101
|
Xiao S, Xiao C, Miao Y, Wang J, Chen R, Fan Z, Hu Z. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing. Stem Cell Res Ther 2021; 12:255. [PMID: 33926555 PMCID: PMC8082232 DOI: 10.1186/s13287-021-02333-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Diabetic wounds threaten the health and quality of life of patients and their treatment remains challenging. ADSC-derived exosomes have shown encouraging results in enhancing diabetic wound healing. However, how to use exosomes in wound treatment effectively is a problem that needs to be addressed at present. Methods A diabetic mouse skin wound model was established. ADSC-derived exosomes (ADSC-Exos) were isolated, and in vitro application of exosomes was evaluated using human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs). After preparation and characterization of a scaffold of human acellular amniotic membrane (hAAM) loaded with ADSC-Exos in vitro, they were transplanted into wounds in vivo and wound healing phenomena were observed by histological and immunohistochemical analyses to identify the wound healing mechanism of the exosome-hAAM composites. Results The hAAM scaffold dressing was very suitable for the delivery of exosomes. ADSC-Exos enhanced the proliferation and migration of HDFs and promoted proliferation and tube formation of HUVECs in vitro. In vivo results from a diabetic skin wound model showed that the hAAM-Exos dressing accelerated wound healing by regulating inflammation, stimulating vascularization, and promoting the production of extracellular matrix. Conclusion Exosome-incorporated hAAM scaffolds showed great potential in promoting diabetic skin wound healing, while also providing strong evidence for the future clinical applications of ADSC-derived exosomes.
Collapse
Affiliation(s)
- Shune Xiao
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou Da Dao Bei 1838, Guangzhou, 510515, China.,Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chunfang Xiao
- Department of Obstetrics and Gynecology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yong Miao
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou Da Dao Bei 1838, Guangzhou, 510515, China
| | - Jin Wang
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou Da Dao Bei 1838, Guangzhou, 510515, China
| | - Ruosi Chen
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou Da Dao Bei 1838, Guangzhou, 510515, China
| | - Zhexiang Fan
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou Da Dao Bei 1838, Guangzhou, 510515, China
| | - Zhiqi Hu
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou Da Dao Bei 1838, Guangzhou, 510515, China.
| |
Collapse
|
102
|
Peng Y, Wang Z, Zhou Y, Wang F, Zhang S, He D, Deng L. Ferrocene-functionalized hybrid hydrogel dressing with high-adhesion for combating biofilm. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112111. [PMID: 33965115 DOI: 10.1016/j.msec.2021.112111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022]
Abstract
Bacterial infection is a common phenomenon in the process of postoperative wound healing. In severe cases, it may even lead to life-threatening, which brings a heavy burden to the clinical treatment and causes huge losses to the society and economy. As one of the most commonly applied medical materials for wound treatment, hydrogel dressings are mainly used to cover and protect wounds and provide a favorable environment to facilitate wound healing. In this work, we developed an antibacterial hydrogel dressing (Fc-PAAM) with high adhesion, which is consisted of polyacrylamide (PAM) hydrogel framework and polyacrylic acid-functionalized (PAA) with ferrocene (Fc). Morphology, adhesion and pressure resistance of PAAM hydrogel were confirmed by using scanning electron microscope (SEM) and universal testing machine, and Fc decoration in the hydrogel network was well demonstrated by using Fourier transform infrared spectroscopy (FT-IR). Ultraviolet-visible spectroscopy (UV-vis) displayed that the Fc-PAAM hydrogel had excellent peroxidase-like activity as well. It not only exhibited prominent antimicrobial activity against Gram (+/-) bacteria, but also performed high efficiency in preventing the formation of biofilms. In addition, in vivo experiments indicated that this adhesive dressing could significantly prevent bacterial infections. Compared with other clinical treatment methods, this kind of hydrogel is not easy to cause bacterial resistance, and the used raw materials are easy to obtain and low in price, which can amplify the antibacterial properties of H2O2 and provide a new opportunity for the treatment of clinical bacterial infections.
Collapse
Affiliation(s)
- Yanling Peng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Zefeng Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Yan Zhou
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Feiying Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Shengnan Zhang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Dinggeng He
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.
| | - Le Deng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.
| |
Collapse
|
103
|
Qianqian O, Songzhi K, Yongmei H, Xianghong J, Sidong L, Puwang L, Hui L. Preparation of nano-hydroxyapatite/chitosan/tilapia skin peptides hydrogels and its burn wound treatment. Int J Biol Macromol 2021; 181:369-377. [PMID: 33737190 DOI: 10.1016/j.ijbiomac.2021.03.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/28/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
There is an urgent need for wound dressings to treat partial-thickness burns. Hydrogels are a promising material that can maintain hydration to promote necrotic tissue removal. Tilapia peptides (TP) and hydroxyapatite (HA) were incorporated into chitosan system to prepare new types of hydrogels. The hydrogels were cross-linking by tannin (TA), which were developed to promote rapid wound healing in a New Zealand rabbit partial-thickness burn model. Nanohydroxyapatite (NHA) was synthesized by coprecipitation method, which made hydrogels have a highly porous structure comprised of interconnected pores, excellent water absorption and low hemolysis. Besides, the hydrogels showed excellent antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as well as the cytocompatibility on endothelial cells. Moreover, the hydrogels promoted epithelial and dermal regeneration, reduce the expression of TNF-α and IL-6 and promote the skin regeneration by enhancing expression of collagen, STAT3, and VEGF.
Collapse
Affiliation(s)
- Ouyang Qianqian
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Kong Songzhi
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Huang Yongmei
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Ju Xianghong
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Sidong
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Puwang
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Luo Hui
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China.
| |
Collapse
|
104
|
Deng A, Yang Y, Du S, Yang X, Pang S, Wang X, Yang S. Preparation of a recombinant collagen-peptide (RHC)-conjugated chitosan thermosensitive hydrogel for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111555. [DOI: 10.1016/j.msec.2020.111555] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 08/18/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
|
105
|
Onak G, Ercan UK, Karaman O. Antibacterial activity of antimicrobial peptide-conjugated nanofibrous membranes. Biomed Mater 2020; 16:015020. [PMID: 33325380 DOI: 10.1088/1748-605x/abb722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Antimicrobial peptides (AMPs) are considered as novel potential alternatives to antibiotics against increasing number of multi drug resistant (MDR) pathogens. Although AMPs have shown strong antimicrobial activity against gram-negative or gram-positive microorganisms, AMP conjugated biomaterials that are effective against MDR microorganisms are yet to be developed. Herein, the potential use of (RWRWRWRW)-NH2 (AMP-1) and KRFRIRVRV-NH2 (AMP-2) peptide conjugated electrospun polylactic-co-glycolic-acid (PLGA) nanofibers (NFs) fabricated and their antimicrobial effect by themselves and in their dual combination (1:1) were evaluated on P. aeruginosa and methicillin-resistant S. aureus (MRSA). Those AMP conjugated NFs did not inhibit proliferation of keratinocytes. These results suggest that AMP conjugated NF, which has multiple biological activities, would be a promising candidate as a wound dressing material.
Collapse
Affiliation(s)
- Günnur Onak
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir 35620, Turkey
| | - Utku Kürşat Ercan
- Plasma Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir 35620, Turkey
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir 35620, Turkey
| |
Collapse
|
106
|
Las Heras K, Igartua M, Santos-Vizcaino E, Hernandez RM. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J Control Release 2020; 328:532-550. [DOI: 10.1016/j.jconrel.2020.09.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
|
107
|
Liang J, Cui L, Li J, Guan S, Zhang K, Li J. Aloe vera: A Medicinal Plant Used in Skin Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:455-474. [PMID: 33066720 DOI: 10.1089/ten.teb.2020.0236] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skin injury is a major problem threatening human physical and mental health, and how to promote wound healing has been the focus. Developing new wound dressings is an important strategy in skin regeneration. Aloe vera is a medicinal plant with a long history, complex constituents, and various pharmacological activities. Many studies have shown that A. vera plays an important role in promoting wound healing. Adding A. vera to wound dressing has become an ideal way. This review will describe the process of skin injury and wound healing and analyze the role of A. vera in wound healing. In addition, the types of wound dressing and the applications of A. vera in wound dressing will be discussed.
Collapse
Affiliation(s)
- Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jiankang Li
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jingan Li
- School of Materials Science and Engineering and Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
108
|
|
109
|
Kocaman N, Altun S, Bal A, Ozcan EC, Sarac M, Artas G, Demir B, Aydin S, Kuloglu T. Effects of Carnosine, Ankaferd, and Silver Sulfadiazine on an Experimental Burn Model: Roles of Irisin and HSP70. J Burn Care Res 2020; 42:408-414. [PMID: 32910166 DOI: 10.1093/jbcr/iraa156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, the effects of carnosine, ankaferd, and 1% silver sulfadiazine applied topically on second-degree burns were investigated and the roles of irisin and Heat shock protein 70 (HSP70) in this healing process were evaluated. Ninety male albino rats were used and divided into five groups. The groups were classified as control, burn, burn + carnosine (CAR), burn + ankaferd (ABS), and burn + silver sulfadiazine (SS). It was found that level of irisin increased in the first week and decreased in the second week in the burn and CAR groups. In the ABS and SS groups, the level of irisin was determined that started to increase in the first week and continued to increase in the second week. The level of HSP70 was found to increased in the first week in burn and CAR groups and decreased in the second week, but started to increase in the second week in ABS and SS groups. Both levels of irisin and HSP70 were observed to decreased in all treatment groups in the third week. In this study, it was shown that ankaferd and silver sülfadiazine treatments cause an increase in the irisin levels in the early period and a gradually increase in HSP70 levels in the later period in burns. The inflammatory response was observed to be limited in the early period in the ankaferd and sulfadiazin groups. It was concluded that these findings were effective in early wound healing in burns.
Collapse
Affiliation(s)
- Nevin Kocaman
- Department of Histology and Embryology, Firat University School of Medicine, Elazig, Turkey
| | - Serdar Altun
- Department of Plastic and Reconstructive Surgery, Firat University School of Medicine, Elazig, Turkey
| | - Ali Bal
- Caddebostan, Istanbul, Turkey
| | - Erhan Cahit Ozcan
- Department of Plastic and Reconstructive Surgery, 18 Mart University School of Medicine, Canakkale, Turkey
| | - Mehmet Sarac
- Department of Pediatric Surgery, Firat University Hospital, Elazig, Turkey
| | - Gokhan Artas
- Department of Pathology, Firat University Hospital, Elazig, Turkey
| | - Betul Demir
- Department of Dermatology, Firat University Hospital, Elazig, Turkey
| | - Suleyman Aydin
- Department of Biochemistry, Firat University School of Medicine, Elazig, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, Firat University School of Medicine, Elazig, Turkey
| |
Collapse
|
110
|
|
111
|
Nitric Oxide-Releasing Thermoresponsive Pluronic F127/Alginate Hydrogel for Enhanced Antibacterial Activity and Accelerated Healing of Infected Wounds. Pharmaceutics 2020; 12:pharmaceutics12100926. [PMID: 32998349 PMCID: PMC7600256 DOI: 10.3390/pharmaceutics12100926] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/24/2023] Open
Abstract
Nitric oxide (NO), a highly reactive and lipophilic molecule, is one of the molecules present in the wound environment and implicated as an important regulator in all phases of wound healing. Here, we developed an NO-releasing thermoresponsive hydrogel (GSNO-PL/AL) composed of S-nitrosoglutathione (GSNO), pluronic F127 (PL), and alginate (AL) for the treatment of infected wounds. The GSNO was incorporated into the thermoresponsive PL/AL hydrogel, and differential scanning calorimetry techniques were used for the hydrogel characterization. The hydrogel was assessed by in vitro NO release, antibacterial activity, cytotoxicity, and wound-healing activity. The GSNO-PL/AL hydrogel demonstrated thermal responsiveness and biocompatibility, and it showed sustained NO release for 7 days. It also exhibited potent bactericidal activity against Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative multidrug-resistant Pseudomonas aeruginosa (MRPA). Moreover, the GSNO-PL/AL treatment of MRPA-infected wounds accelerated healing with a reduced bacterial burden in the wounds. The GSNO-PL/AL hydrogel would be a promising option for the treatment of infected wounds.
Collapse
|
112
|
Andryukov BG, Besednova NN, Kuznetsova TA, Zaporozhets TS, Ermakova SP, Zvyagintseva TN, Chingizova EA, Gazha AK, Smolina TP. Sulfated Polysaccharides from Marine Algae as a Basis of Modern Biotechnologies for Creating Wound Dressings: Current Achievements and Future Prospects. Biomedicines 2020; 8:E301. [PMID: 32842682 PMCID: PMC7554790 DOI: 10.3390/biomedicines8090301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Wound healing involves a complex cascade of cellular, molecular, and biochemical responses and signaling processes. It consists of successive interrelated phases, the duration of which depends on a multitude of factors. Wound treatment is a major healthcare issue that can be resolved by the development of effective and affordable wound dressings based on natural materials and biologically active substances. The proper use of modern wound dressings can significantly accelerate wound healing with minimum scar mark. Sulfated polysaccharides from seaweeds, with their unique structures and biological properties, as well as with a high potential to be used in various wound treatment methods, now undoubtedly play a major role in innovative biotechnologies of modern natural interactive dressings. These natural biopolymers are a novel and promising biologically active source for designing wound dressings based on alginates, fucoidans, carrageenans, and ulvans, which serve as active and effective therapeutic tools. The goal of this review is to summarize available information about the modern wound dressing technologies based on seaweed-derived polysaccharides, including those successfully implemented in commercial products, with a focus on promising and innovative designs. Future perspectives for the use of marine-derived biopolymers necessitate summarizing and analyzing results of numerous experiments and clinical trial data, developing a scientifically substantiated approach to wound treatment, and suggesting relevant practical recommendations.
Collapse
Affiliation(s)
- Boris G. Andryukov
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russian
| | - Natalya N. Besednova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana A. Kuznetsova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana S. Zaporozhets
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Svetlana P. Ermakova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Tatyana N. Zvyagintseva
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Ekaterina A. Chingizova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Anna K. Gazha
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana P. Smolina
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| |
Collapse
|
113
|
Advanced Hydrogels as Wound Dressings. Biomolecules 2020; 10:biom10081169. [PMID: 32796593 PMCID: PMC7464761 DOI: 10.3390/biom10081169] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Skin is the largest organ of the human body, protecting it against the external environment. Despite high self-regeneration potential, severe skin defects will not heal spontaneously and need to be covered by skin substitutes. Tremendous progress has been made in the field of skin tissue engineering, in recent years, to develop new skin substitutes. Among them, hydrogels are one of the candidates with most potential to mimic the native skin microenvironment, due to their porous and hydrated molecular structure. They can be applied as a permanent or temporary dressing for different wounds to support the regeneration and healing of the injured epidermis, dermis, or both. Based on the material used for their fabrication, hydrogels can be subdivided into two main groups—natural and synthetic. Moreover, hydrogels can be reinforced by incorporating nanoparticles to obtain “in situ” hybrid hydrogels, showing superior properties and tailored functionality. In addition, different sensors can be embedded in hydrogel wound dressings to provide real-time information about the wound environment. This review focuses on the most recent developments in the field of hydrogel-based skin substitutes for skin replacement. In particular, we discuss the synthesis, fabrication, and biomedical application of novel “smart” hydrogels.
Collapse
|
114
|
Zhang M, Zhao X. Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol 2020; 162:1414-1428. [PMID: 32777428 DOI: 10.1016/j.ijbiomac.2020.07.311] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023]
Abstract
Wound healing is a complicated and continuous process affected by several factors, and it needs an appropriate surrounding to achieve accelerated healing. At present, various wound dressings are used for wound management, such as fiber, sponge, hydrogel, foam, hydrocolloid and so on. Hydrogels can provide mechanical support and moist environment for wounds, and are widely used in biomedical field. Alginate is a natural linear polysaccharide derived from brown algae or bacteria, consisting of repeating units of β-1,4-linked D-mannuronic acid (M) and L-guluronic acid (G) in different ratios. It is widely used in biomedical and engineering fields due to its good biocompatibility and liquid absorption capacity. Alginate-based hydrogels have been used in wound dressing, tissue engineering, and drug delivery applications for decades. In this review, we summarize the recent approaches in the chemical and physical preparation and the application of alginate hydrogels in wound dressings.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
115
|
Abdo J, Ortman H. Biologic and Synthetic Cellular and/or Tissue-Based Products and Smart Wound Dressings/Coverings. Surg Clin North Am 2020; 100:741-756. [PMID: 32681874 DOI: 10.1016/j.suc.2020.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular and/or tissue-based products (CTPs) have advanced greatly in the past several decades and improve the ability to heal wounds more efficiently. Products can be characterized as nonviable cells, tissue based, animal; nonviable cells, tissue based, human; viable human cells, cultured in vitro, animal substrate; viable human cells, cultured in vitro, synthetic substrate; viable human cells, noncultured, intact tissue. There are approximately 77 different CTPs at the time of this writing, with many more being investigated. Cellular and/or tissue-based product selection, application, postapplication course, and patient selection depend on patient attributes, CTP specifications, and surgeon preference.
Collapse
Affiliation(s)
- James Abdo
- General Surgery, Marshfield Clinic Health System, 3C1 General Surgery Residency, 1000 North Oak Avenue, Marshfield, WI 54449, USA
| | - Holly Ortman
- General Surgery, Marshfield Clinic Health System, 3C1 General Surgery Residency, 1000 North Oak Avenue, Marshfield, WI 54449, USA.
| |
Collapse
|
116
|
Chen Q, Deng X, Qiang L, Yao M, Guan L, Xie N, Zhao D, Ma J, Ma L, Wu Y, Yan X. Investigating the effects of walnut ointment on non-healing burn wounds. Burns 2020; 47:455-465. [PMID: 32736884 DOI: 10.1016/j.burns.2020.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
Effective treatments for non-healing burn wounds are an unmet need for 95% of burn sufferers. Approaches currently available to treat non-healing burn wounds are not satisfactory due to undesirable side-effects or expense. The anti-oxidation and antibacterial activities of walnuts are recommended for treating chronic diseases. Walnut ointment has been developed and successfully applied to treat non-healing burn wounds in our hospital for decades. We report herein a detailed retrospective case review examining patients' response to the walnut ointment. The walnut ointment has shortened healing time of non-healing burn wounds and improved clinical outcomes. In order to investigate the mechanism of action, walnut ointment has been applied on wounds of porcine full-thickness burn wound models. Histological and immunohistochemical analysis indicated our walnut ointment supports wound healing through promoting keratinocyte proliferation and differentiation. Taken together, we recommend the walnut ointment offers an effective and economical treatment for patients presenting with non-healing burn wounds.
Collapse
Affiliation(s)
- Qian Chen
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, Xinyang Central Hospital, Henan, China
| | - Xingwang Deng
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, The First People's Hospital of Shizuishan, Ningxia, China
| | - Lijuan Qiang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, China
| | - Ming Yao
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Lifeng Guan
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Nan Xie
- Clinical Medicine Research Center, National Health Commission, Beijing National Health Hospital, Beijing, China
| | - Dan Zhao
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jiaxiang Ma
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | - Liqiong Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Yinsheng Wu
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xie Yan
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
117
|
Nešović K, Mišković‐Stanković V. A comprehensive review of the polymer‐based hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katarina Nešović
- Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | | |
Collapse
|
118
|
Abbade LPF, Ferreira RS, Dos Santos LD, Barraviera B. Chronic venous ulcers: a review on treatment with fibrin sealant and prognostic advances using proteomic strategies. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190101. [PMID: 32636876 PMCID: PMC7315627 DOI: 10.1590/1678-9199-jvatitd-2019-0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Venous ulcers are the main causes of chronic lower-limb ulcers. The healing difficulties encourage the research and development of new products in order to achieve better therapeutic results. Fibrin sealant is one of these alternatives. Besides being a validated scaffold and drug delivery system, it possesses excellent healing properties. This review covered the last 25 years of the literature and showed that the fibrin sealant is used in various clinical situations to promote the healing of different types of ulcers, especially chronic ones. These are mostly venous in origin and usually does not respond to conventional treatment. Commercially, only the homologous fibrin sealants obtained from human blood are available, which are highly efficient but very expensive. The heterologous fibrin sealant is a non-commercial experimental low-cost product and easily produced due to the abundance of raw material. The phase I/II clinical trial is already completed and showed that the product is safe and promisingly efficacious for the treatment of chronic venous ulcers. In addition, clinical proteomic strategies to assess disease prognosis have been increasingly used. By analyzing liquid samples from the wounds through proteomic strategies, it is possible to predict before treatment which ulcers will evolve favorably and which ones will be difficult to heal. This prognosis is only possible by evaluating the expression of isolated proteins in exudates and analysis using label-free strategies for shotgun. Multicentric clinical trials will be required to evaluate the efficacy of fibrin sealant to treat chronic ulcers, as well as to validate the proteomic strategies to assess prognosis.
Collapse
Affiliation(s)
- Luciana Patricia Fernandes Abbade
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Benedito Barraviera
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
119
|
Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for Wound Dressings: An Up-to-Date Overview. Molecules 2020; 25:E2699. [PMID: 32532089 PMCID: PMC7321109 DOI: 10.3390/molecules25112699] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
As wound healing continues to be a challenge for the medical field, wound management has become an essential factor for healthcare systems. Nanotechnology is a domain that could provide different new approaches concerning regenerative medicine. It is worth mentioning the importance of nanoparticles, which, when embedded in biomaterials, can induce specific properties that make them of interest in applications as materials for wound dressings. In the last years, nano research has taken steps to develop molecular engineering strategies for different self-assembling biocompatible nanoparticles. It is well-known that nanomaterials can improve burn treatment and also the delayed wound healing process. In this review, the first-line of bioactive nanomaterials-based dressing categories frequently applied in clinical practice, including semi-permeable films, semipermeable foam dressings, hydrogel dressings, hydrocolloid dressings, alginate dressings, non-adherent contact layer dressings, and multilayer dressings will be discussed. Additionally, this review will highlight the lack of high-quality evidence and the necessity for future advanced trials because current wound healing therapies generally fail to provide an excellent clinical outcome, either structurally or functionally. The use of nanomaterials in wound management represents a unique tool that can be specifically designed to closely reflect the underlying physiological processes in tissue repair.
Collapse
Affiliation(s)
| | | | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (C.C.)
| |
Collapse
|
120
|
Liu S, Zhang Q, Yu J, Shao N, Lu H, Guo J, Qiu X, Zhou D, Huang Y. Absorbable Thioether Grafted Hyaluronic Acid Nanofibrous Hydrogel for Synergistic Modulation of Inflammation Microenvironment to Accelerate Chronic Diabetic Wound Healing. Adv Healthc Mater 2020; 9:e2000198. [PMID: 32338465 DOI: 10.1002/adhm.202000198] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Indexed: 01/18/2023]
Abstract
Current standard of care dressings are unsatisfactorily inefficacious for the treatment of chronic wounds. Chronic inflammation is the primary cause of the long-term incurable nature of chronic wounds. Herein, an absorbable nanofibrous hydrogel is developed for synergistic modulation of the inflammation microenvironment to accelerate chronic diabetic wound healing. The electrospun thioether grafted hyaluronic acid nanofibers (FHHA-S/Fe) are able to form a nanofibrous hydrogel in situ on the wound bed. This hydrogel degrades and is absorbed gradually within 3 days. The grafted thioethers on HHA can scavenge the reactive oxygen species quickly in the early inflammation phase to relieve the inflammation reactions. Additionally, the HHA itself is able to promote the transformation of the gathered M1 macrophages to the M2 phenotype, thus synergistically accelerating the wound healing phase transition from inflammation to proliferation and remodeling. On the chronic diabetic wound model, the average remaining wound area after FHHA-S/Fe treatment is much smaller than both that of FHHA/Fe without grafted thioethers and the control group, especially in the early wound healing stage. Therefore, this facile dressing strategy with intrinsic dual modulation mechanisms of the wound inflammation microenvironment may act as an effective and safe treatment strategy for chronic wound management.
Collapse
Affiliation(s)
- Sha Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Jie Yu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Nannan Shao
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Hongtong Lu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Jinshan Guo
- Department of Histology and EmbryologySchool of Basic Medical SciencesSouthern Medical University Guangzhou 510515 P. R. China
| | - Xuepeng Qiu
- University of Science and Technology of China Hefei 230026 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510515 P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
121
|
Samadian H, Zamiri S, Ehterami A, Farzamfar S, Vaez A, Khastar H, Alam M, Ai A, Derakhshankhah H, Allahyari Z, Goodarzi A, Salehi M. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies. Sci Rep 2020; 10:8312. [PMID: 32433566 PMCID: PMC7239895 DOI: 10.1038/s41598-020-65268-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
Functional wound dressing with tailored physicochemical and biological properties is vital for diabetic foot ulcer (DFU) treatment. Our main objective in the current study was to fabricate Cellulose Acetate/Gelatin (CA/Gel) electrospun mat loaded with berberine (Beri) as the DFU-specific wound dressing. The wound healing efficacy of the fabricated dressings was evaluated in streptozotocin-induced diabetic rats. The results demonstrated an average nanofiber diameter of 502 ± 150 nm, and the tensile strength, contact angle, porosity, water vapor permeability and water uptake ratio of CA/Gel nanofibers were around 2.83 ± 0.08 MPa, 58.07 ± 2.35°, 78.17 ± 1.04%, 11.23 ± 1.05 mg/cm2/hr, and 12.78 ± 0.32%, respectively, while these values for CA/Gel/Beri nanofibers were 2.69 ± 0.05 MPa, 56.93 ± 1°, 76.17 ± 0.76%, 10.17 ± 0.21 mg/cm2/hr, and 14.37 ± 0.42%, respectively. The antibacterial evaluations demonstrated that the dressings exhibited potent antibacterial activity. The collagen density of 88.8 ± 6.7% and the angiogenesis score of 19.8 ± 3.8 obtained in the animal studies indicate a proper wound healing. These findings implied that the incorporation of berberine did not compromise the physical properties of dressing, while improving the biological activities. In conclusion, our results indicated that the prepared mat is a proper wound dressing for DFU management and treatment.
Collapse
Affiliation(s)
- Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sina Zamiri
- Department of Kinesiology and Health Science, York University, Ontario, Canada
| | - Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khastar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, Dental School, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Armin Ai
- Dental student of scientific research center, faculty of dentistry, Tehran university of medical sciences, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Allahyari
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, USA
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies, Fasa University of Medical Sciences, Fasa, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
122
|
Lou D, Pang Q, Pei X, Dong S, Li S, Tan WQ, Ma L. Flexible wound healing system for pro-regeneration, temperature monitoring and infection early warning. Biosens Bioelectron 2020; 162:112275. [PMID: 32392156 DOI: 10.1016/j.bios.2020.112275] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
Abstract
To break the "Black-Box" status of the wound healing process under traditional dressing, which cannot achieve satisfactory repair outcome of skin wounds, a wound healing system with the abilities of pro-regeneration and real-time monitoring of wound status has become a considerable necessity. Here, by integrating the emerging bioelectronics and software, we created a flexible wound healing system. The hardware system was designed as Band-Aid shaped with a double-layer structure; the upper is the flexible temperature-sensing layer comprising the temperature sensor STH21, power manager circuit and data processing circuit, and the lower is a collagen-chitosan dermal equivalent for skin regeneration. A customized software application (app) installed on a smartphone to receive data from the sensing layer by BLE4.0 can display and analyze real-time wound temperature. Our system had high monitoring sensitivity and stability, good stretchability, excellent reliability and biocompatibility. It was applied to a pig skin wound model to reveal temperature fluctuation during the entire wound regeneration process. As a credible reference and foundation for further early warning of an adverse event, three main phases of temperature fluctuation were found: the rising phase (below 39 °C), plateau phase (39-39.5 °C), and falling phase (below 39 °C), which were accompanied by significant wound biological events, including inflammatory cell infiltration, angiogenesis and wound healing. Furthermore, verified by wound infection models of different healing phases and wound Gram's staining, early warning ahead of serious infection was realized with the use of a customized app's alarm.
Collapse
Affiliation(s)
- Dong Lou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China; Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Qian Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Xiachuan Pei
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Shurong Dong
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Shijian Li
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310027, PR China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China.
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
123
|
Duckworth PF, Maddocks SE, Rahatekar SS, Barbour ME. Alginate films augmented with chlorhexidine hexametaphosphate particles provide sustained antimicrobial properties for application in wound care. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:33. [PMID: 32162052 PMCID: PMC7066275 DOI: 10.1007/s10856-020-06370-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
All chronic wounds are colonised by bacteria; for some, colonisation progresses to become infection. Alginate wound dressings are used for highly exuding chronic wounds as they are very absorbent, taking up large quantities of exudate while maintaining a moist wound bed to support healing. Some alginate dressings are doped with antimicrobials, most commonly silver, but evidence regarding the efficacy of these is largely inconclusive. This manuscript describes the development and in vitro assessment of alginate materials doped with chlorhexidine hexametaphosphate (CHX-HMP), a sparingly soluble salt which when exposed to aqueous environments provides sustained release of the common antiseptic chlorhexidine. Comparator materials were a commercial silver alginate dressing material and an alginate doped with chlorhexidine digluconate (CHXdg). CHX-HMP alginates provided a dose-dependent CHX release which was sustained for over 14 days, whereas CHXdg alginates released limited CHX and this ceased within 24 h. CHX-HMP and silver alginates were efficacious against 5 major wound pathogens (MRSA, E. coli, P. aeruginosa, K. pneumoniae, A. baumannii) in a total viable count (TVC) and an agar diffusion zone of inhibition (ZOI) model. At baseline the silver alginate was more effective than the CHX-HMP alginate in the TVC assay but the CHX-HMP alginate was the more effective in the ZOI assay. After 7 days' artificial aging the CHX-HMP alginate was more effective than the silver alginate for four of the five bacteria tested in both assays. These materials may ultimately find application in the development of wound dressings for chronic wounds that provide sustained antimicrobial protection.
Collapse
Affiliation(s)
- Peter F Duckworth
- Oral Nanoscience, Bristol Dental School, University of Bristol, Bristol, UK
- ACCIS, Queens School of Engineering, University of Bristol, Bristol, UK
| | - Sarah E Maddocks
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Sameer S Rahatekar
- School of Aerospace, Transport and Manufacturing, University of Cranfield, Bedford, UK
| | - Michele E Barbour
- Oral Nanoscience, Bristol Dental School, University of Bristol, Bristol, UK.
- Pertinax Pharma Ltd, Bristol, UK.
| |
Collapse
|
124
|
Pang Q, Lou D, Li S, Wang G, Qiao B, Dong S, Ma L, Gao C, Wu Z. Smart Flexible Electronics-Integrated Wound Dressing for Real-Time Monitoring and On-Demand Treatment of Infected Wounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902673. [PMID: 32195091 PMCID: PMC7080536 DOI: 10.1002/advs.201902673] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/06/2019] [Indexed: 05/11/2023]
Abstract
As the most frequent wound complication, infection has become a major clinical challenge in wound management. To overcome the "Black Box" status of the wound-healing process, next-generation wound dressings with the abilities of real-time monitoring, diagnosis during early stages, and on-demand therapy has attracted considerable attention. Here, by combining the emerging development of bioelectronics, a smart flexible electronics-integrated wound dressing with a double-layer structure, the upper layer of which is polydimethylsiloxane-encapsulated flexible electronics integrated with a temperature sensor and ultraviolet (UV) light-emitting diodes, and the lower layer of which is a UV-responsive antibacterial hydrogel, is designed. This dressing is expected to provide early infection diagnosis via real-time wound-temperature monitoring by the integrated sensor and on-demand infection treatment by the release of antibiotics from the hydrogel by in situ UV irradiation. The integrated system possesses good flexibility, excellent compatibility, and high monitoring sensitivity and durability. Animal experiment results demonstrate that the integrated system is capable of monitoring wound status in real time, detecting bacterial infection and providing effective treatment on the basis of need. This proof-of-concept research holds great promise in developing new strategies to significantly improve wound management and other pathological diagnoses and treatments.
Collapse
Affiliation(s)
- Qian Pang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Dong Lou
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Shijian Li
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310027China
| | - Guangming Wang
- Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of ZhejiangCollege of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Bianbian Qiao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Shurong Dong
- Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of ZhejiangCollege of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Zhaohui Wu
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310027China
| |
Collapse
|
125
|
Bruwer FA, Botma Y, Mulder M. The Ears of a Hippopotamus: Quality of Venous Leg Ulcer Care in Gauteng, South Africa. Adv Skin Wound Care 2020; 33:84-90. [PMID: 31972580 PMCID: PMC7328866 DOI: 10.1097/01.asw.0000617848.46377.ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe venous ulcer care and wound care practices in Gauteng, a province of South Africa, according to the Donabedian structure-process-outcome quality improvement model. METHODS Forty-eight facilities were selected randomly from public and private wound care practices in Gauteng. Structured interviews were conducted with care providers via questionnaire to assess the structural aspects of the Donabedian model. Within these facilities, investigators randomly selected 160 patient files and extracted data using a checklist to assess processes implemented and outcomes reached for patients who had previously presented with lower-leg venous ulcers. RESULTS Facilities lack the necessary equipment to perform vital assessments. Handheld Dopplers were available in 66% (n = 48) of the facilities. Sixty-one percent (n = 48) of the personnel at the facilities indicated that they had no formal wound care training. Although the majority of files (92%, n = 147) indicated that an assessment tool was used, many elements were not evaluated comprehensively according to the best available evidence. Aspects such as smoking, body mass index, and anemia were assessed in fewer than 30% of the patients. Distinguishing between superficial and deep infection and the accompanying overuse of antimicrobials and antibiotics were among the challenges identified. Further, 71% of patients received compression therapy, although the ankle-brachial pressure index of only 30% of patients was known. In 27 cases (17%), the outcome was amputation. CONCLUSIONS From this survey, it is evident that not all clinicians providing wound care in Gauteng are adequately trained or fully implementing best practice guidelines, and the consequences are detrimental to patients, particularly in terms of amputation. This article highlights the need for improved legislation and regulation for practitioners who deliver wound care services.
Collapse
Affiliation(s)
- Febe A Bruwer
- In the School of Nursing at the University of the Free State, Bloemfontein, South Africa, Febe A. Bruwer, MSocSci, is PhD candidate; Yvonne Botma, PhD, is Lecturer; and Magda Mulder, PhD, is Head of the School of Nursing
| | | | | |
Collapse
|
126
|
Qiao B, Pang Q, Yuan P, Luo Y, Ma L. Smart wound dressing for infection monitoring and NIR-triggered antibacterial treatment. Biomater Sci 2020; 8:1649-1657. [DOI: 10.1039/c9bm02060h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogel-based wound dressings can monitor infection via pH-responsive FRET changes and provide on-demand antibacterial treatment via NIR-triggered antibiotic release.
Collapse
Affiliation(s)
- Bianbian Qiao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Qian Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Peiqi Yuan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yilun Luo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
127
|
Pang M, Huang Y, Meng F, Zhuang Y, Liu H, Du M, Ma Q, Wang Q, Chen Z, Chen L, Cai T, Cai Y. Application of bacterial cellulose in skin and bone tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109365] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
128
|
Lang TC, Zhao R, Kim A, Wijewardena A, Vandervord J, Xue M, Jackson CJ. A Critical Update of the Assessment and Acute Management of Patients with Severe Burns. Adv Wound Care (New Rochelle) 2019; 8:607-633. [PMID: 31827977 PMCID: PMC6904939 DOI: 10.1089/wound.2019.0963] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Significance: Burns are debilitating, life threatening, and difficult to assess and manage. Recent advances in assessment and management have occurred since a comprehensive review of the care of patients with severe burns was last published, which may influence research and clinical practice. Recent Advances: Recent advances have occurred in the understanding of burn pathophysiology, which has led to the identification of potential biomarkers of burn severity, such as protein C. There is new evidence about the potential superiority of natural colloids over crystalloids during fluid resuscitation, and new evidence about components of initial and perioperative management, including an improved understanding of pain following burns. Critical Issues: The limitations of the clinical examination highlight the need for imaging and biomarkers to assist in estimations of burn severity. Fluid resuscitation reduces mortality, although there is conjecture over the ideal method. The subsequent perioperative period is associated with significant morbidity and the evidence for preventing and treating pain, infection, and fluid overload while maximizing wound healing potential is described. Future Directions: Promising developments are ongoing in imaging technology, histopathology, biomarkers, and wound healing adjuncts such as hyperbaric oxygen therapy, topical negative pressure therapy, stem cell treatments, and skin substitutes. The greatest benefit from further research on management of patients with burns would most likely be derived from the elucidation of optimal fluid resuscitation protocols, pain management protocols, and surgical techniques from randomized controlled trials.
Collapse
Affiliation(s)
- Thomas Charles Lang
- Department of Anesthesia, Prince of Wales and Sydney Children's Hospitals, Randwick, Australia
| | - Ruilong Zhao
- Sutton Laboratories, The Kolling Institute, St. Leonards, Australia
| | - Albert Kim
- Department of Critical Care Medicine, Royal North Shore Hospital, St. Leonards, Australia
| | - Aruna Wijewardena
- Department of Burns, Reconstructive and Plastic Surgery, Royal North Shore Hospital, St. Leonards, Australia
| | - John Vandervord
- Department of Burns, Reconstructive and Plastic Surgery, Royal North Shore Hospital, St. Leonards, Australia
| | - Meilang Xue
- Sutton Laboratories, The Kolling Institute, St. Leonards, Australia
| | | |
Collapse
|
129
|
Arriagada F, Nonell S, Morales J. Silica-based nanosystems for therapeutic applications in the skin. Nanomedicine (Lond) 2019; 14:2243-2267. [PMID: 31411537 DOI: 10.2217/nnm-2019-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging, exposure to oxidants, infectious pathogens, inflammogens, ultraviolet radiation and other environmental and genetic factors can result in the development of various skin disorders. Despite immense progress being made in dermatological treatments, many skin-associated problems still remain difficult to treat and various therapies have limitations. Progress in silica-based nanomaterials research provides an opportunity to overcome these drawbacks and improve therapies and is a promising tool for inclusion in clinical practice to treat skin diseases. This review focuses on the use of various types of silica nanoparticles with therapeutic applications in various skin disorders. These nanosystems improve treatment efficacy by maintaining or enhancing the effect of several drugs and are useful tools for nanomedicine, pharmaceutical sciences and future clinical applications.
Collapse
Affiliation(s)
- Francisco Arriagada
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Santi Nonell
- Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| |
Collapse
|
130
|
|
131
|
delli Santi G, Borgognone A. The use of Epiprotect®, an advanced wound dressing, to heal paediatric patients with burns: A pilot study. BURNS OPEN 2019. [DOI: 10.1016/j.burnso.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
132
|
Serena TE, Chadwick P, Davies P, Johansson C, Karlsson C, Edenro G, Sköld E, Wellner E, Greener M, Lázaro-Martínez JL, Montero EC, Sánchez JJS. Multifunctional and patient-focused Mepilex Border Flex: an exploration of its holistic clinical benefits. J Wound Care 2019; 28:S1-S31. [DOI: 10.12968/jowc.2019.28.sup6b.s1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Thomas E. Serena
- Founder CEO of SerenaGroup Wound and Hyperbaric Centers President, Association for the Advancement of Wound Care Director, SerenaGroup Research Foundation
| | - Paul Chadwick
- Visiting Professor, Birmingham City University, Birmingham, UK
| | - Phil Davies
- Global Senior Medical Affairs Manager, Medical, Clinical and Market Access, Mölnlycke Health Care
| | | | - Christin Karlsson
- Biology Laboratory Engineer, Research and Development, Mölnlycke Health Care
| | - Goran Edenro
- Senior Scientist, Research and Development, Mölnlycke Health Care
| | - Ewa Sköld
- Biology Laboratory Engineer, Research and Development, Mölnlycke Health Care
| | - Eric Wellner
- Senior Manager, Research and Development, Mölnlycke Health Care
| | - Mark Greener
- Freelance Medical Writer, Cottenham, Cambridgeshire
| | | | - Elena Conde Montero
- Specialist in Dermatology. Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Juan José Suárez Sánchez
- Primary Care Team Nurse and Professor at University of La Laguna, Las Palmas College of Nursing, Ingenio, Gran Canaria, Spain
| |
Collapse
|
133
|
Zhang X, Sun D, Jiang GC. Comparative efficacy of nine different dressings in healing diabetic foot ulcer: A Bayesian network analysis. J Diabetes 2019; 11:418-426. [PMID: 30324760 DOI: 10.1111/1753-0407.12871] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND There is a wide variety of dressings currently available for the treatment of diabetic foot ulcers (DFUs). Because of a lack of evidence from head-to-head randomized controlled trials (RCTs), the relative effects of these dressings in DFU patients remain unclear. This study compared the efficacy of nine dressings in healing DFU. METHODS A literature search was performed of the MEDLINE (PubMed), EMBASE and Cochrane Central Register of Controlled Trials (CENTRAL) databases. Reports published from 1993 to 2017 focusing on dressings for healing DFU were identified. RESULTS Twenty-one RCTs, with a total of 2159 patients, were included in the present study. Bayesian network analysis showed that amniotic membrane dressings were superior to alginate, basic wound contact, foam, honey-impregnated, hydrocolloid, and iodine-impregnated dressings. Hydrogel dressings were better than basic wound contact dressings. Other dressings showed no significant differences. According to the probability of ranking results, amniotic membrane and hydrogel dressings are preferred for healing DFUs. CONCLUSIONS The nine dressings evaluated in this study had different advantages in promoting the healing of DFU, but most differences among the dressings were not significant. According to the analysis of rank probability, amniotic membrane and hydrogel dressings are the most advantageous in terms of promoting DFU healing. It is recommended that the most suitable dressing should be selected taking into consideration exudate control, comfort, and cost.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Nursing, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Liaoning, China
| | - Di Sun
- School of Nursing, Liaoning University of Traditional Chinese Medicine, Liaoning, China
| | - Gui Chun Jiang
- Department of Nursing, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Liaoning, China
| |
Collapse
|
134
|
|
135
|
Jeong CS, Kwak K, Hur J, Kym D. A pilot study to compare the efficacy and safety of Betafoam® and Allevyn® Ag in the management of acute partial thickness burns. BURNS OPEN 2019. [DOI: 10.1016/j.burnso.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
136
|
Pak CS, Park DH, Oh TS, Lee WJ, Jun YJ, Lee KA, Oh KS, Kwak KH, Rhie JW. Comparison of the efficacy and safety of povidone-iodine foam dressing (Betafoam), hydrocellular foam dressing (Allevyn), and petrolatum gauze for split-thickness skin graft donor site dressing. Int Wound J 2018; 16:379-386. [PMID: 30479060 PMCID: PMC7379600 DOI: 10.1111/iwj.13043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 11/28/2022] Open
Abstract
We evaluated the efficacy and safety of a povidone-iodine (PVP-I) foam dressing (Betafoam) for donor site dressing versus a hydrocellular foam dressing (Allevyn) and petrolatum gauze. This prospective Phase 4 study was conducted between March 2016 and April 2017 at eight sites in Korea. A total of 106 consenting patients (aged ≥ 19 years, scheduled for split-thickness skin graft) were randomised 1:1:1 to PVP-I foam, hydrocellular, or petrolatum gauze dressings for up to 28 days after donor site collection. We assessed time to complete epithelialisation, proportion with complete epithelialisation at Day 14, and wound infection. Epithelialisation time was the shortest with PVP-I foam dressing (12.74 ± 3.51 days) versus hydrocellular foam dressing (16.61 ± 4.45 days; P = 0.0003) and petrolatum gauze (15.06 ± 4.26 days, P = 0.0205). At Day 14, 83.87% of PVP-I foam dressing donor sites had complete epithelialisation, versus 36.36% of hydrocellular foam dressing donor sites (P = 0.0001) and 55.88% of petrolatum gauze donor sites (P = 0.0146). There were no wound infections. Incidence rates of adverse events were comparable across groups (P = 0.1940). PVP-I foam dressing required less time to complete epithelialisation and had a good safety profile.
Collapse
Affiliation(s)
- Chang Sik Pak
- Seoul National University Bundang Hospital, Seoul, South Korea
| | - Dae Hwan Park
- Daegu Catholic University Medical Center, Seoul, South Korea
| | | | - Won Jai Lee
- Severance Hospital, Yonsei University Health System, Seoul, South Korea
| | - Young Joon Jun
- Seoul St. Mary's Hospital, The Catholic University of South Korea, Seoul, South Korea
| | - Kyung Ah Lee
- Inje University Haeundae Paik Hospital, Seoul, South Korea
| | | | | | - Jong Won Rhie
- Seoul St. Mary's Hospital, The Catholic University of South Korea, Seoul, South Korea
| |
Collapse
|
137
|
Fibrin-Modified Cellulose as a Promising Dressing for Accelerated Wound Healing. MATERIALS 2018; 11:ma11112314. [PMID: 30453657 PMCID: PMC6266344 DOI: 10.3390/ma11112314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Dermal injuries and chronic wounds usually regenerate with scar formation. Successful treatment without scarring might be achieved by pre-seeding a wound dressing with cells. We aimed to prepare a wound dressing fabricated from sodium carboxymethylcellulose (Hcel® NaT), combined with fibrin and seeded with dermal fibroblasts in vitro. We fabricated the Hcel® NaT in a porous and homogeneous form (P form and H form, respectively) differing in structural morphology and in the degree of substitution of hydroxyl groups. Each form of Hcel® NaT was functionalized with two morphologically different fibrin structures to improve cell adhesion and proliferation, estimated by an MTS assay. Fibrin functionalization of the Hcel® NaT strongly enhanced colonization of the material with human dermal fibroblasts. Moreover, the type of fibrin structures influenced the ability of the cells to adhere to the material and proliferate on it. The fibrin mesh filling the void spaces between cellulose fibers better supported cell attachment and subsequent proliferation than the fibrin coating, which only enwrapped individual cellulose fibers. On the fibrin mesh, the cell proliferation activity on day 3 was higher on the H form than on the P form of Hcel® NaT, while on the fibrin coating, the cell proliferation on day 7 was higher on the P form. The Hcel® NaT wound dressing functionalized with fibrin, especially when in the form of a mesh, can accelerate wound healing by supporting fibroblast adhesion and proliferation.
Collapse
|
138
|
Konop M, Czuwara J, Kłodzińska E, Laskowska AK, Zielenkiewicz U, Brzozowska I, Nabavi SM, Rudnicka L. Development of a novel keratin dressing which accelerates full-thickness skin wound healing in diabetic mice: In vitro and in vivo studies. J Biomater Appl 2018; 33:527-540. [PMID: 30227758 DOI: 10.1177/0885328218801114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impaired wound healing is a major medical problem in diabetes. The objective of this study was to determine the possible application of an insoluble fraction of fur-derived keratin biomaterial as a wound dressing in a full thickness surgical skin wound model in mice ( n = 20) with iatrogenically induced diabetes. The obtained keratin dressing was examined in vitro and in vivo. In vitro study showed the keratin dressing is tissue biocompatible and non-toxic for murine fibroblasts. Antimicrobial examination revealed the keratin dressing inhibited the growth of S. aureus and E. coli. In vivo studies showed the obtained dressing significantly ( p < 0.05) accelerated healing during the first week after surgery compared to control wounds. Keratin dressings were incorporated naturally into granulation and regenerating tissue without any visible signs of inflammatory response, which was confirmed by clinical and histopathological analysis. It is one of the first studies to show application of insoluble keratin proteins and its properties as a wound dressing. The obtained keratin dressing accelerated wound healing in mice with iatrogenically induced diabetes. Therefore, it can be considered as a safe and efficient wound dressing. Although future studies are needed to explain the molecular mechanism behind fur-derived keratin effect during the multilayer wound healing process, our findings may open the way for a new class of insoluble fur keratin dressings in chronic difficult to heal wounds treatment.
Collapse
Affiliation(s)
- Marek Konop
- 1 Department of Experimental Physiology and Pathophysiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,2 Department of Dermatology, Medical University of Warsaw, Poland.,3 Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Czuwara
- 2 Department of Dermatology, Medical University of Warsaw, Poland
| | - Ewa Kłodzińska
- 4 Department of Analytical Chemistry and Instrumental Analysis, Institute of Sport - National Research Institute, Warsaw, Poland
| | - Anna K Laskowska
- 3 Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Zielenkiewicz
- 5 Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Iwona Brzozowska
- 5 Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Seyed M Nabavi
- 6 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Lidia Rudnicka
- 3 Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
139
|
Braunberger TL, Fatima S, Vellaichamy G, Nahhas AF, Parks-Miller A, Hamzavi IH. Dress for Success: a Review of Dressings and Wound Care in Hidradenitis Suppurativa. CURRENT DERMATOLOGY REPORTS 2018. [DOI: 10.1007/s13671-018-0231-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
140
|
Piaggesi A, Låuchli S, Bassetto F, Biedermann T, Marques A, Najafi B, Palla I, Scarpa C, Seimetz D, Triulzi I, Turchetti G, Vaggelas A. Advanced therapies in wound management: cell and tissue based therapies, physical and bio-physical therapies smart and IT based technologies. J Wound Care 2018; 27:S1-S137. [DOI: 10.12968/jowc.2018.27.sup6a.s1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alberto Piaggesi
- Prof, Director, EWMA Scientific Recorder (Editor), Diabetic Foot Section of the Pisa University Hospital, Department of Endocrinology and Metabolism, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Severin Låuchli
- Chief of Dermatosurgery and Woundcare, EWMA Immediate Past President (Co-editor), Department of Dermatology, University Hospital, Zurich, Råmistrasse 100, 8091 Zärich, Schwitzerland
| | - Franco Bassetto
- Prof, Head of Department, Clinic of Plastic and Reconstructive Surgery, University of Padova, Via Giustiniani, 35100 Padova
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel-Strasse 7, 8008 Zürich, Switzerland
| | - Alexandra Marques
- University of Minho, 3B's Research Group in Biomaterials, Biodegradables and Biomimetics, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
| | - Bijan Najafi
- Professor of Surgery, Director of Clinical Research, Division of Vascular Surgery and Endovascular Therapy, Director of Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, MS: BCM390, Houston, TX 77030-3411, US
| | - Ilaria Palla
- Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Carlotta Scarpa
- Clinic of Plastic and Reconstructive Surgery, University of Padova, Via Giustiniani, 35100 Padova
| | - Diane Seimetz
- Founding Partner, Biopharma Excellence, c/o Munich Technology Center, Agnes-Pockels-Bogen 1, 80992 Munich, Germany
| | - Isotta Triulzi
- Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Giuseppe Turchetti
- Fulbright Scholar, Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Annegret Vaggelas
- Consultant, Biopharma Excellence, c/o Munich Technology Center, Agnes-Pockels-Bogen 1, 80992 Munich, Germany
| |
Collapse
|
141
|
Ozcelikkale A, Dutton JC, Grinnell F, Han B. Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices. J R Soc Interface 2018; 14:rsif.2017.0287. [PMID: 28978745 DOI: 10.1098/rsif.2017.0287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022] Open
Abstract
Fibroblast migration plays a key role during various physiological and pathological processes. Although migration of individual fibroblasts has been well studied, migration in vivo often involves simultaneous locomotion of fibroblasts sited in close proximity, so-called 'en masse migration', during which intensive cell-cell interactions occur. This study aims to understand the effects of matrix mechanical environments on the cell-matrix and cell-cell interactions during en masse migration of fibroblasts on collagen matrices. Specifically, we hypothesized that a group of migrating cells can significantly deform the matrix, whose mechanical microenvironment dramatically changes compared with the undeformed state, and the alteration of the matrix microenvironment reciprocally affects cell migration. This hypothesis was tested by time-resolved measurements of cell and extracellular matrix movement during en masse migration on collagen hydrogels with varying concentrations. The results illustrated that a group of cells generates significant spatio-temporal deformation of the matrix before and during the migration. Cells on soft collagen hydrogels migrate along tortuous paths, but, as the matrix stiffness increases, cell migration patterns become aligned with each other and show coordinated migration paths. As cells migrate, the matrix is locally compressed, resulting in a locally stiffened and dense matrix across the collagen concentration range studied.
Collapse
Affiliation(s)
- Altug Ozcelikkale
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - J Craig Dutton
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Frederick Grinnell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA .,Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
142
|
Hasatsri S, Pitiratanaworanat A, Swangwit S, Boochakul C, Tragoonsupachai C. Comparison of the Morphological and Physical Properties of Different Absorbent Wound Dressings. Dermatol Res Pract 2018; 2018:9367034. [PMID: 29951092 PMCID: PMC5987330 DOI: 10.1155/2018/9367034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 11/17/2022] Open
Abstract
Good quality wound dressings should have exceptional properties for usage, such as being able to remove excess wound exudates, having rapid dehydration, and providing optimal water vapour permeability. This study evaluated and compared the morphological and physical properties of six different commercially absorbent wound dressings in Thailand: two hydrocolloids, two alginates, and two foams. These wound dressings are available in a variety of components and structures, some of which have a multilayer structure. The results showed that the calcium sodium alginate dressings had better absorption properties than the calcium alginate dressings, hydrocolloid dressings, hydrocolloid with foam layer dressings, foam with polyurethane film layer dressings, and foam with hydrogel and polyurethane film layer dressings. Furthermore, the calcium sodium alginate dressings had the highest rate of dehydration and provided an optimal water vapour transmission rate. However, the calcium sodium alginate dressings could not retain the original structure after being submerged with a wound exudate.
Collapse
Affiliation(s)
- Sukhontha Hasatsri
- Department of Pharmacy Practice, Faculty of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | | | - Suwit Swangwit
- Department of Pharmacy Practice, Faculty of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Chadaporn Boochakul
- Department of Pharmacy Practice, Faculty of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | | |
Collapse
|
143
|
Stephen-Haynes J, Toner L, Jeffrey S. Product evaluation of an absorbent, antimicrobial, haemostatic dressing. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2018; 27:S24-S30. [PMID: 29561671 DOI: 10.12968/bjon.2018.27.6.s24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article reports on a product evaluation of KytoCel, an absorbent wound dressing used in the treatment of 30 wounds treated in community care and 10 split-thickness skin-graft donor sites treated in acute care. Within the community-treated cohort, unspecified leg wounds were the most common wound type (n=6) with the mean wound area of the 30 wounds being 17.6 cm2 (standard deviation (SD) 31.7) and mean volume being 8.4 cm3 (SD 21.4). Most community treated wounds (27/30; 90%) were reported to have moderate to high levels of wound exudate with the majority (n=19) either healed or improved during treatment. All ten split-thickness skin graft donor sites healed during the evaluation. A semi-structured focus group consisting of 17 nurses provided their opinions on KytoCel, with positive comments offered on the dressing during the focus group and of the 17 participants, 10 commented that the KytoCel dressing was available on their local wound care formulary.
Collapse
Affiliation(s)
- Jackie Stephen-Haynes
- Professor in Tissue Viability, Professional Development Unit, Birmingham City University and Consultant Nurse, Worcestershire Health and Care NHS Trust
| | - Louise Toner
- Associate Dean, Academic Portfolio & Market Development, Faculty of Health, Education & Life Sciences, Birmingham city University
| | - Steve Jeffrey
- Professor, Wound Study, Birmingham City University, and Consultant Plastic Surgeon
| |
Collapse
|
144
|
The effect of immobilization, drying and storage on the activity of proteinases immobilized on modified cellulose and chitosan. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
145
|
Schaarup C, Pape-Haugaard L, Jensen MH, Laursen AC, Bermark S, Hejlesen OK. Probing community nurses' professional basis: a situational case study in diabetic foot ulcer treatment. Br J Community Nurs 2017; 22 Suppl 3:S46-S52. [PMID: 28252333 DOI: 10.12968/bjcn.2017.22.sup3.s46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Complicated and long-lasting wound care of diabetic foot ulcers are moving from specialists in wound care at hospitals towards community nurses without specialist diabetic foot ulcer wound care knowledge. The aim of the study is to elucidate community nurses' professional basis for treating diabetic foot ulcers. A situational case study design was adopted in an archetypical Danish community nursing setting. Experience is a crucial component in the community nurses' professional basis for treating diabetic foot ulcers. Peer-to-peer training is the prevailing way to learn about diabetic foot ulcer, however, this contributes to the risk of low evidence-based practice. Finally, a frequent behaviour among the community nurses is to consult colleagues before treating the diabetic foot ulcers.
Collapse
Affiliation(s)
- Clara Schaarup
- PhD Fellow, Department of Health Science and Technology, Aalborg University, Denmark
| | - Louise Pape-Haugaard
- Associate Professor, Department of Health Science and Technology, Aalborg University, Denmark
| | | | | | - Susan Bermark
- Clinical Head Nurse, The Wound Healing Knowledge Centre, Bispebjerg Hospital
| | | |
Collapse
|
146
|
Arkhipova AY, Nosenko MA, Malyuchenko NV, Zvartsev RV, Moisenovich AM, Zhdanova AS, Vasil'eva TV, Gorshkova EA, Agapov II, Drutskaya MS, Nedospasov SA, Moisenovich MM. Effects of Fibroin Microcarriers on Inflammation and Regeneration of Deep Skin Wounds in Mice. BIOCHEMISTRY (MOSCOW) 2017; 81:1251-1260. [PMID: 27914451 DOI: 10.1134/s0006297916110031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The process of tissue regeneration following damage takes place with direct participation of the immune system. The use of biomaterials as scaffolds to facilitate healing of skin wounds is a new and interesting area of regenerative medicine and biomedical research. In many ways, the regenerative potential of biological material is related to its ability to modulate the inflammatory response. At the same time, all foreign materials, once implanted into a living tissue, to varying degree cause an immune reaction. The modern approach to the development of bioengineered structures for applications in regenerative medicine should be directed toward using the properties of the inflammatory response that improve healing, but do not lead to negative chronic manifestations. In this work, we studied the effect of microcarriers comprised of either fibroin or fibroin supplemented with gelatin on the dynamics of the healing, as well as inflammation, during regeneration of deep skin wounds in mice. We found that subcutaneous administration of microcarriers to the wound area resulted in uniform contraction of the wounds in mice in our experimental model, and microcarrier particles induced the infiltration of immune cells. This was associated with increased expression of proinflammatory cytokines TNF, IL-6, IL-1β, and chemokines CXCL1 and CXCL2, which contributed to full functional recovery of the injured area and the absence of fibrosis as compared to the control group.
Collapse
Affiliation(s)
- A Y Arkhipova
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Chen X, Zhao R, Wang X, Li X, Peng F, Jin Z, Gao X, Yu J, Wang C. Electrospun mupirocin loaded polyurethane fiber mats for anti-infection burn wound dressing application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 28:162-176. [PMID: 27848275 DOI: 10.1080/09205063.2016.1262158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wound care treatment is a serious issue faced by the medical staffs due to its variety and complexity. Wound dressings are typically used to manage the various types of wounds. In this study, polyurethane (PU) fibers containing mupirocin (Mu), a commonly used antibiotic in wound care, were fabricated via electrospinning technique. The aim of this study was to develop biomedical electrospun fiber scaffolds for preventing wound infections with good compatibility and to demonstrate their applications as anti-infective burn wound dressings. The surface morphology of fibers was obtained by scanning electron microscopy. FT-IR spectra, water vapor transmission rate, and drug release study in vitro were tested to demonstrate the fiber scaffold characteristic. The prepared PU/Mu composite scaffolds had satisfactory antibacterial activity especially against Staphylococcus aureus. The cell studies revealed that the scaffolds were biocompatible and safe for cell attachment. Histological and immunohistochemical examinations were performed in rats, and the results indicated the histological analysis of tissue stained with H&E showed no obvious inflammation reaction. The results indicated that the electrospun scaffolds were capable of loading and delivering drugs, and could be potentially used as novel antibacterial burn wound dressings.
Collapse
Affiliation(s)
- Xinxin Chen
- a Department of Burns and Plastic Surgery , The First Hospital of Jilin University , Changchun , PR China
| | - Rui Zhao
- b Alan G. MacDiarmid Institute , Jilin University , Changchun , PR China
| | - Xiang Wang
- a Department of Burns and Plastic Surgery , The First Hospital of Jilin University , Changchun , PR China
| | - Xiang Li
- b Alan G. MacDiarmid Institute , Jilin University , Changchun , PR China
| | - Fei Peng
- a Department of Burns and Plastic Surgery , The First Hospital of Jilin University , Changchun , PR China
| | - Zhenghua Jin
- a Department of Burns and Plastic Surgery , The First Hospital of Jilin University , Changchun , PR China
| | - Xinxin Gao
- a Department of Burns and Plastic Surgery , The First Hospital of Jilin University , Changchun , PR China
| | - Jiaao Yu
- a Department of Burns and Plastic Surgery , The First Hospital of Jilin University , Changchun , PR China
| | - Ce Wang
- b Alan G. MacDiarmid Institute , Jilin University , Changchun , PR China
| |
Collapse
|
148
|
Gao L, Gan H, Meng Z, Gu R, Wu Z, Zhu X, Sun W, Li J, Zheng Y, Sun T, Dou G. Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals. Colloids Surf B Biointerfaces 2016; 148:343-353. [DOI: 10.1016/j.colsurfb.2016.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/22/2016] [Accepted: 06/09/2016] [Indexed: 12/16/2022]
|
149
|
Santurdes N, González-Gómez A, Martín del Campo-Fierro M, Rosales-Ibáñez R, Oros-Ovalle C, Vázquez-Lasa B, San Román J. Development of bioresorbable bilayered systems for application as affordable wound dressings. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516635840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this work was the preparation and evaluation of a bioresorbable bilayered system for application in the treatment of dermal lesions. The system was based on a polyesterurethane as the external layer and a gelatin membrane as the internal layer. The polyesterurethane was synthesized from poly(ε-caprolactone), polyethylene glycol of 1 or 10 kDa as a hydrophilic component or Pluronic F127 as an amphiphilic component and l-lysine ethyl ester diisocyanate as an urethane precursor. Gelatin membrane was obtained by crosslinking with the naturally occurring crosslinker genipin. Three important points were addressed in this study: the physicochemical characterization of the system, the in vitro behaviour and the in vivo performance on a full-thickness wound defect of rat. The polyesterurethane containing polyethylene glycol of 10 kDa presented the optimum properties for the designed application as to be tested in animal experiments. The in vivo results showed good healing of the lesion with the formation of epidermis similar to normal rat skin. These promising results suggest the potential of this system to be used as an affordable wound dressing in the treatment of different dermal lesions.
Collapse
Affiliation(s)
- N Santurdes
- Institute of Polymer Science and Technology, CSIC, Madrid, Spain
| | - A González-Gómez
- Institute of Polymer Science and Technology, CSIC, Madrid, Spain
- CIBER, Carlos III Health Institute, Madrid, Spain
| | | | - R Rosales-Ibáñez
- Faculty of Stomatology, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - C Oros-Ovalle
- Faculty of Medicine, Autonomous University of San Luis Potosi and Hospital Central ‘Dr. Ignacio Morones Prieto’, San Luis Potosi, Mexico
| | - B Vázquez-Lasa
- Institute of Polymer Science and Technology, CSIC, Madrid, Spain
- CIBER, Carlos III Health Institute, Madrid, Spain
| | - J San Román
- Institute of Polymer Science and Technology, CSIC, Madrid, Spain
- CIBER, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
150
|
Neuropathy and Diabetic Foot Syndrome. Int J Mol Sci 2016; 17:ijms17060917. [PMID: 27294922 PMCID: PMC4926450 DOI: 10.3390/ijms17060917] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 12/15/2022] Open
Abstract
Diabetic foot ulceration is a serious complication of diabetes mellitus worldwide and the most common cause of hospitalization in diabetic patients. The etiology of diabetic foot ulcerations is complex due to their multifactorial nature; in the pathophysiology of diabetic foot ulceration polyneuropathy is important. Proper adherence to standard treatment strategies and interdisciplinary cooperation can reduce the still high rates of major amputations.
Collapse
|