101
|
Iddar A, Valverde F, Serrano A, Soukri A. Purification of recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus pyogenes expressed in E. coli. Mol Cell Biochem 2003; 247:195-203. [PMID: 12841648 DOI: 10.1023/a:1024112027440] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Streprococcus pyogenes gapN was cloned and expressed by functional complementation of the Escherichia gap mutant W3CG. The IPTG-induced NADP non-phosphorylating GAPDH (GAPN) has been purified about 75.4 fold from E. coli cells, using a procedure involving conventional ammonium sulfate fractionation, anion-exchange chromatography, hydrophobic chromatography and hydroxyapatite chromatography. The purified protein was characterised: it's an homotetrameric structure with a native molecular mass of 224 kDa, have an acid pI of 4.9 and optimum pH of 8.5. Studies on the effect of assay temperature on enzyme activity revealed an optimal value of about 60 degrees C with activation energy of 51 KJ mole(-1). The apparent Km values for NADP and D-G3P or DL-G3P were estimated to be 0.385 +/- 0.05 and 0.666 +/- 0.1 mM, respectively and the Vmax of the purified protein was estimated to be 162.5 U mg(-1). The S. pyogenes GAPN was markedly inhibited by sulfydryl-modifying reagent iodoacetamide, these results suggest the participation of essential sulfydryl groups in the catalytic activity.
Collapse
Affiliation(s)
- Abdelghani Iddar
- Laboratoire de BBCM, Département de Biologie, Faculté des Sciences Aïn-Chock, Université Hassan-II, Mâarif, Casablanca, Morocco
| | | | | | | |
Collapse
|
102
|
Moutaouakkil A, Zeroual Y, Zohra Dzayri F, Talbi M, Lee K, Blaghen M. Purification and partial characterization of azoreductase from Enterobacter agglomerans. Arch Biochem Biophys 2003; 413:139-46. [PMID: 12706351 DOI: 10.1016/s0003-9861(03)00096-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Azoreductase, an enzyme catalyzing the reductive cleavage of the azo bond of methyl red (MR) and related dyes, was purified to electrophoretic homogeneity from Enterobacter agglomerans. This bacterial strain, isolated from dye-contaminated sludge, has a higher ability to grow, under aerobic conditions, on culture medium containing 100mg/L of MR. The enzyme was purified approximately 90-fold with 20% yield by ammonium sulfate precipitation, followed by three steps of column chromatography (gel-filtration, anion-exchange, and dye-affinity). The purified enzyme is a monomer with a molecular weight of 28,000 Da. The maximal azoreductase activity was observed at pH 7.0 and at 35 degrees C. This activity was NADH dependent. The K(m) values for both NADH and MR were 58.9 and 29.4 microM, respectively. The maximal velocity (V(max)) was 9.2 micromol of NADH min(-1)mg(-1). The purified enzyme is inhibited by several metal ions including Fe(2+) and Cd(2+).
Collapse
Affiliation(s)
- Adnane Moutaouakkil
- Unit of Bio-industry and Molecular Toxicology, Laboratory of Microbiology, Biotechnology and Environment, Faculty of Sciences Aïn Chock, University Hassan II-Aïn Chock, Km 8 route d'El Jadida, B.P. 5366 Mâarif, Casablanca, Morocco.
| | | | | | | | | | | |
Collapse
|
103
|
Che P, Weaver LM, Wurtele ES, Nikolau BJ. The role of biotin in regulating 3-methylcrotonyl-coenzyme a carboxylase expression in Arabidopsis. PLANT PHYSIOLOGY 2003; 131:1479-1486. [PMID: 12644697 PMCID: PMC166907 DOI: 10.1104/pp.013243] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2002] [Revised: 09/18/2002] [Accepted: 11/07/2002] [Indexed: 05/24/2023]
Abstract
As a catalytic cofactor, biotin has a critical role in the enzymological mechanism of a number of enzymes that are essential in both catabolic and anabolic metabolic processes. In this study we demonstrate that biotin has additional non-catalytic functions in regulating gene expression in plants, which are biotin autotrophic organisms. Biotin controls expression of the biotin-containing enzyme, methylcrotonyl-coenzyme A (CoA) carboxylase by modulating the transcriptional, translational and/or posttranslational regulation of the expression of this enzyme. The bio1 mutant of Arabidopsis, which is blocked in the de novo biosynthesis of biotin, was used to experimentally alter the biotin status of this organism. In response to the bio1-associated depletion of biotin, the normally biotinylated A-subunit of methylcrotonyl-CoA carboxylase (MCCase) accumulates in its inactive apo-form, and both MCCase subunits hyperaccumulate. This hyperaccumulation occurs because the translation of each subunit mRNA is enhanced and/or because the each protein subunit becomes more stable. In addition, biotin affects the accumulation of distinct charge isoforms of MCCase. In contrast, in response to metabolic signals arising from the alteration in the carbon status of the organism, biotin modulates the transcription of the MCCase genes. These experiments reveal that in addition to its catalytic role as an enzyme cofactor, biotin has multiple roles in regulating gene expression.
Collapse
Affiliation(s)
- Ping Che
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
104
|
Cristofoletti PT, Ribeiro AF, Deraison C, Rahbé Y, Terra WR. Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:11-24. [PMID: 12770012 DOI: 10.1016/s0022-1910(02)00222-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Transmission electron micrographs of the pea aphid midgut revealed that its anterior region has cells with an apical complex network of lamellae (apical lamellae) instead of the usual regularly-arranged microvilli. These apical lamellae are linked to one another by trabeculae. Modified perimicrovillar membranes (MPM) are associated with the lamellae and project into the lumen. Trabeculae and MPM become less conspicuous along the midgut. The most active A. pisum digestive enzymes are membrane-bound. An aminopeptidase (APN) is described elsewhere. An alpha-glucosidase (alpha-Glu) has a molecular mass of 72 kDa, pH optimum 6.0 and catalyzes in vitro transglycosylations in the presence of an excess of the substrate sucrose. There is a major cysteine proteinase activity (CP) on protein substrates that has a molecular mass of 40 kDa, pH optimum 5.5, is inhibited by E-64 and chymostatin and is activated by EDTA+cysteine. The enzyme is more active against carbobenzoxy-Phe-Arg-4-methylcoumarin-7-amide (ZFRMCA) than against ZRRMCA. These features identify the purified CP as a cathepsin-L-like cysteine proteinase. Most CP is found in the anterior midgut, whereas alpha-Glu and APN predominate in the posterior midgut. With the aid of antibodies, alpha-Glu and CP were immunolocalized in cell vesicles and MPM, whereas APN was localized in vesicles, apical lamellae and MPM. The data suggest that the anterior midgut is structurally reinforced to resist osmotic pressures and that the transglycosylating alpha-Glu, together with CP and APN are bound to MPM, thus being both distributed over a large surface and prevented from excretion with honeydew. alpha-Glu frees glucose from sucrose without increasing the osmolarity, and CP and APN may process toxins or other proteins occasionally present in phloem.
Collapse
Affiliation(s)
- Plinio T Cristofoletti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
105
|
Takenaka S, Asami T, Orii C, Murakami S, Aoki K. A novel meta-cleavage dioxygenase that cleaves a carboxyl-group-substituted 2-aminophenol. Purification and characterization of 4-amino-3-hydroxybenzoate 2,3-dioxygenase from Bordetella sp. strain 10d. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5871-7. [PMID: 12444975 DOI: 10.1046/j.1432-1033.2002.03306.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A bacterial strain that grew on 4-amino-3-hydroxybenzoic acid was isolated from farm soil. The isolate, strain 10d, was identified as a species of Bordetella. Cell extracts of Bordetella sp. strain 10d grown on 4-amino-3-hydroxybenzoic acid contained an enzyme that cleaved this substrate. The enzyme was purified to homogeneity with a 110-fold increase in specific activity. The purified enzyme was characterized as a meta-cleavage dioxygenase that catalyzed the ring fission between C2 and C3 of 4-amino-3-hydroxybenzoic acid, with the consumption of 1 mol of O2 per mol of substrate. The enzyme was therefore designated as 4-amino-3-hydroxybenzoate 2,3-dioxygenase. The molecular mass of the native enzyme was 40 kDa based on gel filtration; the enzyme is composed of two identical 21-kDa subunits according to SDS/PAGE. The enzyme showed a high dioxygenase activity only for 4-amino-3-hydroxybenzoic acid. The Km and Vmax values for this substrate were 35 micro m and 12 micro mol.min-1.(mg protein)-1, respectively. Of the 2-aminophenols tested, only 4-aminoresorcinol and 6-amino-m-cresol inhibited the enzyme. The enzyme reported here differs from previously reported extradiol dioxygenases, including 2-aminophenol 1,6-dioxygenase, in molecular mass, subunit structure and catalytic properties.
Collapse
Affiliation(s)
- Shinji Takenaka
- Department of Biofunctional Chemistry, Faculty of Agriculture and Division of Science of Biological Resources, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | |
Collapse
|
106
|
Gentile F, Amodeo P, Febbraio F, Picaro F, Motta A, Formisano S, Nucci R. SDS-resistant active and thermostable dimers are obtained from the dissociation of homotetrameric beta-glycosidase from hyperthermophilic Sulfolobus solfataricus in SDS. Stabilizing role of the A-C intermonomeric interface. J Biol Chem 2002; 277:44050-60. [PMID: 12213823 DOI: 10.1074/jbc.m206761200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Glycosidases are fundamental, widely conserved enzymes. Those from hyperthermophiles exhibit unusual stabilities toward various perturbants. Previous work with homotetrameric beta-glycosidase from hyperthermophilic Sulfolobus solfataricus (M(r) 226,760) has shown that addition of 0.05-0.1% SDS was associated with minimal secondary structure perturbations and increased activity. This work addresses the effects of SDS on beta-glycosidase quaternary structure. In 0.1-1% SDS, the enzyme was dimeric, as determined by Ferguson analysis of transverse-gradient polyacrylamide gels. The catalytic activity of the beta-glycosidase dimer in SDS was determined by in-gel assay. A minor decrease of thermal stability in SDS was observed after exposure to temperatures up to 80 degrees C for 1 h. An analysis of beta-glycosidase crystal structure showed different changes in solvent-accessible surface area on going from the tetramer to the two possible dimers (A-C and A-D). Energy minimization and molecular dynamics calculations showed that the A-C dimer, exhibiting the lowest exposed surface area, was more stabilized by a network of polar interactions. The charge distribution around the A-C interface was characterized by a local short range anisotropy, resulting in an unfavorable interaction with SDS. This paper provides a detailed description of an SDS-resistant inter-monomeric interface, which may help understand similar interfaces involved in important biological processes.
Collapse
Affiliation(s)
- Fabrizio Gentile
- Istituto di Endocrinologia e Oncologia Sperimentale del CNR and Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Via Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
107
|
Miranda FF, Teigen K, Thórólfsson M, Svebak RM, Knappskog PM, Flatmark T, Martínez A. Phosphorylation and mutations of Ser(16) in human phenylalanine hydroxylase. Kinetic and structural effects. J Biol Chem 2002; 277:40937-43. [PMID: 12185072 DOI: 10.1074/jbc.m112197200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of phenylalanine hydroxylase (PAH) at Ser(16) by cyclic AMP-dependent protein kinase is a post-translational modification that increases its basal activity and facilitates its activation by the substrate l-Phe. So far there is no structural information on the flexible N-terminal tail (residues 1-18), including the phosphorylation site. To get further insight into the molecular basis for the effects of phosphorylation on the catalytic efficiency and enzyme stability, molecular modeling was performed using the crystal structure of the recombinant rat enzyme. The most probable conformation and orientation of the N-terminal tail thus obtained indicates that phosphorylation of Ser(16) induces a local conformational change as a result of an electrostatic interaction between the phosphate group and Arg(13) as well as a repulsion by Glu(280) in the loop at the entrance of the active site crevice structure. The modeled reorientation of the N-terminal tail residues (Met(1)-Leu(15)) on phosphorylation is in agreement with the observed conformational change and increased accessibility of the substrate to the active site, as indicated by circular dichroism spectroscopy and the enzyme kinetic data for the full-length phosphorylated and nonphosphorylated human PAH. To further validate the model we have prepared and characterized mutants substituting Ser(16) with a negatively charged residue and found that S16E largely mimics the effects of phosphorylation of human PAH. Both the phosphorylated enzyme and the mutants with acidic side chains instead of Ser(16) revealed an increased resistance toward limited tryptic proteolysis and, as indicated by circular dichroism spectroscopy, an increased content of alpha-helical structure. In agreement with the modeled structure, the formation of an Arg(13) to Ser(16) phosphate salt bridge and the conformational change of the N-terminal tail also explain the higher stability toward limited tryptic proteolysis of the phosphorylated enzyme. The results obtained with the mutant R13A and E381A further support the model proposed for the molecular mechanism for the activation of the enzyme by phosphorylation.
Collapse
Affiliation(s)
- Frederico Faria Miranda
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, 5009-Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
108
|
Lee SC, Gepts PL, Whitaker JR. Protein structures of common bean (Phaseolus vulgaris) alpha-amylase inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:6618-6627. [PMID: 12381161 DOI: 10.1021/jf020189t] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two nucleotide sequences for genes that encode alpha-amylase inhibitor 4 (alphaAI-4) from white kidney bean (WKB) cv. 858, designated gene alphaAI-4 (Accession No. ), and alpha-amylase inhibitor 5 (alphaAI-5) from black bean (BB), designated gene alphaAI-5 (Accession No. ), were determined. Genes alphaAI-4 and alphaAI-5 encode 244 amino acid prepro-alphaAI-4 and prepro-alphaAI-5 polypeptides that are 93 and 95% identical with alpha-amylase inhibitor l (alphaAI-l; Hoffman, L. M.; Ma, Y.; Barker, R. F. Nucleic Acids Res. 1982, 10, 7819-7828), 40 and 43% identical with red kidney bean lectin, and 52 and 55% identical with arcelin l of wild-type bean. The high degree of sequence similarity indicates the evolutionary relationship among these genes. PCR analysis of genomic DNA purified from six genotypes of Phaseolus vulgaris showed very similar band patterns in 2% agarose gel, another indication of the conserved size homology among these genes. Proteolytic processing sites were located between Asn77 and Ser78 for pro-alphaAI-4 and pro-alphaAI-5. A bend next to Asn77 in three-dimensional model structures of alphaAI-4 and alphaAI-5 proinhibitors indicates that the proteolytic cleavage is necessary to remove the conformational constraint for activation to the mature protein. Mature WKB alphaAI-4 was composed of four subunits (2alpha2beta) and had a molecular weight of 50000 determined by multiangle laser light scattering and 56714 determined by laser-assisted time-of-flight mass spectrometry.
Collapse
|
109
|
Fatland BL, Ke J, Anderson MD, Mentzen WI, Cui LW, Allred CC, Johnston JL, Nikolau BJ, Wurtele ES. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. PLANT PHYSIOLOGY 2002; 130:740-56. [PMID: 12376641 PMCID: PMC166603 DOI: 10.1104/pp.008110] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Revised: 06/12/2002] [Accepted: 06/18/2002] [Indexed: 05/18/2023]
Abstract
Acetyl-coenzyme A (CoA) is used in the cytosol of plant cells for the synthesis of a diverse set of phytochemicals including waxes, isoprenoids, stilbenes, and flavonoids. The source of cytosolic acetyl-CoA is unclear. We identified two Arabidopsis cDNAs that encode proteins similar to the amino and carboxy portions of human ATP-citrate lyase (ACL). Coexpression of these cDNAs in yeast (Saccharomyces cerevisiae) confers ACL activity, indicating that both the Arabidopsis genes are required for ACL activity. Arabidopsis ACL is a heteromeric enzyme composed of two distinct subunits, ACLA (45 kD) and ACLB (65 kD). The holoprotein has a molecular mass of 500 kD, which corresponds to a heterooctomer with an A(4)B(4) configuration. ACL activity and the ACLA and ACLB polypeptides are located in the cytosol, consistent with the lack of targeting peptides in the ACLA and ACLB sequences. In the Arabidopsis genome, three genes encode for the ACLA subunit (ACLA-1, At1g10670; ACLA-2, At1g60810; and ACLA-3, At1g09430), and two genes encode the ACLB subunit (ACLB-1, At3g06650 and ACLB-2, At5g49460). The ACLA and ACLB mRNAs accumulate in coordinated spatial and temporal patterns during plant development. This complex accumulation pattern is consistent with the predicted physiological needs for cytosolic acetyl-CoA, and is closely coordinated with the accumulation pattern of cytosolic acetyl-CoA carboxylase, an enzyme using cytosolic acetyl-CoA as a substrate. Taken together, these results indicate that ACL, encoded by the ACLA and ACLB genes of Arabidopsis, generates cytosolic acetyl-CoA. The heteromeric organization of this enzyme is common to green plants (including Chlorophyceae, Marchantimorpha, Bryopsida, Pinaceae, monocotyledons, and eudicots), species of fungi, Glaucophytes, Chlamydomonas, and prokaryotes. In contrast, all known animal ACL enzymes have a homomeric structure, indicating that a evolutionary fusion of the ACLA and ACLB genes probably occurred early in the evolutionary history of this kingdom.
Collapse
Affiliation(s)
- Beth L Fatland
- Department of Botany, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Bronshteyn M, Steinberg D. Immobilization of fructosyltransferase from Streptococcus mutans on hydroxyapatite surfaces induces the formation of multimeric complexes. Lett Appl Microbiol 2002; 34:205-9. [PMID: 11874543 DOI: 10.1046/j.1472-765x.2002.01073.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the formation of fructosyltransferase (FTF) complexes on hydroxyapatite (HA) surfaces. METHODS AND RESULTS Cell-free extracellular FTF from Streptococcus mutans, purified from hyperproducing strain V-1995, was adsorbed onto HA and then eluted from the surface by means of a concentration gradient of potassium phosphate buffer. The FTF monomers loaded onto HA formed, upon adsorption, various complexes ranging from 200 to 700 kDa as demonstrated using native PAGE. All these complexes exhibited enzymatic activity. CONCLUSIONS Adsorption of FTF onto HA induced the formation of stable and enzymatically-active complexes. SIGNIFICANCE AND IMPACT OF THE STUDY The formation of these complexes may explain the change of FTF catalytic properties after adsorption onto HA. This study is another step in determining the properties of a-cellular constituents of the oral biofilm.
Collapse
Affiliation(s)
- M Bronshteyn
- Department of Oral Biology, Faculty of Dentistry, Hebrew University-Hadassah, Jerusalem, Israel
| | | |
Collapse
|
111
|
Iddar A, Valverde F, Serrano A, Soukri A. Expression, purification, and characterization of recombinant nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Clostridium acetobutylicum. Protein Expr Purif 2002; 25:519-26. [PMID: 12182834 DOI: 10.1016/s1046-5928(02)00032-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clostridium acetobutylicum gapN was cloned and expressed in Escherichia coli BL-21. The IPTG-induced nonphosphorylating NADP-dependent GAPDH (GAPN) has been purified about 34-fold from E. coli cells and its physical and kinetic properties were investigated. The purification method consisted of a rapid and straightforward procedure involving anion-exchange and hydroxyapatite chromatographies. The purified protein is an homotetrameric of 204kDa exhibiting absolute specificity for NADP. Chromatofocusing analysis showed the presence of only one acidic GAPN isoform with an acid isoelectric point of 4.2. The optimum pH of purified enzyme was 8.2. Studies on the effect of assay temperature on enzyme activity revealed an optimal value of about 65 degrees C with activation energy of 18KJmol(-1). The apparent K(m) values for NADP and D-glyceraldehyde-3-phosphate (D-G3P) or DL-G3P were estimated to be 0.200+/-0.05 and 0.545+/-0.1 mM, respectively. No inhibition was observed with L-D3P. The V(max) of the purified protein was estimated to be 78.8 U mg(-1). The Cl. acetobutylicum GAPN was markedly inhibited by sulfhydryl-modifying reagent iodoacetamide, these results suggest the participation of essential sulfhydryl groups in the catalytic activity.
Collapse
Affiliation(s)
- Abdelghani Iddar
- Laboratoire de BBCM, Département de Biologie, Faculté des Sciences Aïn-Chock, Université Hassan-II, Km 8 route d'El Jadida, B.P. 5366 Mâarif, Casablanca, Morocco
| | | | | | | |
Collapse
|
112
|
Langford PR, Sansone A, Valenti P, Battistoni A, Kroll JS. Bacterial superoxide dismutase and virulence. Methods Enzymol 2002; 349:155-66. [PMID: 11912905 DOI: 10.1016/s0076-6879(02)49331-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Paul R Langford
- Molecular Infectious Diseases Group, Department of Paediatrics, Imperial College of Science, Technology and Medicine, St. Mary's Hospital Campus, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
113
|
Iddar A, Serrano A, Soukri A. A phosphate-stimulated NAD(P)+-dependent glyceraldehyde-3-phosphate dehydrogenase in Bacillus cereus. FEMS Microbiol Lett 2002; 211:29-35. [PMID: 12052547 DOI: 10.1111/j.1574-6968.2002.tb11199.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme of central carbon metabolism, was studied in a Bacillus cereus strain isolated from the phosphate layer from Morocco. Enzymatic assays with cell extracts demonstrated that when grown on Luria-Bertani (LB) medium, B. cereus contains a major NAD+-dependent GAPDH activity and only traces of NADP+-dependent activity, but in cells grown on Pi-supplemented LB medium a strong increase of the NADP+-dependent activity, that became predominant, occurs concurrently with a GAPDH protein increase. Our results show that B. cereus possesses two GAPDH activities, namely NAD+- and NADP+-dependent, catalyzed by two enzymes with distinct coenzyme specificity and different phosphate regulation patterns. The finding of a phosphate-stimulated NADP+-dependent GAPDH in B. cereus indicates that this bacterium can modulate its primary carbon metabolism according to phosphate availability.
Collapse
Affiliation(s)
- Abdelghani Iddar
- Laboratoire de Biochimie, Département de Biologie, Facultés des Sciences Aïn-Chock, Université Hassan-II, Km 8 route d'El Jadida, B.P. 5366 Mâarif, Casablanca, Morocco
| | | | | |
Collapse
|
114
|
Lee P, Colman RF. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase. Arch Biochem Biophys 2002; 401:81-90. [PMID: 12054490 DOI: 10.1016/s0003-9861(02)00041-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sequence alignment of pig mitochondrial NADP-dependent isocitrate dehydrogenase with eukaryotic (human, rat, and yeast) and Escherichia coli isocitrate dehydrogenases reveals that Tyr316 is completely conserved and is equivalent to the E. coli Tyr345, which interacts with the 2'-phosphate of NADP in the crystal structure [Hurley et al., Biochemistry 30 (1991) 8671-8678]. Lys321 is also completely conserved in the five isocitrate dehydrogenases. Either an arginine or lysine residue is found among the enzymes from other species at the position corresponding to the pig enzyme Arg314. While Arg323 is not conserved among all species, its proximity to the coenzyme site makes it a good candidate for investigation. The importance of these four amino acids to the function of pig mitochondrial NADP-isocitrate dehydrogenase was studied by site-directed mutagenesis. Mutants (R314Q, Y316F, Y316L, K321Q, and R323Q) were generated by a megaprimer polymerase chain reaction method. Wild-type and mutant enzymes were expressed in E. coli and purified to homogeneity. All mutant and wild-type enzymes exhibited comparable molecular weights indicative of the dimeric enzyme. Mutations do not cause an appreciable change in enzyme secondary structure as revealed by circular dichroism measurements. The kinetic parameters (V(max) and K(M) values) of K321Q and R323Q are similar to those of wild-type, indicating that Lys321 and Arg323 are not involved in enzyme function. R314Q exhibits a 10-fold increase in K(M) for NADP as compared to that of wild-type, while they have comparable V(max) values. These results suggest that Arg314 contributes to the affinity between the enzyme and NADP. The hydroxyl group of Tyr316 is not required for enzyme function since Y316F exhibits similar kinetic parameters to those of wild-type. Y316L shows a 4-fold increase in K(M) for NADP and a decrease in V(max) as compared to wild-type, suggesting that the aromatic ring of the Tyr of isocitrate dehydrogenase contributes to the affinity for coenzyme, as well as to catalysis. The K(i) for NAD of R314Q, Y316F, and Y316L is comparable to that of wild-type, indicating that the Arg314 and Tyr316 may be located near the 2'-phosphate of enzyme-bound NADP.
Collapse
Affiliation(s)
- Peychii Lee
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716, USA
| | | |
Collapse
|
115
|
Love DN, Redwin J, Norris JM. Cloning and expression of the superoxide dismutase gene of the feline strain of Porphyromonas gingivalis: immunological recognition of the protein by cats with periodontal disease. Vet Microbiol 2002; 86:245-56. [PMID: 11900958 DOI: 10.1016/s0378-1135(01)00433-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent evidence suggests that feline members of the genus Porphyromonas are of consequence in periodontal disease in cats. Several possible virulence factors from feline strains of Porphyromonas gingivalis have been described that have similarities to those of human P. gingivalis. Both human and feline strains of P. gingivalis produce superoxide dismutase (SOD) which has been proposed as modulator of the inflammatory response during infection. The objective of this study was to clone the superoxide dismutase gene of feline P. gingivalis, to compare the characteristics of its product with that of the native enzyme and to determine its immunoreactivity in cats with periodontal disease. The sod gene of the feline strain Veterinary Pathology and Bacteriology (VPB) 3457 of P. gingivalis was amplified by PCR and cloned in frame with the alpha-peptide of the LacZ gene of E. coli in plasmid pUC19. This construct expressed SOD activity in E. coli with characteristics similar to those of the native SOD enzyme of P. gingivalis human strain 381 and the parent feline strain VPB 3457. The recombinant SOD had an apparent molecular weight of 54,700+/-1300 (S.E.M.) and was inactivated by 5mM hydrogen peroxide but not by 2mM KCN. There was a significant association (P=0.005) between the immunoreactivity of cats to P. gingivalis VPB 3457 soluble whole cell proteins on immunoblots and their responsiveness to the SOD protein. This suggests that cats showing a marked serum responsiveness to P. gingivalis itself, react to the SOD enzyme and further supports the role of feline P. gingivalis in periodontal disease.
Collapse
Affiliation(s)
- Daria N Love
- Department of Veterinary Pathology, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
116
|
Mounaji K, Erraiss NE, Iddar A, Wegnez M, Serrano A, Soukri A. Glyceraldehyde-3-phosphate dehydrogenase from the newt Pleurodeles waltl. Protein purification and characterization of a GapC gene. Comp Biochem Physiol B Biochem Mol Biol 2002; 131:411-21. [PMID: 11959023 DOI: 10.1016/s1096-4959(01)00518-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) has been purified to homogeneity from skeletal muscle of the newt Pleurodeles waltl (Amphibia, Urodela). The purification procedure including ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography resulted in a 24-fold increase in specific activity and a final yield of approximately 46%. The native protein exhibited an apparent molecular weight of approximately 146 kDa with absolute specificity for NAD(+). Only one GAPDH isoform (pI 7.57) was obtained by chromatofocusing. The enzyme is an homotetrameric protein composed of identical subunits with an apparent molecular weight of approximately 37 kDa. Monospecific polyclonal antibodies raised in rabbits against the purified newt GAPDH immunostained a single 37-kDa GAPDH band in extracts from different tissues blotted onto nitrocellulose. A 510-bp cDNA fragment that corresponds to an internal region of a GapC gene was obtained by RT-PCR amplification using degenerate primers. The deduced amino acid sequence has been used to establish the phylogenetic relationships of the Pleurodeles enzyme--the first GAPDH from an amphibian of the Caudata group studied so far--with other GAPDHs of major vertebrate phyla.
Collapse
Affiliation(s)
- Khadija Mounaji
- Laboratoire de Biologie et Physiologie de la Reproduction et du Développement, Faculté des Sciences I, BP5366, Maarif, Casablanca, Morocco
| | | | | | | | | | | |
Collapse
|
117
|
Berrada W, Naya A, Iddar A, Bourhim N. Purification and characterization of cytosolic glycerol-3-phosphate dehydrogenase from skeletal muscle of jerboa (Jaculus orientalis). Mol Cell Biochem 2002; 231:117-27. [PMID: 11952153 DOI: 10.1023/a:1014464831573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytosolic glycerol-3-phosphate dehydrogenase was purified from jerboa (Jaculus orientalis) skeletal muscle and its physical and kinetic properties investigated. The purification method consisted of a multi-step procedure and this procedure is presented. The specific activity of the purified enzyme is 53.6 U/mg of protein, representing a 77-fold increase in specific activity. The apparent Michaelis constant (Km) for dihydroxyacetone is 137.39 (+/- 25.56) microM whereas the Km for glycerol-3-phosphate is 468.66 (+/- 27.59) microM. The kinetic mechanism of purified enzyme is 'ordered Bi-Bi' and this result is confirmed by the product inhibition pattern. Under the conditions of assay, the pH optimum occurs at pH 7.7 for the reduction of dihydroxyacetone phosphate and at pH 9.0 for glycerol-3-phosphate oxidation. In the direction of dihydroxyacetone phosphate, the optimal temperature is 35 degrees C. The molecular weight of the purified enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 33,000 (+/- 1000), whereas non-denaturing polyacrylamide gel yields a molecular weight of 72,000 (+/- 2000), suggesting that the enzyme may exist as a dimer. A polyclonal antiserum raised against the purified enzyme was used to localize the enzyme in different jerboa tissues by Western blot method. The purified enzyme is sensitive to N-ethylmaleimide, and incubation of the enzyme with 20 mM N-ethylmaleimide resulted in a complete loss of catalytic activity. The purified enzyme is inhibited by several metal ions including Zn2+ and by 2,4-dichlorophenoxyacetic acid.
Collapse
Affiliation(s)
- W Berrada
- Département de Biologie, Faculté des Sciences, Université Hassan II-Ain Chock, Maârif, Casablanca, Morocco
| | | | | | | |
Collapse
|
118
|
Awadé A, Gonzalès T, Cleuziat P, Robert-Baudouy J. One step purification and characterization of the pyrrolidone carboxyl peptidase ofStreptococcus pyogenesover-expressed inEscherichia coli. FEBS Lett 2002; 308:70-4. [PMID: 1353731 DOI: 10.1016/0014-5793(92)81053-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pyrrolidone carboxyl peptidase (EC 3.4.11.8) (Pcp), an enzyme which selectively removes pyrrolidone carboxylic acid (PCA) from some PCA-peptides and -proteins, was demonstrated in bacteria and in plant, animal and human tissues. In this paper we describe the purification to homogeneity of the enzyme of Streptococcus pyogenes, over-expressed in Escherichia coli. This was achieved, for the first time in one step, by hydrophobic interaction chromatography. Analysis under non-denaturing conditions revealed a molecular mass of 85 kDa and in the presence of sodium dodecyl sulfate gave a molecular mass of 23.5 kDa. Investigations on enzymatic properties showed that the Pcp over-expressed in E. coli disclosed properties similar to those found for the enzyme extracted from S. pyogenes or for some other Pcps studied previously. Thus the over-expressed enzyme should serve as a suitable source for N-terminal unblocking prior to some PCA protein sequencing.
Collapse
Affiliation(s)
- A Awadé
- Laboratoire de Génétique Moléculaire des Microorganismes, Institut National des Sciences Appliquées, Villeurbanne, France
| | | | | | | |
Collapse
|
119
|
INOHARA-OCHIAI MISA, HASEGAWA SATOSHI, IGUCHI SOTA, ASHIKARI TOSHIHIKO, SHIBANO YUJI, HEMMI HISASHI, NAKAYAMA TORU, NISHINO TOKUZO. Deletion and Insertion of a 192-Residue Peptide in the Active-Site Domain of Glycosyl Hydrolase Family-2 .BETA.-Galactosidases. J Biosci Bioeng 2002. [DOI: 10.1263/jbb.93.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
120
|
Inohara-Ochiai M, Hasegawa S, Iguchi S, Ashikari T, Shibano Y, Hemmi H, Nakayama T, Nishino T. Deletion and insertion of a 192-residue peptide in the active-site domain of glycosyl hydrolase family-2 β-galactosidases. J Biosci Bioeng 2002; 93:575-83. [PMID: 16233252 DOI: 10.1016/s1389-1723(02)80240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2002] [Accepted: 03/07/2002] [Indexed: 10/27/2022]
Abstract
The monomeric multimetal-binding beta-galactosidase of Saccharopolyspora rectivirgula (srbg), a glycosyl hydrolase family-2 enzyme, has a unique sequence consisting of 192 amino acid residues with no similarity to known proteins. This 192-residue sequence (termed the "iota [iota] sequence") appears to be inserted into a sequence homologous to the active-site domain of the Escherichia coli lacZ enzyme (lacZbg). To assess the effects of the t sequence at specific sites of beta-galactosidase on the catalytic functioning and molecular properties of beta-galactosidase, deletion or insertion mutants of beta-galactosidases were constructed, expressed in LacZ- E. coli strains, and characterized: srbgdelta in which the iota sequence was deleted from srbg, and lacZbgI, in which the 192-residue iota sequence was inserted into the corresponding position (between Asp591 and Phe592) in the active-site domain of lacZbg. srbgdelta was a catalytically inactive, dimeric protein which retained multimetal-binding characteristics, suggesting that the iota sequence is very important for maintaining the structure necessary for the catalytic functioning and the monomeric structure of srbg but is not responsible for the unique metal ion requirements of srbg. On the other hand, lacZbgI existed as a mixture of a monomer, a tetramer, and higher multimers. The monomeric species was inactive, whereas the tetramer and other multimers were catalytically active (V(max )K(m) value, 25% of that of lacZbg) and highly specific for beta-D-galactoside. The tetrameric lacZbgI was activated by Mg2+ and Mn2+ with lowered metal affinities, and the stoichiometry of metal binding was unchanged from that of lacZbg. These results, along with the published stereo structure of lacZbg, suggest that, in lacZbgI, the inserted 192-residue iota peptide could fold independently of the lacZbg domains into a "sub-domain," lying distant from the active site and subunit interfaces.
Collapse
Affiliation(s)
- Misa Inohara-Ochiai
- Suntory Research Center, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Martínez-Cruz M, Zenteno E, Córdoba F. Purification and characterization of a galactose-specific lectin from corn (Zea mays) coleoptile. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:37-44. [PMID: 11731083 DOI: 10.1016/s0304-4165(01)00196-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We purified and characterized a lectin from the corn coleoptyle (Zea mays). The lectin (CCL) was purified by affinity chromatography on a Lactosyl-Sepharose 4B column. It is a glycoprotein of 88.7 kDa, composed mainly by glutamic, aspartic, glycine, and Ser residues; in a minor proportion, it contained methionine and cysteine residues. Carbohydrates that constituted 12% of the total weight comprised galactose, mannose, and N-acetyl-D-glucosamine. The lectin contained the blocked amino-terminus. Analysis of the lectin, determined from peptides obtained after trypsin digestion by MALDI-TOF (matrix-assisted laser desorption ionization-time of flight), indicated that CCL has 18% homology with a putative calcium-dependent Ser/Thr protein kinase, from Arabidopsis thaliana, and 39% homology with a NADPH-dependent reductase from Z. mays. The lectin showed hemagglutinating activity toward several erythrocytes, including human A, B, and O. Hapten inhibition assays indicated that the lectin interacts specifically with the OH on C4 from galactose residues. OH- on C1 plays a relevant role in the interaction with CCL, since beta-galactose residues are better recognized than those from the anomeric alpha-galactose. Lack of lectin activity was observed in corn extracts; the highest specific activity was obtained from coleoptyle obtained at the 7th day after seeding.
Collapse
Affiliation(s)
- M Martínez-Cruz
- Laboratorio de Bioquímical/Inmunología, Instituto Tecnológico Regional de Oaxaca, Mexico
| | | | | |
Collapse
|
122
|
Jeon WB, Cheng J, Ludden PW. Purification and characterization of membrane-associated CooC protein and its functional role in the insertion of nickel into carbon monoxide dehydrogenase from Rhodospirillum rubrum. J Biol Chem 2001; 276:38602-9. [PMID: 11507093 DOI: 10.1074/jbc.m104945200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accessory protein CooC, which contains a nucleotide-binding domain (P-loop) near the N terminus, participates in the maturation of the nickel center of carbon monoxide dehydrogenase (CODH). In this study, CooC was purified from the chromatophore membranes of Rhodospirillum rubrum with a 3,464-fold purification and a 0.8% recovery, and its biochemical properties were characterized. CooC is a homodimer with a molecular mass of 61-63 kDa, contains less than 0.1 atom of Ni(2+) or Fe(2+) per dimer, and has a lambda(max) at 277.5 nm (epsilon(277.5) 32.1 mm(-1) cm(-1)) with no absorption peaks at the visible region. CooC catalyzes the hydrolysis of ATP and GTP with K(m) values of 24.4 and 26.0 microm and V(max) values of 58.7 and 3.7 nmol/min/mg protein for ATP and GTP hydrolysis, respectively. The P-loop mutated form of K13Q CooC was generated by site-specific replacement of lysine by glutamine and was purified according to the protocol for wild-type CooC purification. The K13Q CooC was inactive both in ATP hydrolysis and in vivo nickel insertion. In vitro nickel activation of apoCODH in the cell extracts from UR2 (wild type) and UR871 (K13Q CooC) showed that activation of nickel-deficient CODH was enhanced by CooC and dependent upon ATP hydrolysis. The overall results suggest that CooC couples ATP hydrolysis with nickel insertion into apoCODH. On the basis of our results and models for analogous systems, the functional roles of CooC in nickel processing into the active site of CODH are presented.
Collapse
Affiliation(s)
- W B Jeon
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
123
|
Imriskova I, Langley E, Arreguín-Espinosa R, Aguilar G, Pardo JP, Sánchez S. Rapid purification and biochemical characterization of glucose kinase from Streptomyces peucetius var. caesius. Arch Biochem Biophys 2001; 394:137-44. [PMID: 11594725 DOI: 10.1006/abbi.2001.2514] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose kinase catalyzes the ATP-dependent phosphorylation of glucose. Streptomyces peucetius var. caesius glucose kinase was purified 292-fold to homogeneity. The enzyme has cytosolic localization and is composed of four identical subunits, each of 31 kDa. The purified enzyme easily dissociates into dimers. However, in the presence of 100 mM glucose the enzyme maintains its tetrameric form. Maximum activity was found at 42 degrees C and pH 7.5. Isoelectric focusing of the enzyme showed a pl of 8.4. The N- and C-terminal amino acid sequences were MGLTIGVD and VYFAREPDPIM, respectively. The kinetic mechanism of S. peucetius var. caesius glucose kinase appears to be a rapid equilibrium ordered type, i.e., ordered addition of substrates to the enzyme, where the first substrate is d-glucose. The K(m) values for d-glucose and MgATP(2-) were 1.6 +/- 0.2 and 0.8 +/- 0.1 mM, respectively. Mg(2+) in excess of 10 mM inhibits enzyme activity.
Collapse
Affiliation(s)
- I Imriskova
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., 04510, México
| | | | | | | | | | | |
Collapse
|
124
|
Arrieta JM, Herndl GJ. Assessing the diversity of marine bacterial beta-glucosidases by capillary electrophoresis zymography. Appl Environ Microbiol 2001; 67:4896-900. [PMID: 11571199 PMCID: PMC93246 DOI: 10.1128/aem.67.10.4896-4900.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We propose a new method for the fast separation and detection of beta-glucosidases in environmental samples. With this approach, beta-glucosidases extracted from bacteria are evidenced by substrate-incorporated capillary electrophoresis (CE zymography) and their kinetic parameters can be determined by repeated injections using different substrate concentrations. Preliminary results obtained with natural bacterial communities from the coastal North Sea suggest that the diversity of beta-glucosidases in the marine environment might be much higher than previously observed.
Collapse
Affiliation(s)
- J M Arrieta
- Department of Biological Oceanography, Netherlands Institute for Sea Research, 1790 AB Den Burg, Texel, The Netherlands
| | | |
Collapse
|
125
|
Tuekam BA, Park YI, Unkefer CJ, Gander JE. Relationship of exo-beta-D-galactofuranosidase kinetic parameters to the number of phosphodiesters in Penicillium fellutanum peptidophosphogalactomannan: enzyme purification and kinetics of glycopeptide and galactofuran chain hydrolysis. Appl Environ Microbiol 2001; 67:4648-56. [PMID: 11571168 PMCID: PMC93215 DOI: 10.1128/aem.67.10.4648-4656.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular Penicillium fellutanum exo-beta-D-galactofuranosidase, with a mass of 70 kDa, was purified to apparent homogeneity. The enzyme was used to investigate the influence of phosphodiesters of the peptidophosphogalactomannans pP(2)GM(ii) and pP(25)GM(ii) (containing 2 and 25 phosphodiester residues, respectively, per mol of polymer) on the kinetic parameters of galactofuranosyl hydrolysis of these two polymers, of 1-O-methyl-beta-D-galactofuranoside, and of two galactofuranooligosaccharides. The enzyme did not hydrolyze phosphorylated galactose residues of pP(2)GM(ii) or pP(25)GM(ii). The k(cat)/K(m) value for pP(25)GM(ii) is 1.7 x 10(3) M(-1) s(-1), that for 1-O-methyl-beta-D-galactofuranoside is 1.1 x 10(4) M(-1) s(-1), that for pP(2)GM(ii) is 1.7 x 10 (4) M(-1) s(-1), and those for 5-O-beta-D-galactofuranooligosaccharides with degrees of polymerization of 3.4 and 5.5 are 1.7 x 10(5) and 4.1 x 10(5) M(-1) s(-1), respectively. Variability in the k(cat)/K(m) values is due primarily to differences in K(m) values; the k(-1)/k(1) ratio likely provides the most influence on K(m). k(cat) increases as the degree of polymerization of galactofuranosyl residues increases. Most of the galactofuranosyl and phosphocholine residues were removed by day 8 in vivo from pP(x)GM(ii) added to day 3 cultures initiated in medium containing 2 mM phosphate but not from those initially containing 20 mM phosphate. The filtrates from day 9 cultures initiated in 2 mM inorganic phosphate in modified Raulin-Thom medium contained 0.2 mM inorganic phosphate and 2.2 U of galactofuranosidase ml(-1)h(-1). No galactofuranosidase activity but 15 mM inorganic phosphate was found in filtrates from day 9 cultures initiated in 20 mM phosphate. In vivo the rate of galactofuranosyl hydrolysis of pP(x)GM(ii) and of related polymers is proportional to the k(cat)/K(m) value of each polymer. The kinetic data show that the k(cat)/K(m) value increases as the number of phosphodiesters of pP(x)GM(ii) decreases, also resulting in an increase in the activity of exo-beta-D-galactofuranosidase.
Collapse
Affiliation(s)
- B A Tuekam
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
126
|
Dahl C, Molitor M, Trüper HG. Siroheme-sulfite reductase-type protein from Pyrobaculum islandicum. Methods Enzymol 2001; 331:410-9. [PMID: 11265479 DOI: 10.1016/s0076-6879(01)31072-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- C Dahl
- Institut für Mikrobiologie und Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn D-53115, Germany
| | | | | |
Collapse
|
127
|
Lewis DK, Campbell JQ, Sowa SM, Chen ME, Vinson SB, Keeley LL. Characterization of vitellogenin in the red imported fire ant, Solenopsis invicta (Hymenoptera: Apocrita: Formicidae). JOURNAL OF INSECT PHYSIOLOGY 2001; 47:543-551. [PMID: 11249942 DOI: 10.1016/s0022-1910(00)00155-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Vitellin (VN) and vitellogenin (VG) profiles were analyzed in monogyne and polygyne colonies of the red imported fire ant, Solenopsis invicta. Non-denaturing and SDS-polyacrylamide gel electrophoresis (PAGE) analyses indicated that the native VN was likely 350 kDa and comprised of two subunits in the molecular size range of 170-185 kDa. SDS-PAGE of hemolymph showed that the relative mobilities and subunit patterns of VG and VN were similar. VG was present in the hemolymph of reproductive queens; alate, virgin queens; and workers, but not in males. Anti-VN, prepared from polygyne egg homogenates, reacted with egg homogenates and with hemolymph VG from reproductive, monogyne and polygyne queens and alate, virgin polygyne queens. Analysis of circulating VG and ovarian development in alate, virgin queens showed that low levels of VG appeared by five days following adult eclosion, but egg development was not observed until seven weeks. VG was evident in newly inseminated queens, and increased steadily for the first three weeks following dealation. VG levels declined slightly near eclosion of the first workers (= nanitics) and dropped sharply after nanitic emergence at five weeks following dealation. Oocyte maturation peaked at days 15-25 following dealation, but otherwise remained low but steady. These studies provide the basis for future investigations into endocrine regulations of vitellogenesis in S. invicta queens.
Collapse
Affiliation(s)
- D K. Lewis
- Department of Entomology, Texas Agricultural Experiment Station,Texas A&M University, 77843, College Station, TX, USA
| | | | | | | | | | | |
Collapse
|
128
|
Kim BS, Lee CS, Yun CY, Yeo SM, Park WM, Kim HR. Characterization and immunological analysis of ferritin from the hemolymph of Galleria mellonella. Comp Biochem Physiol A Mol Integr Physiol 2001; 129:501-9. [PMID: 11423320 DOI: 10.1016/s1095-6433(01)00287-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ferritin, an iron-binding protein, was purified from the larval hemolymph of the wax moth, Galleria mellonella by KBr density ultracentrifugation and FPLC (Superose 6). The iron content of ferritin was determined by atomic emission spectroscopy and Ferene S stain. Native molecular mass of ferritin was estimated as 630 kDa. SDS-PAGE revealed that the ferritin consists of two major polypeptides of 26 and 32 kDa and one minor polypeptide of 30 kDa. An isoelectric point of ferritin was measured to be approximately 7.3 and only the 32-kDa subunit is glycosylated. The ferritin contains large amounts of lysine, glutamine, glutamic acid and leucine but tryptophan was not detected. Electron microscopic examination of negatively stained preparations showed an 11-nm particle in external diameter and 7-nm iron core. Ferritin is present in both the ovary and testis. Localization of ferritin by immunoelectron microscopy in ovary and testis revealed that the gold particles were located in vitelline membrane and yolk granules but not in follicular epithelium of ovary. In the testis, the gold particles were located in testicular fluid and lumen of vas deferens.
Collapse
Affiliation(s)
- B S Kim
- Department of Biology, Korea University, Anam-Dong 5-1, Seoul 136-701, South Korea
| | | | | | | | | | | |
Collapse
|
129
|
DiBella LM, Benashski SE, Tedford HW, Harrison A, Patel-King RS, King SM. The Tctex1/Tctex2 class of dynein light chains. Dimerization, differential expression, and interaction with the LC8 protein family. J Biol Chem 2001; 276:14366-73. [PMID: 11278908 DOI: 10.1074/jbc.m011456200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tctex1/Tctex2 family of dynein light chains associates with the intermediate chains at the base of the soluble dynein particle. These components are essential for dynein assembly and participate in specific motor-cargo interactions. To further address the role of these light chains in dynein activity, the structural and biochemical properties of several members of this polypeptide class were examined. Gel filtration chromatography and native gel electrophoresis indicate that recombinant Chlamydomonas flagellar Tctex1 exists as a dimer in solution. Furthermore, yeast two-hybrid analysis suggests that this association also occurs in vivo. In contrast, both murine and Chlamydomonas Tctex2 are monomeric. To investigate protein-protein interactions involving these light chains, outer arm dynein from Chlamydomonas flagella was cross-linked using dimethylpimelimidate. Immunoblot analysis of the resulting products revealed the interaction of LC2 (Tctex2) with LC6, which is closely related to the highly conserved LC8 protein found in many enzyme systems, including dynein. Northern dot blot analysis demonstrated that Tctex1/Tctex2 family light chains are differentially expressed both in a tissue-specific and developmentally regulated manner in humans. These data provide further support for the existence of functionally distinct populations of cytoplasmic dynein with differing light chain content.
Collapse
Affiliation(s)
- L M DiBella
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA
| | | | | | | | | | | |
Collapse
|
130
|
Ahn T, Yim SK, Choi HI, Yun CH. Polyacrylamide gel electrophoresis without a stacking gel: use of amino acids as electrolytes. Anal Biochem 2001; 291:300-3. [PMID: 11401306 DOI: 10.1006/abio.2001.5038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- T Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | | | | | |
Collapse
|
131
|
Sanon A, Lawrence F, Bories C, Loiseau PM. Purification of N-acetyl-beta-D-hexosaminidase from Trichomonas vaginalis. Exp Parasitol 2001; 97:169-72. [PMID: 11312579 DOI: 10.1006/expr.2001.4599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A Sanon
- Biologie et Contrôle des Organismes Parasites, UPRES 398, IFR 75, Université de Paris-Sud, 92290 Châtenay-Malabry Cédex, France
| | | | | | | |
Collapse
|
132
|
Affiliation(s)
- E S Wurtele
- Department of Botany, Iowa State University, Ames 50011, USA
| | | |
Collapse
|
133
|
Brito LO, Lopes AR, Parra JR, Terra WR, Silva-Filho MC. Adaptation of tobacco budworm Heliothis virescens to proteinase inhibitors may be mediated by the synthesis of new proteinases. Comp Biochem Physiol B Biochem Mol Biol 2001; 128:365-75. [PMID: 11207448 DOI: 10.1016/s1096-4959(00)00325-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The tobacco budworm Heliothis virescens is adapted to feed on tobacco leaves that have proteinase protein inhibitors (PIs). To study this adaptation, the midgut proteinases of Heliothis virescens larvae reared on artificial PI-free diet and on tobacco leaves were compared using ion exchange chromatography, hydrophobic chromatography, gel filtration and polyacrylamide gel electrophoresis at different conditions. SDS polyacrylamide-gradient gel electrophoresis (SDS-PAGE) and kinetic studies shown that leaf-fed larvae have a chymotrypsin (M(r) 26000) and four trypsins (T1-T4) with the following properties: T1, K(m) 0.3 microM, M(r) 70000; T2, K(m) 0.4 microM, M(r) 67000; T3, K(m) 2.4 microM, M(r) 29000; T4, K(m) 15 microM, M(r) 17000. Diet-fed larvae have a chymotrypsin (M(r) 26000) and a major trypsin (K(m) 2.9 microM, M(r) 29000). Native PAGE at different gel concentrations showed that in these conditions, only T1 and T2 occur in leaf-fed larvae, whereas gel filtration in the absence and presence of SDS revealed that T1 and T2 might arise by polymerization of T3 and T4, respectively. The data suggest that, in the presence of PI-containing food, H. virescens larvae express new trypsin molecules that form oligomers and are apparently less affected by PIs because of tighter binding to the substrate (lower K(m) values) and a putative decreased affinity for PIs.
Collapse
Affiliation(s)
- L O Brito
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, C.P. 83, 13400-970 Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
134
|
Grossmann GA, Terra WR. Alpha-galactosidases from the larval midgut of Tenebrio molitor (Coleoptera) and Spodoptera frugiperda (Lepidoptera). Comp Biochem Physiol B Biochem Mol Biol 2001; 128:109-22. [PMID: 11163310 DOI: 10.1016/s1096-4959(00)00306-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are three midgut alpha-galactosidases (TG1, TG2, TG3) from Tenebrio molitor larvae that are partially resolved by ion-exchange chromatography. The enzymes have approximately the same pH optimum (5.0), pl value (4.6) and Mr value (46000-49000) as determined by gel filtration or native electrophoresis run in polyacrylamide gels with different concentrations. Substrate specificities and functions were proposed for the major T. molitor midgut alpha-galactosidases (TG2 and TG3) based on chromatographic, carbodiimide inactivation, Tris inhibition, and on substrate competition data. Thus, TG2 would hydrolyse alpha-1,6-galactosaccharides, exemplified by raffinose, whereas TG3 would act on melibiose and apparently also on digalactosyldiglyceride, the most important compound in the thylacoid membranes of chloroplasts. Most galactoside digestion should occur in the lumen of the first two thirds of T. molitor larval midguts, since alpha-galactosidase activity predominates there. Spodoptera frugiperda larvae have three midgut alpha-galactosidases (SG1, SG2, SG3) partially resolved by ion-exchange chromatography. The enzymes have similar pH optimum (5.8), pl value (7.2) and Mr value (46000-52000), and at least the major alpha-galactosidase must have an active carboxyl group in the active site. Based on data similar to those described for T. molitor, SG1 and SG3 should hydrolyse melibiose and SG3 should digest raffinose and, perhaps, also digalactosyldiglyceride. The midgut distribution of alpha-galactosidase activity supports the proposal that alpha-galactosidase digestion occurs at the surface of anterior midgut cells in Spodoptera frugiperda larvae.
Collapse
Affiliation(s)
- G A Grossmann
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970, São Paulo, Brazil
| | | |
Collapse
|
135
|
|
136
|
|
137
|
Spinelli S, Fiérobe HP, Belaïch A, Belaïch JP, Henrissat B, Cambillau C. Crystal structure of a cohesin module from Clostridium cellulolyticum: implications for dockerin recognition. J Mol Biol 2000; 304:189-200. [PMID: 11080455 DOI: 10.1006/jmbi.2000.4191] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the assembly of the Clostridium cellulolyticum cellulosome, the multiple cohesin modules of the scaffolding protein CipC serve as receptors for cellulolytic enzymes which bear a dockerin module. The X-ray structure of a type I C. cellulolyticum cohesin module (Cc-cohesin) has been solved using molecular replacement, and refined at 2.0 A resolution. Despite a rather low sequence identity of 32 %, this module has a fold close to those of the two Clostridium thermocellum cohesin (Ct-cohesin) modules whose 3D structures have been determined previously. Cc-cohesin forms a dimer in the crystal, as do the two Ct-cohesins. We show here that the dimer exists in solution and that addition of dockerin-containing proteins dissociates the dimer. This suggests that the dimerization interface and the cohesin/dockerin interface may overlap. The nature of the overall surface and of the dimer interface of Cc-cohesin differ notably from those of the Ct-cohesin modules, being much less polar, and this may explain the species specificity observed in the cohesin/dockerin interaction of C. cellulolyticum and C. thermocellum. We have produced a topology model of a C. cellulolyticum dockerin and of a Cc-cohesin/dockerin complex using homology modeling and available biochemical data. Our model suggests that a special residue pair, already identified in dockerin sequences, is located at the center of the cohesin surface putatively interacting with the dockerin.
Collapse
Affiliation(s)
- S Spinelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098, CNRS-Universités de Marseille I et II, 31 Chemin Joseph-Aiguier, Marseille, Cedex 20, 13402, France
| | | | | | | | | | | |
Collapse
|
138
|
Lee KJ, Huang J, Takeda Y, Dynan WS. DNA ligase IV and XRCC4 form a stable mixed tetramer that functions synergistically with other repair factors in a cell-free end-joining system. J Biol Chem 2000; 275:34787-96. [PMID: 10945980 DOI: 10.1074/jbc.m004011200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repair of DNA double-strand breaks in mammalian cells occurs via a direct nonhomologous end-joining pathway. Although this pathway can be studied in vivo and in crude cell-free systems, a deeper understanding of the mechanism requires reconstitution with purified enzymes. We have expressed and purified a complex of two proteins that are critical for double-strand break repair, DNA ligase IV (DNL IV) and XRCC4. The complex is homogeneous, with a molecular mass of about 300,000 Da, suggestive of a mixed tetramer containing two copies of each polypeptide. The presence of multiple copies of DNL IV was confirmed in an experiment where different epitope-tagged forms of DNL IV were recovered simultaneously in the same complex. Cross-linking suggests that an XRCC4.XRCC4 dimer interface forms the core of the tetramer, and that the DNL IV polypeptides are in contact with XRCC4 but not with one another. Purified DNL IV.XRCC4 complex functioned synergistically with Ku protein, the DNA-dependent protein kinase catalytic subunit, and other repair factors in a cell-free end-joining assay. We suggest that a dyad-symmetric DNL IV.XRCC4 tetramer bridges the two ends of the broken DNA and catalyzes the coordinate ligation of the two DNA strands.
Collapse
Affiliation(s)
- K J Lee
- Gene Regulation Program, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
139
|
Mongiat M, Mungiguerra G, Bot S, Mucignat MT, Giacomello E, Doliana R, Colombatti A. Self-assembly and supramolecular organization of EMILIN. J Biol Chem 2000; 275:25471-80. [PMID: 10821830 DOI: 10.1074/jbc.m001426200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primary structure of human Elastin microfibril interface-located protein (EMILIN), an elastic fiber-associated glycoprotein, consists of a globular C1q domain (gC1q) at the C terminus, a short collagenous stalk, a long region with a high potential for forming coiled-coil alpha helices, and a cysteine-rich N-terminal sequence. It is not known whether the EMILIN gC1q domain is involved in the assembly process and in the supramolecular organization as shown for the similar domain of collagen X. By employing the yeast two-hybrid system the EMILIN gC1q domains interacted with themselves, proving for the first time that this interaction occurs in vivo. The gC1q domain formed oligomers running as trimers in native gels that were less stable than the comparable trimers of the collagen X gC1q domain since they did not withstand heating. The collagenous domain was trypsin-resistant and migrated at a size corresponding to a triple helix under native conditions. In reducing agarose gels, EMILIN also migrated as a trimer, whereas under non-reducing conditions it formed polymers of many millions of daltons. A truncated fragment lacking gC1q and collagenous domains assembled to a much lesser extent, thus deducing that the C-terminal domain(s) are essential for the formation of trimers that finally assemble into large EMILIN multimers.
Collapse
Affiliation(s)
- M Mongiat
- Divisione di Oncologia Sperimentale 2, Centro di Riferimento Oncologico di Aviano, Italy
| | | | | | | | | | | | | |
Collapse
|
140
|
Calera JA, Sánchez-Weatherby J, López-Medrano R, Leal F. Distinctive properties of the catalase B of Aspergillus nidulans. FEBS Lett 2000; 475:117-20. [PMID: 10858500 DOI: 10.1016/s0014-5793(00)01637-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aspergillus nidulans catalase B (CatB) was purified to homogeneity and characterized as a hydroperoxidase which resembles typical catalases in some physicochemical characteristics: (1) it has an apparent molecular weight of 360000 and is composed of four glycosylated subunits, (2) it has hydrophobic properties as revealed by extractability in ethanol/chloroform and binding to phenyl-Superose, and (3) it has an acidic isoelectric point at pH 3. 5. Also CatB exhibits some distinctive properties, e.g. it is not inhibited by the presence of 2% sodium dodecyl sulfate, 9 M urea or reducing agents. Furthermore, even though CatB does not exhibit any residual peroxidase activity, it is able to retain up to 38% of its initial catalase activity after incubation with the typical catalase inhibitor 3-amino-1,2,4-triazole.
Collapse
Affiliation(s)
- J A Calera
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | | | | | |
Collapse
|
141
|
Piedras P, Munoz A, Aguilar M, Pineda M. Allantoate amidinohydrolase (Allantoicase) from Chlamydomonas reinhardtii: its purification and catalytic and molecular characterization. Arch Biochem Biophys 2000; 378:340-8. [PMID: 10860551 DOI: 10.1006/abbi.2000.1833] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An allantoate-degrading enzyme has been purified to electrophoretic homogeneity for the first time from a photosynthetic organism, the unicellular green algae Chlamydomonas reinhardtii. The purification procedure included a differential protein extraction followed by conventional steps such as ammonium sulfate fractionation, gel filtration, anion exchange chromatography, and preparative electrophoresis. Under the routine assay conditions (7 mM allantoate), specific activity for the purified enzyme was 185 U/mg, which rose to 225 U/mg under kinetic considerations (saturating substrate). Therefore, a turnover number of 4.5 x 10(4) min(-1) can be deduced for the 200-kDa protein. The enzyme is a true allantoicase (EC 3.5.3.4) that catalyzes the degradation of allantoate to (-)ureidoglycolate and (+)ureidoglycolate to glyoxylate. The enzyme exhibited hyperbolic kinetic for allantoate and ureidoglycolate with K(m) values of 2 and 0.7 mM, respectively. V(max) of the reaction with allantoate as substrate was nine times higher than that with ureidoglycolate. The native enzyme has a molecular weight of 200 kDa and consists of six identical or similar-sized subunits of 34 kDa each, organized in two trimers of 100 kDa. Each subunit has five cysteine residues, four of which are involved in disulfide bonds, with a total of 12 disulfide bonds in the 200-kDa protein. Allantoate inhibits competitively the reaction with ureidoglycolate as substrate. In addition, buffers and group-specific reagents affect the activity in the same manner irrespective of the substrate used. Those results suggest that both substrates use the same active site. The effect of group-specific reagents suggest that the amino acids histidine, tyrosine, and cysteine are essentials for the allantoicase activity with both substrates.
Collapse
Affiliation(s)
- P Piedras
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, 14071, Spain
| | | | | | | |
Collapse
|
142
|
Gomelsky M, Horne IM, Lee HJ, Pemberton JM, McEwan AG, Kaplan S. Domain structure, oligomeric state, and mutational analysis of PpsR, the Rhodobacter sphaeroides repressor of photosystem gene expression. J Bacteriol 2000; 182:2253-61. [PMID: 10735869 PMCID: PMC111275 DOI: 10.1128/jb.182.8.2253-2261.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor PpsR from the facultative photoheterotroph Rhodobacter sphaeroides is involved in repression of photosystem gene expression under aerobic growth conditions. We have isolated a number of spontaneous mutations as well as constructed directed mutations and deletions in ppsR. Repressor activities and the oligomeric state of the wild-type and mutant proteins were assayed. Our results suggest that the wild-type PpsR exists in cell extracts as a tetramer. Analysis of the PpsR mutants confirmed that the carboxy-terminal region of PpsR (residues 400 to 464) is involved in DNA binding. The central region of the protein (residues 150 to 400) was found to contain two PAS domains (residues 161 to 259 and 279 to 367). PAS domains are ubiquitous protein modules involved in sensory transduction as well as in protein-protein interactions. All spontaneously isolated mutations, which significantly impaired repressor activity and which mapped outside the DNA binding region, were positioned in the PAS domains. None of these, however, affected the overall oligomeric state. This implies that the conformation of the PAS domains within the tetramer is critical for repressor activity. Upstream of the first PAS domain resides a putative glutamine-rich hinge (residues 127 to 136) that connects the first PAS domain to the amino-terminal region (residues 1 to 135). The role of the amino terminus of PpsR is not obvious; however, extended deletions within this region abolish repressor activity, thus suggesting that the amino terminus is essential for structural integrity of the protein. We present a model of the domain architecture of the PpsR protein according to which PpsR is comprised of three regions: the carboxy terminus responsible for DNA binding, the central region primarily involved in protein oligomerization and possibly signal sensing, and the amino terminus of unknown function. This model may prove useful for determining the mode of PpsR action.
Collapse
Affiliation(s)
- M Gomelsky
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
143
|
Amrhein I, Wurth C, Bohner T, Hofbauer R, Folkers G, Scapozza L. Highly purified recombinant varicella Zoster virus thymidine kinase is a homodimer. Protein Expr Purif 2000; 18:338-45. [PMID: 10733888 DOI: 10.1006/prep.2000.1201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant varicella zoster virus (VZV) thymidine kinase (TK) was isolated in a fast and gentle two-step procedure from Escherichia coli. The TK was expressed as a PreScission-cleavable fusion protein and purified by glutathione and ATP affinity chromatography, yielding homogeneous, highly pure VZV TK. The purified enzyme displays enzymatic activities with K(m) values of 0.3 +/- 0.06 microM for the natural substrate thymidine and 11.6 +/- 3.2 microM for ATP, indicating the biochemical equivalence with the viral VZV TK expressed in infected cells. Determinations of the native molecular weight by size exclusion chromatography and native polyacrylamide gel electrophoresis revealed that the pure enzyme is biologically active as a homodimer.
Collapse
Affiliation(s)
- I Amrhein
- Department of Applied BioSciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | | | | | | | | | | |
Collapse
|
144
|
LEE SHIHCHIEH, WHITAKER JOHNR. THE MOLECULAR WEIGHT OF ?-AMYLASE INHIBITOR FROM WHITE BEAN cv 858B (PHASEOLUS VULGARIS L.) IS 56 kDa, NOT 20 kDa. J Food Biochem 2000. [DOI: 10.1111/j.1745-4514.2000.tb00043.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
145
|
Oda M, Kobayashi N, Ito A, Kurusu Y, Taira K. cis-acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine-dependent binding of HutP to the transcript containing the regulatory sequences. Mol Microbiol 2000; 35:1244-54. [PMID: 10712704 DOI: 10.1046/j.1365-2958.2000.01795.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The location of the cis-acting regulatory region for histidine-dependent antitermination of the Bacillus subtilis hut operon was determined. A secondary structure, whose sequences partially overlap with the downstream terminator, was found in the regulatory region of the hut transcript. Mutational analysis of the regulatory region showed that the secondary structure was required for histidine-dependent antitermination. An electrophoretic mobility-shift assay demonstrated that, in response to the presence of histidine and Mg2+, purified HutP bound hut RNA bearing putative secondary structure but not RNA lacking the potential to form putative secondary structure. Native gel electrophoresis showed that HutP existed as a hexamer. A filter-binding assay revealed that the concentration of histidine required for half-maximal binding of HutP to RNA was 3.1 mM and that the Kd for binding of HutP to RNA was approximately 0.56 microM in the presence of histidine. These results suggested that putative secondary structure in the regulatory region of hut mRNA could function as an antiterminator to inhibit the formation of the terminator structure and that HutP causes expression of the hut structural genes by binding to the putative antiterminator structure in response to the presence of histidine.
Collapse
Affiliation(s)
- M Oda
- National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, MITI, Tsukuba City, Ibaraki 305-8566, Japan.
| | | | | | | | | |
Collapse
|
146
|
McKean AL, Ke J, Song J, Che P, Achenbach S, Nikolau BJ, Wurtele ES. Molecular characterization of the non-biotin-containing subunit of 3-methylcrotonyl-CoA carboxylase. J Biol Chem 2000; 275:5582-90. [PMID: 10681539 DOI: 10.1074/jbc.275.8.5582] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biotin enzyme, 3-methylcrotonyl-CoA carboxylase (MCCase) (3-methylcrotonyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1. 4), catalyzes a pivotal reaction required for both leucine catabolism and isoprenoid metabolism. MCCase is a heteromeric enzyme composed of biotin-containing (MCC-A) and non-biotin-containing (MCC-B) subunits. Although the sequence of the MCC-A subunit was previously determined, the primary structure of the MCC-B subunit is unknown. Based upon sequences of biotin enzymes that use substrates structurally related to 3-methylcrotonyl-CoA, we isolated the MCC-B cDNA and gene of Arabidopsis. Antibodies directed against the bacterially produced recombinant protein encoded by the MCC-B cDNA react solely with the MCC-B subunit of the purified MCCase and inhibit MCCase activity. The primary structure of the MCC-B subunit shows the highest similarity to carboxyltransferase domains of biotin enzymes that use methyl-branched thiol esters as substrate or products. The single copy MCC-B gene of Arabidopsis is interrupted by nine introns. MCC-A and MCC-B mRNAs accumulate in all cell types and organs, with the highest accumulation occurring in rapidly growing and metabolically active tissues. In addition, these two mRNAs accumulate coordinately in an approximately equal molar ratio, and they each account for between 0.01 and 0.1 mol % of cellular mRNA. The sequence of the Arabidopsis MCC-B gene has enabled the identification of animal paralogous MCC-B cDNAs and genes, which may have an impact on the molecular understanding of the lethal inherited metabolic disorder methylcrotonylglyciuria.
Collapse
Affiliation(s)
- A L McKean
- Department of Biochemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Tanaka E, Takagi Sawada M, Morinaga C, Yokosawa H, Sawada H. Isolation and characterization of a novel 530-kDa protein complex (PC530) capable of associating with the 20S proteasome from starfish oocytes. Arch Biochem Biophys 2000; 374:181-8. [PMID: 10666296 DOI: 10.1006/abbi.1999.1584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel protein complex called PC530 was purified concomitantly with proteasomes from oocytes of the starfish, Asterina pectinifera, by chromatography with DEAE-cellulose, phosphocellulose, Mono Q, and Superose 6 columns. The molecular mass of this complex was estimated to be 530 kDa by Ferguson plot analysis and about 500 kDa by Superose 6 gel filtration. Since the 1500-kDa proteasome fractions contain the PC530 subunits as well as the 20S proteasomal subunits, and also since the purified PC530 and the 20S proteasome were cross-linked with a bifunctional cross-linking reagent, it is thought that PC530 is able to associate with the 20S proteasome. The PC530 comprises six main subunits with molecular masses of 105, 70, 50, 34, 30, and 23 kDa. The 70-kDa subunit showed a sequence similarity to the S3/p58/Sun2/Rpn3p subunit of the 26S proteasome, whereas the other subunits showed little or no appreciable similarity to the mammalian and yeast regulatory subunits. These results indicate that starfish oocytes contain a novel 530-kDa protein complex capable of associating with the 20S proteasome, which is distinctly different from PA700 or the 19S regulatory complex in molecular size and subunit composition.
Collapse
Affiliation(s)
- E Tanaka
- Department of Biochemistry, Hokkaido University, Sapporo, 060-0812, Japan
| | | | | | | | | |
Collapse
|
148
|
Rangarajan S, Shankar V. Extracellular nuclease from Rhizopus stolonifer: purification and characteristics of - single strand preferential - deoxyribonuclease activity. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:293-304. [PMID: 10594367 DOI: 10.1016/s0304-4165(99)00191-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
An extracellular nuclease from Rhizopus stolonifer (designated as nuclease Rsn) was purified to homogeneity by chromatography on DEAE-cellulose followed by Blue Sepharose. The M(r) of the purified enzyme determined by native PAGE was 67¿ omitted¿000 and it is a tetramer and each protomer consists of two unidentical subunits of M(r) 21¿ omitted¿000 and 13¿ omitted¿000. It is an acidic protein with a pI of 4.2 and is not a glycoprotein. The purified enzyme showed an obligate requirement of divalent cations like Mg(2+), Mn(2+) and Co(2+) for its activity but is not a metalloprotein. The optimum pH of the enzyme was 7.0 and was not influenced by the type of metal ion used. Although, the optimum temperature of the enzyme for single stranded (ss) DNA hydrolysis in presence of all three metal ions and for double stranded (ds) DNA hydrolysis in presence of Mg(2+) was 40 degrees C, it showed higher optimum temperature (45 degrees C) for dsDNA hydrolysis in presence of Mn(2+) and Co(2+). Nuclease Rsn was inhibited by divalent cations like Zn(2+), Cu(2+) and Hg(2+), inorganic phosphate and pyrophosphate, low concentrations of SDS, guanidine hydrochloride and urea, organic solvents like dimethyl sulphoxide, dimethyl formamide and formamide but not by 3'- or 5'-mononucleotides. The studies on mode and mechanism of action showed that nuclease Rsn is an endonuclease and cleaves dsDNA through a single hit mechanism. The end products of both ssDNA and dsDNA hydrolysis were predominantly oligonucleotides ending in 3'-hydroxyl and 5'-phosphoryl termini. Moreover, the type of metal ion used did not influence the mode and mechanism of action of the enzyme.
Collapse
Affiliation(s)
- S Rangarajan
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | |
Collapse
|
149
|
Kotaria R, Mayor JA, Walters DE, Kaplan RS. Oligomeric state of wild-type and cysteine-less yeast mitochondrial citrate transport proteins. J Bioenerg Biomembr 1999; 31:543-9. [PMID: 10682912 DOI: 10.1023/a:1005460810527] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Experiments have been conducted to determine the oligomeric state of the mitochondrial citrate transport protein (CTP) from the yeast Saccharomyces cerevisiae. Both wild-type and cysteine-less (Cys-less) CTPs were overexpressed in E. coli and solubilized with sarkosyl. The purity of the solubilized material is approximately 75%. Upon incorporation into phospholipid vesicles, a high specific transport activity is obtained with both the wild-type and Cys-less CTPs, thereby demonstrating the structural and functional integrity of the preparations. Two independent approaches were utilized to determine native molecular weight. First, CTP molecular weight was determined via nondenaturing size-exclusion chromatography. With this methodology we obtained molecular weight values of 70,961 and 70,118 for the wild-type and Cys-less CTPs, respectively. Second, charge-shift native gel electrophoresis was carried out utilizing a low concentration of the negatively charged detergent sarkosyl, which served to both impart a charge shift to the CTP and the protein standards, as well as to promote protein solubility. Via the second method, we obtained molecular weight values of 69,122 and 74,911 for the wild-type and Cys-less CTPs, respectively. Both methods clearly indicate that following solubilization, the wild-type and the Cys-less CTPs exist exclusively as dimers. Furthermore, disulfide bonds are not required for either dimer formation or stabilization. The dimeric state of the CTP has important implications for the structural basis underlying the CTP translocation mechanism.
Collapse
Affiliation(s)
- R Kotaria
- Department of Biochemistry and Molecular Biology, FUHS/Chicago Medical School, Illinois 60064, USA
| | | | | | | |
Collapse
|
150
|
Miller KD, Guyon V, Evans JN, Shuttleworth WA, Taylor LP. Purification, cloning, and heterologous expression of a catalytically efficient flavonol 3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida. J Biol Chem 1999; 274:34011-9. [PMID: 10567367 DOI: 10.1074/jbc.274.48.34011] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flavonols are plant-specific molecules that are required for pollen germination in maize and petunia. They exist in planta as both the aglycone and glycosyl conjugates. We identified a flavonol 3-O-galactosyltransferase (F3GalTase) that is expressed exclusively in the male gametophyte and controls the formation of a pollen-specific class of glycosylated flavonols. Thus an essential step to understanding flavonol-induced germination is the characterization of F3GalTase. Amino acid sequences of three peptide fragments of F3GalTase purified from petunia pollen were used to isolate a full-length cDNA clone. RNA gel blot analysis and enzyme assays confirmed that F3GalTase expression is restricted to pollen. Heterologous expression of the F3GalTase cDNA in Escherichia coli yielded active recombinant enzyme (rF3GalTase) which had the identical substrate specificity as the native enzyme. Unlike the relatively nonspecific substrate usage of flavonoid glycosyltransferases from sporophytic tissues, F3GalTase uses only UDP-galactose and flavonols to catalyze the formation of flavonol 3-O-galactosides. Kinetic analysis showed that the k(cat)/K(m) values of rF3GalTase, using kaempferol and quercetin as substrates, approaches that of a catalytically perfect enzyme. rF3GalTase catalyzes the reverse reaction, generation of flavonols from UDP and flavonol 3-O-galactosides, almost as efficiently as the forward reaction. The biochemical characteristics of F3GalTase are discussed in the context of a role in flavonol-induced pollen germination.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Catalysis
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Escherichia coli/genetics
- Galactosyltransferases/genetics
- Galactosyltransferases/isolation & purification
- Galactosyltransferases/metabolism
- Gene Expression
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Hydrogen-Ion Concentration
- Kinetics
- Molecular Sequence Data
- Plant Development
- Plants/enzymology
- Plants/genetics
- Pollen/enzymology
- Pollen/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Substrate Specificity
- Temperature
- Tissue Distribution
Collapse
Affiliation(s)
- K D Miller
- Program in Plant Physiology, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | | | | | |
Collapse
|