101
|
Abstract
Because of the shortage of liver grafts available for transplantation, the restrictions on graft quality have been relaxed, and marginal grafts, such as steatotic livers, are now accepted. However, this policy change has not solved the problem, because steatotic liver grafts tolerate ischemia-reperfusion (I/R) injury poorly. Adipocytokines differentially modulate steatosis, inflammation, and fibrosis and are broadly present in hepatic resections and transplants. The potential use of adipocytokines as biomarkers of the severity of steatosis and liver damage to aid the identification of high-risk steatotic liver donors and to evaluate hepatic injury in the postoperative period are discussed. The hope of finding new therapeutic strategies aimed specifically at protecting steatotic livers undergoing surgery is a strong impetus for identifying the mechanisms responsible for hepatic failure after major surgical intervention. Hence, the most recently described roles of adipocytokines in steatotic livers subject to I/R injury are discussed, the conflicting results in the literature are summarized, and reasons are offered as to why strategic pharmacologic control of adipocytokines has yet to yield clinical benefits. After this, the next steps needed to transfer basic knowledge about adipocytokines into clinical practice to protect marginal livers subject to I/R injury are presented. Recent strategies based on adipocytokine regulation, which have shown efficacy in various pathologies, and hold promise for hepatic resection and transplantation are also outlined.
Collapse
|
102
|
Evaluation of serum nitric oxide before and after local radiofrequency thermal ablation for hepatocellular carcinoma. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2012.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
103
|
Tang N, Cai Z, Chen H, Cao L, Chen B, Lin B. Involvement of gap junctions in propylthiouracil-induced cytotoxicity in BRL-3A cells. Exp Ther Med 2019; 17:2799-2806. [PMID: 30906468 DOI: 10.3892/etm.2019.7244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Gap junctions (GJs), which are important plasma membrane channels for the transfer of signaling molecules between adjacent cells, have been implicated in drug-induced liver injury. However, the influence and the underlying mechanisms of GJs in propylthiouracil (PTU)-induced hepatotoxicity are unclear. In the present study, distinct manipulations were performed to regulate GJ function in the BRL-3A rat liver cell line. The results indicated that the toxic effect of PTU in BRL-3A cells was mediated by GJ intercellular communication, as cell death was significantly attenuated in the absence of functional GJ channels. Furthermore, the specific knockdown of connexin-32 (Cx32; a major GJ component protein in hepatocytes) using small interfering RNA was observed to decrease necrosis, intracellular PTU content and the level of reactive oxygen species (ROS) following PTU exposure. These observations demonstrated that suppressing GJ Cx32 could confer protection against PTU-induced cytotoxicity through decreasing the accumulation of PTU and ROS. To the best of our knowledge, the present study is the first to demonstrate the role and possible underlying mechanisms of GJs in the regulation of PTU-induced toxicity in BRL-3A rat liver cells.
Collapse
Affiliation(s)
- Nan Tang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ziqing Cai
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hongpeng Chen
- School of Information Engineering, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Longbin Cao
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bo Chen
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bihua Lin
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
104
|
Huang Y, Ohno O, Miyamoto K. PFG acted as an inducer of premature senescence in TIG-1 normal diploid fibroblast and an inhibitor of mitosis in the HeLa cells. Biosci Biotechnol Biochem 2019; 83:986-995. [PMID: 30836860 DOI: 10.1080/09168451.2019.1585744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Our previous work has reported an anti-proliferative compound from moutan cortex, paeoniflorigenone which can induce cancer-selective apoptosis. However, its anti-proliferative mechanism is still unknown. According to morphology changes (hypertrophy and flattening), we hypothesized that PFG can induce senescence or inhibit cell mitosis. Here we show that PFG can induce cellular senescence, evidenced by the expression of senescence-associated β-galactosidase, G0/G1 cell cycle arrest and permanent loss of proliferative ability, in normal TIG-1 diploid fibroblast but not cancerous HeLa cells. In cancerous HeLa cells, PFG inhibited proliferation by inducing S and G2/M cell cycle arrest and mitosis inhibition. DNA damage response was activated by PFG, interestingly the reactive oxygen species level was suppressed instead of escalated. To sum up, we report 3 new roles of PFG as, 1. inducer of premature senescence in normal TIG-1 cells, 2. inhibitor of mitosis in cancerous HeLa cells, 3. ROS scavenger. Abbreviations: PFG: Paeoniflorigenone; ROS: reactive oxygen species; ATM: ataxia telangiectasia mutated; t-BHP: tert-butyl hydroperoxide; SA-β-gal: senescence-associatedβ-galactosidase; DNA-PKcs: DNA-dependent protein kinase; γ-H2AX: H2AX phosphoryla-tion at Ser-139.
Collapse
Affiliation(s)
- Ying Huang
- a Department of Biosciences & Informatics , Keio University , Yokohama , Japan
| | - Osamu Ohno
- b Department of Chemistry and Life Science, School of Advanced Engineering , Kogakuin University , Hachioji , Japan
| | - Kenji Miyamoto
- a Department of Biosciences & Informatics , Keio University , Yokohama , Japan
| |
Collapse
|
105
|
Takaki A, Kawano S, Uchida D, Takahara M, Hiraoka S, Okada H. Paradoxical Roles of Oxidative Stress Response in the Digestive System before and after Carcinogenesis. Cancers (Basel) 2019; 11:cancers11020213. [PMID: 30781816 PMCID: PMC6406746 DOI: 10.3390/cancers11020213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/03/2019] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress is recognized as a cancer-initiating stress response in the digestive system. It is produced through mitochondrial respiration and induces DNA damage, resulting in cancer cell transformation. However, recent findings indicate that oxidative stress is also a necessary anticancer response for destroying cancer cells. The oxidative stress response has also been reported to be an important step in increasing the anticancer response of newly developed molecular targeted agents. Oxidative stress might therefore be a cancer-initiating response that should be downregulated in the precancerous stage in patients at risk of cancer but an anticancer cell response that should not be downregulated in the postcancerous stage when cancer cells are still present. Many commercial antioxidant agents are marketed as “cancer-eliminating agents” or as products to improve one’s health, so cancer patients often take these antioxidant agents. However, care should be taken to avoid harming the anticancerous oxidative stress response. In this review, we will highlight the paradoxical effects of oxidative stress and antioxidant agents in the digestive system before and after carcinogenesis.
Collapse
Affiliation(s)
- Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Seiji Kawano
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Masahiro Takahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
106
|
Muriel P. Fighting liver fibrosis to reduce mortality associated with chronic liver diseases: The importance of new molecular targets and biomarkers. EBioMedicine 2019; 40:35-36. [PMID: 30745133 PMCID: PMC6413581 DOI: 10.1016/j.ebiom.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional, 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico.
| |
Collapse
|
107
|
Mohamed RS, Marrez DA, Salem SH, Zaghloul AH, Ashoush IS, Farrag ARH, Abdel-Salam AM. Hypoglycemic, hypolipidemic and antioxidant effects of green sprouts juice and functional dairy micronutrients against streptozotocin-induced oxidative stress and diabetes in rats. Heliyon 2019; 5:e01197. [PMID: 30839934 PMCID: PMC6365801 DOI: 10.1016/j.heliyon.2019.e01197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/27/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
Hyperglycemia, the mark normal for diabetes and associated disorders are the main goals of natural diabetes therapies. In this context, the present research was designed to study the effects of fenugreek sprouts juice (FS), barley sprouts juice (BS), cell-free probiotic extract (cell-free PE), whey protein hydrolysate (WPH) and their mixture on diabetic rats. Free radical scavenging activity, total phenolic contents (TPC) and total flavonoid contents (TFC) of each item mentioned were determined. Diabetes was induced through the injection of male rats with a single intraperitoneal dose (45 mg/kg) of streptozotocin. After the development of diabetes, diabetic rats were orally administered daily with 1ml of with fenugreek sprouts juice, barley sprouts juice, cell-free probiotic extract, whey protein hydrolysate or their mixture until the end of the study period (45 day). Oral administration of fenugreek sprouts juice, barley sprouts juice, cell-free probiotic extract, whey protein hydrolysate and their mixture to diabetic rats significantly reduced fasting blood glucose levels and improved the lipid profile. All the studied items limit the reductions of haemoglobin concentrations and plasma α-amylase activities. Also all the studied items suppressed the elevation of malondialdehyde values and the reduction of catalase activities. Histopathological investigation of pancreas, liver and kidneys of the diabetic rats showed histological alterations. On the other hand, supplementations with the tested materials lead to relieving these injuries. Results revealed that fenugreek sprouts juice, barley sprouts juice, cell-free probiotic extract, whey protein hydrolysate and their mixture had promising effects towards hyperglycemia and associated disorders.
Collapse
Affiliation(s)
- Rasha S. Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Diaa A. Marrez
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Salah H. Salem
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed H. Zaghloul
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ihab S. Ashoush
- Food Science Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
108
|
Preventive Effect of Blueberry Extract on Liver Injury Induced by Carbon Tetrachloride in Mice. Foods 2019; 8:foods8020048. [PMID: 30717106 PMCID: PMC6406748 DOI: 10.3390/foods8020048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022] Open
Abstract
The blueberry is a common fruit that is rich in nutritional value and polyphenol substances. In this study, the blueberry polyphenol content in extract was analysed by spectrophotometry. The results showed that the blueberry polyphenol content in the extract reached 52.7%. A mouse model of liver injury induced by carbon tetrachloride (CCl4) was established to study the preventive effect of blueberry extract (BE) on liver injury in mice and the experimental animals were examined using biochemical and molecular biological methods. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are important clinical liver function indicators; the changes of triglyceride (TG) and total cholesterol (TC) are observed after liver injury; interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) are important inflammatory indexes; superoxide dismutase (SOD) activity and thiobarbituric acid reactive substances (TBARS) are important changes of oxidative stress indexes. The in vivo animal experiment results showed that BE decreased the liver index of mice with liver injury, BE could reduce the AST, ALT, TG and TC levels and also could reduce the serum cytokine IL-6, TNF-α and IFN-γ levels in mice with liver injury. Moreover, BE increased the SOD activity and decreased the TBARS level in the gastric tissues of mice with liver injury. After treatment with the highest concentration of BP in liver injury mice, these levels returned close to those obtained after treatment with the standard drug of silymarin. Detection of messenger RNA (mRNA) in liver tissue showed that BE upregulated the Cu/Zn-SOD, Mn-SOD and chloramphenicol acetyltransferase (CAT) expression levels and downregulated cyclooxygenase (COX)-2 expression. The effect of BE on mice with liver injury was positively correlated with the BE concentration and was similar to that of silymarin, which is a drug for liver injury, suggesting that BE had a good preventive effect on liver injury. Thus, BE rich in polyphenols is a bioactive substance with value for development and utilization.
Collapse
|
109
|
Ore A, Akinloye OA. Oxidative Stress and Antioxidant Biomarkers in Clinical and Experimental Models of Non-Alcoholic Fatty Liver Disease. ACTA ACUST UNITED AC 2019; 55:medicina55020026. [PMID: 30682878 PMCID: PMC6410206 DOI: 10.3390/medicina55020026] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a term that covers a range of hepatic disorders involving fat deposits in the liver. NAFLD begins with simple steatosis and progresses into non-alcoholic steatohepatitis (NASH) characterised by inflammation, fibrosis, apoptosis, oxidative stress, lipid peroxidation, mitochondrial dysfunction and release of adipokines and pro-inflammatory cytokines. Oxidative stress and antioxidants are known to play a vital role in the pathogenesis and severity of NAFLD/NASH. A number of oxidative stress and antioxidant markers are employed in the assessment of the pathological state and progression of the disease. In this article, we review several biomarkers of oxidative stress and antioxidants that have been measured at clinical and experimental levels. Also included is a comprehensive description of oxidative stress, sources and contribution to the pathogenesis of NAFLD/NASH.
Collapse
Affiliation(s)
- Ayokanmi Ore
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
- Biochemistry Division, Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria.
| | - Oluseyi Adeboye Akinloye
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
| |
Collapse
|
110
|
Kwon JH, Kim D, Cho H, Shin BS. Ascorbic acid improves thrombotic function of platelets during living donor liver transplantation by modulating the function of the E3 ubiquitin ligases c-Cbl and Cbl-b. J Int Med Res 2019; 47:1856-1867. [PMID: 30614340 PMCID: PMC6567784 DOI: 10.1177/0300060518817408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the effect of ascorbic acid (AA) on hemostatic function during living donor liver transplantation (LDLT). METHODS Blood samples from 21 LDLT recipients were taken within 30 minutes after induction and at 120 minutes after reperfusion. Rotational thromboelastography (TEG) and western blot analysis were used to analyze for fibrinolysis and functional changes in c-Cbl and Cbl-b, respectively. TEG test samples were prepared as one of three groups: C group (0.36 mL of blood), N group (0.324 mL of blood + 0.036 mL of 0.9% normal saline), and A group (0.324 mL of blood + 0.036 mL of 200 µmol/L-AA dissolved in 0.9% normal saline). RESULTS AA decreased fibrinolysis and increased clot rigidity at baseline and 120 minutes after reperfusion. Cbl-b expression was significantly increased at baseline and 120 minutes after reperfusion in the A group compared with the C and N groups. However, c-Cbl phosphorylation was most significantly decreased in the A group at baseline and 120 minutes after reperfusion. CONCLUSION AA can significantly decrease fibrinolysis and improve clot rigidity in LT recipients during LDLT, and functional changes in Cbl-b and c-Cbl might represent the underlying mechanism. AA may be considered for use during LDLT to decrease hyperfibrinolysis.
Collapse
Affiliation(s)
- Ji Hye Kwon
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Doyeon Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Hyojin Cho
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Byung Seop Shin
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| |
Collapse
|
111
|
Zaidi SK, Ansari SA, Tabrez S, Naseer MI, Shahwan MJ, Banu N, Al-Qahtani MH. Antioxidant Potential of Solanum nigrum Aqueous Leaves Extract in Modulating Restraint Stress-Induced Changes in Rat's Liver. J Pharm Bioallied Sci 2019; 11:60-68. [PMID: 30906141 PMCID: PMC6394153 DOI: 10.4103/jpbs.jpbs_58_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Introduction: This study was carried out to evaluate the antioxidant potential of crude extract of Solanum nigrum leaves and its active constituents as treatment against restraint stress in rat’s liver. Methods: For this purpose, male albino Wistar rats were treated with crude extract of leaves and its alkaloid and flavonoid fractions both before and after 6 h of acute restraint stress. Prooxidant status of rat liver was assessed by determining the levels of thiobarbituric acid reactive substances, reduced glutathione, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, and the activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST). Results: Six hours of restraint stress generated oxidative stress in rat’s liver resulted in a significant rise in the level of the aforementioned liver enzymes. On the other hand, SOD, CAT, and GST enzymatic activities showed a significant decline in their level. The administration of crude leaves extract, both before and after stress exposure, significantly prevented the rise in the level of liver enzymes and reverted the activities of studied biochemical parameters toward their normal control values. However, the reversion was found to be more prominent in after-stress group. Conclusion: The aforementioned results highlight the significant antioxidant potential of S. nigrum extracts. On the basis of our study, we suggest the possible use of S. nigrum leaves extract as a nutritional supplement for combating oxidative stress induced damage.
Collapse
Affiliation(s)
- Syed K Zaidi
- Department of Molecular Biology, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA
| | - Shakeel A Ansari
- Department of Molecular Biology, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA
| | - Shams Tabrez
- Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, KSA
| | - Muhammad I Naseer
- Department of Molecular Biology, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA
| | - Moyad J Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
| | - Naheed Banu
- College of Medical Rehabilitation, Qassim University, Buraydah, KSA
| | - Muhammad H Al-Qahtani
- Department of Molecular Biology, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA
| |
Collapse
|
112
|
|
113
|
|
114
|
Aberrant Metabolism in Hepatocellular Carcinoma Provides Diagnostic and Therapeutic Opportunities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7512159. [PMID: 30524660 PMCID: PMC6247426 DOI: 10.1155/2018/7512159] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for over 80% of liver cancer cases and is highly malignant, recurrent, drug-resistant, and often diagnosed in the advanced stage. It is clear that early diagnosis and a better understanding of molecular mechanisms contributing to HCC progression is clinically urgent. Metabolic alterations clearly characterize HCC tumors. Numerous clinical parameters currently used to assess liver functions reflect changes in both enzyme activity and metabolites. Indeed, differences in glucose and acetate utilization are used as a valid clinical tool for stratifying patients with HCC. Moreover, increased serum lactate can distinguish HCC from normal subjects, and serum lactate dehydrogenase is used as a prognostic indicator for HCC patients under therapy. Currently, the emerging field of metabolomics that allows metabolite analysis in biological fluids is a powerful method for discovering new biomarkers. Several metabolic targets have been identified by metabolomics approaches, and these could be used as biomarkers in HCC. Moreover, the integration of different omics approaches could provide useful information on the metabolic pathways at the systems level. In this review, we provided an overview of the metabolic characteristics of HCC considering also the reciprocal influences between the metabolism of cancer cells and their microenvironment. Moreover, we also highlighted the interaction between hepatic metabolite production and their serum revelations through metabolomics researches.
Collapse
|
115
|
di Bello G, Vendemiale G, Bellanti F. Redox cell signaling and hepatic progenitor cells. Eur J Cell Biol 2018; 97:546-556. [PMID: 30278988 DOI: 10.1016/j.ejcb.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatic diseases are widespread in the world and organ transplantation is currently the only treatment for liver failure. New cell-based approaches have been considered, since stem cells may represent a possible source to treat liver diseases. Acute and chronic liver diseases are characterized by high production of reactive oxygen and nitrogen species, with consequent oxidative modifications of cellular macromolecules and alteration of signaling pathways, metabolism and cell cycle. Although considered harmful molecules, reactive species are involved in cell growth and differentiation processes, modulating the activity of transcription factors, which take part in stemness/proliferation. It is conceivable that redox balance may regulate the development of hepatic progenitor cells, function and survival in synchrony with metabolism during chronic liver diseases. This review aims to summarize diverse redox-sensitive signaling pathways involved in stem cell fate, highlighting the important role of hepatic progenitor cells as a possible source to treat end-stage liver disease for organ regeneration.
Collapse
Affiliation(s)
- Giorgia di Bello
- Centre for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Gianluigi Vendemiale
- Centre for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Francesco Bellanti
- Centre for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Italy.
| |
Collapse
|
116
|
Barathan M, Mohamed R, Yong YK, Kannan M, Vadivelu J, Saeidi A, Larsson M, Shankar EM. Viral Persistence and Chronicity in Hepatitis C Virus Infection: Role of T-Cell Apoptosis, Senescence and Exhaustion. Cells 2018; 7:cells7100165. [PMID: 30322028 PMCID: PMC6210370 DOI: 10.3390/cells7100165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) represents a challenging global health threat to ~200 million infected individuals. Clinical data suggest that only ~10–15% of acutely HCV-infected individuals will achieve spontaneous viral clearance despite exuberant virus-specific immune responses, which is largely attributed to difficulties in recognizing the pathognomonic symptoms during the initial stages of exposure to the virus. Given the paucity of a suitable small animal model, it is also equally challenging to study the early phases of viral establishment. Further, the host factors contributing to HCV chronicity in a vast majority of acutely HCV-infected individuals largely remain unexplored. The last few years have witnessed a surge in studies showing that HCV adopts myriad mechanisms to disconcert virus-specific immune responses in the host to establish persistence, which includes, but is not limited to viral escape mutations, viral growth at privileged sites, and antagonism. Here we discuss a few hitherto poorly explained mechanisms employed by HCV that are believed to lead to chronicity in infected individuals. A better understanding of these mechanisms would aid the design of improved therapeutic targets against viral establishment in susceptible individuals.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Rosmawati Mohamed
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 LembahPantai, Kuala Lumpur, Malaysia.
| | - Yean K Yong
- Laboratory Center, Xiamen University Malaysia, 43900 Sepang, Malaysia.
| | - Meganathan Kannan
- Division of Blood and Vascular Biology, Department of Life Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610005, India.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Alireza Saeidi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linkoping University, 58 183 Linkoping, Sweden.
| | - Esaki Muthu Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610005, India.
| |
Collapse
|
117
|
Protective effects of chebulic acid from Terminalia chebula Retz. against t-BHP-induced oxidative stress by modulations of Nrf2 and its related enzymes in HepG2 cells. Food Sci Biotechnol 2018; 28:555-562. [PMID: 30956868 DOI: 10.1007/s10068-018-0477-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Although chebulic acid isolated from Terminalia chebular has diverse biological effects, its effects on the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and the expression of downstream genes have not been elucidated. The purpose of this research is to investigate the hepatoprotective mechanism of chebulic acid against oxidative stress produced by tert-butyl hydroperoxide (t-BHP) in liver cells. The treatment with chebulic acid attenuated cell death in t-BHP-induced HepG2 liver cells and increased intracellular glutathione content, upregulated the activity of heme oxygenase-1, and also increased the translocation of Nrf2 into the nucleus and Nrf2 target gene expression in a dose-dependent manner. The exposure of chebulic acid activated the phosphorylation of mitogen-activated protein kinases. The overall result is that chebulic acid has cytoprotective effect on t-BHP-induced hepatotoxicity in HepG2 cells through Nrf2-mediated antioxidant enzymes.
Collapse
|
118
|
Purification, chemical structure and antioxidant activity of active ingredient (LPT-3d) separated from Lachnum sp. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
119
|
Uchida D, Takaki A, Adachi T, Okada H. Beneficial and Paradoxical Roles of Anti-Oxidative Nutritional Support for Non-Alcoholic Fatty Liver Disease. Nutrients 2018; 10:E977. [PMID: 30060482 PMCID: PMC6116036 DOI: 10.3390/nu10080977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is being recognized as a key factor in the progression of chronic liver disease (CLD), especially non-alcoholic fatty liver disease (NAFLD). Many NAFLD treatment guidelines recommend the use of antioxidants, especially vitamin E. Many prospective studies have described the beneficial effects of such agents for the clinical course of NAFLD. However, as these studies are usually short-term evaluations, lasting only a few years, whether or not antioxidants continue to exert favorable long-term effects, including in cases of concomitant hepatocellular carcinoma, remains unclear. Antioxidants are generally believed to be beneficial for human health and are often commercially available as health-food products. Patients with lifestyle-related diseases often use such products to try to be healthier without practicing lifestyle intervention. However, under some experimental NAFLD conditions, antioxidants have been shown to encourage the progression of hepatocellular carcinoma, as oxidative stress is toxic for cancer cells, just as for normal cells. In this review, we will highlight the paradoxical effects of antioxidants against NAFLD and related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Takuya Adachi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
120
|
Mai HN, Jung TW, Kim DJ, Sharma G, Sharma N, Shin EJ, Jang CG, Nah SY, Lee SH, Chung YH, Lei XG, Jeong JH, Kim HC. Protective potential of glutathione peroxidase-1 gene against cocaine-induced acute hepatotoxic consequences in mice. J Appl Toxicol 2018; 38:1502-1520. [DOI: 10.1002/jat.3666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 06/10/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy; Kangwon National University; Chunchon 24341 Republic of Korea
| | - Tae Woo Jung
- Research Administration Team; Seoul National University Bundang Hospital; Seongnam 13620 Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School; Kangwon National University; Chunchon 24341 Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy; Kangwon National University; Chunchon 24341 Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy; Kangwon National University; Chunchon 24341 Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy; Kangwon National University; Chunchon 24341 Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science; Cornell University; Ithaca New York 14853 USA
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy; Kangwon National University; Chunchon 24341 Republic of Korea
| |
Collapse
|
121
|
Gallelli CA, Calcagnini S, Romano A, Koczwara JB, de Ceglia M, Dante D, Villani R, Giudetti AM, Cassano T, Gaetani S. Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues. Antioxidants (Basel) 2018; 7:E93. [PMID: 30021985 PMCID: PMC6070960 DOI: 10.3390/antiox7070093] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts.
Collapse
Affiliation(s)
- Cristina Anna Gallelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marialuisa de Ceglia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Dante
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
122
|
Ezhilarasan D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab J Gastroenterol 2018; 19:56-64. [PMID: 29853428 DOI: 10.1016/j.ajg.2018.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 12/09/2016] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays an important role in the pathogenesis of various chronic liver diseases (CLD) and increasing evidence have confirmed the contributory role of oxidative stress in the pathogenesis of drugs and chemical-induced CLD. Chronic liver injury is manifested as necrosis, cholestasis, fibrosis, and cirrhosis. Chronic administration of anti-tubercular, anti-retroviral, immunosuppressive drugs is reported to induce free radical generation during their biotransformation in the liver. Further, these reactive intermediates are said to induce profibrogenic cytokines, several inflammatory markers, collagen synthesis during the progression of hepatic fibrosis. Oxidative stress and free radicals are reported to induce activation and proliferation of hepatic stellate cells in the injured liver leading to the progression of CLD. Hence, to counteract or to scavenge these reactive intermediates, several plant-derived antioxidant principles have been effectively employed against oxidative stress and came out with promising results in human and experimental models of CLD. This review summarizes the relationships between oxidative stress and different liver pathogenesis induced by drugs and xenobiotics, focusing upon different chronic liver injury induced by alcohol, antitubercular drugs and hyperactivity of antiretroviral drugs in HIV patients, viral hepatitis infection induced oxidative stress.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institue of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu-600 077, India.
| |
Collapse
|
123
|
Proteomic-genomic adjustments and their confluence for elucidation of pathways and networks during liver fibrosis. Int J Biol Macromol 2018; 111:379-392. [PMID: 29309868 DOI: 10.1016/j.ijbiomac.2017.12.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 12/31/2022]
|
124
|
Kanhar S, Sahoo AK, Mahapatra AK. The ameliorative effect of Homalium nepalense on carbon tetrachloride-induced hepatocellular injury in rats. Biomed Pharmacother 2018; 103:903-914. [PMID: 29710507 DOI: 10.1016/j.biopha.2018.04.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to evaluate ameliorative effects of Homalium nepalense Benth. (Flacourtiaceae) on CCl4-induced hepatocellular injury in rats. Oxygen-radical absorbance-capacity (ORAC) and cell-based-antioxidant-protection-in-erythrocytes (CAP-e) were performed and found that the ethyl acetate fractions of bark (HNEB) and leaf (HNEL) showed a remarkable degree of antioxidant activities in a dose dependent manner. Antioxidant potential HNEB was higher than HNEL and was comparable with trolox. HNEB and HNEL at 300 and 400 mg/kg showed significant hepatoprotective activities against CCl4-induced hepatotoxicity as evidenced by restoration of SGOT, SGPT, ALP, TB and TP level. The level of TBARS, SOD, CAT and GSH were significantly improved and restored towards normal value. Both fractions at 400 mg/kg showed remarkable improvements in marker levels as comparable to silymarin. Histopathological observations of liver tissues revealed the reduction of necrosis with appearance of sinusoidal space, central vein, and bile duct both in case of HNEB and HNEL. GC-MS and LC-MS confirmed occurrence of a total 53 no. of phytocompounds in HNEB and HNEL. Based on their retention times-(RT) and mass-to-charge-ratios-(m/z), some of the major bioactive compounds were catechol (5.89%), 5-hydroxymethylfurfural (5.87%), salicylic acid (4.89%), eugenol (1.60%), doconexent (0.31%), β-sitosterol (1.59%), 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (1.15%), coniferyl alcohol (2.99%), hexadecanoic acid methyl ester (1.05%), and betulin (1.20%). H. nepalense possesses significant hepatoprotection effect because of its antioxidant constituents.
Collapse
Affiliation(s)
- Satish Kanhar
- Phytotherapy Research Lab., Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Atish Kumar Sahoo
- Phytotherapy Research Lab., Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| | - Ajay Kumar Mahapatra
- Forest and Environment Department, Govt. of Odisha, Aranya Bhawan, Chandrasekharpur, Bhubaneswar, 751023, India
| |
Collapse
|
125
|
Stevia Prevents Acute and Chronic Liver Injury Induced by Carbon Tetrachloride by Blocking Oxidative Stress through Nrf2 Upregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3823426. [PMID: 29849889 PMCID: PMC5933008 DOI: 10.1155/2018/3823426] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/22/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
The effect of stevia on liver cirrhosis has not been previously investigated. In the present study, the antioxidant and anti-inflammatory properties of stevia leaves were studied in male Wistar rats with carbon tetrachloride- (CCl4-) induced acute and chronic liver damage. Acute and chronic liver damage induced oxidative stress, necrosis, and cholestasis, which were significantly ameliorated by stevia. Chronic CCl4 treatment resulted in liver cirrhosis, as evidenced by nodules of hepatocytes surrounded by thick bands of collagen and distortion of the hepatic architecture, and stevia significantly prevented these alterations. Subsequently, the underlying mechanism of action of the plant was analyzed. Our study for the first time shows that stevia upregulated Nrf2, thereby counteracting oxidative stress, and prevented necrosis and cholestasis through modulation of the main proinflammatory cytokines via NF-κB inhibition. These multitarget mechanisms led to the prevention of experimental cirrhosis. Given the reasonable safety profile of stevia, our results indicated that it may be useful for the clinical treatment of acute and chronic liver diseases.
Collapse
|
126
|
Jang MH, Kim KY, Song PH, Baek SY, Seo HL, Lee EH, Lee SG, Park KI, Ahn SC, Kim SC, Kim YW. Moutan Cortex Protects Hepatocytes against Oxidative Injury through AMP-Activated Protein Kinase Pathway. Biol Pharm Bull 2018; 40:797-806. [PMID: 28566623 DOI: 10.1248/bpb.b16-00884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Moutan Cortex, the root bark of Paeonia suffruticosa ANDREWS in Ranunculaceae, has widely demonstrated analgesic, anti-spasmodic, and anti-inflammatory effects in various cancer and immune cell lines. Oxidative stress is associated with development of several diseases, including liver disease. We prepared the water extract of Moutan Cortex (MCE) to investigate the cytoprotective activities and its mechanism. MCE protected hepatocytes from arachidonic acid (AA)+iron induced oxidative stress, as indicated by reactive oxygen species (ROS) production and cell viability analysis. MCE also suppressed mitochondrial dysfunction in AA+iron-treated human hepatocyte-derived hepatocellular carcinoma cell line, HepG2 cells. In addition, MCE treatment induces AMP-activated protein kinase (AMPK) and liver kinase B1 phosphorylation, which play a role in inhibition of oxidative stress induced cell death. Moreover, one of the MCE compounds, chlorogenic acid, exerted protective effects against oxidative stress and apoptosis. Taken together, MCE protected hepatocytes against AA+iron-induced oxidative stress through AMPK activation, and may be a candidate for the treatment of liver disease.
Collapse
Affiliation(s)
- Mi Hee Jang
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Kwang-Youn Kim
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Phil Hyun Song
- Department of Urology, Yeungnam University College of Medicine
| | - Su Youn Baek
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Hye Lim Seo
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Eun Hye Lee
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University.,Department of Clinical Laboratory Science, College of Health and Therapy, Daegu Haany University
| | - Suel-Gi Lee
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Kwang Il Park
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)
| | - Soon-Cheol Ahn
- Department of Microbiology & Immunology, Pusan National University School of Medicine
| | - Sang Chan Kim
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Young Woo Kim
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| |
Collapse
|
127
|
Abstract
Aspartame is a synthetic dipeptide artificial sweetener, frequently used in foods, medications, and beverages, notably carbonated and powdered soft drinks. Since 1981, when aspartame was first approved by the US Food and Drug Administration, researchers have debated both its recommended safe dosage (40 mg/kg/d) and its general safety to organ systems. This review examines papers published between 2000 and 2016 on both the safe dosage and higher-than-recommended dosages and presents a concise synthesis of current trends. Data on the safe aspartame dosage are controversial, and the literature suggests there are potential side effects associated with aspartame consumption. Since aspartame consumption is on the rise, the safety of this sweetener should be revisited. Most of the literature available on the safety of aspartame is included in this review. Safety studies are based primarily on animal models, as data from human studies are limited. The existing animal studies and the limited human studies suggest that aspartame and its metabolites, whether consumed in quantities significantly higher than the recommended safe dosage or within recommended safe levels, may disrupt the oxidant/antioxidant balance, induce oxidative stress, and damage cell membrane integrity, potentially affecting a variety of cells and tissues and causing a deregulation of cellular function, ultimately leading to systemic inflammation.
Collapse
Affiliation(s)
- Arbind Kumar Choudhary
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
128
|
Characterization and evaluation of nanoencapsulated diethylcarbamazine in model of acute hepatic inflammation. Int Immunopharmacol 2018; 50:330-337. [PMID: 28743082 DOI: 10.1016/j.intimp.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
Previous studies from our laboratory have demonstrated that Diethylcarbamazine (DEC) is a potent anti-inflammatory drug. The aim of the present study was to characterize the nanoencapsulation of DEC and to evaluate its effectiveness in a model of inflammation for the first time. C57BL/6 mice were divided into six groups: 1) Control; 2) Carbon tetrachloride (CCl4); 3) DEC 25mg/kg+CCl4; 4) DEC 50mg/kg+CCl4; 5) DEC-NANO 05mg/kg+CCl4 and 6) DEC-NANO 12.5mg/kg+CCl4. Liver fragments were stained with hematoxylin-eosin, and processed for Western blot, ELISA and immunohistochemistry. Serum was also collected for biochemical measurements. Carbon tetrachloride induced hepatic injury, observed through increased inflammatory markers (TNF-α, IL-1β, PGE2, COX-2 and iNOS), changes in liver morphology, and increased serum levels of total cholesterol, triglycerides, TGO and TGP, LDL, as well as reduced HDL levels. Nanoparticles containing DEC were characterized by diameter, polydispersity index and zeta potential. Treatment with 12.5 nanoencapsulated DEC exhibited a superior anti-inflammatory action to the DEC traditional dose (50mg/kg) used in murine assays, restoring liver morphology, improving serological parameters and reducing the expression of inflammatory markers. The present formulation of nanoencapsulated DEC is therefore a potential therapeutic tool for the treatment of inflammatory hepatic disorders, permitting the use of smaller doses and reducing treatment time, while maintaining high efficacy.
Collapse
|
129
|
Novel ethanocycloheptono [3,4,5-kl]benzo[a]xanthene induces apoptosis in BEL-7402 cells. Mol Cell Biochem 2018; 445:145-156. [DOI: 10.1007/s11010-017-3260-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/23/2017] [Indexed: 12/31/2022]
|
130
|
González-Ponce HA, Rincón-Sánchez AR, Jaramillo-Juárez F, Moshage H. Natural Dietary Pigments: Potential Mediators against Hepatic Damage Induced by Over-The-Counter Non-Steroidal Anti-Inflammatory and Analgesic Drugs. Nutrients 2018; 10:E117. [PMID: 29364842 PMCID: PMC5852693 DOI: 10.3390/nu10020117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022] Open
Abstract
Over-the-counter (OTC) analgesics are among the most widely prescribed and purchased drugs around the world. Most analgesics, including non-steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen, are metabolized in the liver. The hepatocytes are responsible for drug metabolism and detoxification. Cytochrome P450 enzymes are phase I enzymes expressed mainly in hepatocytes and they account for ≈75% of the metabolism of clinically used drugs and other xenobiotics. These metabolic reactions eliminate potentially toxic compounds but, paradoxically, also result in the generation of toxic or carcinogenic metabolites. Cumulative or overdoses of OTC analgesic drugs can induce acute liver failure (ALF) either directly or indirectly after their biotransformation. ALF is the result of massive death of hepatocytes induced by oxidative stress. There is an increased interest in the use of natural dietary products as nutritional supplements and/or medications to prevent or cure many diseases. The therapeutic activity of natural products may be associated with their antioxidant capacity, although additional mechanisms may also play a role (e.g., anti-inflammatory actions). Dietary antioxidants such as flavonoids, betalains and carotenoids play a preventive role against OTC analgesics-induced ALF. In this review, we will summarize the pathobiology of OTC analgesic-induced ALF and the use of natural pigments in its prevention and therapy.
Collapse
Affiliation(s)
- Herson Antonio González-Ponce
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands.
| | - Ana Rosa Rincón-Sánchez
- Department of Molecular Biology and Genomics, University Center of Health Sciences, Universidad de Guadalajara, Guadalajara 44340, Mexico.
| | - Fernando Jaramillo-Juárez
- Department of Physiology and Pharmacology, Basic Science Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico.
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands.
| |
Collapse
|
131
|
Glamočlija J, Kostić M, Soković M. Antimicrobial and Hepatoprotective Activities of Edible Mushrooms. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
132
|
Ajith TA. Role of mitochondria and mitochondria-targeted agents in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol 2017; 45:413-421. [PMID: 29112771 DOI: 10.1111/1440-1681.12886] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022]
Abstract
Mitochondria play a pivotal role in the fatty acid oxidation and have been found to be affected early during the macrovesicular fat accumulation in the hepatocytes. The fatty infiltration is the primary cause of oxidative stress and inflammation in the non-alcoholic fatty liver disease (NAFLD), which can lead to the peroxidation of phospholipids, such as cardiolipin. Oxidative stress-induced damage to mitochondrial DNA can result in the impairment of oxidative phosphorylation and further increases the generation of reactive oxygen species. The mitochondrial damage may eventually lead to apoptotic death of hepatocytes. The apoptosis along with the generated cytokines from the stellate and Kupffer cells further augment the fibrotic changes to advance the disease. Hence, alleviation of the mitochondrial impairment, particularly in the early stages of NAFLD, may prevent the progression of the disease. Among the various experimentally studied mitochondrial-targeted agents, triphenylphosphonium cation ligated ubiquinone Q10 and vitamin E, Szeto-Scheller peptides, and superoxide dismutase mimetic-salen manganese complexes (EUK-8 and EUK-134) have been found to be most promising. In addition to these mitochondrial-targeted agents, a novel area of therapy called mitotherapy have also emerged. However, clinical studies conducted so far are still fragmentary to validate their efficacy. This review article discusses the mitochondria-targeted molecules and their potential role in the treatment of NAFLD.
Collapse
|
133
|
Morales-López J, Centeno-Álvarez M, Nieto-Camacho A, López MG, Pérez-Hernández E, Pérez-Hernández N, Fernández-Martínez E. Evaluation of antioxidant and hepatoprotective effects of white cabbage essential oil. PHARMACEUTICAL BIOLOGY 2017; 55:233-241. [PMID: 27927070 PMCID: PMC6130702 DOI: 10.1080/13880209.2016.1258424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT There have been no reports of the extraction of essential oil (EO) from white cabbage [Brassica oleracea L. var. capitata (L.) Alef. f. alba DC. (Brassicaceae)] (Bocfal) or its chemical composition, antioxidant activity, or hepatoprotective effects. OBJECTIVE To extract Bocfal EO, to identify and quantify its chemical components, to assess their antioxidant capacity, and to evaluate the hepatoprotective properties of Bocfal EO. MATERIALS AND METHODS Bocfal EO was obtained using hydrodistillation (200 mm Hg/58 °C). The chemical composition was analyzed using GC-MS and was quantified using GC-FID. The antioxidant activity of Bocfal EO and its main constituents was evaluated using TBARS in rat brain homogenates. A Bocfal EO hepatoprotective effect (192 mg/kg) on acute carbon tetrachloride (CT)-induced liver damage was determined in rats using biochemical markers and histological analysis. Diallyl disulphide (DADS) (1 mmol/kg) was used as a control for comparison. RESULTS Bocfal EO contained organic polysulphides (OPSs), such as dimethyl trisulphide (DMTS) 65.43 ± 4.92% and dimethyl disulphide (DMDS) 19.29 ± 2.16% as major constituents. Bocfal EO and DMTS were found to be potent TBARS inhibitors with IC50 values of 0.51 and 3 mg/L, respectively. Bocfal EO demonstrated better hepatoprotective properties than did DADS (p < 0.05), although both slightly affected the hepatic parenchyma per se, as observed using histopathology. DISCUSSION AND CONCLUSION The antioxidant properties of Bocfal EO and DMTS may be the mechanism of hepatoprotective action; the parenchymal disturbances by Bocfal EO or DADS alone may be related to the high doses used.
Collapse
Affiliation(s)
- Javier Morales-López
- Escuela Nacional de Medicina y Homeopatía, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, México
| | - Mónica Centeno-Álvarez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, México
| | | | - Mercedes G. López
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, México
| | | | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, México
| | - Eduardo Fernández-Martínez
- Laboratory of Medicinal Chemistry and Pharmacology. Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Universidad Autónoma del Estado de Hidalgo, Pachuca Hidalgo, México
- CONTACT Eduardo Fernández-Martínez;
| |
Collapse
|
134
|
Han X, Wang R, Song X, Yu F, Lv C, Chen L. A mitochondrial-targeting near-infrared fluorescent probe for bioimaging and evaluating endogenous superoxide anion changes during ischemia/reperfusion injury. Biomaterials 2017; 156:134-146. [PMID: 29195182 DOI: 10.1016/j.biomaterials.2017.11.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
The outburst of superoxide anion (O2-) in mitochondrial during ischemia/reperfusion (I/R) process will cause a series of oxidative damage including polarity loss of mitochondrial membrane potential, overload of secondary cellular calcium, and cascade apoptosis. To monitor the O2- level fluctuations as well as to evaluate the relationship between O2- concentration and the degree of cell apoptosis during I/R process, we propose a ratiometric near-infrared mitochondrial targeting fluorescent probe Mito-Cy-Tfs for the detection of level changes of O2- in cells and in vivo. The probe Mito-Cy-Tfs is composed of three moieties: near-infrared heptamethine cyanine as fluorescence signal transducer, trifluoromethanesulfonamide as fluorescence modulator, and lipophilic triphenylphosphonium cation as mitochondrial guider. The probe can well locate in mitochondria and respond the concentration changes of endogenous O2- selectively and sensitively. The probe has been successfully utilized to image the endogenous O2- fluctuations in four kinds of cell I/R models (glucose deprivation/reperfusion, serum deprivation/reperfusion, oxygen deprivation/reperfusion and glucose-serum-oxygen deprivation/reperfusion). The probe also exhibits deep tissue penetration for real-time imaging of O2-concentration in liver of I/R mice model. We confirm that the adoption of ischemic preconditioning (IPC) and postconditioning (IPTC) can protect liver from I/R injury. The probe can be employed to accurately indicate and evaluate the mutual relationship between the levels of O2- and the degrees of organ damage during I/R, IPC and IPTC processes. The above applications make our new probe a potential candidate for the clinical surgery assessment.
Collapse
Affiliation(s)
- Xiaoyue Han
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xinyu Song
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou, 256603, China; Medicine Research Center, Institute of Molecular Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Fabiao Yu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Medicine Research Center, Institute of Molecular Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Changjun Lv
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou, 256603, China; Medicine Research Center, Institute of Molecular Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Medicine Research Center, Institute of Molecular Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
135
|
Saidi SA, Meurisse N, Jochmans I, Heedfeld V, Wylin T, Parkkinen J, Pirenne J, Monbaliu D, El Feki A, van Pelt J. Hepatocellular uptake of cyclodextrin-complexed curcumin during liver preservation: A feasibility study. Biopharm Drug Dispos 2017; 39:18-29. [PMID: 28972677 DOI: 10.1002/bdd.2108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/03/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022]
Abstract
The increasing demand for donor organs and the decreasing organ quality is prompting research toward new methods to reduce ischemia reperfusion injury (IRI). Several strategies have been proposed to protect preserved organs from this injury. Before curcumin/dextrin complex (CDC), a potent antioxidant and anti-inflammatory agent, can be used clinically we need to better understand the intracellular uptake under hypothermic conditions on a rat model of liver donation after circulatory death (DCD) and brain death (DBD). To be able to use the fluorescence of CDC for quantification the stability of CDC in different preservation solutions at 4°C or 37°C was investigated. Livers from Wistar rats were procured after being flushed-out through the portal vein using CDC-enriched preservation solutions and stored at 4°C for variable periods. The CDC signal was stable in different preservation solutions over a period of 4 h and allowed the rapid and lasting uptake of curcumin into cells. After 4 h of preservation, CDC was no longer visible microscopically, and HPLC analysis showed very low to non-detectable tissue levels of CDC, proving metabolization during preservation. However, the distribution of CDC was not affected by warm ischemia damage (p = 0.278) nor by flushing the livers before or after 4 h of cold storage and without a warm preflush. Finally, curcumin reduced oxidative stress, lowered histological injury and did not change gene expression after WI/cold storage. Therefore, the use of CDC flush solution for the initial organ flush can offer a promising approach to the enhancement of liver preservation and the maintenance of its quality.
Collapse
Affiliation(s)
- Saber Abdelkader Saidi
- Liver Research Facility, Laboratory of Hepatology, Faculty of Medicine, University Hospital Gasthuisberg, Leuven, Belgium.,Laboratory of Animal Ecophysiology/Department of Life Sciences, Sfax, Tunisia.,Faculty of Science and Arts-Khulais, Jeddah University, Saudi Arabia
| | - Nicolas Meurisse
- Department of Abdominal Surgery and Transplantation, CHU Liege, B4000, Liege, Belgium
| | - Ina Jochmans
- Department of Abdominal Transplantation Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Veerle Heedfeld
- Department of Abdominal Transplantation Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Tine Wylin
- Department of Abdominal Transplantation Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jaakko Parkkinen
- Department of Biomedicine/Biochemistry, University of Helsinki, Helsinki, Finland
| | - Jacques Pirenne
- Department of Abdominal Transplantation Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Department of Abdominal Transplantation Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology/Department of Life Sciences, Sfax, Tunisia
| | - Jos van Pelt
- Liver Research Facility, Laboratory of Hepatology, Faculty of Medicine, University Hospital Gasthuisberg, Leuven, Belgium
| |
Collapse
|
136
|
Zhang J, Song W, Sun Y, Shan A. Effects of phoxim-induced hepatotoxicity on SD rats and the protection of vitamin E. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24916-24927. [PMID: 28918601 DOI: 10.1007/s11356-017-0104-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Currently, public pay more attention to the adverse effect of organophosphate pesticides on human and animal health and on the environment in developing nations. Vitamin E may protect the hepatocyte and increase the function of liver. The study was to investigate the effects of phoxim-induced hepatotoxicity on Sprague Dawley (SD) rats and the protection of vitamin E. SD rats received by gavage 180 mg kg-1 (per body weight) of phoxim, 200 mg kg-1 (per body weight) of vitamin E, and phoxim + vitamin E. The results showed that exposure to phoxim elevated liver coefficient; glutamyl transpeptidase (GGT), aspartate aminotransferase, alkaline phosphatase, total bilirubin, total bile acid, and alanine aminotransferase in the serum; ROS in the liver; and the expression of p53, Bax, CYP2E1, ROS, caspase-9, caspase-8, and caspase-3, while phoxim caused a reduction of total protein, albumin, and cholinesterase in the serum; acetylcholinesterase, total antioxidant capacity, glutathione peroxidase, and glutathione in the liver; and the expression of Bcl-2. Vitamin E modified the phoxim-induced hepatotoxicity by reducing the GGT in the serum, malondialdehyde in the liver, and the expression of CYP2E1 significantly. There were no significant changes of globulin in the serum, the activity of catalase in the liver, as well as expression levels of Fas and Bad in the liver. Overall, subacute exposure to phoxim induced hepatic injury, oxidative stress damage, and cell apoptosis. Vitamin E modified phoxim-induced hepatotoxicity slightly. And, vitamin E minimized oxidative stress damage and ultrastructural changes in rat hepatocytes notably.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wentao Song
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuecheng Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
137
|
Miethe C, Nix H, Martin R, Hernandez AR, Price RS. Silibinin Reduces the Impact of Obesity on Invasive Liver Cancer. Nutr Cancer 2017; 69:1272-1280. [DOI: 10.1080/01635581.2017.1367935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- C. Miethe
- School of Consumer Sciences, Nutrition and Foods Program, Texas State University, San Marcos, Texas, USA
| | - H. Nix
- School of Consumer Sciences, Nutrition and Foods Program, Texas State University, San Marcos, Texas, USA
| | - R. Martin
- School of Consumer Sciences, Nutrition and Foods Program, Texas State University, San Marcos, Texas, USA
| | - A. R. Hernandez
- Medicine Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - R. S. Price
- School of Consumer Sciences, Nutrition and Foods Program, Texas State University, San Marcos, Texas, USA
| |
Collapse
|
138
|
Berntsen HF, Bogen IL, Wigestrand MB, Fonnum F, Walaas SI, Moldes-Anaya A. The fungal neurotoxin penitrem A induces the production of reactive oxygen species in human neutrophils at submicromolar concentrations. Toxicology 2017; 392:64-70. [PMID: 29037868 DOI: 10.1016/j.tox.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 11/24/2022]
Abstract
Penitrem A is a fungal neurotoxin that recurrently causes intoxication in animals, and occasionally also in humans. We have previously reported that penitrem A induced the production of reactive oxygen species (ROS) in rat cerebellar granule cells, opening for a new mechanism of action for the neurotoxin. The aim of this study was to examine the potential of penitrem A to induce ROS production in isolated human neutrophil granulocytes, and to study possible mechanisms involved. Penitrem A significantly increased the production of ROS in human neutrophils at concentrations as low as 0.25μM (40% increase over basal levels), as measured with the DCF fluorescence assay. The EC50 determined for the production of ROS by penitrem A was 3.8μM. The maximal increase in ROS production was approximately 330% over basal levels at a concentration of 12.5μM. ROS formation was significantly inhibited by the antioxidant vitamin E (50μM), the intracellular Ca+2 chelator BAPTA-AM (5μM), the mitogen activated protein kinase kinase (MEK) 1/2 and 5 inhibitor U0126 (1 and 10μM), the p38 mitogen activated protein kinase (MAPK) inhibitor SB203580 (1μM), the c-Jun amino-terminal kinase (JNK) inhibitor SP600125 (10μM), and the calcineurin inhibitors FK-506 and cyclosporine A (1.5 and 0.5μM, respectively). These finding suggest that penitrem A is able to induce an increase in ROS production in neutrophils via the activation of several MAPK-signalling pathways. We suggest that this increase may partly explain the pathophysiology generated by penitrem A neuromycotoxicosis in both humans and animals.
Collapse
Affiliation(s)
- H F Berntsen
- Department of Administration, Lab Animal Unit, National Institute of Occupational Health, P.O. Box 8149 Dep, 0033 Oslo, Norway
| | - I L Bogen
- Oslo University Hospital, Department of Forensic Sciences, Section of Drug Abuse Research, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - M B Wigestrand
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway
| | - F Fonnum
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway
| | - S I Walaas
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway
| | - A Moldes-Anaya
- Section of Chemistry and Toxicology, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway; R&D Section, PET-center, University Hospital of North Norway (UNN), P.O. Box 100 Langnes, N-9038 Tromsø, Norway.
| |
Collapse
|
139
|
Bellanti F, Villani R, Facciorusso A, Vendemiale G, Serviddio G. Lipid oxidation products in the pathogenesis of non-alcoholic steatohepatitis. Free Radic Biol Med 2017; 111:173-185. [PMID: 28109892 DOI: 10.1016/j.freeradbiomed.2017.01.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the major public health challenge for hepatologists in the twenty-first century. NAFLD comprises a histological spectrum ranging from simple steatosis or fatty liver, to steatohepatitis, fibrosis, and cirrhosis. It can be categorized into two principal phenotypes: (1) non-alcoholic fatty liver (NAFL), and (2) non-alcoholic steatohepatitis (NASH). The mechanisms of NAFLD progression consist of lipid homeostasis alterations, redox unbalance, insulin resistance, and inflammation in the liver. Even though several studies show an association between the levels of lipid oxidation products and disease state, experimental evidence suggests that compounds such as reactive aldehydes and cholesterol oxidation products, in addition to representing hallmarks of hepatic oxidative damage, may behave as active players in liver dysfunction and the development of NAFLD. This review summarizes the processes that contribute to the metabolic alterations occurring in fatty liver that produce fatty acid and cholesterol oxidation products in NAFLD, with a focus on inflammation, the control of insulin signalling, and the transcription factors involved in lipid metabolism.
Collapse
Affiliation(s)
- Francesco Bellanti
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Rosanna Villani
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Antonio Facciorusso
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gianluigi Vendemiale
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gaetano Serviddio
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy.
| |
Collapse
|
140
|
Gasparotto J, Kunzler A, Senger MR, Souza CDSFD, Simone SGD, Bortolin RC, Somensi N, Dal-Pizzol F, Moreira JCF, Abreu-Silva AL, Calabrese KDS, Silva FP, Gelain DP. N-acetyl-cysteine inhibits liver oxidative stress markers in BALB/c mice infected with Leishmania amazonensis. Mem Inst Oswaldo Cruz 2017; 112:146-154. [PMID: 28177049 PMCID: PMC5293124 DOI: 10.1590/0074-02760160403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/07/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Leishmaniasis is a parasitosis caused by several species of the genus Leishmania. These parasites present high resistance against oxidative stress generated by inflammatory cells. OBJECTIVES To investigate oxidative stress and molecular inflammatory markers in BALB/c mice infected with L. amazonensis and the effect of antioxidant treatment on these parameters. METHODS Four months after infection, oxidative and inflammatory parameters of liver, kidneys, spleen, heart and lungs from BALB/c mice were assessed. FINDINGS In liver, L. amazonensis caused thiol oxidation and nitrotyrosine formation; SOD activity and SOD2 protein content were increased while SOD1 protein content decreased. The content of the cytokines IL-1β, IL-6, TNF-α, and the receptor of advanced glycation endproducts (RAGE) increased in liver. Treatment with the antioxidant N-acetyl-cysteine (20 mg/kg b.w) for five days inhibited oxidative stress parameters. MAIN CONCLUSIONS L. amazonensis induces significant alterations in the redox status of liver but not in other organs. Acute antioxidant treatment alleviates oxidative stress in liver, but it had no effect on pro-inflammatory markers. These results indicate that the pathobiology of leishmaniasis is not restricted to the cutaneous manifestations and open perspectives for the development of new therapeutic approaches to the disease, especially for liver function.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| | - Alice Kunzler
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| | - Mario Roberto Senger
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | | | - Salvatore Giovanni de Simone
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Centro de Desenvolvimento Tecnológico em Saúde, Rio de Janeiro, RJ, Brasil
| | - Rafael Calixto Bortolin
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| | - Nauana Somensi
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| | - Felipe Dal-Pizzol
- Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Criciúma, SC, Brasil
| | - José Claudio Fonseca Moreira
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| | | | - Kátia da Silva Calabrese
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunomodulação e Protozoologia, Rio de Janeiro, RJ, Brasil
| | - Floriano Paes Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Daniel Pens Gelain
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| |
Collapse
|
141
|
Khedr NF, Khedr EG. Branched chain amino acids supplementation modulates TGF-β1/Smad signaling pathway and interleukins in CCl4-induced liver fibrosis. Fundam Clin Pharmacol 2017; 31:534-545. [PMID: 28544244 DOI: 10.1111/fcp.12297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Naglaa F. Khedr
- Faculty of Pharmacy; Tanta University; Postal number: 31527 Tanta Egypt
| | - Eman G. Khedr
- Faculty of Pharmacy; Tanta University; Postal number: 31527 Tanta Egypt
| |
Collapse
|
142
|
Vilaseca M, García-Calderó H, Lafoz E, Ruart M, López-Sanjurjo CI, Murphy MP, Deulofeu R, Bosch J, Hernández-Gea V, Gracia-Sancho J, García-Pagán JC. Mitochondria-targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats. Liver Int 2017; 37:1002-1012. [PMID: 28371136 DOI: 10.1111/liv.13436] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/24/2017] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal hypertension. We have shown that cirrhotic livers have increased reactive oxygen species (ROS), and that antioxidant therapy decreases portal pressure. Considering that mitochondria produce many of these ROS, our aim was to assess the effects of the oral mitochondria-targeted antioxidant mitoquinone on hepatic oxidative stress, HSC phenotype, liver fibrosis and portal hypertension. METHODS Ex vivo: Hepatic stellate cells phenotype was analysed in human precision-cut liver slices in response to mitoquinone or vehicle. In vitro: Mitochondrial oxidative stress was analysed in different cell type of livers from control and cirrhotic rats. HSC phenotype, proliferation and viability were assessed in LX2, and in primary human and rat HSC treated with mitoquinone or vehicle. In vivo: CCl4 - and thioacetamide-cirrhotic rats were treated with mitoquinone (5 mg/kg/day) or the vehicle compound, DecylTPP, for 2 weeks, followed by measurement of oxidative stress, systemic and hepatic haemodynamic, liver fibrosis, HSC phenotype and liver inflammation. RESULTS Mitoquinone deactivated human and rat HSC, decreased their proliferation but with no effects on viability. In CCl4 -cirrhotic rats, mitoquinone decreased hepatic oxidative stress, improved HSC phenotype, reduced intrahepatic vascular resistance and diminished liver fibrosis. These effects were associated with a significant reduction in portal pressure without changes in arterial pressure. These results were further confirmed in the thioacetamide-cirrhotic model. CONCLUSION We propose mitochondria-targeted antioxidants as a novel treatment approach against portal hypertension and cirrhosis.
Collapse
Affiliation(s)
- Marina Vilaseca
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona Medical School, Barcelona, Spain
| | - Héctor García-Calderó
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona Medical School, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Erica Lafoz
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona Medical School, Barcelona, Spain
| | - Maria Ruart
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona Medical School, Barcelona, Spain
| | - Cristina Isabel López-Sanjurjo
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona Medical School, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | | | - Ramon Deulofeu
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.,Department of Biochemistry and Chromatography, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Jaume Bosch
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona Medical School, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Virginia Hernández-Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona Medical School, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona Medical School, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Juan Carlos García-Pagán
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona Medical School, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
143
|
Influence of genetic variations in the SOD1 gene on the development of ascites and spontaneous bacterial peritonitis in decompensated liver cirrhosis. Eur J Gastroenterol Hepatol 2017; 29:800-804. [PMID: 28403123 DOI: 10.1097/meg.0000000000000878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The balance between generation and elimination of reactive oxygen species by superoxide dismutase (SOD) is crucially involved in the pathophysiology of liver cirrhosis. Reactive oxygen species damage cells and induce inflammation/fibrosis, but also play a critical role in immune defense from pathogens. As both processes are involved in the development of liver cirrhosis and its complications, genetic variation of the SOD1 gene was investigated. PATIENTS AND METHODS Two SOD1 single nucleotide polymorphisms (rs1041740 and rs3844942) were analyzed in 49 cirrhotic patients undergoing liver transplantation. In addition, 344 cirrhotic patients with ascites were analyzed in a cohort of 521 individuals in terms of the relationship of these polymorphisms with spontaneous bacterial peritonitis (SBP). RESULTS Although rs3844942 showed no associations with complications of cirrhosis, we observed a significant association between rs1041740 and the presence of ascites and SBP in the discovery cohort of patients with cirrhosis. Importantly, the association with SBP was not confirmed in the validation cohort of patients with ascites. By contrast, a trend toward lower SBP rates was observed in carriers of rs1041740. In this cohort, rs1041740 was not associated with survival. CONCLUSION These data suggest a complex role of SOD1 in different processes leading to complications of liver cirrhosis. rs1041740 might be associated with the development of ascites and possibly plays a role in SBP once ascites has developed.
Collapse
|
144
|
Abstract
Hepato-cellular carcinoma (HCC) is one of the frequent cause of cancer-related death worldwide and dominant form of primary liver cancer. However, the reason behind a steady increase in the incidence of this form of cancer remains elusive. Glycation has been reported to play a significant role in the induction of several chronic diseases including cancer. Several risk factors that could induce HCC have been reported in the literature. Deciphering the complex patho-physiology associated with HCC is expected to provide new targets for the early detection, prevention, progression and recurrence. Even-though, some of the causative aspects of HCC is known, the advanced glycation end products (AGEs) related mechanism still needs further research. In the current manuscript, we have tried to uncover the possible role of glycation in the induction of HCC. In the light of the available scientific literature, we advocate in-depth comprehensive studies which will shed light towards mechanistic association of glycation with HCC.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saheem Ahmad
- Department of Bio-Sciences, Integral University, Lucknow, 226021, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
145
|
Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2017; 473:4527-4550. [PMID: 27941030 DOI: 10.1042/bcj20160503c] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022]
Abstract
Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.
Collapse
|
146
|
The hepatoprotective activity of a new derivative kaempferol glycoside from the leaves of Vietnamese Phyllanthus acidus (L.) Skeels. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1914-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
147
|
Pyridoxamine scavenges protein carbonyls and inhibits protein aggregation in oxidative stress-induced human HepG2 hepatocytes. Biochem Biophys Res Commun 2017; 486:845-851. [DOI: 10.1016/j.bbrc.2017.03.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
|
148
|
Tsai TH, Yu CH, Chang YP, Lin YT, Huang CJ, Kuo YH, Tsai PJ. Protective Effect of Caffeic Acid Derivatives on tert-Butyl Hydroperoxide-Induced Oxidative Hepato-Toxicity and Mitochondrial Dysfunction in HepG2 Cells. Molecules 2017; 22:molecules22050702. [PMID: 28452956 PMCID: PMC6154103 DOI: 10.3390/molecules22050702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress results in structural and functional abnormalities in the liver and is thought to be a crucial factor in liver diseases. The aim of this study was to investigate the cytoprotective and antioxidant effects of caffeic acid (CA) derivatives on tert-butyl hydroperoxide (t-BHP)-induced oxidative stress in HepG2 cells. Nine CA derivatives were synthesized, including N-phenylethyl caffeamide (PECA), N-(3-florophen)methyl caffeamide (FMCA), N-(4-methoxy-phen)methyl caffeamide (MPMCA), N-heptyl caffeamide (HCA), N-octyl caffeamide (OCA), octyl caffeate (CAOE), phenpropyl caffeate (CAPPE), phenethyl caffeate (CAPE), and phenmethyl caffeate (CAPME). The results showed that CA and its derivatives significantly inhibited t-BHP-induced cell death of HepG2 cells. The rank order of potency of the CA derivatives for cytoprotection was CAOE > HCA > OCA > FMCA > CAPPE > CAPME > CAPE > PECA > MPMCA > CA. Their cytoprotective activity was associated with lipophilicity. The antioxidant effect of these compounds was supported by the reduction in the levels of thiobarbituric acid reactive substrates, a biomarker of lipid peroxidation, in HepG2 cells. Pre-treatment of CA derivatives significantly prevented the depletion of glutathione, the most important water-soluble antioxidant in hepatocytes. Pre-treatment of CA derivatives before t-BHP exposure maintained mitochondrial oxygen consumption rate and ATP content in the injured HepG2 cells. CA derivatives except OCA and HCA significantly suppressed t-BHP-induced hypoxia-inducible factor-1α (HIF-1α) protein level. In addition, all of these CA derivatives markedly increased the nuclear factor erythroid 2-related factor 2 (Nrf2) accumulation in the nucleus, indicating that their cytoprotection may be mediated by the activation of Nrf2. Our results suggest that CA derivatives might be a hepatoprotective agent against oxidative stress.
Collapse
Affiliation(s)
- Tzung-Hsun Tsai
- Department of Dentistry, Keelung Chang-Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Chun-Hsien Yu
- Department of Pediatrics, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Pediatrics, College of Medicine, Buddhist Tzu-Chi University, Hualien 970, Taiwan.
| | - Yu-Ping Chang
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - Yu-Ting Lin
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - Ching-Jang Huang
- Institute of Microbiology and Biochemistry, and Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Po-Jung Tsai
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| |
Collapse
|
149
|
Abstract
In chronic liver diseases, an ongoing hepatocellular injury together with inflammatory reaction results in activation of hepatic stellate cells (HSCs) and increased deposition of extracellular matrix (ECM) termed as liver fibrosis. It can progress to cirrhosis that is characterized by parenchymal and vascular architectural changes together with the presence of regenerative nodules. Even at late stage, liver fibrosis is reversible and the underlying mechanisms include a switch in the inflammatory environment, elimination or regression of activated HSCs and degradation of ECM. While animal models have been indispensable for our understanding of liver fibrosis, they possess several important limitations and need to be further refined. A better insight into the liver fibrogenesis resulted in a large number of clinical trials aiming at reversing liver fibrosis, particularly in patients with non-alcoholic steatohepatitis. Collectively, the current developments demonstrate that reversal of liver fibrosis is turning from fiction to reality.
Collapse
Affiliation(s)
- Miguel Eugenio Zoubek
- Department of Internal Medicine III, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH Aachen University Hospital, Aachen, Germany.
| | - Pavel Strnad
- Department of Internal Medicine III, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
150
|
Yuan L, Liu J, Zhen J, Xu Y, Chen S, Halm-Lutterodt NV, Xiao R. Vegetable and fruit juice enhances antioxidant capacity and regulates antioxidant gene expression in rat liver, brain and colon. Genet Mol Biol 2017; 40:134-141. [PMID: 28323302 PMCID: PMC5409777 DOI: 10.1590/1678-4685-gmb-2016-0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/29/2016] [Indexed: 01/19/2023] Open
Abstract
To explore the effect of fruit and vegetable (FV) juice on biomarkers of oxidative
damage and antioxidant gene expression in rats, 36 adult male Wistar rats were
randomly divided into control, low FV juice dosage or high FV juice dosage treatment
groups. The rats were given freshly extracted FV juice or the same volume of saline
water daily for five weeks. After intervention, serum and tissues specimens were
collected for biomarker and gene expression measurement. FV juice intervention
increased total antioxidant capacity, glutathione, vitamin C, β-carotene, total
polyphenols, flavonoids levels andglutathione peroxidaseenzyme activity in rat serum
or tissues (p < 0.05). FV juice intervention caused reduction of malondialdehyde
levels in rat liver (p < 0.05) and significantly modulated transcript levels of
glutamate cysteine ligase catalytic subunit (GCLC) and NAD(P)H:quinone oxidoreductase
l (NQO1)in rat liver and brain (p < 0.05). The results underline the potential of
FV juice to improve the antioxidant capacity and to prevent the oxidative damage in
liver, brain and colon.
Collapse
Affiliation(s)
- Linhong Yuan
- School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Jinmeng Liu
- School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Jie Zhen
- School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Yao Xu
- School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Shuying Chen
- School of Public Health, Capital Medical University, Beijing, P.R. China
| | | | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing, P.R. China
| |
Collapse
|