101
|
Fasia L, Karava V, Siafaka-Kapadai A. Uptake and metabolism of [3H]anandamide by rabbit platelets. Lack of transporter? EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3498-506. [PMID: 12919314 DOI: 10.1046/j.1432-1033.2003.03724.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anandamide is an endogenous ligand for cannabinoid receptor and its protein-mediated transport across cellular membranes has been demonstrated in cells derived from brain as well as in cells of the immune system. This lipid is inactivated via intracellular degradation by a fatty acid amidohydrolase (FAAH). In the present study, we report that rabbit platelets, in contrast to human platelets, do not possess a carrier-mediated mechanism for the transport of [3H]anandamide into the cell, i.e. cellular uptake was not temperature dependent and its accumulation was not saturable. This endocannabinoid appears to enter the cell by simple diffusion. Once taken up by rabbit platelets, [3H]anandamide was rapidly metabolized into compounds which were secreted into the medium. Small amounts of free arachidonic acid as well as phospholipids were amongst the metabolic products. FAAH inhibitors did not decrease anandamide uptake, whereas these compounds inhibited anandamide metabolism. In conclusion, anandamide is rapidly taken up by rabbit platelets and metabolized mainly into water-soluble metabolites. Interestingly, the present study also suggests the absence of a transporter for anandamide in these cells.
Collapse
Affiliation(s)
- Lambrini Fasia
- Department of Chemistry (Biochemistry), University of Athens, Greece
| | | | | |
Collapse
|
102
|
Abstract
Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB1 and CB2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its physiological roles have just begun to unfold. In addition, the behavioral effects of exogenous cannabinoids such as delta-9-tetrahydrocannabinol, the major active compound of hashish and marijuana, await explanation at the cellular and network levels. Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB1 receptors located on distinct types of axon terminals throughout the brain. Subsequent discoveries shed light on the functional consequences of this localization by demonstrating the involvement of endocannabinoids in retrograde signaling at GABAergic and glutamatergic synapses. In this review, we aim to synthesize recent progress in our understanding of the physiological roles of endocannabinoids in the brain. First, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. The fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release. Finally, the possible functions of endocannabinoids as retrograde synaptic signal molecules are discussed in relation to synaptic plasticity and network activity patterns.
Collapse
Affiliation(s)
- Tamas F Freund
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 8, Szigony u.43, H-1083 Hungary.
| | | | | |
Collapse
|
103
|
Glaser ST, Abumrad NA, Fatade F, Kaczocha M, Studholme KM, Deutsch DG. Evidence against the presence of an anandamide transporter. Proc Natl Acad Sci U S A 2003; 100:4269-74. [PMID: 12655057 PMCID: PMC153082 DOI: 10.1073/pnas.0730816100] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
On the basis of temperature dependency, saturability, selective inhibition, and substrate specificity, it has been proposed that an anandamide transporter exists. However, all of these studies have examined anandamide accumulation at long time points when downstream effects such as metabolism and intracellular sequestration are operative. In the current study, we have investigated the initial rates (<1 min) of anandamide accumulation in neuroblastoma and astrocytoma cells in culture and have determined that uptake is not saturable with increasing concentrations of anandamide. However, anandamide hydrolysis, after uptake in neuroblastoma cells, was saturable at steady-state time points (5 min), suggesting that fatty acid amide hydrolase (FAAH) may be responsible for observed saturation of uptake at long time points. In general, arvanil, olvanil, and N-(4-hydroxyphenyl)arachidonylamide (AM404) have been characterized as transport inhibitors in studies using long incubations. However, we found these "transport inhibitors" did not inhibit anandamide uptake in neuroblastoma and astrocytoma cells at short time points (40 sec or less). Furthermore, we confirmed that these inhibitors in vitro were actually inhibitors of FAAH. Therefore, the likely mechanism by which the transport inhibitors raise anandamide levels to exert pharmacological effects is by inhibiting FAAH, and they should be reevaluated in this context. Immunofluorescence has indicated that FAAH staining resides mainly on intracellular membranes of neuroblastoma cells, and this finding is consistent with our observed kinetics of anandamide hydrolysis. In summary, these data suggest that anandamide uptake is a process of simple diffusion. This process is driven by metabolism and other downstream events, rather than by a specific membrane-associated anandamide carrier.
Collapse
Affiliation(s)
- Sherrye T Glaser
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
104
|
Holt S, Fowler CJ. Anandamide metabolism by fatty acid amide hydrolase in intact C6 glioma cells. Increased sensitivity to inhibition by ibuprofen and flurbiprofen upon reduction of extra- but not intracellular pH. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 367:237-44. [PMID: 12644895 DOI: 10.1007/s00210-002-0686-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Accepted: 11/26/2002] [Indexed: 10/25/2022]
Abstract
The metabolism of anandamide by fatty acid amidohydrolase (FAAH) at different intra- and extracellular pH values has been investigated in intact C6 rat glioma cells. The cellular uptake of anandamide at 37 degrees C was found to decrease by 28% when the extracellular pH (pH(e)) was reduced from pH 7.4 to pH 6.2. In contrast, a selective decrease in intracellular pH (pH(i)), accomplished by acidifying the cells followed by incubation in sodium-free buffer at pH 7.4, did not affect the uptake. Anandamide uptake was inhibited by (R)-ibuprofen, with pI(50) values of 3.05+/-0.57, 3.66+/-0.23 and 3.94+/-0.88 at pH(e) values of 7.4, 6.8 and 6.2, respectively. In the presence of phenylmethylsulfonyl fluoride, however, (R)-ibuprofen failed to inhibit the uptake of anandamide. A reduction in pH(e) from 7.4 to 6.2 produced a 17% reduction in the FAAH-catalyzed metabolism of anandamide in the intact C6 cells. However, an increased sensitivity of FAAH activity to inhibition by (R)-ibuprofen as well as (R,S)-flurbiprofen and (S)-flurbiprofen was seen at a lower pH(e). For (R)-ibuprofen, pI(50) values of 3.57+/-0.08, 4.04+/-0.05 and 4.59+/-0.04 were found at pH(e) values of 7.4, 6.8 and 6.2, respectively. For (R,S)- and (S)-flurbiprofen, the pI(50) values at pH(e) 7.4 were 4.02+/-0.05 and 4.13+/-0.18, respectively at a pH(e) of 7.4, and 4.81+/-0.11 and 4.84+/-0.10, respectively, at a pH(e) of 6.2. In contrast, intracellular acidification did not affect either the rate of anandamide metabolism or its inhibition by (R)-ibuprofen or (S)-flurbiprofen. It is concluded that a reduction of extracellular pH produces an enhanced accumulation of the acidic NSAIDs ibuprofen and flurbiprofen into C6 glioma cells and thereby an inhibition of anandamide metabolism.
Collapse
Affiliation(s)
- Sandra Holt
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87 Umeå, Sweden.
| | | |
Collapse
|
105
|
Schmid HHO, Schmid PC, Berdyshev EV. Cell signaling by endocannabinoids and their congeners: questions of selectivity and other challenges. Chem Phys Lipids 2002; 121:111-34. [PMID: 12505695 DOI: 10.1016/s0009-3084(02)00157-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The major endocannabinoids, anandamide (N-arachidonoylethanolamide, 20:4n-6 N-acylethanolamine) and 2-arachidonoylglycerol (2-AG) are structurally and functionally similar, but they are produced by different metabolic pathways and their levels must therefore be regulated by different mechanisms. Both endocannabinoids are accompanied by cannabinoid receptor-inactive, saturated and mono- or di-unsaturated congeners which can influence their metabolism and function. Here we review published data on the presence and production of anandamide and 2-AG and their congeners in mammalian cells and discuss this information in terms of their proposed signaling functions.
Collapse
Affiliation(s)
- Harald H O Schmid
- The Hormel Institute, University of Minnesota, 801-16th Avenue N E, Austin, MN 55912, USA.
| | | | | |
Collapse
|
106
|
Kagaya M, Lamb J, Robbins J, Page CP, Spina D. Characterization of the anandamide induced depolarization of guinea-pig isolated vagus nerve. Br J Pharmacol 2002; 137:39-48. [PMID: 12183329 PMCID: PMC1573467 DOI: 10.1038/sj.bjp.0704840] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2002] [Revised: 05/29/2002] [Accepted: 06/10/2002] [Indexed: 12/20/2022] Open
Abstract
1. There is considerable interest in elucidating potential endogenously derived agonists of the vanilloid receptor and the role of anandamide in this regard has received considerable attention. In the present study, we have used an electrophysiological technique to investigate the mechanism of activation of vanilloid receptors in an isolated vagal preparation. 2. Both capsaicin and anandamide depolarized de-sheathed whole vagal nerve preparations that was antagonized by the VR1 antagonist, capsazepine (P<0.05) whilst this response was unaltered by the cannabinoid (CB1) selective antagonist SR141716A or the CB2 selective antagonist, SR144528, thereby ruling out a role for cannabinoid receptors in this response. 3. The PKC activator, phorbol-12-myristate-13-acetate (PMA) augmented depolarization to both anandamide and capsaicin and this response was significantly inhibited with the PKC inhibitor, bisindolylmaleimide (BIM) (P<0.05). 4. The role of lipoxygenase products in the depolarization to anandamide was investigated in the presence of the lipoxygenase inhibitor, 5,8,11-Eicosatriynoic acid (ETI). Depolarization to anandamide and arachidonic acid was significantly inhibited in the presence of ET1 (P<0.05). However, in the absence of calcium depolarization to anandamide was not inhibited by ETI. 5. Using confocal microscopy we have demonstrated the presence of vanilloid receptors on both neuropeptide containing nerves and nerves that did not stain for sensory neuropeptides. 6. These results demonstrate that anandamide evokes depolarization of guinea-pig vagus nerve, following activation of vanilloid receptors, a component of which involves the generation of lipoxygenase products. Furthermore, these receptors are distributed in both neuropeptide and non-neuropeptide containing nerves.
Collapse
Affiliation(s)
- Manabu Kagaya
- The Sackler Institute of Pulmonary Pharmacology, GKT School of Biomedical Science, King's College London, London SE1 1UL
| | - Jasmine Lamb
- Department of Physiology, University of Western Australia, Perth 6009, Australia
| | - Jon Robbins
- Sensory Function Group, Centre for Neuroscience Research, GKT School of Biomedical Science, King's College London, London SE1 1UL
| | - Clive P Page
- The Sackler Institute of Pulmonary Pharmacology, GKT School of Biomedical Science, King's College London, London SE1 1UL
| | - Domenico Spina
- Department of Respiratory Medicine and Allergy, GKT School of Medicine and Dentistry, King's College London, Bessemer Road, London SE5 9PJ
| |
Collapse
|
107
|
Abstract
Endocannabinoids (endogenous ligands of cannabinoid receptors) such as anandamide (N-arachidonoylethanolamine) and 2-arachidonoylglycerol (2-AG) are inactivated upon enzymatic hydrolysis. Recent progress in the enzymological and molecular biological studies on the 'endocannabinoid hydrolases' is reviewed in this article. Anandamide is hydrolyzed to arachidonic acid and ethanolamine by a membrane-bound amidase generally referred to as fatty acid amide hydrolase (FAAH). This enzyme has a broad substrate specificity, hydrolyzing oleamide (an endogenous sleep-inducing factor) and 2-AG as well as anandamide. cDNA cloning revealed that FAAH is composed of 579 amino acids and belongs to the amidase signature family. A serine residue functioning as a catalytic nucleophile and several other catalytically important residues were identified in its primary structure. Furthermore, recent generation and analysis of the FAAH gene-deficient mice demonstrated the central role of this enzyme in the metabolism of anandamide. Alternatively, an amidase, which is distinct from FAAH but also hydrolyzing anandamide and other N-acylethanolamines at acidic pH, was identified in human megakaryoblastic cells and rat organs such as lung and spleen. As for the 2-AG hydrolysis, in addition to the known monoacylglycerol lipase, other esterases and FAAH may be involved.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa Medical University, Miki, Japan.
| |
Collapse
|
108
|
Romero J, Hillard CJ, Calero M, Rábano A. Fatty acid amide hydrolase localization in the human central nervous system: an immunohistochemical study. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 100:85-93. [PMID: 12008024 DOI: 10.1016/s0169-328x(02)00167-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent discoveries have opened new fields for research on the biochemistry and pharmacology of cannabinoids. Among them, and most importantly, are the characterization and molecular cloning of central and peripheral cannabinoid receptors as well as the isolation of the first putative endogenous ligands that bind to them, anandamide and 2-arachidonylglycerol. The enzyme that degrades these so-called "endocannabinoids" is an integral membrane protein, fatty acid amide hydrolase. Its distribution and biochemistry in rat brain suggest that it plays a critical role in the regulation of the endocannabinoid system. However, few data exist regarding its distribution and mechanism of action in human tissues. To that end, we have studied its cellular distribution in the human central nervous system by immunohistochemistry. Using an affinity-purified antibody, we report that fatty acid amide hydrolase is localized to specific and well-delimited cell populations, including cortical pyramidal neurons, subcortical white matter astrocytes, striatal and striatoefferent projecting neurons, hypothalamic and midbrain nuclei, granular and molecular layers of the cerebellum, Purkinje neurons, dentate cerebellar nucleus, inferior olivary nuclei and others. This distribution resembles that of the central cannabinoid receptors as well as that of the enzyme distribution in the rat brain. In summary, the cellular localization of the degradative enzyme of the endogenous cannabinoid ligands in human central nervous system reveals its presence on both neuronal and glial elements and shows a significant overlapping with that of central cannabinoid receptors, mainly in areas related with motor control, confirming the notion that the endocannabinoid system plays a critical role in the control of movement.
Collapse
Affiliation(s)
- J Romero
- Laboratorio de Apoyo a la Investigación, Fundación Hospital Alcorcón, Alcorcón, 28922 Madrid, Spain.
| | | | | | | |
Collapse
|
109
|
Schmid HHO, Berdyshev EV. Cannabinoid receptor-inactive N-acylethanolamines and other fatty acid amides: metabolism and function. Prostaglandins Leukot Essent Fatty Acids 2002; 66:363-76. [PMID: 12052050 DOI: 10.1054/plef.2001.0348] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although it is now generally accepted that long-chain N-acylethanolamines and their precursors, N-acylethanolamine phospholipids, exist as trace constituents in virtually all vertebrate cells and tissues, their possible biological functions are just emerging. While anandamide (N-arachidonoylethanolamine) has received much attention due to its ability to bind to and activate cannabinoid receptors, the saturated and monounsaturated N-acylethanolamines, which usually represent the vast majority, are cannabinoid receptor-inactive but appear to interact with endocannabinoids and to have other signaling functions as well. Also, primary fatty acid amides, including the amide of oleic acid, which acts as a sleep-inducing agent, do not interact with cannabinoid receptors but are catabolically related to endocannabinoids. Here we review published information on the occurrence, metabolism, and possible signaling functions of the cannabinoid receptor-inactive N-acylethanolamines and primary fatty acid amides.
Collapse
Affiliation(s)
- H H O Schmid
- The Hormel Institute, University of Minnesota, 801-16th Avenue NE, Austin, MN 55912, USA.
| | | |
Collapse
|
110
|
Reggio PH. Endocannabinoid structure-activity relationships for interaction at the cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids 2002; 66:143-60. [PMID: 12052032 DOI: 10.1054/plef.2001.0343] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anandamide (N -arachidonoylethanolamine) was the first ligand to be identified as an endogenous ligand of the G-protein coupled cannabinoid CB1 receptor. Subsequently, two other fatty acid ethanolamides, N -homo- gamma -linolenylethanolamine and N -7,10,13,16-docosatetraenylethanolamine were identified as endogenous cannabinoid ligands. A fatty acid ester, 2-arachidonoylglycerol (2-AG), and a fatty acid ether, 2-arachidonyl glyceryl ether also have been isolated and shown to be endogenous cannabinoid ligands. Recent studies have postulated the existence of carrier-mediated anandamide transport that is essential for termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellularly, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-AG. 2-AG has also been proposed to be an endogenous CB2 ligand. Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors are currently emerging in the literature. This review considers cannabinoid receptor SAR developed to date for the endocannabinoids with emphasis upon the conformational implications for endocannabinoid recognition at the cannabinoid receptors.
Collapse
Affiliation(s)
- Patricia H Reggio
- Department of Chemistry, Kennesaw State University, 1000 Chastain Road, Kennesaw, GA 30144, USA.
| |
Collapse
|
111
|
Sugiura T, Kobayashi Y, Oka S, Waku K. Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids 2002; 66:173-92. [PMID: 12052034 DOI: 10.1054/plef.2001.0356] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N -arachidonoylethanolamine (anandamide) was the first endogenous cannabinoid receptor ligand to be discovered. Dual synthetic pathways for anandamide have been proposed. One is the formation from free arachidonic acid and ethanolamine, and the other is the formation from N -arachidonoyl phosphatidylethanolamine (PE) through the action of a phosphodiesterase. These pathways, however, do not appear to be able to generate a large amount of anandamide, at least under physiological conditions. The generation of anandamide from free arachidonic acid and ethanolamine is catalyzed by a degrading enzyme anandamide amidohydrolase/fatty acid amide hydrolase operating in reverse and requires large amounts of substrates. As for the second pathway, arachidonic acids esterified at the 1-position of glycerophospholipids, which are mostly esterified at the 2-position, are utilized for the formation of N -arachidonoyl PE, a stored precursor form of anandamide. In fact, the actual levels of anandamide in various tissues are generally low except in a few cases. 2-Arachidonoylglycerol (2-AG) was the second endogenous cannabinoid receptor ligand to be discovered. 2-AG is a degradation product of arachidonic acid-containing glycerophospholipids such as inositol phospholipids. Several investigators have demonstrated that 2-AG is produced in a variety of tissues and cells upon stimulation. 2-AG acts as a full agonist at the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating and indicates that 2-AG is the most efficacious endogenous natural ligand for the cannabinoid receptors. In this review, we summarize the tissue levels, biosynthesis, degradation and possible physiological significance of two endogenous cannabimimetic molecules, anandamide and 2-AG.
Collapse
Affiliation(s)
- T Sugiura
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui-gun, Kanagawa 199-0195, Japan.
| | | | | | | |
Collapse
|
112
|
Abstract
The fatty acid amide hydrolase (FAAH), is the enzyme responsible for the hydrolysis of anandamide, an endocannabinoid. The FAAH knockout, the assays for FAAH, the activity of its substrates, its reversibility and its cloning from rat, mouse, human, and pig are covered in this review. The conserved regions of FAAH are described in terms of sequence and function, including the domains that contains the serine catalytic nucleophile, the hydrophobic domain important for self-association, the proline rich domain region which may be important for subcellular localization and the fatty acid chain binding domain. The FAAH mouse promoter region was characterized in terms of its transcription start site and its activity in different cell types. The distribution of FAAH in the major organs in the body is described as well as regional distribution in the brain and its correlation with cannabinoid receptors. Since FAAH is recognized as a drug target, a large number of inhibitors have been synthesized and tested since 1994 and these are reviewed in terms of reversibility, potency, and specificity for FAAH.
Collapse
Affiliation(s)
- D G Deutsch
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5215, USA.
| | | | | |
Collapse
|
113
|
Karava V, Fasia L, Siafaka-Kapadai A. Anandamide amidohydrolase activity, released in the medium by Tetrahymena pyriformis. Identification and partial characterization. FEBS Lett 2001; 508:327-31. [PMID: 11728445 DOI: 10.1016/s0014-5793(01)03095-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anandamide, an endogenous cannabinoid receptor ligand, was rapidly metabolized by Tetrahymena pyriformis in vivo. Metabolic products were mainly phospholipids as well as neutral lipids, including small amounts of free arachidonic acid. Anandamide amidohydrolase activity was detected in the culture medium by the release of [3H]arachidonic acid from [3H]anandamide, in a time- and concentration-dependent manner. Kinetic experiments demonstrated that the released enzyme had an apparent K(m) of 3.7 microM and V(max) 278 pmol/min/mg protein. Amidohydrolase activity was maximal at pH 9-10, was abolished by phenylmethylsulfonyl fluoride and was Ca(2+)- and Mg(2+)-independent. Thus, T. pyriformis is capable of hydrolyzing anandamide in vivo and releasing amidohydrolase activity.
Collapse
Affiliation(s)
- V Karava
- Department of Chemistry (Biochemistry), University of Athens, Panepistimioupolis, 15771, Athens, Greece
| | | | | |
Collapse
|
114
|
Fowler CJ, Jonsson KO, Tiger G. Fatty acid amide hydrolase: biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide. Biochem Pharmacol 2001; 62:517-26. [PMID: 11585048 DOI: 10.1016/s0006-2952(01)00712-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of a number of important endogenous fatty acid amides, including the endogenous cannabimimetic agent anandamide (AEA), the sleep-inducing compound oleamide, and the putative anti-inflammatory agent palmitoylethanolamide (PEA). In recent years, there have been great advances in our understanding of the biochemical and pharmacological properties of the enzyme. In this commentary, the structure and biochemical properties of FAAH and the development of potent and selective FAAH inhibitors are reviewed, together with a brief discussion on the therapeutic possibilities for such compounds in the treatment of inflammatory pain and ischaemic states.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden.
| | | | | |
Collapse
|
115
|
Maccarrone M, Attinà M, Bari M, Cartoni A, Ledent C, Finazzi-Agrò A. Anandamide degradation and N-acylethanolamines level in wild-type and CB1 cannabinoid receptor knockout mice of different ages. J Neurochem 2001; 78:339-48. [PMID: 11461969 DOI: 10.1046/j.1471-4159.2001.00413.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CD1 mice lacking the CB1 receptors (knockout, KO) were compared with wild-type littermates for their ability to degrade N-arachidonoylethanolamine (anandamide, AEA) through a membrane transporter (AMT) and a fatty acid amide hydrolase (FAAH). The regional distribution and age-dependence of AMT and FAAH activity were investigated. Anandamide membrane transporter and FAAH increased with age in knockout mice, whereas they showed minor changes in wild-type animals. Remarkably, they were higher in all brain areas of 6-month-old knockout versus wild-type mice, and even higher in 12-month-old animals. The molecular mass (approximately 67 kDa) and isoelectric point (approximately 7.6) of mouse brain FAAH were determined and the FAAH protein content was shown to parallel the enzyme activity. The kinetic constants of AMT and FAAH in the cortex of wild-type and knockout mice at different ages suggested that different amounts of the same proteins were expressed. The cortex and hippocampus of wild-type and knockout mice contained the following N-acylethanolamines: AEA (8% of total), 2-arachidonoylglycerol (5%), N-oleoylethanolamine (20%), N-palmitoylethanolamine (53%) and N-stearoylethanolamine (14%). These compounds were twice as abundant in the hippocampus as in the cortex. Minor differences were observed in AEA or 2-arachidonoylglycerol content in knockout versus wild-type mice, whereas the other compounds were lower in the hippocampus of knockout versus wild-type animals.
Collapse
Affiliation(s)
- M Maccarrone
- Departments of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', Italy.
| | | | | | | | | | | |
Collapse
|
116
|
Patricelli MP, Cravatt BF. Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides. VITAMINS AND HORMONES 2001; 62:95-131. [PMID: 11345902 DOI: 10.1016/s0083-6729(01)62002-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Fatty acid amides (FAAs) represent a growing family of biologically active lipids implicated in a diverse range of cellular and physiological processes. At present, two general types of fatty acid amides, the N-acylethanolamines (NAEs) and the fatty acid primary amides (FAPAs), have been identified as potential physiological neuromodulators/neurotransmitters in mammals. Representative members of these two subfamilies include the endocannabinoid NAE anandamide and the sleep-inducing FAPA oleamide. In this Chapter, molecular mechanisms proposed for the biosynthesis and inactivation of FAAs are critically evaluated, with an emphasis placed on the biochemical and cell biological properties of proteins thought to mediate these processes.
Collapse
Affiliation(s)
- M P Patricelli
- Skaggs Institute for Chemical Biology and the Department of Cell Biology, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
117
|
Holt S, Nilsson J, Omeir R, Tiger G, Fowler CJ. Effects of pH on the inhibition of fatty acid amidohydrolase by ibuprofen. Br J Pharmacol 2001; 133:513-20. [PMID: 11399668 PMCID: PMC1572815 DOI: 10.1038/sj.bjp.0704113] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pharmacological properties of fatty acid amidohydrolase (FAAH) at different assay pH values were investigated using [(3)H]-anandamide ([(3)H]-AEA) as substrate in rat brain homogenates and in COS-1 [corrected] cells transfected with wild type and mutant FAAH. Rat brain hydrolysis of [(3)H]-AEA showed pH dependency with an optimum around pH 8-9. Between pH 6.3 and 8.2, the difference in activity was due to differences in the V(max), rather than the K(M) values. For inhibition of rat brain [(3)H]-AEA metabolism by a series of known FAAH inhibitors, the potencies of the enantiomers of ibuprofen and phenylmethylsulphonyl fluoride (PMSF) were higher at pH 5.28 than at pH 8.37, whereas the reverse was true for oleyl trifluoromethylketone (OTMK) and arachidonoylserotonin. At both pH values, (-)ibuprofen was a mixed-type inhibitor of FAAH. The K(i)((slope)) and K(i)((intercept)) values for (-)ibuprofen at pH 5.28 were 11 and 143 microM, respectively. At pH 8.37, the corresponding values were 185 and 3950 microM, respectively. The pH dependency for the inhibition by OTMK and (-)ibuprofen was also seen in COS-1 [corrected] cells transiently transfected with either wild type, S152A or C249A FAAH. No differences in potencies between the wild type and mutant enzymes were seen. It is concluded that the pharmacological properties of FAAH are highly pH-dependent. The higher potency of ibuprofen at lower pH values raises the possibility that in certain types of inflamed tissue, the concentration of this compound following oral administration may be sufficient to inhibit FAAH.
Collapse
Affiliation(s)
- Sandra Holt
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Jonas Nilsson
- Department of Cell and Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Romelda Omeir
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York, NY, 11974-5215, U.S.A
| | - Gunnar Tiger
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
- Author for correspondence:
| |
Collapse
|
118
|
Porter AC, Felder CC. The endocannabinoid nervous system: unique opportunities for therapeutic intervention. Pharmacol Ther 2001; 90:45-60. [PMID: 11448725 DOI: 10.1016/s0163-7258(01)00130-9] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The active principle in marijuana, Delta(9)-tetrahydrocannabinol (THC), has been shown to have wide therapeutic application for a number of important medical conditions, including pain, anxiety, glaucoma, nausea, emesis, muscle spasms, and wasting diseases. Delta(9)-THC binds to and activates two known cannabinoid receptors found in mammalian tissue, CB1 and CB2. The development of cannabinoid-based therapeutics has focused predominantly on the CB1 receptor, based on its predominant and abundant localization in the CNS. Like most of the known cannabinoid agonists, Delta(9)-THC is lipophilic and relatively nonselective for both receptor subtypes. Clinical studies show that nonselective cannabinoid agonists are relatively safe and provide therapeutic efficacy, but that they also induce psychotropic side effects. Recent studies of the biosynthesis, release, transport, and disposition of anandamide are beginning to provide an understanding of the role of lipid transmitters in the CNS. This review attempts to link current understanding of the basic biology of the endocannabinoid nervous system to novel opportunities for therapeutic intervention. This new knowledge may facilitate the development of cannabinoid receptor-targeted therapeutics with improved safety and efficacy profiles.
Collapse
Affiliation(s)
- A C Porter
- Neuroscience Division, Drop 0510, Lilly Research Laboratories, Indianapolis, IN 46285, USA
| | | |
Collapse
|
119
|
Calignano A, La Rana G, Loubet-Lescoulié P, Piomelli D. A role for the endogenous cannabinoid system in the peripheral control of pain initiation. PROGRESS IN BRAIN RESEARCH 2001; 129:471-82. [PMID: 11098711 DOI: 10.1016/s0079-6123(00)29034-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- A Calignano
- Department of Pharmacology, University of Naples, Italy
| | | | | | | |
Collapse
|
120
|
Hillard CJ, Jarrahian A. The movement of N-arachidonoylethanolamine (anandamide) across cellular membranes. Chem Phys Lipids 2000; 108:123-34. [PMID: 11106786 DOI: 10.1016/s0009-3084(00)00191-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review presents and explores the hypothesis that N-arachidonoylethanolamine (AEA, also called anandamide) is transported across cellular membranes by a process that is protein-mediated. Support for this hypothesis comes from experiments demonstrating that cellular accumulation of extracellularly applied AEA is saturable, time and temperature dependent and exhibits selective inhibition by various structural analogs of AEA. The accumulation of AEA is cell specific; data is presented demonstrating that several cell types, including the bovine adrenal zona glomerulosa cell, exhibit very high capacity for AEA accumulation while others, such as the HeLa cell, have a very low capacity. The transport process has the characteristics of facilitated diffusion; it is bi-directional, not dependent on either ATP or extracellular sodium and exhibits the trans effect of flux coupling. Several important questions remain to be answered regarding the carrier, including its molecular structure and its role in the release and inactivation of endogenously produced AEA.
Collapse
Affiliation(s)
- C J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
121
|
Abstract
The topic of this review is fatty acid amide hydrolase (FAAH), one of the best-characterized enzymes involved in the hydrolysis of bioactive lipids such as anandamide, 2-arachidonoylglycerol (2-AG), and oleamide. Herein, we discuss the nomenclature, the various assays that have been developed, the relative activity of the various substrates and the reversibility of the enzyme reactions catalyzed by FAAH. We also describe the cloning of the enzyme from rat and subsequent cDNA isolation from mouse, human, and pig. The proteins and the mRNAs from different species are compared. Cloning the enzyme permitted the purification and characterization of recombinant FAAH. The conserved regions of FAAH are described in terms of sequence and function, including the amidase domain which contains the serine catalytic nucleophile, the hydrophobic domain important for self association, and the proline rich domain region, which may be important for subcellular localization. The distribution of FAAH in the major organs of the body is described as well as regional distribution in the brain and its correlation with cannabinoid receptors. Since FAAH is recognized as a drug target, a large number of inhibitors have been synthesized and tested since 1994 and these are reviewed in terms of reversibility, potency, and specificity for FAAH and cannabinoid receptors.
Collapse
Affiliation(s)
- N Ueda
- Department of Biochemistry, School of Medicine, University of Tokushima, Kuramoto-cho, 770-8503, Tokushima, Japan
| | | | | | | |
Collapse
|
122
|
Reggio PH, Traore H. Conformational requirements for endocannabinoid interaction with the cannabinoid receptors, the anandamide transporter and fatty acid amidohydrolase. Chem Phys Lipids 2000; 108:15-35. [PMID: 11106780 DOI: 10.1016/s0009-3084(00)00185-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Anandamide (N-arachidonoylethanolamine) has been identified as an endogenous ligand of the G-protein coupled cannabinoid CB(1) receptor. Recent studies have postulated the existence of carrier-mediated anandamide transport which is involved in the termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellulary, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-arachidonoylglycerol (2-AG). Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors, the anandamide transporter and FAAH are currently emerging in the literature. This review considers the divergences between these SARs and focuses upon the conformational implications for endocannabinoid recognition at each of these biological targets.
Collapse
Affiliation(s)
- P H Reggio
- Department of Chemistry, Kennesaw State University, 1000 Chastain Road, Kennesaw, GA 30144, USA.
| | | |
Collapse
|
123
|
Schmid HH. Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively? Chem Phys Lipids 2000; 108:71-87. [PMID: 11106783 DOI: 10.1016/s0009-3084(00)00188-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long-chain N-acylethanolamines (NAEs) and their precursors, N-acylethanolamine phospholipids, are ubiquitous trace constituents of animal and human cells, tissues and body fluids. Their cellular levels appear to be tightly regulated and they accumulate as the result of injury. Saturated and monounsaturated congeners which represent the vast majority of cellular NAEs can have cytoprotective effects while polyunsaturated NAEs, especially 20:4n-6 NAE (anandamide), elicit physiological effects by binding to and activating cannabinoid receptors. It is the purpose of this article to review published data on the pathways and mechanisms of NAE biosynthesis in mammals and to evaluate this information for its physiological significance. The generation and turnover of NAE via N-acyl PE through the transacylation-phosphodiesterase pathway may represent a novel cannabinoid receptor-independent signalling system, analogous to and possibly related to ceramide-mediated cell signalling.
Collapse
Affiliation(s)
- H H Schmid
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA.
| |
Collapse
|
124
|
Fowler CJ, Börjesson M, Tiger G. Differences in the pharmacological properties of rat and chicken brain fatty acid amidohydrolase. Br J Pharmacol 2000; 131:498-504. [PMID: 11015300 PMCID: PMC1572338 DOI: 10.1038/sj.bjp.0703569] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pharmacological properties of fatty acid amidohydrolase (FAAH) were investigated in brains of 35-day-old chickens, since nothing is known about the enzyme in avian species. FAAH activity towards both [(3)H]-palmitoylethanolamide (PEA) [K(M)=1.5 microM] and [(3)H]-anandamide (AEA) [K(M)=5.4 microM] was demonstrated in the chicken brains. The chicken FAAH was inhibited by the substrate analogues oleyl trifluoromethylketone (OTMK) and diazomethylarachidonyl ketone (DAK) with similar potencies to the rat FAAH. However, in contrast to the rat brain, phenylmethylsulphonyl fluoride (PMSF) and the enantiomers of ibuprofen had very weak effects on chicken brain FAAH. Indomethacin and niflumic acid were found to inhibit rat brain AEA hydrolysis. The inhibition by indomethacin was reversible and competitive, with a K(i) value of 120 microM. Chicken FAAH was less sensitive to indomethacin than its rodent counterpart, but the inhibition was also competitive (K(i)). It is concluded that chicken FAAH activity has different pharmacological properties to its rodent counterpart.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeâ University, SE-901 87 Umeâ, Sweden.
| | | | | |
Collapse
|
125
|
Jarrahian A, Manna S, Edgemond WS, Campbell WB, Hillard CJ. Structure-activity relationships among N-arachidonylethanolamine (Anandamide) head group analogues for the anandamide transporter. J Neurochem 2000; 74:2597-606. [PMID: 10820223 DOI: 10.1046/j.1471-4159.2000.0742597.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two putative endocannabinoids, N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol, are inactivated by removal from the extracellular environment by a process that has the features of protein-mediated facilitated diffusion. We have synthesized and studied 22 N-linked analogues of arachidonylamide for the purpose of increasing our understanding of the structural requirements for the binding of ligands to the AEA transporter. We have also determined the affinities of these analogues for both the CB(1) cannabinoid receptor and fatty acid amide hydrolase (FAAH). We have identified several structural features that enhance binding to the AEA transporter in cerebellar granule cells. We have confirmed the findings of others that replacing the ethanolamine head group with 4-hydroxybenzyl results in a high-affinity ligand for the transporter. However, we find that the same molecule is also a competitive inhibitor of FAAH. Similarly, replacement of the ethanolamine of AEA with 3-pyridinyl also results in a high-affinity inhibitor of both the transporter and FAAH. We conclude that the structural requirements for ligand binding to the CB(1) receptor and binding to the transporter are very different; however, the transporter and FAAH share most, but not all, structural requirements.
Collapse
Affiliation(s)
- A Jarrahian
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | |
Collapse
|
126
|
Boger DL, Sato H, Lerner AE, Hedrick MP, Fecik RA, Miyauchi H, Wilkie GD, Austin BJ, Patricelli MP, Cravatt BF. Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proc Natl Acad Sci U S A 2000; 97:5044-9. [PMID: 10805767 PMCID: PMC25778 DOI: 10.1073/pnas.97.10.5044] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2000] [Accepted: 02/25/2000] [Indexed: 01/03/2023] Open
Abstract
The development of exceptionally potent inhibitors of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of oleamide (an endogenous sleep-inducing lipid), and anandamide (an endogenous ligand for cannabinoid receptors) is detailed. The inhibitors may serve as useful tools to clarify the role of endogenous oleamide and anandamide and may prove to be useful therapeutic agents for the treatment of sleep disorders or pain. The combination of several features-an optimal C12-C8 chain length, pi-unsaturation introduction at the corresponding arachidonoyl Delta(8,9)/Delta(11,12) and oleoyl Delta(9,10) location, and an alpha-keto N4 oxazolopyridine with incorporation of a second weakly basic nitrogen provided FAAH inhibitors with K(i)s that drop below 200 pM and are 10(2)-10(3) times more potent than the corresponding trifluoromethyl ketones.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Hillard CJ. Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat 2000; 61:3-18. [PMID: 10785538 DOI: 10.1016/s0090-6980(00)00051-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The purpose of this review is to discuss the cellular synthesis and inactivation of two putative endogenous ligands of the cannabinoid receptor, N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol (2-AG). Both ligands are synthesized by neurons and brain tissue in response to increased intracellular calcium concentrations. Both ligands are substrates for fatty acid amide hydrolase (FAAH). Both AEA and 2-AG bind to the neuronal form of the cannabinoid receptor (CB1). AEA binds the receptor with moderate affinity and has the characteristics of a partial agonist, whereas, 2-AG binds with low affinity but exhibits full efficacy. Two possible physiological roles of the endocannabinoids and the CB1 receptor are discussed: the regulation of gestation and the regulation of gastrointestinal motility.
Collapse
Affiliation(s)
- C J Hillard
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
128
|
Abstract
Anandamide (N-arachidonoylethanolamine) loses its cannabimimetic activity when it is hydrolyzed to arachidonic acid and ethanolamine by the catalysis of an enzyme referred to as anandamide amidohydrolase or fatty acid amide hydrolase. Cravatt's group and our group cloned cDNA of the enzyme from rat, human, mouse and pig, and the primary structures revealed that the enzymes belong to an amidase family characterized by the amidase signature sequence. The recombinant enzyme acted not only as an amidase for anandamide and oleamide, but also as an esterase for 2-arachidonoylglycerol. The reversibility of the enzymatic anandamide hydrolysis and synthesis was also confirmed with a purified recombinant enzyme. Several fatty acid derivatives like methyl arachidonyl fluorophosphonate potently inhibited the enzyme. The enzyme was distributed widely in mammalian organs such as liver, small intestine and brain. However, the anandamide hydrolyzing enzyme found in human megakaryoblastic cells was catalytically distinct from the previously known enzyme.
Collapse
Affiliation(s)
- N Ueda
- Department of Biochemistry, Tokushima University School of Medicine, 3-18-15, Kuramoto-cho, Tokushima, Japan.
| | | |
Collapse
|
129
|
Tiger G, Stenström A, Fowler CJ. Pharmacological properties of rat brain fatty acid amidohydrolase in different subcellular fractions using palmitoylethanolamide as substrate. Biochem Pharmacol 2000; 59:647-53. [PMID: 10677581 DOI: 10.1016/s0006-2952(99)00373-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the present study, the pharmacological properties of fatty acid amide hydrolase (FAAH) in subcellular fractions of rat brain were investigated using palmitoylethanolamide (PEA) and arachidonyl ethanolamide (anandamide, AEA) as substrates. FAAH hydrolysed [(3)H]PEA in crude homogenates with median K(m) and V(max) values of 2.9 microM and 2.14 nmol.(mg protein)(-1).min(-1), respectively. [(3)H]PEA hydrolysis was inhibited both by non-radioactive AEA (with a K(i) value very similar to the K(m) value for [(3)H]AEA as substrate using the same assay) and by R(-)ibuprofen (mixed-type inhibition K(i) and K'(i) values 88 and 720 microM, respectively). FAAH activity towards both [(3)H]PEA and [(3) myelin = cytosol, but there were no differences between the relative activities towards the two substrates in any of the fractions. [(3)H]PEA hydrolysis in mitochondrial, myelin, microsomal, and synaptosomal fractions was inhibited by oleyl trifluoromethylketone, phenylmethylsulphonyl fluoride, and the R(-)- and S(+)-enantiomers of the nonsteroidal anti-inflammatory drug ibuprofen, with mean IC(50) values in the ranges 0.028-0.041, 0.37-0.52, 67-110, and 130-260 microM, respectively. It is concluded that the pharmacological properties of FAAH in the different subcellular fractions are very similar.
Collapse
Affiliation(s)
- G Tiger
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden.
| | | | | |
Collapse
|
130
|
Richardson JD. Cannabinoids modulate pain by multiple mechanisms of action. THE JOURNAL OF PAIN 2000. [DOI: 10.1016/s1526-5900(00)90082-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
131
|
Yazulla S, Studholme KM, McIntosh HH, Deutsch DG. Immunocytochemical localization of cannabinoid CB1 receptor and fatty acid amide hydrolase in rat retina. J Comp Neurol 1999; 415:80-90. [PMID: 10540359 DOI: 10.1002/(sici)1096-9861(19991206)415:1<80::aid-cne6>3.0.co;2-h] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cannabinoids have major effects on central nervous system function. Recent studies indicate that cannabinoid effects on the visual system have a retinal component. Immunocytochemical methods were used to localize cannabinoid CB1 receptor immunoreactivity (CB1R-IR) and an endocannabinoid (anandamide and 2-arachidonylglycerol) degradative enzyme, fatty acid amide hydrolase (FAAH)-IR, in the rat retina. Double labeling with neuron-specific markers permitted identification of cells that were labeled with CB1R-IR and FAAH-IR. CB1R-IR was observed in all cells that were protein kinase C-immunoreactive (rod bipolar cells and a subtype of GABA-amacrine cell) as well as horizontal cells (identified by calbindin-IR). There was also punctate CB1R-IR in the distal one-third of the inner plexiform layer (IPL) that could not be assigned to a cell type. FAAH-IR was most prominent in large ganglion cells, whose dendrites projected to a narrow band in the proximal IPL. Weaker FAAH-IR was observed in the soma of horizontal cells (identified by calbindin-IR); the soma of large, but not small, dopamine amacrine cells (identified by tyrosine hydroxylase-IR); and dendrites of orthotopic- and displaced-starburst amacrine cells (identified by choline acetyltransferase-IR) but in less than 50% of the starburst amacrine cell somata. The extensive distribution of CB1R-IR on horizontal cells and rod bipolar cells indicates a role of endocannabinoids in scotopic vision, whereas the more widespread distribution of FAAH-IR indicates a complex control of endocannabinoid release and degradation in the retina.
Collapse
Affiliation(s)
- S Yazulla
- Department of Neurobiology, University at Stony Brook, Stony Brook, New York 11794-5230, USA.
| | | | | | | |
Collapse
|
132
|
Omeir RL, Arreaza G, Deutsch DG. Identification of two serine residues involved in catalysis by fatty acid amide hydrolase. Biochem Biophys Res Commun 1999; 264:316-20. [PMID: 10529361 DOI: 10.1006/bbrc.1999.1524] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid amide hydrolase is an integral membrane protein that hydrolyzes a novel and growing class of neuromodulatory fatty acid molecules, including anandamide, 2-arachidonyl glycerol, and oleamide. This activity is inhibited by serine and cysteine reactive agents, suggesting that the active site contains a serine or cysteine residue. Therefore serine and cysteine residues were mutated to alanine and the effects on activity were determined. Mutants were prepared using site-directed mutagenesis methods and expressed in COS-7 cells. Serine mutations S217A and S241A completely abolished enzymatic activity. Mutants S152A and C249A had no effect on activity, while S218A showed a slight decrease in activity. To confirm these results biochemically, the mutant enzymes were reacted with the irreversible inhibitor [(14)C]-diisopropyl fluorophosphate. All of the mutants except S217A and S241A were labeled. We therefore confirm that fatty acid amide hydrolase is a serine hydrolase and propose that both Ser-217 and Ser-241 are essential for enzyme activity.
Collapse
Affiliation(s)
- R L Omeir
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | | | | |
Collapse
|
133
|
Katayama K, Ueda N, Katoh I, Yamamoto S. Equilibrium in the hydrolysis and synthesis of cannabimimetic anandamide demonstrated by a purified enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:205-14. [PMID: 10521704 DOI: 10.1016/s1388-1981(99)00124-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Anandamide, an endogenous ligand for cannabinoid receptors, loses its biological activities when it is hydrolyzed to arachidonic acid and ethanolamine by anandamide amidohydrolase. We overexpressed a recombinant rat enzyme with a hexahistidine tag in a baculovirus-insect cell expression system, and purified the enzyme with the aid of a Ni-charged resin to a specific activity as high as 5.7 micromol/min/mg protein. The purified recombinant enzyme catalyzed not only the hydrolysis of anandamide and palmitoylethanolamide, but also their reverse synthetic reactions. In order to attain an equilibrium of the anandamide hydrolysis and its reverse reaction within 10 min, we utilized a large amount of the purified enzyme. The equilibrium constant ([arachidonic acid][ethanolamine])/([anandamide][water]) was calculated as 4x10(-3) (37 degrees C, pH 9.0). These experimental results with a purified enzyme preparation quantitatively confirmed the reversibility of the enzyme reaction previously observed with crude enzyme preparations.
Collapse
Affiliation(s)
- K Katayama
- Department of Cardiovascular Surgery, Tokushima University, School of Medicine, Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | |
Collapse
|
134
|
Di Marzo V. Biosynthesis and inactivation of endocannabinoids: relevance to their proposed role as neuromodulators. Life Sci 1999; 65:645-55. [PMID: 10462065 DOI: 10.1016/s0024-3205(99)00287-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The two putative endogenous ligands of cannabinoid receptors, anandamide and 2-arachidonoylglycerol, are synthesized by and released from neurons in a Ca2+-dependent fashion, and re-uptaken and catabolized by both neurons and astrocytes. These biochemical features of the endocannabinoids, as well as some of their pharmacological effects in both central and peripheral nervous systems, suggest a role as neuromodulators for these metabolites. This neuromodulatory role is supported by the brain regional distribution of anandamide, its biosynthetic precursor and its major inactivating enzyme, and by the existence of possible regulatory mechanisms for the biosynthesis and inactivation of endocannabinoids, which are reviewed in this article.
Collapse
Affiliation(s)
- V Di Marzo
- Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Napoli, Italy.
| |
Collapse
|
135
|
Ueda N, Yamanaka K, Terasawa Y, Yamamoto S. An acid amidase hydrolyzing anandamide as an endogenous ligand for cannabinoid receptors. FEBS Lett 1999; 454:267-70. [PMID: 10431820 DOI: 10.1016/s0014-5793(99)00820-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Anandamide loses its cannabimimetic activities upon hydrolysis to arachidonic acid and ethanolamine. So far the anandamide hydrolyzing activity widely distributed in mammalian organs has been attributed exclusively to an enzyme referred to as anandamide amidohydrolase with an optimum pH around 9. We found another enzyme hydrolyzing anandamide in a human megakaryoblastic cell line (CMK). The enzyme present in the 12,000 x g pellet of the cell homogenate was solubilized by freeze-thaw. The solubilized enzyme showed an optimal pH around 5, and was almost inactive at alkaline pH. The enzyme activity was increased by the addition of dithiothreitol. In contrast, anandamide amidohydrolase of RBL-1 cells was mostly insoluble even after freeze-thaw, showed an optimal pH at 9, and was not affected by dithiothreitol. Furthermore, the enzyme of CMK cells was much less sensitive to phenylmethylsulfonyl fluoride and methyl arachidonoyl fluorophosphonate potently inhibiting anandamide amidohydrolase, and effectively hydrolyzed palmitoylethanolamide, which was a poor substrate for anandamide amidohydrolase. Thus, the enzyme of CMK cells is distinguishable from anandamide amidohydrolase.
Collapse
Affiliation(s)
- N Ueda
- Department of Biochemistry, Tokushima University, School of Medicine, Japan
| | | | | | | |
Collapse
|
136
|
Arreaza G, Deutsch DG. Deletion of a proline-rich region and a transmembrane domain in fatty acid amide hydrolase. FEBS Lett 1999; 454:57-60. [PMID: 10413095 DOI: 10.1016/s0014-5793(99)00774-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fatty acid amide hydrolase contains a proline-rich sequence matching a consensus sequence for SH3-binding domains as well as a transmembrane domain. In this study, deletion mutants lacking the proline-rich region and the transmembrane domain were generated. Transfection experiments demonstrated that the proline-rich deleted amidase was enzymatically inactive. While immunostaining of the wild-type was always punctate with strong perinuclear staining characteristic for endoplasmic reticulum, the staining of the mutant was diffuse and distributed throughout the cytoplasm and perinuclear region. These observations along with the loss of activity suggest that the proline-rich region may play a role in the subcellular localization and enzymatic function. The transmembrane domain-deleted mutant was indistinguishable from the wild-type enzyme.
Collapse
Affiliation(s)
- G Arreaza
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, 11794, USA
| | | |
Collapse
|
137
|
Piomelli D, Beltramo M, Glasnapp S, Lin SY, Goutopoulos A, Xie XQ, Makriyannis A. Structural determinants for recognition and translocation by the anandamide transporter. Proc Natl Acad Sci U S A 1999; 96:5802-7. [PMID: 10318965 PMCID: PMC21941 DOI: 10.1073/pnas.96.10.5802] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological actions of anandamide (arachidonylethanolamide), an endogenous cannabinoid lipid, are terminated by a two-step inactivation process consisting of carrier-mediated uptake and intracellular hydrolysis. Anandamide uptake in neurons and astrocytes is mediated by a high-affinity, Na+-independent transporter that is selectively inhibited by N-(4-hydroxyphenyl)-arachidonamide (AM404). In the present study, we examined the structural determinants governing recognition and translocation of substrates by the anandamide transporter constitutively expressed in a human astrocytoma cell line. Competition experiments with a select group of analogs suggest that substrate recognition by the transporter is favored by a polar nonionizable head group of defined stereochemical configuration containing a hydroxyl moiety at its distal end. The secondary carboxamide group interacts favorably with the transporter, but may be replaced with either a tertiary amide or an ester, suggesting that it may serve as hydrogen acceptor. Thus, 2-arachidonylglycerol, a putative endogenous cannabinoid ester, also may serve as a substrate for the transporter. Substrate recognition requires the presence of at least one cis double bond situated at the middle of the fatty acid carbon chain, indicating a preference for ligands whose hydrophobic tail can adopt a bent U-shaped conformation. On the other hand, uptake experiments with radioactively labeled substrates show that no fewer than four cis nonconjugated double bonds are required for optimal translocation across the cell membrane, suggesting that substrates are transported in a folded hairpin conformation. These results outline the general structural requisites for anandamide transport and may assist in the development of selective inhibitors with potential clinical applications.
Collapse
Affiliation(s)
- D Piomelli
- The Neurosciences Institute, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
138
|
Paria BC, Zhao X, Wang J, Das SK, Dey SK. Fatty-acid amide hydrolase is expressed in the mouse uterus and embryo during the periimplantation period. Biol Reprod 1999; 60:1151-7. [PMID: 10208977 DOI: 10.1095/biolreprod60.5.1151] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Arachidonoylethanolamide (anandamide) is an endogenous ligand for cannabinoid receptors. We demonstrated previously that the periimplantation mouse uterus has high levels of anandamide and can synthesize and hydrolyse anandamide. In the present investigation, we examined the expression of the recently identified fatty-acid amide hydrolase (FAAH) gene, which is involved in hydrolyzing anandamide to arachidonic acid and ethanolamine, in the periimplantation mouse embryo and uterus. As previously reported, Northern blot hybridization detected a transcript of approximately 2.5 kilobases of FAAH mRNA in whole uterine poly(A)+ RNA samples. The levels of this mRNA were higher in the liver and brain than in the uterus. In the uterus, higher accumulation of FAAH mRNA occurred on Days 1-4 followed by declines on later days (Days 5-8) of pregnancy. In situ hybridization detected this mRNA primarily in uterine luminal and glandular epithelial cells on Days 1-4 of pregnancy. With the progression of implantation (Days 5-8), accumulation of this mRNA was retained in the luminal and glandular epithelia. In addition, implanting blastocysts showed accumulation of this mRNA. FAAH mRNA accumulation was absent or minimal in the myometrium during this period. Western blotting detected an approximately 60-kDa protein in uterine membrane preparations. In preimplantation embryos, FAAH mRNA was present in one-cell and two-cell embryos but was absent in embryos at the eight-cell/morula stage. However, this mRNA was again detected in Day 4 blastocysts. The presence of FAAH mRNA in one- and two-cell embryos reflects accumulation of maternal message, while its presence in blastocysts reflects embryonic gene activation. Collectively, our present and previous results provide evidence that FAAH is expressed in the mouse uterus and embryo during early pregnancy to modulate local levels of anandamide that could be important for embryo development and implantation.
Collapse
Affiliation(s)
- B C Paria
- Department of Molecular and Integrative Physiology, Ralph L. Smith Research Center, University of Kansas Medical Center, Kansas City, Kansas 66160-7338, USA
| | | | | | | | | |
Collapse
|
139
|
Giuffrida A, Parsons LH, Kerr TM, Rodríguez de Fonseca F, Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 1999; 2:358-63. [PMID: 10204543 DOI: 10.1038/7268] [Citation(s) in RCA: 559] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We measured endogenous cannabinoid release in dorsal striatum of freely moving rats by microdialysis and gas chromatography/mass spectrometry. Neural activity stimulated the release of anandamide, but not of other endogenous cannabinoids such as 2-arachidonylglycerol. Moreover, anandamide release was increased eightfold over baseline after local administration of the D2-like (D2, D3, D4) dopamine receptor agonist quinpirole, a response that was prevented by the D2-like receptor antagonist raclopride. Administration of the D1-like (D1, D5) receptor agonist SKF38393 had no such effect. These results suggest that functional interactions between endocannabinoid and dopaminergic systems may contribute to striatal signaling. In agreement with this hypothesis, pretreatment with the cannabinoid antagonist SR141716A enhanced the stimulation of motor behavior elicited by systemic administration of quinpirole. The endocannabinoid system therefore may act as an inhibitory feedback mechanism countering dopamine-induced facilitation of motor activity.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Amides
- Animals
- Arachidonic Acids/metabolism
- Calcium/pharmacology
- Cannabinoid Receptor Modulators
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/physiology
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Endocannabinoids
- Ethanolamines/pharmacology
- Gas Chromatography-Mass Spectrometry
- Glycerides/pharmacology
- Hyperkinesis/chemically induced
- Male
- Microdialysis
- Motor Activity/drug effects
- Motor Activity/physiology
- Oleic Acids
- Palmitic Acids/pharmacology
- Piperidines/pharmacology
- Polyunsaturated Alkamides
- Potassium/pharmacology
- Pyrazoles/pharmacology
- Quinpirole/pharmacology
- Raclopride
- Rats
- Rats, Wistar
- Receptors, Cannabinoid
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/physiology
- Receptors, Drug/drug effects
- Receptors, Drug/physiology
- Rimonabant
- Salicylamides/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Single-Blind Method
- Sodium/physiology
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- A Giuffrida
- Department of Pharmacology, University of California at Irvine, 92697-4625, USA
| | | | | | | | | | | |
Collapse
|
140
|
Maccarrone M, Bari M, Menichelli A, Del Principe D, Agrò AF. Anandamide activates human platelets through a pathway independent of the arachidonate cascade. FEBS Lett 1999; 447:277-82. [PMID: 10214961 DOI: 10.1016/s0014-5793(99)00308-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Anandamide (arachidonoylethanolamide, AnNH) is shown to activate human platelets, a process which was not inhibited by acetylsalicylic acid (aspirin). Unlike AnNH, hydroperoxides generated thereof by lipoxygenase activity, and the congener (13-hydroxy)linoleoylethanolamide, were unable to activate platelets, though they counteracted AnNH-mediated stimulation. On the other hand, palmitoylethanolamide neither activated human platelets nor blocked the AnNH effects. AnNH inactivation by human platelets was afforded by a high-affinity transporter, which was activated by nitric oxide-donors up to 225% of the control. The internalized AnNH could thus be hydrolyzed by a fatty acid amide hydrolase (FAAH), characterized here for the first time.
Collapse
Affiliation(s)
- M Maccarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Italy
| | | | | | | | | |
Collapse
|
141
|
Fowler CJ, Janson U, Johnson RM, Wahlström G, Stenström A, Norström K, Tiger G. Inhibition of anandamide hydrolysis by the enantiomers of ibuprofen, ketorolac, and flurbiprofen. Arch Biochem Biophys 1999; 362:191-6. [PMID: 9989926 DOI: 10.1006/abbi.1998.1025] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The endogenous cannabimimetic anandamide is hydrolyzed by a fatty acid amide hydrolase to yield arachidonic acid and ethanolamine. In the present study, the regional distribution of the activity and its sensitivity to inhibition by the enantiomers of ibuprofen, ketorolac, and flurbiprofen has been investigated. The rate of [3H]anandamide hydrolysis was found in both 7-week-old and 90-week-old rats to be in the order hippocampus > cerebral cortex > cerebellum > striatum approximately midbrain, with higher rates of hydrolysis for the 7-week-old rats than for the 90-week-old rats. In whole brain (minus cerebellum), the R(-)-enantiomer of ibuprofen was a mixed-type inhibitor of anandamide hydrolysis and was approximately 2-3 times more potent than the S(+)-enantiomer, IC50 values of 230 and 750 microM, respectively, being found. A similar pattern of inhibition of anandamide hydrolysis was seen when intact C6 rat glioma cells were used. Ketorolac inhibited rat brain anandamide hydrolysis, with IC50 values of 50, 440, and 80 microM being found for the R-, S-, and R,S-forms, respectively. The IC50 value for R-flurbiprofen (60 microM) was similar to the IC50 value for the S-enantiomer (50 microM). These data demonstrate that there is no dramatic enantiomeric selectivity of NSAID compounds as inhibitors of fatty acid amide hydrolase enzyme(s) responsible for the hydrolysis of anandamide. The enantiomers of flurbiprofen and R-ketorolac are the most potent NSAID inhibitors of fatty acid amide hydrolase yet reported.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology, Umeå University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
142
|
Goparaju SK, Ueda N, Taniguchi K, Yamamoto S. Enzymes of porcine brain hydrolyzing 2-arachidonoylglycerol, an endogenous ligand of cannabinoid receptors. Biochem Pharmacol 1999; 57:417-23. [PMID: 9933030 DOI: 10.1016/s0006-2952(98)00314-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Anandamide and 2-arachidonoylglycerol (2-AG) are two endogenous ligands for the cannabinoid receptors, and their cannabimimetic activities are lost when they are hydrolyzed enzymatically. Cytosol and particulate fractions of porcine brain exhibited a high 2-AG hydrolyzing activity of 100 nmol/min/mg protein. Most of the activity could be attributed to a monoacylglycerol lipase-like enzyme that did not hydrolyze anandamide. It was separated by hydroxyapatite chromatography from anandamide amidohydrolase, which is also capable of hydrolyzing 2-AG as well as anandamide. Thus, porcine brain has at least two enzymes capable of hydrolyzing 2-AG. The 2-AG hydrolase activities of both the cytosolic and particulate enzymes were irreversibly and time-dependently inhibited by methyl arachidonyl fluorophosphonate with IC50 values as low as 2-3 nM.
Collapse
Affiliation(s)
- S K Goparaju
- Department of Biochemistry, Tokushima University, School of Medicine, Japan
| | | | | | | |
Collapse
|
143
|
Boger DL, Sato H, Lerner AE, Austin BJ, Patterson JE, Patricelli MP, Cravatt BF. Trifluoromethyl ketone inhibitors of fatty acid amide hydrolase: a probe of structural and conformational features contributing to inhibition. Bioorg Med Chem Lett 1999; 9:265-70. [PMID: 10021942 DOI: 10.1016/s0960-894x(98)00734-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The examination of a series of trifluoromethyl ketone inhibitors of Fatty Acid Amide Hydrolase (FAAH, oleamide hydrolase, anandamide amidohydrolase) is detailed in efforts that define structural and conformational properties that contribute to enzyme inhibition and substrate binding. The results imply an extended bound conformation, highlight a role for the presence, position, and stereochemistry of a delta cis double bond, and suggest little apparent role for C11-C18/C22 of the fatty acid amide substrates.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry, Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
The structural similarities between the anandamide transport inhibitor N-(4-hydroxyphenyl)-arachidonylamide (AM404) and the synthetic vanilloid agonist olvanil [(N-vanillyl)-9-oleamide], prompted us to investigate the possibility that olvanil may interfere with anandamide transport. The intracellular accumulation of [3H]anandamide by human astrocytoma cells was prevented by olvanil with a Ki value of 14.1+/-7.1 microM. By contrast, capsaicin [(8-methyl-N-vanillyl)-6-noneamide], a plant-derived vanilloid agonist, and capsazepine (N-[2-(4-chlorophenyl)ethyl]-1,3,4,5-tetrahydro-7,8-dihydroxy-2 H-2-benzazepine-2-carbothioamide), a vanilloid antagonist, had no such effect (Ki > 100 microM). These results indicate that, although less potent than AM404 (Ki 2.1+/-0.2 microM), olvanil may reduce anandamide clearance at concentrations similar to those needed for vanilloid receptor activation.
Collapse
Affiliation(s)
- M Beltramo
- The Neurosciences Institute, San Diego, CA 92121, USA
| | | |
Collapse
|
145
|
Abstract
In 1992 the discovery of the first endogenous ligand of cannabinoid receptors, anandamide, provided conclusive support to the hypothesis that an "endogenous cannabinoid regulatory system" exists in mammalian nervous tissue. Anandamide (N-arachidonoyl-ethanolamine) was the first of a series of long-chain fatty acid derivatives, including two other polyunsaturated N-acylethanolamines and 2-arachidonoyl-glycerol, found to exert cannabimimetic properties in either central or peripheral tissues. Here we review the current knowledge on the biochemical bases of the formation and inactivation of endogenous cannabinoid ligands as well as of their interaction with cannabinoid receptor subtypes.
Collapse
Affiliation(s)
- V Di Marzo
- Istituto per la Chimica di Molecole di Interesse Biologico, CNR, Naples, Italy
| | | |
Collapse
|
146
|
Czarnocki Z, Matuszewska MP, Matuszewska I. HIGHLY EFFICIENT SYNTHESIS OF FATTY ACID DOPAMIDES. ORG PREP PROCED INT 1998. [DOI: 10.1080/00304949809355327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
147
|
Affiliation(s)
- D Piomelli
- Neurosciences Institute, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
148
|
Maccarrone M, van der Stelt M, Rossi A, Veldink GA, Vliegenthart JF, Agrò AF. Anandamide hydrolysis by human cells in culture and brain. J Biol Chem 1998; 273:32332-9. [PMID: 9822713 DOI: 10.1074/jbc.273.48.32332] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anandamide (arachidonylethanolamide; AnNH) has important neuromodulatory and immunomodulatory activities. This lipid is rapidly taken up and hydrolyzed to arachidonate and ethanolamine in many organisms. As yet, AnNH inactivation has not been studied in humans. Here, a human brain fatty-acid amide hydrolase (FAAH) has been characterized as a single protein of 67 kDa with a pI of 7.6, showing apparent Km and Vmax values for AnNH of 2.0 +/- 0.2 microM and 800 +/- 75 pmol.min-1.mg of protein-1, respectively. The optimum pH and temperature for AnNH hydrolysis were 9.0 and 37 degreesC, respectively, and the activation energy of the reaction was 43.5 +/- 4.5 kJ.mol-1. Hydro(pero)xides derived from AnNH or its linoleoyl analogues by lipoxygenase action were competitive inhibitors of human brain FAAH, with apparent Ki values in the low micromolar range. One of these compounds, linoleoylethanolamide is the first natural inhibitor (Ki = 9.0 +/- 0.9 microM) of FAAH as yet discovered. An FAAH activity sharing several biochemical properties with the human brain enzyme was demonstrated in human neuroblastoma CHP100 and lymphoma U937 cells. Both cell lines have a high affinity transporter for AnNH, which had apparent Km and Vmax values for AnNH of 0.20 +/- 0.02 microM and 30 +/- 3 pmol.min-1.mg of protein-1 (CHP100 cells) and 0.13 +/- 0.01 microM and 140 +/- 15 pmol.min-1.mg of protein-1 (U937 cells), respectively. The AnNH carrier of both cell lines was activated up to 170% of the control by nitric oxide.
Collapse
Affiliation(s)
- M Maccarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Via di Tor Vergata 135, I-00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
149
|
Tsou K, Nogueron MI, Muthian S, Sañudo-Pena MC, Hillard CJ, Deutsch DG, Walker JM. Fatty acid amide hydrolase is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry. Neurosci Lett 1998; 254:137-40. [PMID: 10214976 DOI: 10.1016/s0304-3940(98)00700-9] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The distribution in the rat brain of fatty acid amide hydrolase (FAAH) an enzyme that catalyzes the hydrolysis of the endogenous cannabinoid anandamide was studied by immunohistochemistry. An immunopurified, polyclonal antibody to the C terminal region of FAAH was used in these studies. The large principal neurons, such as pyramidal cells in the cerebral cortex, the pyramidal cells the hippocampus, Purkinje cells in the cerebellar cortex and the mitral cells in the olfactory bulb, showed the strongest FAAH immunoreactivity. These FAAH-containing principal neurons except the mitral cells in the olfactory bulb are in close proximity with cannabinoid CB1 receptors as revealed by our previous immunohistochemical study. Moderately or lightly stained FAAH-containing neurons were also found in the amygdala, the basal ganglia, the deep cerebellar nuclei, the ventral posterior nuclei of the thalamus, the optic layer and the intermediate white layer of the superior colliculus and the red nucleus in the midbrain, and motor neurons of the spinal cord. These data demonstrate that FAAH is heterogeneously distributed and this distribution exhibits considerable, although not complete, overlap with the distribution of cannabinoid CB1 receptors in rat brain.
Collapse
Affiliation(s)
- K Tsou
- Department of Psychology, Brown University, Providence, RI 02912, USA.
| | | | | | | | | | | | | |
Collapse
|
150
|
Bisogno T, Melck D, De Petrocellis L, Gretskaya NM, Bezuglov VV, Sitachitta N, Gerwick WH, Di Marzo V. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun 1998; 248:515-22. [PMID: 9703957 DOI: 10.1006/bbrc.1998.8874] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid amide hydrolase (FAAH) catalyzes the hydrolysis of bioactive fatty acid amides and esters such as the endogenous cannabinoid receptor ligands, anandamide (N-arachidonoyl-ethanolamine) and 2-arachidonoylglycerol, and the putative sleep inducing factor cis-9-octadecenoamide (oleamide). Most FAAH blockers developed to date also inhibit cytosolic phospholipase A2 (cPLA2) and/or bind to the CB1 cannabinoid receptor subtype. Here we report the finding of four novel FAAH inhibitors, two of which, malhamensilipin A and grenadadiene, were screened out of a series of thirty-two different algal natural products, and two others, arachidonoylethylene glycol (AEG) and arachidonoyl-serotonin (AA-5-HT) were selected out of five artificially functionalized polyunsaturated fatty acids. When using FAAH preparations from mouse neuroblastoma N18TG2 cells and [14C]anandamide as a substrate, the IC50s for these compounds ranged from 12.0 to 26 microM, the most active compound being AA-5-HT. This substance was also active on FAAH from rat basophilic leukaemia (RBL-2H3) cells (IC50 = 5.6 microM), and inhibited [14C]anandamide hydrolysis by both N18TG2 and RBL-2H3 intact cells without affecting [14C]anandamide uptake. While AEG behaved as a competitive inhibitor and was hydrolyzed to arachidonic acid (AA) by FAAH preparations, AA-5-HT was resistant to FAAH-catalyzed hydrolysis and behaved as a tight-binding, albeit non-covalent, mixed inhibitor. AA-5-HT did not interfere with cPLA2-mediated, ionomycin or antigen-induced release of [3H]AA from RBL-2H3 cells, nor with cPLA2 activity in cell-free experiments. Finally, AA-5-HT did not activate CB1 cannabinoid receptors since it acted as a very weak ligand in in vitro binding assays, and, at 10-15 mg/kg body weight, it was not active in the 'open field', 'hot plate' and rectal hypothermia tests carried out in mice. Conversely AEG behaved as a cannabimimetic substance in these tests as well as in the 'ring' immobility test where AA-5-HT was also active. AA-5-HT is the first FAAH inhibitor reported to date which is inactive both against cPLA2 and at CB1 receptors, whereas AEG represents a new type of cannabinoid receptor agonist.
Collapse
Affiliation(s)
- T Bisogno
- Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|