remodeling process. Our results reveal a Gi-mediated Cdc42 signaling axis by which G protein-coupled receptors trigger invadosome remodeling, the degree of which is dictated by the Cdc42-RhoA activity balance.
Collapse
Affiliation(s)
| | | | | | | | | | - Taofei Yin
- the Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | - Yi I Wu
- the Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | - Frank N van Leeuwen
- the Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Metello Innocenti
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | | | | |
Collapse
|
108
|
Ren X, Zhang J, Fu X, Ma S, Wang C, Wang J, Tian S, Liu S, Zhao B, Wang X. LC-MS based metabolomics identification of novel biomarkers of tobacco smoke-induced chronic bronchitis. Biomed Chromatogr 2016; 30:68-74. [PMID: 26390017 DOI: 10.1002/bmc.3620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/30/2015] [Accepted: 09/18/2015] [Indexed: 12/31/2022]
Abstract
Tobacco smoke (TS) is a major causative agent to lead to chronic bronchitis (CB). However the mechanisms of CB induced by TS are unclear. In this report, rats were exposed to different concentrations of TS and the metabolic features of CB were characterized by using a nontargeted metabolic profiling method based on liquid chromatography-mass spectrometry (LC-MS) to detect the altered metabolic patterns in serum from CB rats and investigate the mechanisms of CB. 11 potential biomarkers were identified in serum of rats. Among them, the levels of lysophosphatidylethanolamine (18:1), lysophosphatidic acid (18:1), lysophosphatidylethanolamine (18:0), lysophosphatidylethanolamine (16:0), lysophosphatidylethanolamine (20:4), docosahexaenoic acid, 5-hydroxyindoleacetic acid and 5'-carboxy-γ-tocopherol were higher in TS group compared to control group. Conversely, the levels of 4-imidazolone-5-propionic acid, 12-hydroxyeicosatetraenoic acid and uridine were lower in TS group. The results indicated that the mechanism of CB was related to amino acid metabolism and lipid metabolism, particularly lipid metabolism. In addition, lysophosphatidylethanolamines were proved to be important mediators, which could be used as biomarkers to diagnose CB. These results also suggested that metabolomics was suitable for diagnosing CB and elucidating the possible metabolic pathways of TS-induced CB.
Collapse
Affiliation(s)
- Xiaolei Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Jiayu Zhang
- Center of Scientific Experiment, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, People's Republic of China
| | - Xiaorui Fu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Shuangshuang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Chunguo Wang
- Center of Scientific Experiment, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, People's Republic of China
| | - Juan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Simin Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Siqi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Baosheng Zhao
- Center of Scientific Experiment, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, People's Republic of China
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| |
Collapse
|
109
|
Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer. Oncogene 2015; 35:4021-35. [PMID: 26640151 DOI: 10.1038/onc.2015.467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
|
110
|
Aasrum M, Tjomsland V, Thoresen GH, De Angelis PM, Christoffersen T, Brusevold IJ. PI3K is required for both basal and LPA-induced DNA synthesis in oral carcinoma cells. J Oral Pathol Med 2015; 45:425-32. [PMID: 26602326 DOI: 10.1111/jop.12384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND The glycerophospholipid lysophosphatidic acid (LPA), which is present in most tissues and in high concentrations in saliva, may exert profound effects on oral cancer cells. We have investigated mitogenic signalling induced by LPA in the two oral carcinoma cell lines, D2 and E10, focusing on the role of EGFR transactivation and downstream pathways. METHODS Two oral squamous carcinoma cell lines, D2 and E10, were analysed for effects of LPA on signalling pathways and induction of DNA synthesis. Pathway activation was investigated by examining phosphorylation of signalling proteins and by the use of specific pathway inhibitors. RESULTS The D2 cells had higher levels of activated signalling proteins and higher DNA synthesis activity in the basal condition than E10 cells. EGF did not induce proliferation in D2 cells, whereas LPA induced proliferation in both cell lines, by mechanisms depending on EGFR transactivation. Release of EGFR ligands was involved in basal and LPA-induced proliferation in both D2 and E10 cells. The proliferation in D2 cells was dependent on the PI3K/Akt pathway, but not the MEK/ERK pathway. In E10 cells, the PI3K/Akt, MEK/ERK and p38 pathways were all involved in the proliferation. CONCLUSION Transactivation of EGFR is required for LPA-induced DNA synthesis in D2 and E10 cells. Our results also show that although proliferation of oral carcinoma cells is regulated by several pathways, and differentially in E10 and D2 cells, the PI3K pathway has a crucial role in both cell lines.
Collapse
Affiliation(s)
- Monica Aasrum
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Vegard Tjomsland
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - G Hege Thoresen
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Paula M De Angelis
- Clinic for Diagnostics and Intervention, Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Thoralf Christoffersen
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ingvild J Brusevold
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Oral Biology and Department of Paediatric Dentistry and Behavioural Science, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
111
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2015; 66:1033-79. [PMID: 25244928 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
112
|
Tveteraas IH, Aasrum M, Brusevold IJ, Ødegård J, Christoffersen T, Sandnes D. Lysophosphatidic acid induces both EGFR-dependent and EGFR-independent effects on DNA synthesis and migration in pancreatic and colorectal carcinoma cells. Tumour Biol 2015; 37:2519-26. [DOI: 10.1007/s13277-015-4010-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022] Open
|
113
|
No YR, Lee SJ, Kumar A, Yun CC. HIF1α-Induced by Lysophosphatidic Acid Is Stabilized via Interaction with MIF and CSN5. PLoS One 2015; 10:e0137513. [PMID: 26352431 PMCID: PMC4564097 DOI: 10.1371/journal.pone.0137513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine that has broad effects on immune system and inflammatory response. A growing body of evidence implicates the role of MIF in tumor growth and metastasis. Lysophosphatidic acid (LPA), a bioactive lipid mediator, regulates colon cancer cell proliferation, invasion, and survival through LPA2 receptor. Loss of LPA2 results in decreased expression of MIF in a rodent model of colon cancer, but the mechanism of MIF regulation by LPA is yet to be determined. In this study, we show that LPA transcriptionally regulates MIF expression in colon cancer cells. MIF knockdown decreased LPA-mediated proliferation of HCT116 human adenocarcinoma cells without altering the basal proliferation rates. Conversely, extracellular recombinant MIF stimulated cell proliferation, suggesting that the effect of MIF may in part be mediated through activation of surface receptor. We have shown recently that LPA increases hypoxia-inducible factor 1α (HIF1α) expression. We found that MIF regulation by LPA was ablated by knockdown of HIF1α, indicating that MIF is a transcriptional target of HIF1α. Conversely, knockdown of MIF ablated an increase in HIF1α expression in LPA-treated cells, suggesting a reciprocal relationship between HIF1α and MIF. LPA stimulated co-immunoprecipitation of HIF1α and MIF, indicating that their association is necessary for stabilization of HIF1α. It has been shown previously that CSN9 signalosome subunit 5 (CSN5) interacts with HIF1α to stabilize HIF1α under aerobic conditions. We found that LPA did not alter expression of CSN5, but stimulated its interaction with HIF1α and MIF. Depletion of CSN5 mitigated the association between HIF1α and MIF, indicating that CSN5 acts as a physical link. We suggest that HIF1α, MIF, and CSN5 form a ternary complex whose formation is necessary to prevent degradation of HIF1α under aerobic conditions.
Collapse
Affiliation(s)
- Yi Ran No
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Sei-Jung Lee
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Ajay Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America; Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
114
|
Yegutkin GG. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 2015; 49:473-97. [PMID: 25418535 DOI: 10.3109/10409238.2014.953627] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- Department of Medical Microbiology and Immunology, University of Turku , Turku , Finland
| |
Collapse
|
115
|
Clinical significance of the integrin α6β4 in human malignancies. J Transl Med 2015; 95:976-86. [PMID: 26121317 PMCID: PMC4554527 DOI: 10.1038/labinvest.2015.82] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022] Open
Abstract
Integrin α6β4 is a cellular adhesion molecule that binds to laminins in the extracellular matrix and nucleates the formation of hemidesmosomes. During carcinoma progression, integrin α6β4 is released from hemidesmosomes, where it can then signal to facilitate multiple aspects of tumor progression including sustaining proliferative signaling, tumor invasion and metastasis, evasion of apoptosis, and stimulation of angiogenesis. The integrin achieves these ends by cooperating with growth factor receptors including EGFR, ErbB-2, and c-Met to amplify downstream pathways such as PI3K, AKT, MAPK, and the Rho family small GTPases. Furthermore, it dramatically alters the transcriptome toward a more invasive phenotype by controlling promoter DNA demethylation of invasion and metastasis-associated proteins, such as S100A4 and autotaxin, and upregulates and activates key tumor-promoting transcription factors such as the NFATs and NF-κB. Expression of integrin α6β4 has been studied in many human malignancies where its overexpression is associated with aggressive behavior and a poor prognosis. This review provides an assessment of integrin α6β4 expression patterns and their prognostic significance in human malignancies, and describes key signaling functions of integrin α6β4 that contribute to tumor progression.
Collapse
|
116
|
Benesch MGK, Tang X, Venkatraman G, Bekele RT, Brindley DN. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo. J Biomed Res 2015; 30:272-84. [PMID: 27533936 PMCID: PMC4946318 DOI: 10.7555/jbr.30.20150058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Ganesh Venkatraman
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Raie T Bekele
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada.
| |
Collapse
|
117
|
Song J, Guan M, Zhao Z, Zhang J. Type I Interferons Function as Autocrine and Paracrine Factors to Induce Autotaxin in Response to TLR Activation. PLoS One 2015; 10:e0136629. [PMID: 26313906 PMCID: PMC4552386 DOI: 10.1371/journal.pone.0136629] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. However, the mechanism of LPA regulation during inflammatory response is largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lysophosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide, and TLR3 ligand poly(I:C), respectively. The ATX induction by TLR ligand was abolished by the neutralizing antibody against IFN-β or the knockdown of IFNAR1, indicating that type I IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-β and IFN-α were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways but with different time-dependent manners. The ATX induction by IFN-β was dramatically enhanced by IFN-γ, which had no significant effect on ATX expression alone, suggesting a synergy effect between type I and type II IFNs in ATX induction. Extracellular LPA levels were significantly increased when THP-1 cells were treated with IFN-α/β or TLR ligands. In addition, the type I IFN-mediated ATX induction was identified in human monocyte-derived dendritic cells (moDCs) stimulated with LPS or poly(I:C), and IFN-α/β could induce ATX expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated form blood samples. These results suggest that, in response to TLR activation, ATX is induced through a type I INF autocrine-paracrine loop to enhance LPA generation.
Collapse
Affiliation(s)
- Jianwen Song
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ming Guan
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Zhenwen Zhao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Junjie Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
118
|
Oda SK, Strauch P, Fujiwara Y, Al-Shami A, Oravecz T, Tigyi G, Pelanda R, Torres RM. Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression. Cancer Immunol Res 2015; 1:245-55. [PMID: 24455753 DOI: 10.1158/2326-6066.cir-13-0043-t] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CD8 T lymphocytes are able to eliminate nascent tumor cells through a process referred to as immune surveillance. However, multiple inhibitory mechanisms within the tumor microenvironment have been described that impede tumor rejection by CD8 T cells, including increased signaling by inhibitory receptors. Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that has been shown repeatedly to promote diverse cellular processes benefiting tumorigenesis. Accordingly, the increased expression of LPA and LPA receptors is a common feature of diverse tumor cell lineages and can result in elevated systemic LPA levels. LPA is recognized by at least 6 distinct G-protein-coupled receptors and several of which are expressed by T cells, although the precise role of LPA signaling in CD8 T cell activation and function has not been defined. Here, we demonstrate that LPA signaling via the LPA5 receptor expressed by CD8 T cells suppresses antigen receptor signaling, cell activation and proliferation in vitro and in vivo. Importantly, in a mouse melanoma model tumor-specific CD8 T cells that are LPA5-deficient are able to control tumor growth significantly better than wild-type tumor-specific CD8 T cells. Together, these data suggest that the production of LPA by tumors serves not only in an autocrine manner to promote tumorigenesis but also as a mechanism to suppress adaptive immunity and highlights a potential novel target for cancer treatment.
Collapse
Affiliation(s)
- Shannon K Oda
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado
| | - Pamela Strauch
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado
| | - Yuko Fujiwara
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, Tennessee
| | | | | | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, Tennessee
| | - Roberta Pelanda
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado
| | - Raul M Torres
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado
| |
Collapse
|
119
|
LPA Promotes T Cell Recruitment through Synthesis of CXCL13. Mediators Inflamm 2015; 2015:248492. [PMID: 26339130 PMCID: PMC4539179 DOI: 10.1155/2015/248492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/05/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid playing an important role in various inflammatory diseases by inducing expression and secretion of many inflammatory cytokines/chemokines. Here we report in a murine air pouch model of inflammation that LPA induced CXCL13 secretion in a time-dependent manner and with exacerbation of the response when LPA was administered after a pretreatment with TNF-α, a key inflammatory cytokine. LPA mediates recruitment of leukocytes, including that of CD3+ cells into unprimed and TNF-α-primed air pouches. CXCL13 neutralization using a blocking antibody injected into air pouches prior to administration of LPA into TNF-α-primed air pouches decreased CD3+ cell influx. Our data highlight that LPA-mediated CXCL13 secretion plays a role in T cell recruitment and participates in regulation of the inflammatory response.
Collapse
|
120
|
Tabuchi S. The autotaxin-lysophosphatidic acid-lysophosphatidic acid receptor cascade: proposal of a novel potential therapeutic target for treating glioblastoma multiforme. Lipids Health Dis 2015; 14:56. [PMID: 26084470 PMCID: PMC4477515 DOI: 10.1186/s12944-015-0059-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/12/2015] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant tumor of the central nervous system (CNS). Its prognosis is one of the worst among all cancer types, and it is considered a fatal malignancy, incurable with conventional therapeutic strategies. As the bioactive multifunctional lipid mediator lysophosphatidic acid (LPA) is well recognized to be involved in the tumorigenesis of cancers by acting on G-protein-coupled receptors, LPA receptor (LPAR) antagonists and LPA synthesis inhibitors have been proposed as promising drugs for cancer treatment. Six LPARs, named LPA1-6, are currently recognized. Among them, LPA1 is the dominant LPAR in the CNS and is highly expressed in GBM in combination with the overexpression of autotaxin (ATX), the enzyme (a phosphodiesterase, which is a potent cell motility-stimulating factor) that produces LPA.Invasion is a defining hallmark of GBM. LPA is significantly related to cell adhesion, cell motility, and invasion through the Rho family GTPases Rho and Rac. LPA1 is responsible for LPA-driven cell motility, which is attenuated by LPA4. GBM is among the most vascular human tumors. Although anti-angiogenic therapy (through the inhibition of vascular endothelial growth factor (VEGF)) was established, sufficient results have not been obtained because of the increased invasiveness triggered by anti-angiogenesis. As both ATX and LPA play a significant role in angiogenesis, similar to VEGF, inhibition of the ATX/LPA axis may be beneficial as a two-pronged therapy that includes anti-angiogenic and anti-invasion therapy. Conventional approaches to GBM are predominantly directed at cell proliferation. Recurrent tumors regrow from cells that have invaded brain tissues and are less proliferative, and are thus quite resistant to conventional drugs and radiation, which preferentially kill rapidly proliferating cells. A novel approach that targets this invasive subpopulation of GBM cells may improve the prognosis of GBM. Patients with GBM that contacts the subventricular zone (SVZ) have decreased survival. A putative source of GBM cells is the SVZ, the largest area of neurogenesis in the adult human brain. GBM stem cells in the SVZ that are positive for the neural stem cell surface antigen CD133 are highly tumorigenic and enriched in recurrent GBM. LPA1 expression appears to be increased in these cells. Here, the author reviews research on the ATX/LPAR axis, focusing on GBM and an ATX/LPAR-targeted approach.
Collapse
Affiliation(s)
- Sadaharu Tabuchi
- Department of Neurosurgery, Tottori Prefectural Central Hospital, 730 Ezu, Tottori, 680-0901, Japan.
| |
Collapse
|
121
|
Broström JM, Ye ZW, Axmon A, Littorin M, Tinnerberg H, Lindh CH, Zheng H, Ghalali A, Stenius U, Jönsson BAG, Högberg J. Toluene diisocyanate: Induction of the autotaxin-lysophosphatidic acid axis and its association with airways symptoms. Toxicol Appl Pharmacol 2015; 287:222-31. [PMID: 26072274 DOI: 10.1016/j.taap.2015.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 12/22/2022]
Abstract
Diisocyanates are industrial chemicals which have a wide range of applications in developed and developing countries. They are notorious lung toxicants and respiratory sensitizers. However, the mechanisms behind their adverse effects are not adequately characterized. Autotaxin (ATX) is an enzyme producing lysophosphatidic acid (LPA), and the ATX-LPA axis has been implicated in lung related inflammatory conditions and diseases, including allergic asthma, but not to toxicity of environmental low-molecular-weight chemicals. We investigated effects of toluene diisocyanate (TDI) on ATX induction in human lung epithelial cell models, and we correlated LPA-levels in plasma to biomarkers of TDI exposure in urine collected from workers exposed to <5ppb (parts per billion). Information on workers' symptoms was collected through interviews. One nanomolar TDI robustly induced ATX release within 10min in vitro. A P2X7- and P2X4-dependent microvesicle formation was implicated in a rapid ATX release and a subsequent protein synthesis. Co-localization between purinergic receptors and ATX was documented by immunofluorescence and confocal microscopy. The release was modulated by monocyte chemoattractant protein-1 (MCP-1) and by extracellular ATP. In workers, we found a dose-response relationship between TDI exposure biomarkers in urine and LPA levels in plasma. Among symptomatic workers reporting "sneezing", the LPA levels were higher than among non-symptomatic workers. This is the first report indicating induction of the ATX-LPA axis by an environmental low-molecular-weight chemical, and our data suggest a role for the ATX-LPA axis in TDI toxicity.
Collapse
Affiliation(s)
- Julia M Broström
- Division of Occupational and Environmental Medicine, Lund University, SE 221 85 Lund, Sweden
| | - Zhi-Wei Ye
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77 Stockholm, Sweden
| | - Anna Axmon
- Division of Occupational and Environmental Medicine, Lund University, SE 221 85 Lund, Sweden
| | - Margareta Littorin
- Division of Occupational and Environmental Medicine, Lund University, SE 221 85 Lund, Sweden
| | - Håkan Tinnerberg
- Division of Occupational and Environmental Medicine, Lund University, SE 221 85 Lund, Sweden
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Lund University, SE 221 85 Lund, Sweden
| | - Huiyuan Zheng
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77 Stockholm, Sweden
| | - Aram Ghalali
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77 Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77 Stockholm, Sweden
| | - Bo A G Jönsson
- Division of Occupational and Environmental Medicine, Lund University, SE 221 85 Lund, Sweden
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77 Stockholm, Sweden.
| |
Collapse
|
122
|
Balogh A, Shimizu Y, Lee SC, Norman DD, Gangwar R, Bavaria M, Moon C, Shukla P, Rao R, Ray R, Naren AP, Banerjee S, Banerje S, Miller DD, Balazs L, Pelus L, Tigyi G. The autotaxin-LPA2 GPCR axis is modulated by γ-irradiation and facilitates DNA damage repair. Cell Signal 2015; 27:1751-62. [PMID: 26027517 DOI: 10.1016/j.cellsig.2015.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/15/2015] [Indexed: 12/24/2022]
Abstract
In this study we characterized the effects of radiation injury on the expression and function of the autotaxin (ATX)-LPA2 GPCR axis. In IEC-6 crypt cells and jejunum enteroids quantitative RT-PCR showed a time- and dose-dependent upregulation of lpa2 in response to γ-irradiation that was abolished by mutation of the NF-κB site in the lpa2 promoter or by inhibition of ATM/ATR kinases with CGK-733, suggesting that lpa2 is a DNA damage response gene upregulated by ATM via NF-κB. The resolution kinetics of the DNA damage marker γ-H2AX in LPA-treated IEC-6 cells exposed to γ-irradiation was accelerated compared to vehicle, whereas pharmacological inhibition of LPA2 delayed the resolution of γ-H2AX. In LPA2-reconstituted MEF cells lacking LPA1&3 the levels of γ-H2AX decreased rapidly, whereas in Vector MEF were high and remained sustained. Inhibition of ERK1&2 or PI3K/AKT signaling axis by pertussis toxin or the C311A/C314A/L351A mutation in the C-terminus of LPA2 abrogated the effect of LPA on DNA repair. LPA2 transcripts in Lin(-)Sca-1(+)c-Kit(+) enriched for bone marrow stem cells were 27- and 5-fold higher than in common myeloid or lymphoid progenitors, respectively. Furthermore, after irradiation higher residual γ-H2AX levels were detected in the bone marrow or jejunum of irradiated LPA2-KO mice compared to WT mice. We found that γ-irradiation increases plasma ATX activity and LPA level that is in part due to the previously established radiation-induced upregulation of TNFα. These findings identify ATX and LPA2 as radiation-regulated genes that appear to play a physiological role in DNA repair.
Collapse
Affiliation(s)
- Andrea Balogh
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Yoshibumi Shimizu
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Ruchika Gangwar
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Mitul Bavaria
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - ChangSuk Moon
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Pradeep Shukla
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Radakrishna Rao
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Ramesh Ray
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Anjaparavanda P Naren
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | | | - Souvik Banerje
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Louisa Balazs
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Louis Pelus
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN 46202, USA
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
123
|
Park SJ, Jun YJ, Lee KJ, Hwang SM, Kim TH, Lee SH, Lee SH. Chronic rhinosinusitis with nasal polyps and without nasal polyps is associated with increased expression of lysophosphatidic acid-related molecules. Am J Rhinol Allergy 2015; 28:199-207. [PMID: 24980231 DOI: 10.2500/ajra.2014.28.4032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic sinusitis with nasal polyps (CRSwNPs) or CRS without NPs (CRSsNPs) is associated with expression of various cytokines. Lysophosphatidic acid (LPA) generated by autotaxin (ATX), LPA-producing enzyme, initiates signaling cascade involved in the inflammatory responses and participates in diverse biological processes through LPA receptors, including cytokine production. We analyzed the expression and distribution patterns of LPA-related molecules in nasal secretion and sinus mucosa of normal controls and patients with CRSwNPs and CRSsNPs, to evaluate the possible effects of the ATX-LPA receptor axis on the pathogenesis of CRS. METHODS LPA levels in nasal secretion and the expression and distribution patterns of ATX and LPA receptors 1-3 (LPA1-3) in sinus mucosa were investigated using ELISA, real-time polymerase chain reaction, Western blot, and immunohistochemistry. We elucidated the effect of CRS-relevant cytokines on the expression of ATX and LPA receptors, using cultured sinus epithelial cells, and investigated the effect of LPA on the expression of CRS-relevant cytokines, using sinus mucosa explant culture. RESULTS LPA, ATX, and LPA1-3 levels are increased in CRSwNPs and CRSsNPs. ATX and LPA1-3 were localized to superficial epithelium, submucosal glands in normal and inflammatory mucosa, but in inflammatory mucosa, they were found in inflammatory cells. LPA1-3 were noted in endothelium. Sinus mucosa explant stimulated with LPA increasingly produced IL-4, IL-5, interferon gamma, and TNF-alpha, and in cultured epithelial cells stimulated with CRS-relevant cytokines, ATX, and LPA1-3 were differentially induced. CONCLUSION LPA in human sinus mucosa may play important roles in the pathogenesis of CRS, contributing to produce CRS-related cytokines. LPA-related molecules were increased in CRS, which may attribute to CRS-related cytokines.
Collapse
Affiliation(s)
- Se Jin Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Korea
| | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural processes and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states.
Collapse
Affiliation(s)
- Yun C Yung
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole C Stoddard
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Hope Mirendil
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
125
|
Llona-Minguez S, Ghassemian A, Helleday T. Lysophosphatidic acid receptor (LPAR) modulators: The current pharmacological toolbox. Prog Lipid Res 2015; 58:51-75. [DOI: 10.1016/j.plipres.2015.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
|
126
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
127
|
Guo L, He P, No YR, Yun CC. Krüppel-like factor 5 incorporates into the β-catenin/TCF complex in response to LPA in colon cancer cells. Cell Signal 2015; 27:961-8. [PMID: 25683913 DOI: 10.1016/j.cellsig.2015.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/26/2015] [Accepted: 02/07/2015] [Indexed: 11/24/2022]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid with potent mitogenic effects on various cells including colon cancer cells. LPA stimulates proliferation of colon cancer cells by activation of β-catenin or Krüppel-like factor 5 (KLF5), but the functional relationship between these two transcription factors is not clear. Hence, we sought to investigate the mechanism of β-catenin activation by LPA and the role of KLF5 in the regulation of β-catenin by LPA. We found that LPA and Wnt3 additively activated the β-catenin/TCF (T cell factor) reporter activity in HCT116 cells. In addition to phosphorylating glycogen synthase kinase 3β (GSK-3β) at Ser9, LPA resulted in phosphorylation of β-catenin at Ser552 and Ser675. Mutation of Ser552 and Ser675 ablated LPA-induced β-catenin/TCF transcriptional activity. Knockdown of KLF5 significantly attenuated activation of β-catenin/TCF reporter activity by LPA but not by Wnt3. However, nuclear accumulation of β-catenin by LPA was not altered by knockdown of KLF5. β-catenin, TCF, and KLF5 were present in a 250-300kDa macro-complex, and their presence was enhanced by LPA. LPA simulated the interaction of β-catenin with TCF4, and depletion of KLF5 decreased β-catenin-TCF4 association and the transcriptional activity. In summary, LPA activates β-catenin by multiple pathways involving phosphorylation of GSK-3 and β-catenin, and enhancing β-catenin interaction with TCF4. KLF5 plays a critical role in β-catenin activation by increasing the β-catenin-TCF4 interaction.
Collapse
Affiliation(s)
- Leilei Guo
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi Ran No
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
128
|
Abstract
Lysophosphatidic acid (LPA) and its receptors, LPA1-6, are integral parts of signaling pathways involved in cellular proliferation, migration and survival. These signaling pathways are of therapeutic interest for the treatment of multiple types of cancer and to reduce cancer metastasis and side effects. Validated therapeutic potential of key receptors, as well as recent structure-activity relationships yielding compounds with low nanomolar potencies are exciting recent advances in the field. Some compounds have proven efficacious in vivo against tumor proliferation and metastasis, bone cancer pain and the pulmonary fibrosis that can result as a side effect of pulmonary cancer radiation treatment. However, recent studies have identified that LPA contributes through multiple pathways to the development of chemotherapeutic resistance suggesting new applications for LPA antagonists in cancer treatment. This review summarizes the roles of LPA signaling in cancer pathophysiology and recent progress in the design and evaluation of LPA agonists and antagonists.
Collapse
|
129
|
|
130
|
Kurano M, Suzuki A, Inoue A, Tokuhara Y, Kano K, Matsumoto H, Igarashi K, Ohkawa R, Nakamura K, Dohi T, Miyauchi K, Daida H, Tsukamoto K, Ikeda H, Aoki J, Yatomi Y. Possible Involvement of Minor Lysophospholipids in the Increase in Plasma Lysophosphatidic Acid in Acute Coronary Syndrome. Arterioscler Thromb Vasc Biol 2015; 35:463-70. [DOI: 10.1161/atvbaha.114.304748] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Makoto Kurano
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Akiko Suzuki
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Asuka Inoue
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Yasunori Tokuhara
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Kuniyuki Kano
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Hirotaka Matsumoto
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Koji Igarashi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Ryunosuke Ohkawa
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Kazuhiro Nakamura
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Tomotaka Dohi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Katsumi Miyauchi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Hiroyuki Daida
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Kazuhisa Tsukamoto
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Hitoshi Ikeda
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Junken Aoki
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Yutaka Yatomi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| |
Collapse
|
131
|
Lee SC, Fujiwara Y, Tigyi GJ. Uncovering unique roles of LPA receptors in the tumor microenvironment. ACTA ACUST UNITED AC 2015; 2. [PMID: 26005700 DOI: 10.14800/rci.440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of the lysophospholipase D autotaxin (ATX) and lysophosphatidic acid (LPA) in cancer is emerging and represents two key players in regulating cancer progression. In this brief review, we will discuss some of our recent findings, which highlight a central role that LPA and its receptor plays in orchestrating melanoma-stroma interactions in the establishment of lung metastases. In particular, we evaluated not only the function of LPA receptors on tumor cells but also their role on host tissues and how they can influence melanoma growth and metastasis. Using the syngeneic B16F10 murine melanoma model, we made three key observations. First, our in vitro findings demonstrate that LPA receptors, specifically LPA2 and LPA5 expressed in B16F10 cells appear to have opposing roles in cell invasion; the former seems to be responsible for the high basal invasion rate of B16F10 cells while the latter is anti-invasive upon exogenous LPA stimulation. Second, we observed a profound reduction in the incidence of pulmonary melanoma metastasis in LPA1- and LPA5-knockout (KO) mice, respectively, when compared to wild-type (WT) mice. Third, no differences in terms of subcutaneous tumor growth between LPA1KO, LPA5KO and WT mice were observed. These findings suggest that LPA receptors exert different functions in melanoma cells versus host tissues in terms of invasion and metastasis.
Collapse
Affiliation(s)
- Sue-Chin Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | - Yuko Fujiwara
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | - Gabor J Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
132
|
Curcumin inhibits LPA-induced invasion by attenuating RhoA/ROCK/MMPs pathway in MCF7 breast cancer cells. Clin Exp Med 2015; 16:37-47. [PMID: 25596714 DOI: 10.1007/s10238-015-0336-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
Abstract
Breast cancer generally shows poor prognosis because of its invasion and metastasis. Lysophosphatidic acid (LPA) induces and aggravates cancer invasion and metastasis by activating its downstream signal pathways. RhoA/ROCK/MMP signaling was found one of the LPA-induced pathways, which may be involved in invasion of breast cancer. Furthermore, we investigated whether this pathway was involved in curcumin's effect against LPA-induced invasion. LPA incubation was used to enhance invasion of MCF-7 breast cancer cells. RhoA expression was knocked-down by siRNA technique. MTT assay was used to evaluate the proliferation. Transwell assay was utilized to investigate the invasion ability of MCF-7 cells. Real-time PCR and Western blotting were used to assess the expressions of RhoA, ROCK1, ROCK2, MMP2 and MMP9 at both translational and transcriptional levels. The RhoA and ROCK activities were also evaluated. LPA incubation significantly boosted invasion rate of MCF-7. RhoA silencing by siRNA dramatically inhibited LPA-enhanced invasion. Concurrently, RhoA and ROCK activities and expression levels of RhoA, ROCK1, ROCK2, MMP2 and MMP9 were down-regulated by RhoA siRNA transfection. In order to avoid influence of cytotoxicity of curcumin, concentrations below 45 μmol/L were selected to further investigate the mechanism of curcumin's anti-invasion effect. Invasion of LPA-incubated MCF-7 cells was impaired by curcumin in a concentration-dependent manner. Concurrently, RhoA and ROCK activities and expression levels of RhoA, ROCK1, ROCK2, MMP2 and MMP9 were down-regulated by curcumin in a concentration-dependent manner. In conclusion, RhoA/ROCK/MMPs pathway activation is involved in LPA-induced invasion in MCF-7 cells; curcumin inhibited LPA-induced invasion in MCF-7 cells by attenuating RhoA/ROCK/MMPs pathway.
Collapse
|
133
|
Schulten HJ, Al-Mansouri Z, Baghallab I, Bagatian N, Subhi O, Karim S, Al-Aradati H, Al-Mutawa A, Johary A, Meccawy AA, Al-Ghamdi K, Al-Hamour O, Al-Qahtani MH, Al-Maghrabi J. Comparison of microarray expression profiles between follicular variant of papillary thyroid carcinomas and follicular adenomas of the thyroid. BMC Genomics 2015; 16 Suppl 1:S7. [PMID: 25923053 PMCID: PMC4315165 DOI: 10.1186/1471-2164-16-s1-s7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Follicular variant of papillary thyroid carcinoma (FVPTC) and follicular adenoma (FA) are histologically closely related tumors and differential diagnosis remains challenging. RNA expression profiling is an established method to unravel molecular mechanisms underlying the histopathology of diseases. Methods BRAF mutational status was established by direct sequencing the hotspot region of exon 15 in six FVPTCs and seven FAs. Whole-transcript arrays were employed to generate expression profiles in six FVPTCs, seven FAs and seven normal thyroid tissue samples. The threshold of significance for differential expression on the gene and exon level was a p-value with a false discovery rate (FDR) < 0.05 and a fold change cutoff > 2. Two dimensional average linkage hierarchical clustering was generated using differentially expressed genes. Network, pathway, and alternative splicing utilities were employed to interpret significance of expression data on the gene and exon level. Results Expression profiling in FVPTCs and FAs, all of which were negative for a BRAF mutation, revealed 55 transcripts that were significantly differentially expressed, 40 of which were upregulated and 15 downregulated in FVPTCs vs. FAs. Amongst the most significantly upregulated genes in FVPTCs were GABA B receptor, 2 (GABBR2), neuronal cell adhesion molecule (NRCAM), extracellular matrix protein 1 (ECM1), heparan sulfate 6-O-sulfotransferase 2 (HS6ST2), and retinoid X receptor, gamma (RXRG). The most significantly downregulated genes in FVPTCs included interaction protein for cytohesin exchange factors 1 (IPCEF1), G protein-coupled receptor 155 (GPR155), Purkinje cell protein 4 (PCP4), chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1), and glutamate receptor interacting protein 1 (GRIP1). Alternative splicing analysis detected 87 genes, 52 of which were also included in the list of 55 differentially expressed genes. Network analysis demonstrated multiple interactions for a number of differentially expressed molecules including vitamin D (1,25- dihydroxyvitamin D3) receptor (VDR), SMAD family member 9 (SMAD9), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and RXRG. Conclusions This is one of the first studies using whole-transcript expression arrays to compare expression profiles between FVPTCs and FAs. A set of differentially expressed genes has been identified that contains valuable candidate genes to differentiate both histopathologically related tumor types on the molecular level.
Collapse
|
134
|
Abu El-Asrar AM, Nawaz MI, Mohammad G, Siddiquei MM, Alam K, Mousa A, Opdenakker G. Expression of bioactive lysophospholipids and processing enzymes in the vitreous from patients with proliferative diabetic retinopathy. Lipids Health Dis 2014; 13:187. [PMID: 25496321 PMCID: PMC4293108 DOI: 10.1186/1476-511x-13-187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/04/2014] [Indexed: 01/31/2023] Open
Abstract
Background The bioactive lysophospholipids phosphatidic acid (PA), lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been implicated in mediating cell migration, proliferation and apoptosis, inflammation, angiogenesis and fibrosis. This study was conducted to measure the levels of PA, LPA, LPA-producing enzymes phospholipase A1/A2 (PLA1A/PLA2, respectively) and acylgylycerol kinase (AGK), the S1P receptor S1PR1, the S1P catabolising enzyme S1P lyase (SPL) and 5-lipoxygenase in the vitreous fluid from patients with proliferative diabetic retinopathy (PDR). In addition, we investigated the correlations between the levels of PA and LPA and the levels of the inflammatory and endothelial dysfunction biomarker soluble vascular cell adhesion molecule-1 (sVCAM-1). Methods Vitreous samples from 34 PDR and 29 nondiabetic patients were studied by biochemical and enzyme-linked immunosorbent assays and Western blot analysis. Results PA, LPA and sVCAM-1 levels in vitreous samples from PDR patients were significantly higher than those in nondiabetic patients. Significant correlations were observed between levels of LPA and levels of PA and sVCAM-1. Western blot analysis revealed a significant increase in the expression of PLA1A, AGK, S1PR1 and SPL in vitreous samples from PDR patients compared to nondiabetic controls, whereas PLA2 and 5-lipoxygenase were not detected. Conclusions Our findings suggest that the enzymatic activities of PLA1A and AGK might be responsible for increased synthesis of LPA in PDR and that PLA1A, but not PLA2 is responsible for deacylation of PA to generate LPA. S1PR1 and SPL might regulate inflammatory, angiogenic and fibrogenic responses in PDR.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
135
|
Huang YT, Hsu T, Christiani DC. TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile. Cancer Inform 2014; 13:15-23. [PMID: 25452685 PMCID: PMC4218657 DOI: 10.4137/cin.s13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/30/2022] Open
Abstract
The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X2 distributions that can be obtained using permutation with scaled X2 approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (<2.8 × 10−5), including the PTEN pathway (7.8 × 10−7), the gene set up-regulated under heat shock (3.6 × 10−6), the gene sets involved in the immune profile for rejection of kidney transplantation (9.2 × 10−6) and for transcriptional control of leukocytes (2.2 × 10−5), and the ganglioside biosynthesis pathway (2.7 × 10−5). In conclusion, we present a new method for pathway analyses of copy number data, and causal mechanisms of the five pathways require further study.
Collapse
Affiliation(s)
- Yen-Tsung Huang
- Department of Epidemiology, Brown University, Providence, RI
| | - Thomas Hsu
- Program in Biology, Brown University, Providence, RI
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, MA. ; Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
136
|
Leblanc R, Peyruchaud O. New insights into the autotaxin/LPA axis in cancer development and metastasis. Exp Cell Res 2014; 333:183-189. [PMID: 25460336 DOI: 10.1016/j.yexcr.2014.11.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/13/2022]
Abstract
Lysophosphatidic acid (LPA) is a simple lipid with a single fatty acyl chain linked to a glycerophosphate backbone. Despite the simplicity of its structure but owing to its interactions with a series of at least six G protein-coupled receptors (LPA1-6), LPA exerts pleiotropic bioactivities including stimulation of proliferation, migration and survival of many cell types. Autotaxin (ATX) is a unique enzyme with a lysophospholipase D (lysoPLD) activity that is responsible for the levels of LPA in the blood circulation. Both LPA receptor family members and ATX/LysoPLD are aberrantly expressed in many human cancers. This review will present the more striking as well as novel experimental evidences using cell lines, cancer mouse models and transgenic animals identifying the roles for ATX and LPA receptors in cancer progression, tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Raphaël Leblanc
- INSERM, UMR1033, UCB Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Olivier Peyruchaud
- INSERM, UMR1033, UCB Lyon 1, Faculté de Médecine Lyon Est, Lyon, France.
| |
Collapse
|
137
|
Ho YH, Yao CL, Lin KH, Hou FH, Chen WM, Chiang CL, Lin YN, Li MW, Lin SH, Yang YJ, Lin CC, Lu J, Tigyi G, Lee H. Opposing regulation of megakaryopoiesis by LPA receptors 2 and 3 in K562 human erythroleukemia cells. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:172-83. [PMID: 25463482 DOI: 10.1016/j.bbalip.2014.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 01/10/2023]
Abstract
Erythrocytes and megakaryocytes (MK) are derived from a common progenitor that undergoes lineage specification. Lysophosphatidic acid (LPA), a lipid growth factor was previously shown to be a regulator for erythropoietic process through activating LPA receptor 3 (LPA3). However, whether LPA affects megakaryopoiesis remains unclear. In this study, we used K562 leukemia cell line as a model to investigate the roles of LPA in MK differentiation. We demonstrated that K562 cells express both LPA2 and LPA3, and the expression levels of LPA2 are higher than LPA3. Treatment with phorbol 12-myristate 13-acetate, a commonly used inducer of megakaryopoiesis, reciprocally regulates the expressions of LPA2 and LPA3. By pharmacological blockers and knockdown experiments, we showed that activation of LPA2 suppresses whereas, LPA3 promotes megakaryocytic differentiation in K562. The LPA2-mediated inhibition is dependent on β-catenin translocation, whereas reactive oxygen species (ROS) generation is a downstream signal for activation of LPA3. Furthermore, the hematopoietic transcriptional factors GATA-1 and FLI-1, appear to be involved in these regulatory mechanisms. Taken together, our results suggested that LPA2 and LPA3 may function as a molecular switch and play opposing roles during megakaryopoiesis of K562 cells.
Collapse
Affiliation(s)
- Ya-Hsuan Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li, Taiwan, ROC
| | - Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Fen-Han Hou
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Min Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Chi-Ling Chiang
- School of Biomedical Science, The Ohio State University, Columbus, USA
| | - Yu-Nung Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Meng-Wei Li
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Shi-Hung Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Ya-Jan Yang
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Chu-Cheng Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Jenher Lu
- Department of Pediatrics and Pediatric Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, USA.
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC; Angiogenesis Research Center, National Taiwan University, Taipei, Taiwan, ROC; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC; Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
138
|
Ketscher A, Jilg CA, Willmann D, Hummel B, Imhof A, Rüsseler V, Hölz S, Metzger E, Müller JM, Schüle R. LSD1 controls metastasis of androgen-independent prostate cancer cells through PXN and LPAR6. Oncogenesis 2014; 3:e120. [PMID: 25285406 PMCID: PMC4216900 DOI: 10.1038/oncsis.2014.34] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 08/17/2014] [Indexed: 12/21/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) was shown to control gene expression and cell proliferation of androgen-dependent prostate cancer (PCa) cells, whereas the role of LSD1 in androgen-independent metastatic prostate cancer remains elusive. Here, we show that depletion of LSD1 leads to increased migration and invasion of androgen-independent PCa cells. Transcriptome and cistrome analyses reveal that LSD1 regulates expression of lysophosphatidic acid receptor 6 (LPAR6) and cytoskeletal genes including the focal adhesion adaptor protein paxillin (PXN). Enhanced LPAR6 signalling upon LSD1 depletion promotes migration with concomitant phosphorylation of PXN. In mice LPAR6 overexpression enhances, whereas knockdown of LPAR6 abolishes metastasis of androgen-independent PCa cells. Taken together, we uncover a novel mechanism of how LSD1 controls metastasis and identify LPAR6 as a promising therapeutic target to treat metastatic prostate cancer.
Collapse
Affiliation(s)
- A Ketscher
- 1] Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany [2] Universität Freiburg, Fakultät für Biologie, Freiburg, Germany
| | - C A Jilg
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - D Willmann
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - B Hummel
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - A Imhof
- Adolf-Butenandt Institut und Munich Center of Integrated Protein Science (CIPS), Ludwig-Maximilians-Universität München, München, Germany
| | - V Rüsseler
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - S Hölz
- 1] Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany [2] Universität Freiburg, Fakultät für Biologie, Freiburg, Germany
| | - E Metzger
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - J M Müller
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - R Schüle
- 1] Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany [2] BIOSS Centre of Biological Signaling Studies, Albert-Ludwigs-University, Freiburg, Germany [3] Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort, Freiburg, Germany
| |
Collapse
|
139
|
Miyabe Y, Miyabe C, Iwai Y, Yokoyama W, Sekine C, Sugimoto K, Harigai M, Miyasaka M, Miyasaka N, Nanki T. Activation of fibroblast-like synoviocytes derived from rheumatoid arthritis via lysophosphatidic acid-lysophosphatidic acid receptor 1 cascade. Arthritis Res Ther 2014; 16:461. [PMID: 25273676 PMCID: PMC4203966 DOI: 10.1186/s13075-014-0461-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
Introduction Lysophosphatidic acid (LPA) is a bioactive lipid that binds to G protein–coupled receptors (LPA1–6). Recently, we reported that abrogation of LPA receptor 1 (LPA1) ameliorated murine collagen-induced arthritis, probably via inhibition of inflammatory cell migration, Th17 differentiation and osteoclastogenesis. In this study, we examined the importance of the LPA–LPA1 axis in cell proliferation, cytokine/chemokine production and lymphocyte transmigration in fibroblast-like synoviocytes (FLSs) obtained from the synovial tissues of rheumatoid arthritis (RA) patients. Methods FLSs were prepared from synovial tissues of RA patients. Expression of LPA1–6 was examined by quantitative real-time RT-PCR. Cell surface LPA1 expression was analyzed by flow cytometry. Cell proliferation was analyzed using a cell-counting kit. Production of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), chemokine (C-C motif) ligand 2 (CCL2), metalloproteinase 3 (MMP-3) and chemokine (C-X-C motif) ligand 12 (CXCL12) was measured by enzyme-linked immunosorbent assay. Pseudoemperipolesis was evaluated using a coculture of RA FLSs and T or B cells. Cell motility was examined by scrape motility assay. Expression of adhesion molecules was determined by flow cytometry. Results The expression of LPA1 mRNA and cell surface LPA1 was higher in RA FLSs than in FLSs from osteoarthritis tissue. Stimulation with LPA enhanced the proliferation of RA FLSs and the production of IL-6, VEGF, CCL2 and MMP-3 by FLSs, which were suppressed by an LPA1 inhibitor (LA-01). Ki16425, another LPA1 antagonist, also suppressed IL-6 production by LPA-stimulated RA FLSs. However, the production of CXCL12 was not altered by stimulation with LPA. LPA induced the pseudoemperipolesis of T and B cells cocultured with RA FLSs, which was suppressed by LPA1 inhibition. In addition, LPA enhanced the migration of RA FLSs and expression of vascular cell adhesion molecule and intercellular adhesion molecule on RA FLSs, which were also inhibited by an LPA1 antagonist. Conclusions Collectively, these results indicate that LPA–LPA1 signaling contributes to the activation of RA FLSs.
Collapse
|
140
|
Muinonen-Martin AJ, Susanto O, Zhang Q, Smethurst E, Faller WJ, Veltman DM, Kalna G, Lindsay C, Bennett DC, Sansom OJ, Herd R, Jones R, Machesky LM, Wakelam MJO, Knecht DA, Insall RH. Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal. PLoS Biol 2014; 12:e1001966. [PMID: 25313567 PMCID: PMC4196730 DOI: 10.1371/journal.pbio.1001966] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022] Open
Abstract
The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient.
Collapse
Affiliation(s)
- Andrew J. Muinonen-Martin
- CRUK Beatson Institute, Glasgow, United Kingdom
- York Teaching Hospital NHS Foundation Trust, York, United Kingdom
- The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Qifeng Zhang
- The Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | - Colin Lindsay
- CRUK Beatson Institute, Glasgow, United Kingdom
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Dorothy C. Bennett
- Molecular Cell Sciences Research Centre, St. George's, University of London, London, United Kingdom
| | | | - Robert Herd
- Alan Lyell Centre for Dermatology, Glasgow, United Kingdom
| | - Robert Jones
- CRUK Beatson Institute, Glasgow, United Kingdom
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | | | | | - David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | | |
Collapse
|
141
|
Beyoğlu D, Krausz KW, Martin J, Maurhofer O, Dorow J, Ceglarek U, Gonzalez FJ, Dufour JF, Idle JR. Disruption of tumor suppressor gene Hint1 leads to remodeling of the lipid metabolic phenotype of mouse liver. J Lipid Res 2014; 55:2309-19. [PMID: 25193995 DOI: 10.1194/jlr.m050682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A lipidomic and metabolomic investigation of serum and liver from mice was performed to gain insight into the tumor suppressor gene Hint1. A major reprogramming of lipid homeostasis was found in both serum and liver of Hint1-null (Hint(-/-)) mice, with significant changes in the levels of many lipid molecules, as compared with gender-, age-, and strain-matched WT mice. In the Hint1(-/-) mice, serum total and esterified cholesterol were reduced 2.5-fold, and lysophosphatidylcholines (LPCs) and lysophosphatidic acids were 10-fold elevated in serum, with a corresponding fall in phosphatidylcholines (PCs). In the liver, MUFAs and PUFAs, including arachidonic acid (AA) and its metabolic precursors, were also raised, as was mRNA encoding enzymes involved in AA de novo synthesis. There was also a significant 50% increase in hepatic macrophages in the Hint1(-/-) mice. Several hepatic ceramides and acylcarnitines were decreased in the livers of Hint1(-/-) mice. The changes in serum LPCs and PCs were neither related to hepatic phospholipase A2 activity nor to mRNAs encoding lysophosphatidylcholine acetyltransferases 1-4. The lipidomic phenotype of the Hint1(-/-) mouse revealed decreased inflammatory eicosanoids with elevated proliferative mediators that, combined with decreased ceramide apoptosis signaling molecules, may contribute to the tumor suppressor activity of Hint1.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Juliette Martin
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Olivier Maurhofer
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Juliane Dorow
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jean-François Dufour
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Jeffrey R Idle
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
142
|
Miki H, Takagi M. Design of serum-free medium for suspension culture of CHO cells on the basis of general commercial media. Cytotechnology 2014; 67:689-97. [PMID: 25149286 DOI: 10.1007/s10616-014-9778-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/31/2014] [Indexed: 01/14/2023] Open
Abstract
The design of serum-free media for suspension culture of genetically engineered Chinese hamster ovary (CHO) cells using general commercial media as a basis was investigated. Subcultivation using a commercial serum-free medium containing insulin-like growth factor (IGF)-1 with or without FCS necessitated additives other than IGF-1 to compensate for the lack of FCS and improve cell growth. Suspension culture with media containing several combinations of growth factors suggested the effectiveness of addition of both IGF-1 and the lipid signaling molecule lysophosphatidic acid (LPA) for promoting cell growth. Subcultivation of CHO cells in suspension culture using the commercial serum-free medium EX-CELL™302, which contained an IGF-1 analog, supplemented with LPA resulted in gradually increasing specific growth rate comparable to the serum-containing medium and in almost the same high antibody production regardless of the number of generations. The culture with EX-CELL™302 supplemented with LPA in a jar fermentor with pH control at 6.9 showed an apparently higher cell growth rate than the cultures without pH control and with pH control at 6.8. The cell growth in the medium supplemented with aurintricarboxylic acid (ATA), which was much cheaper than IGF-1, in combination with LPA was synergistically promoted similarly to that in the medium supplemented with IGF-1 and LPA. In conclusion, the serum-free medium designed on the basis of general commercial media could support the growth of CHO cells and antibody production comparable to serum-containing medium in suspension culture. Moreover, the possibility of cost reduction by the substitution of IGF-1 with ATA was also shown.
Collapse
Affiliation(s)
- Hideo Miki
- Advanced Medical Research Laboratories, Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan,
| | | |
Collapse
|
143
|
Sioletic S, Czaplinski J, Hu L, Fletcher JA, Fletcher CDM, Wagner AJ, Loda M, Demetri GD, Sicinska ET, Snyder EL. c-Jun promotes cell migration and drives expression of the motility factor ENPP2 in soft tissue sarcomas. J Pathol 2014; 234:190-202. [PMID: 24852265 DOI: 10.1002/path.4379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 05/12/2014] [Accepted: 05/18/2014] [Indexed: 12/26/2022]
Abstract
Genomic amplification of the c-Jun proto-oncogene has been identified in ∼30% of dedifferentiated liposarcomas (DDLPS), but the functional contribution of c-Jun to the progression of DDLPS remains poorly understood. In previous work we showed that knock-down of c-Jun by RNA interference impaired the in vitro proliferation and in vivo growth of a DDLPS cell line (LP6) with genomic amplification of the c-Jun locus. Here, we used gene expression analysis and functional studies in a broad panel of cell lines to further define the role of c-Jun in DDLPS and other soft tissue sarcomas. We show that c-Jun knock-down impairs transition through the G1 phase of the cell cycle in multiple DDLPS cell lines. We also found that high levels of c-Jun expression are both necessary and sufficient to promote DDLPS cell migration and invasion in vitro. Our data suggest that high levels of c-Jun enhance motility in part by driving the expression of ENPP2/Autotaxin. c-Jun over-expression has minimal effects on in vitro proliferation but substantially enhances the in vivo growth of weakly tumourigenic DDLPS cell lines. Finally, we provide evidence that c-Jun genomic amplification and over-expression may have similar functional consequences in other types of soft tissue sarcoma. Our data suggest a model in which relatively low levels of c-Jun are sufficient for in vitro proliferation, but high levels of c-Jun enhance invasiveness and capacity for in vivo tumour growth. These observations provide an explanation for the selective advantage provided by c-Jun genomic amplification in vivo and suggest that sarcomas with elevated c-Jun levels are likely to have a particularly high malignant potential. Data from exon array and RNA-Seq experiments have been deposited in the GEO database (Accession No. GSE57531).
Collapse
Affiliation(s)
- Stefano Sioletic
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA; Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Kremer AE, Bolier R, van Dijk R, Oude Elferink RPJ, Beuers U. Advances in pathogenesis and management of pruritus in cholestasis. Dig Dis 2014; 32:637-45. [PMID: 25034299 DOI: 10.1159/000360518] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic pruritus is a burdensome feature of numerous hepatobiliary disorders such as primary biliary cirrhosis, primary sclerosing cholangitis, cholangiocarcinoma, inherited forms of cholestasis and intrahepatic cholestasis of pregnancy. Bile salts, μ-opioids, serotonin, histamine and steroids have been controversially discussed in the pathogenesis of cholestatic pruritus. However, for these substances neither a correlation with itch severity nor a causative link has ever been established. Recent findings indicate that the potent neuronal activator lysophosphatidic acid and autotaxin, the enzyme forming lysophosphatidic acid, may play a key element in the pathogenesis of cholestatic pruritus. Serum activity of autotaxin correlated with itch intensity and response to antipruritic treatment in patients with cholestatic pruritus, but not other forms of pruritus. Autotaxin activity thereby represents the first biomarker for pruritus and had a positive predictive value of 70% in differentiating cholestatic pruritus from other forms of pruritus. Treatment options for patients with cholestatic pruritus include the anion exchange resin colestyramine, the PXR agonist rifampicin, the μ-opioid antagonist naltrexone, and the serotonin reuptake inhibitor sertraline. These drugs are recommended by evidence-based guidelines as a stepwise therapeutic approach. Patients unresponsive to these drugs should be referred to specialized centers to receive experimental approaches such as UVB phototherapy, albumin dialysis, plasmapheresis or nasobiliary drainage. This review discusses pruritogen candidates in cholestasis, gives novel insights into the neuronal signaling pathway of pruritus and summarizes evidence-based treatment options for patients suffering from pruritus in cholestasis.
Collapse
Affiliation(s)
- Andreas E Kremer
- Department of Medicine 1, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
145
|
Kuriyama S, Theveneau E, Benedetto A, Parsons M, Tanaka M, Charras G, Kabla A, Mayor R. In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity. J Cell Biol 2014; 206:113-27. [PMID: 25002680 PMCID: PMC4085712 DOI: 10.1083/jcb.201402093] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/02/2014] [Indexed: 11/22/2022] Open
Abstract
Collective cell migration (CCM) and epithelial-mesenchymal transition (EMT) are common to cancer and morphogenesis, and are often considered to be mutually exclusive in spite of the fact that many cancer and embryonic cells that have gone through EMT still cooperate to migrate collectively. Here we use neural crest (NC) cells to address the question of how cells that have down-regulated cell-cell adhesions can migrate collectively. NC cell dissociation relies on a qualitative and quantitative change of the cadherin repertoire. We found that the level of cell-cell adhesion is precisely regulated by internalization of N-cadherin downstream of lysophosphatidic acid (LPA) receptor 2. Rather than promoting the generation of single, fully mesenchymal cells, this reduction of membrane N-cadherin only triggers a partial mesenchymal phenotype. This intermediate phenotype is characterized by an increase in tissue fluidity akin to a solid-like-to-fluid-like transition. This change of plasticity allows cells to migrate under physical constraints without abolishing cell cooperation required for collectiveness.
Collapse
Affiliation(s)
- Sei Kuriyama
- Cell and Developmental Biology Department, University College London, London WC1E 6BT, England, UK Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine and Faculty of Medicine, Akita City, Akita 010-8543, Japan
| | - Eric Theveneau
- Cell and Developmental Biology Department, University College London, London WC1E 6BT, England, UK
| | - Alexandre Benedetto
- London Centre for Nanotechnology, University College London, London WC1H 0AH, England, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, Kings College London, London SE11UL, England, UK
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine and Faculty of Medicine, Akita City, Akita 010-8543, Japan
| | - Guillaume Charras
- Cell and Developmental Biology Department, University College London, London WC1E 6BT, England, UK London Centre for Nanotechnology, University College London, London WC1H 0AH, England, UK
| | - Alexandre Kabla
- Engineering Department, Mechanics and Materials Division, Cambridge University, Cambridge CB2 1PZ, England, UK
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
146
|
Beuers U, Kremer AE, Bolier R, Elferink RPJO. Pruritus in cholestasis: facts and fiction. Hepatology 2014; 60:399-407. [PMID: 24807046 DOI: 10.1002/hep.26909] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/21/2013] [Indexed: 12/13/2022]
Abstract
Pruritus is a common symptom in patients with cholestatic liver diseases such as primary biliary cirrhosis, primary sclerosing cholangitis, intrahepatic cholestasis of pregnancy, or hereditary pediatric cholestatic disorders and may accompany, although less frequently, many other liver diseases. Recent findings indicate that lysophosphatidic acid (LPA), a potent neuronal activator, and autotaxin (ATX; ectonucleotide pyrophosphatase/phosphodiesterase 2), the enzyme which forms LPA, may form a key element of the long-sought pruritogenic signaling cascade in cholestatic patients suffering from itch. Serum ATX, but no other pruritogen candidate studied so far, correlates with pruritus intensity and responds to therapeutic interventions. In this comprehensive review, we provide a short update on actual insights in signal transmission related to pruritus and discuss pruritogen candidates in cholestasis. We also summarize evidence-based and guideline-approved as well as experimental therapeutic approaches for patients suffering from pruritus in cholestasis.
Collapse
Affiliation(s)
- Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
147
|
Brusevold IJ, Tveteraas IH, Aasrum M, Ødegård J, Sandnes DL, Christoffersen T. Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells. BMC Cancer 2014; 14:432. [PMID: 24928086 PMCID: PMC4065589 DOI: 10.1186/1471-2407-14-432] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Oral squamous cell carcinoma is an aggressive neoplasm with serious morbidity and mortality, which typically spreads through local invasive growth. Lysophosphatidic acid (LPA) is involved in a number of biological processes, and may have a role in cancer cell migration and invasiveness. LPA is present in most tissues and can activate cells through six different LPA receptors (LPAR1-6). Although LPA is predominantly promigratory, some of the receptors may have antimigratory effects in certain cells. The signalling mechanisms of LPA are not fully understood, and in oral carcinoma cells the specific receptors and pathways involved in LPA-stimulated migration are unknown. Methods The oral carcinoma cell lines E10, SCC-9, and D2 were investigated. Cell migration was studied in a scratch wound assay, and invasion was demonstrated in organotypic three dimensional co-cultures. Protein and mRNA expression of LPA receptors was studied with Western blotting and qRT-PCR. Activation of signalling proteins was examined with Western blotting and isoelectric focusing, and signalling mechanisms were further explored using pharmacological agents and siRNA directed at specific receptors and pathways. Results LPA stimulated cell migration in the two oral carcinoma cell lines E10 and SCC-9, but was slightly inhibitory in D2. The receptor expression profile and the effects of specific pharmacological antagonist and agonists indicated that LPA-stimulated cell migration was mediated through LPAR3 in E10 and SCC-9. Furthermore, in both these cell lines, the stimulation by LPA was dependent on PKC activity. However, while LPA induced transactivation of EGFR and the stimulated migration was blocked by EGFR inhibitors in E10 cells, LPA did not induce EGFR transactivation in SCC-9 cells. In D2 cells, LPA induced EGFR transactivation, but this was associated with slowing of a very high inherent migration rate in these cells. Conclusion The results demonstrate LPA-stimulated migration in oral carcinoma cells through LPAR3, mediated further by PKC, which acts either in concert with or independently of EGFR transactivation.
Collapse
Affiliation(s)
- Ingvild J Brusevold
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, and Oslo University Hospital, Blindern, P,O, Box 1057, Oslo N-0316, Norway.
| | | | | | | | | | | |
Collapse
|
148
|
Saga H, Ohhata A, Hayashi A, Katoh M, Maeda T, Mizuno H, Takada Y, Komichi Y, Ota H, Matsumura N, Shibaya M, Sugiyama T, Nakade S, Kishikawa K. A novel highly potent autotaxin/ENPP2 inhibitor produces prolonged decreases in plasma lysophosphatidic acid formation in vivo and regulates urethral tension. PLoS One 2014; 9:e93230. [PMID: 24747415 PMCID: PMC3991570 DOI: 10.1371/journal.pone.0093230] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/02/2014] [Indexed: 12/20/2022] Open
Abstract
Autotaxin, also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), is a secreted enzyme that has lysophospholipase D activity, which converts lysophosphatidylcholine to bioactive lysophosphatidic acid. Lysophosphatidic acid activates at least six G-protein coupled recpetors, which promote cell proliferation, survival, migration and muscle contraction. These physiological effects become dysfunctional in the pathology of cancer, fibrosis, and pain. To date, several autotaxin/ENPP2 inhibitors have been reported; however, none were able to completely and continuously inhibit autotaxin/ENPP2 in vivo. In this study, we report the discovery of a highly potent autotaxin/ENPP2 inhibitor, ONO-8430506, which decreased plasma lysophosphatidic acid formation. The IC50 values of ONO-8540506 for lysophospholipase D activity were 6.4–19 nM for recombinant autotaxin/ENPP2 proteins and 4.7–11.6 nM for plasma from various animal species. Plasma lysophosphatidic acid formation during 1-h incubation was almost completely inhibited by the addition of >300 nM of the compound to human plasma. In addition, when administered orally to rats at a dose of 30 mg/kg, the compound demonstrated good pharmacokinetics in rats and persistently inhibited plasma lysophosphatidic acid formation even at 24 h after administration. Smooth muscle contraction is a known to be promoted by lysophosphatidic acid. In this study, we showed that dosing rats with ONO-8430506 decreased intraurethral pressure accompanied by urethral relaxation. These findings demonstrate the potential of this autotaxin/ENPP2 inhibitor for the treatment of various diseases caused by lysophosphatidic acid, including urethral obstructive disease such as benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Hiroshi Saga
- Exploratory Research Laboratories, ONO Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Akira Ohhata
- Medicinal Chemistry Research Laboratories, ONO Pharmaceutical Co., Ltd., Shimamoto, Mishima, Osaka, Japan
| | - Akio Hayashi
- Exploratory Research Laboratories, ONO Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Makoto Katoh
- Exploratory Research Laboratories, ONO Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Tatsuo Maeda
- Exploratory Research Laboratories, ONO Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hirotaka Mizuno
- Exploratory Research Laboratories, ONO Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yuka Takada
- Exploratory Research Laboratories, ONO Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yuka Komichi
- Exploratory Research Laboratories, ONO Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hiroto Ota
- Exploratory Research Laboratories, ONO Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naoya Matsumura
- Discovery Technology Laboratories, ONO Pharmaceutical Co., Ltd., Shimamoto, Mishima, Osaka, Japan
| | - Masami Shibaya
- Safety Research Laboratories, ONO Phamaceutical Co., Ltd., Sakai, Fukui, Japan
| | - Tetsuya Sugiyama
- Exploratory Research Laboratories, ONO Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Shinji Nakade
- Exploratory Research Laboratories, ONO Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Katsuya Kishikawa
- Exploratory Research Laboratories, ONO Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
149
|
Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55:1192-214. [PMID: 24643338 DOI: 10.1194/jlr.r046458] [Citation(s) in RCA: 530] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA's functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1-6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs LPA receptor-mediated effects have been described in numerous cell types and model systems, both in vitro and in vivo, through gain- and loss-of-function studies. These studies have revealed physiological and pathophysiological influences on virtually every organ system and developmental stage of an organism. These include the nervous, cardiovascular, reproductive, and pulmonary systems. Disturbances in normal LPA signaling may contribute to a range of diseases, including neurodevelopmental and neuropsychiatric disorders, pain, cardiovascular disease, bone disorders, fibrosis, cancer, infertility, and obesity. These studies underscore the potential of LPA receptor subtypes and related signaling mechanisms to provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yun C Yung
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicole C Stoddard
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037 Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
150
|
Rao PV. Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma. J Ocul Pharmacol Ther 2014; 30:181-90. [PMID: 24283588 PMCID: PMC3991961 DOI: 10.1089/jop.2013.0194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/23/2013] [Indexed: 01/21/2023] Open
Abstract
Homeostasis of aqueous humor (AH) outflow and intraocular pressure (IOP) is essential for normal vision. Impaired AH outflow through the trabecular meshwork (TM) and a resultant elevation in IOP are common changes in primary open-angle glaucoma (POAG), which is the most prevalent form of glaucoma. Although elevated IOP has been recognized as a definitive risk factor for POAG and lowering elevated IOP remains a mainstay for glaucoma treatment, little is known about the molecular mechanisms, especially external cues and intracellular pathways, involved in the regulation of AH outflow in both normal and glaucomatous eyes. In addition, despite the recognition that increased resistance to AH outflow via the conventional pathway consisting of TM and Schlemm's canal is the main cause for elevated IOP, there are no clinically approved drugs that target the conventional pathway to lower IOP in glaucoma patients. The aim of this article is to briefly review published work on the importance of bioactive lysophospholipids (eg, lysophosphatidic acid and sphingosine-1-phosphate), their receptors, metabolism, signaling, and role in the regulation of AH outflow via the TM and IOP, and to discuss pharmacological targeting of key proteins in the lysophospholipid signaling pathways to lower IOP in glaucoma patients.
Collapse
Affiliation(s)
- Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|