101
|
Silva NFD, Magalhães JMCS, Freire C, Delerue-Matos C. Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment. Biosens Bioelectron 2017; 99:667-682. [PMID: 28858763 DOI: 10.1016/j.bios.2017.08.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
According to the recent statistics, Salmonella is still an important public health issue in the whole world. Legislated reference methods, based on counting plate methods, are sensitive enough but are inadequate as an effective emergency response tool, and are far from a rapid device, simple to use out of lab. An overview of the commercially available rapid methods for Salmonella detection is provided along with a critical discussion of their limitations, benefits and potential use in a real context. The distinguished potentialities of electrochemical biosensors for the development of rapid devices are highlighted. The state-of-art and the newest technologic approaches in electrochemical biosensors for Salmonella detection are presented and a critical analysis of the literature is made in an attempt to identify the current challenges towards a complete solution for Salmonella detection in microbial food control based on electrochemical biosensors.
Collapse
Affiliation(s)
- Nádia F D Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Júlia M C S Magalhães
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal.
| | - Cristina Freire
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| |
Collapse
|
102
|
Chen H, Rim YS, Wang IC, Li C, Zhu B, Sun M, Goorsky MS, He X, Yang Y. Quasi-Two-Dimensional Metal Oxide Semiconductors Based Ultrasensitive Potentiometric Biosensors. ACS NANO 2017; 11:4710-4718. [PMID: 28430412 DOI: 10.1021/acsnano.7b00628] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ultrasensitive field-effect transistor-based biosensors using quasi-two-dimensional metal oxide semiconductors were demonstrated. Quasi-two-dimensional low-dimensional metal oxide semiconductors were highly sensitive to electrical perturbations at the semiconductor-bio interface and showed competitive sensitivity compared with other nanomaterial-based biosensors. Also, the solution process made our platform simple and highly reproducible, which was favorable compared with other nanobioelectronics. A quasi-two-dimensional In2O3-based pH sensor showed a small detection limit of 0.0005 pH and detected the glucose concentration at femtomolar levels. Detailed electrical characterization unveiled how the device's parameters affect the biosensor sensitivity, and lowest detectable charge was extrapolated, which was consistent with the experimental data.
Collapse
Affiliation(s)
- Huajun Chen
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| | - You Seung Rim
- School of Intelligent Mechatronic Engineering, Sejong University , 209 Neungdong-ro, Gwangjin-gu, Seoul 05009, Republic of Korea
| | - Isaac Caleb Wang
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| | - Chao Li
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| | - Bowen Zhu
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| | - Mo Sun
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| | - Mark S Goorsky
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| | - Ximin He
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| | - Yang Yang
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
103
|
|
104
|
Alieva RR, Kudryasheva NS. Variability of fluorescence spectra of coelenteramide-containing proteins as a basis for toxicity monitoring. Talanta 2017; 170:425-431. [PMID: 28501192 DOI: 10.1016/j.talanta.2017.04.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022]
Abstract
Nowadays, physicochemical approach to understanding toxic effects remains underdeveloped. A proper development of such mode would be concerned with simplest bioassay systems. Coelenteramide-Containing Fluorescent Proteins (CLM-CFPs) can serve as proper tools for study primary physicochemical processes in organisms under external exposures. CLM-CFPs are products of bioluminescent reactions of marine coelenterates. As opposed to Green Fluorescent Proteins, the CLM-CFPs are not widely applied in biomedical research, and their potential as colored biomarkers is undervalued now. Coelenteramide, fluorophore of CLM-CFPs, is a photochemically active molecule; it acts as a proton donor in its electron-excited states, generating several forms of different fluorescent state energy and, hence, different fluorescence color, from violet to green. Contributions of the forms to the visible fluorescence depend on the coelenteramide microenvironment in proteins. Hence, CLM-CFPs can serve as fluorescence biomarkers with color differentiation to monitor results of destructive biomolecule exposures. The paper reviews experimental and theoretical studies of spectral-luminescent and photochemical properties of CLM-CFPs, as well as their variation under different exposures - chemicals, temperature, and ionizing radiation. Application of CLM-CFPs as toxicity bioassays of a new type is justified.
Collapse
Affiliation(s)
- Roza R Alieva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| | - Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| |
Collapse
|
105
|
D’Souza AA, Kumari D, Banerjee R. Nanocomposite biosensors for point-of-care—evaluation of food quality and safety. NANOBIOSENSORS 2017. [PMCID: PMC7149521 DOI: 10.1016/b978-0-12-804301-1.00015-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanosensors have wide applications in the food industry. Nanosensors based on quantum dots for heavy metal and organophosphate pesticides detection, and nanocomposites as indicators for shelf life of fish/meat products, have served as important tools for food quality and safety assessment. Luminescent labels consisting of NPs conjugated to aptamers have been popular for rapid detection of infectious and foodborne pathogens. Various detection technologies, including microelectromechanical systems for gas analytes, microarrays for genetically modified foods, and label-free nanosensors using nanowires, microcantilevers, and resonators are being applied extensively in the food industry. An interesting aspect of nanosensors has also been in the development of the electronic nose and electronic tongue for assessing organoleptic qualities, such as, odor and taste of food products. Real-time monitoring of food products for rapid screening, counterfeiting, and tracking has boosted ingenious, intelligent, and innovative packaging of food products. This chapter will give an overview of the contribution of nanotechnology-based biosensors in the food industry, ongoing research, technology advancements, regulatory guidelines, future challenges, and industrial outlook.
Collapse
|
106
|
|
107
|
Silwana B, Van Der Horst C, Iwuoha E, Somerset V. A brief review on recent developments of electrochemical sensors in environmental application for PGMs. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:1233-1247. [PMID: 27715654 DOI: 10.1080/10934529.2016.1212562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study offers a brief review of the latest developments and applications of electrochemical sensors for the detection of Platinum Group Metals (PGMs) using electrochemical sensors. In particular, significant advances in electrochemical sensors made over the past decade and sensing methodologies associated with the introduction of nanostructures are highlighted. Amongst a variety of detection methods that have been developed for PGMs, nanoparticles offer the unrivaled merits of high sensitivity. Rapid detection of PGMs is a key step to promote improvement of the public health and individual quality of life. Conventional methods to detect PGMs rely on time-consuming and labor intensive procedures such as extraction, isolation, enrichment, counting, etc., prior to measurement. This results in laborious sample preparation and testing over several days. This study reviewed the state-of-the-art application of nanoparticles (NPs) in electrochemical analysis of environmental pollutants. This review is intended to provide environmental scientists and engineers an overview of current rapid detection methods, a close look at the nanoparticles based electrodes and identification of knowledge gaps and future research needs. We summarize electrodes that have been used in the past for detection of PGMs. We describe several examples of applications in environmental electrochemical sensors and performance in terms of sensitivity and selectivity for all the sensors utilized for PGMs detection. NPs have promising potential to increase competitiveness of electrochemical sensors in environmental monitoring, though this review has focused mainly on sensors used in the past decade for PGMs detection. This review therefore provides a synthesis of outstanding performances in recent advances in the nanosensor application for PGMs determination.
Collapse
Affiliation(s)
- Bongiwe Silwana
- a Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR) , Stellenbosch , South Africa
- b SensorLab , Department of Chemistry , University of the Western Cape , Bellville , South Africa
| | - Charlton Van Der Horst
- a Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR) , Stellenbosch , South Africa
- b SensorLab , Department of Chemistry , University of the Western Cape , Bellville , South Africa
| | - Emmanuel Iwuoha
- b SensorLab , Department of Chemistry , University of the Western Cape , Bellville , South Africa
| | - Vernon Somerset
- a Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR) , Stellenbosch , South Africa
| |
Collapse
|
108
|
Fernandes P. Enzymes in Fish and Seafood Processing. Front Bioeng Biotechnol 2016; 4:59. [PMID: 27458583 PMCID: PMC4935696 DOI: 10.3389/fbioe.2016.00059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/24/2016] [Indexed: 11/15/2022] Open
Abstract
Enzymes have been used for the production and processing of fish and seafood for several centuries in an empirical manner. In recent decades, a growing trend toward a rational and controlled application of enzymes for such goals has emerged. Underlying such pattern are, among others, the increasingly wider array of enzyme activities and enzyme sources, improved enzyme formulations, and enhanced requirements for cost-effective and environmentally friendly processes. The better use of enzyme action in fish- and seafood-related application has had a significant impact on fish-related industry. Thus, new products have surfaced, product quality has improved, more sustainable processes have been developed, and innovative and reliable analytical techniques have been implemented. Recent development in these fields are presented and discussed, and prospective developments are suggested.
Collapse
Affiliation(s)
- Pedro Fernandes
- Department of Bioengineering, Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| |
Collapse
|
109
|
Rozhko TV, Badun GA, Razzhivina IA, Guseynov OA, Guseynova VE, Kudryasheva NS. On the mechanism of biological activation by tritium. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 157:131-135. [PMID: 27035890 DOI: 10.1016/j.jenvrad.2016.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/08/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
The mechanism of biological activation by beta-emitting radionuclide tritium was studied. Luminous marine bacteria were used as a bioassay to monitor the biological effect of tritium with luminescence intensity as the physiological parameter tested. Two different types of tritium sources were used: HTO molecules distributed regularly in the surrounding aqueous medium, and a solid source with tritium atoms fixed on its surface (tritium-labeled films, 0.11, 0.28, 0.91, and 2.36 MBq/cm(2)). When using the tritium-labeled films, tritium penetration into the cells was prevented. The both types of tritium sources revealed similar changes in the bacterial luminescence kinetics: a delay period followed by bioluminescence activation. No monotonic dependences of bioluminescence activation efficiency on specific radioactivities of the films were found. A 15-day exposure to tritiated water (100 MBq/L) did not reveal mutations in bacterial DNA. The results obtained give preference to a "non-genomic" mechanism of bioluminescence activation by tritium. An activation of the intracellular bioluminescence process develops without penetration of tritium atoms into the cells and can be caused by intensification of trans-membrane cellular processes stimulated by ionization and radiolysis of aqueous media.
Collapse
Affiliation(s)
- T V Rozhko
- Krasnoyarsk State Medical Academy, P.Zheleznyaka 1, Krasnoyarsk, 660022, Russia; Siberian Federal University, Svobodny 79, Krasnoyarsk, 660041, Russia
| | - G A Badun
- Moscow State University, Department of Chemistry, Moscow, 119991, Russia
| | - I A Razzhivina
- Moscow State University, Department of Chemistry, Moscow, 119991, Russia
| | - O A Guseynov
- Siberian Federal University, Svobodny 79, Krasnoyarsk, 660041, Russia
| | - V E Guseynova
- Siberian Federal University, Svobodny 79, Krasnoyarsk, 660041, Russia
| | - N S Kudryasheva
- Siberian Federal University, Svobodny 79, Krasnoyarsk, 660041, Russia; Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk, 660036, Russia.
| |
Collapse
|
110
|
Yusibov V, Kushnir N, Streatfield SJ. Antibody Production in Plants and Green Algae. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:669-701. [PMID: 26905655 DOI: 10.1146/annurev-arplant-043015-111812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | | |
Collapse
|
111
|
Xu C, Song Z, Xiang Q, Jin J, Feng X. A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. NANOSCALE 2016; 8:7391-7395. [PMID: 26983941 DOI: 10.1039/c5nr08370b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We describe here a high performance oxygen-rich three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. We demonstrate that its linear detection upper limit is 30 mM, more than 15 times higher than that can be obtained on the normal enzyme-electrode. Notably, the three-phase enzyme electrode output is insensitive to the significant oxygen level fluctuation in analyte solution.
Collapse
Affiliation(s)
- Chenlong Xu
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China and Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zhiqian Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Qun Xiang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Jin
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. and Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
112
|
Chen H, Huang J, Palaniappan A, Wang Y, Liedberg B, Platt M, Tok AIY. A review on electronic bio-sensing approaches based on non-antibody recognition elements. Analyst 2016; 141:2335-46. [PMID: 27002177 DOI: 10.1039/c5an02623g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this review, recent advances in the development of electronic detection methodologies based on non-antibody recognition elements such as functional liposomes, aptamers and synthetic peptides are discussed. Particularly, we highlight the progress of field effect transistor (FET) sensing platforms where possible as the number of publications on FET-based platforms has increased rapidly. Biosensors involving antibody-antigen interactions have been widely applied in diagnostics and healthcare in virtue of their superior selectivity and sensitivity, which can be attributed to their high binding affinity and extraordinary specificity, respectively. However, antibodies typically suffer from fragile and complicated functional structures, large molecular size and sophisticated preparation approaches (resource-intensive and time-consuming), resulting in limitations such as short shelf-life, insufficient stability and poor reproducibility. Recently, bio-sensing approaches based on synthetic elements have been intensively explored. In contrast to existing reports, this review provides a comprehensive overview of recent advances in the development of biosensors utilizing synthetic recognition elements and a detailed comparison of their assay performances. Therefore, this review would serve as a good summary of the efforts for the development of electronic bio-sensing approaches involving synthetic recognition elements.
Collapse
Affiliation(s)
- Hu Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798.
| | | | | | | | | | | | | |
Collapse
|
113
|
Rao Vusa CS, Manju V, Berchmans S, Arumugam P. Electrochemical amination of graphene using nanosized PAMAM dendrimers for sensing applications. RSC Adv 2016. [DOI: 10.1039/c5ra27862g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Electrochemically aminated graphene as an effective platform for immobilization of enzymes, proteins, DNA, antibodies, antigens, etc. resulting development of highly sensitive graphene based bio and chemical sensors.
Collapse
Affiliation(s)
| | - Venkatesan Manju
- Electrodics and Electrocatalysis Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi
- India
| | - Sheela Berchmans
- Electrodics and Electrocatalysis Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi
- India
| | - Palaniappan Arumugam
- Electrodics and Electrocatalysis Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi
- India
| |
Collapse
|
114
|
Rathee K, Dhull V, Dhull R, Singh S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem Biophys Rep 2015; 5:35-54. [PMID: 28955805 PMCID: PMC5600356 DOI: 10.1016/j.bbrep.2015.11.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 01/19/2023] Open
Abstract
Lactate detection plays a significant role in healthcare, food industries and is specially necessitated in conditions like hemorrhage, respiratory failure, hepatic disease, sepsis and tissue hypoxia. Conventional methods for lactate determination are not accurate and fast so this accelerated the need of sensitive biosensors for high-throughput screening of lactate in different samples. This review focuses on applications and developments of various electrochemical biosensors based on lactate detection as lactate being essential metabolite in anaerobic metabolic pathway. A comparative study to summarize the L-lactate biosensors on the basis of different analytical properties in terms of fabrication, sensitivity, detection limit, linearity, response time and storage stability has been done. It also addresses the merits and demerits of current enzyme based lactate biosensors. Lactate biosensors are of two main types – lactate oxidase (LOD) and lactate dehydrogenase (LDH) based. Different supports tried for manufacturing lactate biosensors include membranes, polymeric matrices-conducting or non-conducting, transparent gel matrix, hydrogel supports, screen printed electrodes and nanoparticles. All the examples in these support categories have been aptly discussed. Finally this review encompasses the conclusion and future emerging prospects of lactate sensors. Different enzymes used in lactate bio sensing have been studied. Support used for fabrication biosensors have been discussed. The linearity range, response time, detection limit, etc. have been studied. Merits and demerits of different supports are also discussed.
Collapse
Affiliation(s)
- Kavita Rathee
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Vikas Dhull
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Rekha Dhull
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
115
|
Dugger JW, Webb LJ. Preparation and Characterization of Biofunctionalized Inorganic Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10331-40. [PMID: 26135514 DOI: 10.1021/acs.langmuir.5b01876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Integrating the function of biological molecules into traditional inorganic materials and substrates couples biologically relevant function to synthetic devices and generates new materials and capabilities by combining biological and inorganic functions. At this so-called "bio/abio interface," basic biological functions such as ligand binding and catalysis can be co-opted to detect analytes with exceptional sensitivity or to generate useful molecules with chiral specificity under entirely benign reaction conditions. Proteins function in dynamic, complex, and crowded environments (the living cell) and are therefore appropriate for integrating into multistep, multiscale, multimaterial devices such as integrated circuits and heterogeneous catalysts. However, the goal of reproducing the highly specific activities of biomolecules in the perturbed chemical and electrostatic environment at an inorganic interface while maintaining their native conformations is challenging to achieve. Moreover, characterizing protein structure and function at a surface is often difficult, particularly if one wishes to compare the activity of the protein to that of the dilute, aqueous solution phase. Our laboratory has developed a general strategy to address this challenge by taking advantage of the structural and chemical properties of alkanethiol self-assembled monolayers (SAMs) on gold surfaces that are functionalized with covalently tethered peptides. These surface-bound peptides then act as the chemical recognition element for a target protein, generating a biomimetic surface in which protein orientation, structure, density, and function are controlled and variable. Herein we discuss current research and future directions related to generating a chemically tunable biofunctionalization strategy that has potential to successfully incorporate the highly specialized functions of proteins onto inorganic substrates.
Collapse
Affiliation(s)
- Jason W Dugger
- Department of Chemistry, Center for Nano- and Molecular Science and Technology, and Institute for Cell and Molecular Biology, The University of Texas at Austin , 105 E. 24th Street, STOP A5300, Austin, Texas 78712-1224, United States
| | - Lauren J Webb
- Department of Chemistry, Center for Nano- and Molecular Science and Technology, and Institute for Cell and Molecular Biology, The University of Texas at Austin , 105 E. 24th Street, STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
116
|
Romero-Arcos M, Garnica-Romo MG, Martinez-Flores HE, Vázquez-Marrufo G, Ramírez-Bon R, González-Hernández J, Barbosa-Cánovas GV. Enzyme Immobilization by Amperometric Biosensors with TiO2 Nanoparticles Used to Detect Phenol Compounds. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9129-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
117
|
Santos A, Piccoli JP, Santos-Filho NA, Cilli EM, Bueno PR. Redox-tagged peptide for capacitive diagnostic assays. Biosens Bioelectron 2015; 68:281-287. [DOI: 10.1016/j.bios.2014.12.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/16/2022]
|
118
|
Kudryasheva NS, Rozhko TV. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 142:68-77. [PMID: 25644753 DOI: 10.1016/j.jenvrad.2015.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure.
Collapse
Affiliation(s)
- N S Kudryasheva
- Institute of Biophysics SB RAS, Akademgorodok 50, 660036, Krasnoyarsk, Russia; Siberian Federal University, Svobodny 79, 660041, Krasnoyarsk, Russia.
| | - T V Rozhko
- Siberian Federal University, Svobodny 79, 660041, Krasnoyarsk, Russia; Krasnoyarsk State Medical Academy, P. Zheleznyaka 1, 660022, Krasnoyarsk, Russia
| |
Collapse
|
119
|
Li H, Xu B, Wang D, Zhou Y, Zhang H, Xia W, Xu S, Li Y. Immunosensor for trace penicillin G detection in milk based on supported bilayer lipid membrane modified with gold nanoparticles. J Biotechnol 2015; 203:97-103. [PMID: 25840366 DOI: 10.1016/j.jbiotec.2015.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
In this work, we developed an immunosensor for electrochemical detection of penicillin G at trace level. The biosensor was fabricated by immobilizing anti-penicillin G in a supported bilayer lipid membrane (s-BLM) modified with gold nanoparticles, and the modified electrodes were characterized by the scanning electron microscope (SEM), cyclic voltammetry and electrochemical impedance spectroscopy. The biosensor was able to detect penicillin G with a linear correlation ranging from 3.34×10(-3)ng/L to 3.34×10(3)ng/L and a detection limit of 2.7×10(-4)ng/L, much lower than the maximum residue limit (MRL) of penicillin G in milk (4ppb, equal to 4×10(3)ng/L) set out by the European Union. The mean coefficient variation (CV) of the intra-assays and the inter-assays were 5.4% and 7.7%, respectively. In addition, the concentration of penicillin G in milk samples determined by this biosensor was in good agreement with that determined by high performance liquid chromatography (HPLC) assay.
Collapse
Affiliation(s)
- Han Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Bing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Danqi Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yin Zhou
- College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Hongling Zhang
- College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
120
|
Alterio V, Langella E, De Simone G, Monti SM. Cadmium-containing carbonic anhydrase CDCA1 in marine diatom Thalassiosira weissflogii. Mar Drugs 2015; 13:1688-97. [PMID: 25815892 PMCID: PMC4413181 DOI: 10.3390/md13041688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 01/03/2023] Open
Abstract
The Carbon Concentration Mechanism (CCM) allows phytoplakton species to accumulate the dissolved inorganic carbon (DIC) necessary for an efficient photosynthesis even under carbon dioxide limitation. In this mechanism of primary importance for diatoms, a key role is played by carbonic anhydrase (CA) enzymes which catalyze the reversible hydration of CO2, thus taking part in the acquisition of inorganic carbon for photosynthesis. A novel CA, named CDCA1, has been recently discovered in the marine diatom Thalassiosira weissflogii. CDCA1 is a cambialistic enzyme since it naturally uses Cd2+ as catalytic metal ion, but if necessary can spontaneously exchange Cd2+ to Zn2+. Here, the biochemical and structural features of CDCA1 enzyme will be presented together with its putative biotechnological applications for the detection of metal ions in seawaters.
Collapse
Affiliation(s)
- Vincenzo Alterio
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Emma Langella
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| |
Collapse
|
121
|
Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. ScientificWorldJournal 2015; 2015:510982. [PMID: 25884032 PMCID: PMC4390168 DOI: 10.1155/2015/510982] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 11/23/2022] Open
Abstract
Of global concern, environmental pollution adversely affects human health and socioeconomic development. The presence of environmental contaminants, especially bacterial, viral, and parasitic pathogens and their toxins as well as chemical substances, poses serious public health concerns. Nanoparticle-based biosensors are considered as potential tools for rapid, specific, and highly sensitive detection of the analyte of interest (both biotic and abiotic contaminants). In particular, there are several limitations of conventional detection methods for water-borne pathogens due to low concentrations and interference with various enzymatic inhibitors in the environmental samples. The increase of cells to detection levels requires long incubation time. This review describes current state of biosensor nanotechnology, the advantage over conventional detection methods, and the challenges due to testing of environmental samples. The major approach is to use nanoparticles as signal reporter to increase output rather than spending time to increase cell concentrations. Trends in future development of novel detection devices and their advantages over other environmental monitoring methodologies are also discussed.
Collapse
|
122
|
Tarasova AS, Stom DI, Kudryasheva NS. Antioxidant activity of humic substances via bioluminescent monitoring in vitro. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:89. [PMID: 25663400 DOI: 10.1007/s10661-015-4304-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED This work considers antioxidant properties of natural detoxifying agents-humic substances (HS) in solutions of model inorganic and organic compounds of oxidative nature-complex salt K3[Fe(СN)6] and 1,4-benzoquinone. Bioluminescent system of coupled enzymatic reactions catalyzed by NAD(P)H FMN-oxidoreductase and bacterial luciferase was used as a bioassay in vitro to monitor toxicity of the oxidizer solutions. Toxicities of general and oxidative types were evaluated using bioluminescent kinetic parameters-bioluminescence intensity and induction period, respectively. Antioxidant activity of HS was attributed to their ability to decrease both general and oxidative toxicities; the HS antioxidant efficiency was characterized with detoxification coefficients D GT and D OxT, respectively. Dependencies of D GT and D OxT on HS concentration and time of preliminary incubation of the oxidizers with HS were demonstrated. The optimal conditions for detoxification of the oxidizers were >20-min incubation time and 0.5 × 10(-4) to 2 × 10(-4) M of HS concentration. The present study promotes application of the enzymatic luminescent bioassay to monitor toxicity of pollutants of oxidative nature in environmental and waste waters in remediation procedures.
Collapse
Affiliation(s)
- A S Tarasova
- Siberian Federal University, Krasnoyarsk, Russia, 660041,
| | | | | |
Collapse
|
123
|
Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv 2015; 33:1141-61. [PMID: 25708387 DOI: 10.1016/j.biotechadv.2015.02.008] [Citation(s) in RCA: 437] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/26/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is a well-established and efficient technology for the generation of oligonucleotides with a high target affinity. These SELEX-derived single stranded DNA and RNA molecules, called aptamers, were selected against various targets, such as proteins, cells, microorganisms, chemical compounds etc. They have a great potential in the use as novel antibodies, in cancer theragnostics and in biomedical research. Vast interest in aptamers stimulated continuous development of SELEX, which underwent numerous modifications since its first application in 1990. Novel modifications made the selection process more efficient, cost-effective and significantly less time-consuming. This article brings a comprehensive and up-to-date review of recent advances in SELEX methods and pinpoints advantages, main obstacles and limitations. The post-SELEX strategies and examples of application are also briefly outlined in this review.
Collapse
Affiliation(s)
- Mariia Darmostuk
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic.
| | - Silvie Rimpelova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic.
| | - Helena Gbelcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, Bratislava 811 08, Slovak Republic.
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic.
| |
Collapse
|
124
|
Kudryasheva NS, Tarasova AS. Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:155-167. [PMID: 25146119 DOI: 10.1007/s11356-014-3459-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The paper considers mechanisms of detoxification of pollutant solutions by water-soluble humic substances (HSs), natural detoxifying agents. The problems and perspectives of bioassay application for toxicity monitoring of complex solutions are discussed from ecological point of view. Bioluminescence assays based on marine bacteria and their enzymes are of special attention here; they were shown to be convenient tools to study the detoxifying effects on cellular and biochemical levels. The advantages of bioluminescent enzymatic assay for monitoring both integral and oxidative toxicities in complex solutions of model pollutants and HS were demonstrated. The efficiencies of detoxification of the solutions of organic oxidizers and salts of metals (including radioactive ones) by HS were analyzed. The dependencies of detoxification efficiency on time of exposure to HS and HS concentrations were demonstrated. Antioxidant properties of HS were considered in detail. The detoxifying effects of HS were shown to be complex and regarded as 'external' (binding and redox processes in solutions outside the organisms) and/or 'internal' organismal processes. The paper demonstrates that the HS can stimulate a protective response of bacterial cells as a result of (1) changes of rates of biochemical reactions and (2) stabilization of mucous layers outside the cell walls. Acceleration of auto-oxidation of NADH, endogenous reducer, by HS was suggested as a reason for toxicity increase in the presence of HS due to abatement of reduction ability of intracellular media.
Collapse
Affiliation(s)
- N S Kudryasheva
- Institute of Biophysics SB RAS, Krasnoyarsk, Russia, 660036,
| | | |
Collapse
|
125
|
Warriner K, Reddy SM, Namvar A, Neethirajan S. Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
126
|
O'Hara T, Seddon B, McClean S, Dempsey E. TOXOR: Design and Application of an Electrochemical Toxicity Biosensor for Environmental Monitoring. ELECTROANAL 2014. [DOI: 10.1002/elan.201400433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
127
|
Comparison of chronic low-dose effects of alpha- and beta-emitting radionuclides on marine bacteria. Open Life Sci 2014. [DOI: 10.2478/s11535-014-0331-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEffects of Americium-241 (241Am), alpha-emitting radionuclide of high specific radioactivity, and tritium (3H), beta-emitting radionuclide, on luminous bacteria Photobacterium phosphoreum were compared. Bioluminescence intensity served as a marker of bacterial physiological activity. Three successive stages in the bioluminescence response to 241Am and 3H were found under conditions of lowdose irradiation: (1) absence of effects, (2) activation, and (3) inhibition. They were interpreted in terms of bacterial response to stressfactor as stress recognition, adaptive response/syndrome, and suppression of physiological function (i.e. radiation toxicity). Times of bioluminescence activation (TBA) and inhibition (TBI) were suggested as parameters to characterize hormesis and toxic stages in a course of chronic low-dose irradiation of the microorganisms. Values of TBA and TBI of 241Am were shorter than those of 3H, revealing higher impact of alpha-irradiation (as compared to beta-irradiation) under comparable radiation doses. Increases of peroxide concentration and NADH oxidation rates in 241Am aquatic solutions were demonstrated; these were not found in tritiated water. The results reveal a biological role of reactive oxygen species generated in water solutions as secondary products of the radioactive decay. The study provides a scientific basis for elaboration of bioluminescence-based assay to monitor radiotoxicity of alpha- and beta-emitting radionuclides in aquatic solutions.
Collapse
|
128
|
Adley CC. Past, Present and Future of Sensors in Food Production. Foods 2014; 3:491-510. [PMID: 28234333 PMCID: PMC5302250 DOI: 10.3390/foods3030491] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022] Open
Abstract
Microbial contamination management is a crucial task in the food industry. Undesirable microbial spoilage in a modern food processing plant poses a risk to consumers' health, causing severe economic losses to the manufacturers and retailers, contributing to wastage of food and a concern to the world's food supply. The main goal of the quality management is to reduce the time interval between the filling and the detection of a microorganism before release, from several days, to minutes or, at most, hours. This would allow the food company to stop the production, limiting the damage to just a part of the entire batch, with considerable savings in terms of product value, thereby avoiding the utilization of raw materials, packaging and strongly reducing food waste. Sensor systems offer major advantages over current systems as they are versatile and affordable but need to be integrated in the existing processing systems as a process analytical control (PAT) tool. The desire for good selectivity, low cost, portable and usable at working sites, sufficiently rapid to be used at-line or on-line, and no sample preparation devices are required. The application of biosensors in the food industry still has to compete with the standard analytical techniques in terms of cost, performance and reliability.
Collapse
Affiliation(s)
- Catherine C Adley
- Microbiology Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|