101
|
Song J, Hirschman J, Gunn K, Dohlman HG. Regulation of membrane and subunit interactions by N-myristoylation of a G protein alpha subunit in yeast. J Biol Chem 1996; 271:20273-83. [PMID: 8702760 DOI: 10.1074/jbc.271.34.20273] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Initiation of the mating process in yeast Saccharomyces cerevisiae requires the action of secreted pheromones and G protein-coupled receptors. As in other eukaryotes, the yeast G protein alpha subunit undergoes N-myristoylation (GPA1 gene product, Gpa1p). This modification appears to be essential for function, since a myristoylation site mutation exhibits the null phenotype in vivo (gpa1(G2A)). Here we examine how myristoylation affects Gpa1p activity in vitro. We show that the G2A mutant of Gpa1p, when fused with glutathione S-transferase, can still form a complex with the G protein betagamma subunits. The complex is stabilized by GDP and is dissociated upon treatment with guanosine 5'-O-(thiotriphosphate). In addition, there is no apparent difference in the relative binding affinity of Gbetagamma for mutant and wild-type Gpa1p. Using sucrose density gradient fractionation of cell membranes, Gpa1p associates normally with the plasma membrane whereas Gpa1pG2A is mislocalized to a microsomal membrane fraction. A portion of Gbetagamma is also mislocalized in these cells, as it is in a gpa1Delta strain. In contrast, wild-type Gpa1p reaches the plasma membrane in cells that do not express Gbetagamma or cell surface receptors. These findings indicate that mislocalization of Gpa1pG2A is not caused by a redistribution of Gbetagamma, nor is it the result of any difference in Gbetagamma binding affinity. These data suggest that myristoylation is required for specific targeting of Gpa1p to the plasma membrane, where it is needed to interact with the receptor and to regulate the release of Gbetagamma.
Collapse
Affiliation(s)
- J Song
- Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA
| | | | | | | |
Collapse
|
102
|
Xu G, Jansen G, Thomas DY, Hollenberg CP, Ramezani Rad M. Ste50p sustains mating pheromone-induced signal transduction in the yeast Saccharomyces cerevisiae. Mol Microbiol 1996; 20:773-83. [PMID: 8793874 DOI: 10.1111/j.1365-2958.1996.tb02516.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the yeast Saccharomyces cerevisiae, the heterotrimeric G protein transduces the mating pheromone signal from a cell-surface receptor. Free G beta gamma then activates a mitogen-activated protein (MAP) kinase cascade. STE50 has been shown to be involved in this pheromone signal-transduction pathway. In this study, we present a functional characterization of Ste50p, a protein that is required to sustain the pheromone-induced signal which leads cells to hormone-induced differentiation. Inactivation of STE50 leads to the attenuation of mating pheromone-induced signal transduction, and overexpression of STE50 intensifies the pheromone-induced signalling. By genetic analysis we have positioned the action of Ste50p downstream of the alpha-pheromone receptor (STE2), at the level of the heterotrimeric G protein, and upstream of STE5 and the kinase cascade of STE11 and STE7. In a two-hybrid assay Ste50p interacts weakly with the G protein and strongly with the MAPKKK Ste11p. The latter interaction is absent in the constitutive mutant Ste11pP279S. These data show that a new component, Ste50p, determines the extent and the duration of signal transduction by acting between the G protein and the MAP kinase complex in S. cerevisiae.
Collapse
Affiliation(s)
- G Xu
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
103
|
Smulian AG, Ryan M, Staben C, Cushion M. Signal transduction in Pneumocystis carinii: characterization of the genes (pcg1) encoding the alpha subunit of the G protein (PCG1) of Pneumocystis carinii carinii and Pneumocystis carinii ratti. Infect Immun 1996; 64:691-701. [PMID: 8641768 PMCID: PMC173824 DOI: 10.1128/iai.64.3.691-701.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pneumocystis carinii is a eukaryotic organism that causes pneumonia in immunocompromised hosts. The cell biology and life cycle of the organism are poorly understood primarily because of the lack of a continuous in vitro cultivation system. These limitations have prevented investigation of the organism's infectious cycle and hindered the rational development of new antimicrobial therapies and implementation of measures to prevent exposure to the organism or transmission. The interaction of P. carinii with its host and its environment may be critical determinants of pathogenicity and life cycle. Signal transduction pathways are likely to be critical in regulating these processes. G proteins are highly conserved members of the pathways important in many cellular events, including cell proliferation and environmental sensing. To characterize signal transduction pathways in P. carinii, we cloned a G-protein alpha subunit (G-alpha) of P. carinii carinii and P. carinii ratti by PCR amplification and hybridization screening. The gene encoding the G-alpha was present in single copy on a 450-kb chromosome of P.c. ratti. The 1,062-bp G-alpha open reading frame is interrupted by nine introns. The predicted polypeptide showed 29 to 53% identity with known fungal G-alpha proteins with greatest homology to Neurospora crassa Gna-2. Northern (RNA) blot analysis and immunoprecipitation demonstrated expression of the G-alpha mRNA and protein P. carinii isolated from heavily infected animals. Some alteration in the level of transcription was noted in short-term maintenance in starvation or rich medium. Characterization of signal transduction in P. carinii will permit a better understanding of the reproductive capacity and other cellular processes in this family or organisms that cannot be cultured continuously.
Collapse
Affiliation(s)
- A G Smulian
- Infectious Disease Division, University of Cinncinati College of Medicine, OH 45267-0560, USA
| | | | | | | |
Collapse
|
104
|
Kao LR, Peterson J, Ji R, Bender L, Bender A. Interactions between the ankyrin repeat-containing protein Akr1p and the pheromone response pathway in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:168-78. [PMID: 8524293 PMCID: PMC230990 DOI: 10.1128/mcb.16.1.168] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Akr1p, which contains six ankyrin repeats, was identified during a screen for mutations that displayed synthetic lethality with a mutant allele of the bud emergence gene BEM1. Cells from which AKR1 had been deleted were alive but misshapen at 30 degrees C and inviable at 37 degrees C. During a screen for mutants that required one or more copies of wild-type AKR1 for survival at 30 degrees C, we isolated mutations in GPA1, which encodes the G alpha subunit of the pheromone receptor-coupled G protein. (The active subunit of this G protein is G beta gamma, and G alpha plays an inhibitory role in G beta gamma-mediated signal transduction.) AKR1 could serve as a multicopy suppressor of the lethality caused by either loss of GPA1 or overexpression of STE4, which encodes the G beta subunit of this G protein, suggesting that pheromone signaling is inhibited by overexpression of Akr1p. Mutations in AKR1 displayed synthetic lethality with a weak allele of GPA1 and led to increased expression of the pheromone-inducible gene FUS1, suggesting that Akr1p normally (and not just when overexpressed) inhibits signaling. In contrast, deletion of BEM1 resulted in decreased expression of FUS1, suggesting that Bem1p normally facilitates pheromone signaling. During a screen for proteins that displayed two-hybrid interactions with Akr1p, we identified Ste4p, raising the possibility that an interaction between Akr1p and Ste4p contributes to proper regulation of the pheromone response pathway.
Collapse
Affiliation(s)
- L R Kao
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | | | | | |
Collapse
|
105
|
Vaillancourt LJ, Raper CA. Pheromones and pheromone receptors as mating-type determinants in basidiomycetes. GENETIC ENGINEERING 1996; 18:219-47. [PMID: 8785123 DOI: 10.1007/978-1-4899-1766-9_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- L J Vaillancourt
- Markey Center for Molecular Genetics, Department of Microbiology and Molecular Genetics, University of Vermont, Burlington 05405, USA
| | | |
Collapse
|
106
|
|
107
|
De Vries L, Mousli M, Wurmser A, Farquhar MG. GAIP, a protein that specifically interacts with the trimeric G protein G alpha i3, is a member of a protein family with a highly conserved core domain. Proc Natl Acad Sci U S A 1995; 92:11916-20. [PMID: 8524874 PMCID: PMC40514 DOI: 10.1073/pnas.92.25.11916] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Using the yeast two-hybrid system we have identified a human protein, GAIP (G Alpha Interacting Protein), that specifically interacts with the heterotrimeric GTP-binding protein G alpha i3. Interaction was verified by specific binding of in vitro-translated G alpha i3 with a GAIP-glutathione S-transferase fusion protein. GAIP is a small protein (217 amino acids, 24 kDa) that contains two potential phosphorylation sites for protein kinase C and seven for casein kinase 2. GAIP shows high homology to two previously identified human proteins, GOS8 and 1R20, two Caenorhabditis elegans proteins, CO5B5.7 and C29H12.3, and the FLBA gene product in Aspergillus nidulans--all of unknown function. Significant homology was also found to the SST2 gene product in Saccharomyces cerevisiae that is known to interact with a yeast G alpha subunit (Gpa1). A highly conserved core domain of 125 amino acids characterizes this family of proteins. Analysis of deletion mutants demonstrated that the core domain is the site of GAIP's interaction with G alpha i3. GAIP is likely to be an early inducible phosphoprotein, as its cDNA contains the TTTTGT sequence characteristic of early response genes in its 3'-untranslated region. By Northern analysis GAIP's 1.6-kb mRNA is most abundant in lung, heart, placenta, and liver and is very low in brain, skeletal muscle, pancreas, and kidney. GAIP appears to interact exclusively with G alpha i3, as it did not interact with G alpha i2 and G alpha q. The fact that GAIP and Sst2 interact with G alpha subunits and share a common domain suggests that other members of the GAIP family also interact with G alpha subunits through the 125-amino-acid core domain.
Collapse
Affiliation(s)
- L De Vries
- Division of Cellular and Molecular Medicine, University of California, San Diego, La Jolla 92093-0651, USA
| | | | | | | |
Collapse
|
108
|
Price LA, Kajkowski EM, Hadcock JR, Ozenberger BA, Pausch MH. Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway. Mol Cell Biol 1995; 15:6188-95. [PMID: 7565771 PMCID: PMC230870 DOI: 10.1128/mcb.15.11.6188] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A detailed analysis of structural and functional aspects of G-protein-coupled receptors, as well as discovery of novel pharmacophores that exert their effects on members of this class of receptors, will be facilitated by development of a yeast-based bioassay. To that end, yeast strains that functionally express the rat somatostatin receptor subtype 2 (SSTR2) were constructed. High-affinity binding sites for somatostatin ([125I-Tyr-11]S-14) comparable to those in native tissues were detected in yeast membrane extracts at levels equivalent to the alpha-mating pheromone receptor (Ste2p). Somatostatin-dependent growth of strains modified by deletion of genes encoding components of the pheromone response pathway was detected through induction of a pheromone-responsive HIS3 reporter gene, enabling cells to grow on medium lacking histidine. Dose-dependent growth responses to S-14 and related SSTR2 subtype-selective agonists that were proportional to the affinity of the ligands for SSTR2 were observed. The growth response required SSTR2, G alpha proteins, and an intact signal transduction pathway. The sensitivity of the bioassay was affected by intracellular levels of the G alpha protein. A mutation in the SST2 gene, which confers supersensitivity to pheromone, was found to significantly enhance the growth response to S-14. In sst2 delta cells, SSTR2 functionally interacted with both a chimeric yeast/mammalian G alpha protein and the yeast G alpha protein, Gpa1p; to promote growth. These yeast strains should serve as a useful in vivo reconstitution system for examination of molecular interactions of the G-protein-coupled receptors and G proteins.
Collapse
Affiliation(s)
- L A Price
- Cyanamid Agricultural Research Center, Princeton, New Jersey 08543-0400, USA
| | | | | | | | | |
Collapse
|
109
|
Spain BH, Koo D, Ramakrishnan M, Dzudzor B, Colicelli J. Truncated forms of a novel yeast protein suppress the lethality of a G protein alpha subunit deficiency by interacting with the beta subunit. J Biol Chem 1995; 270:25435-44. [PMID: 7592711 DOI: 10.1074/jbc.270.43.25435] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In Saccharomyces cerevisiae, the mating pheromone-initiated signal is transduced by a heterotrimeric G protein and normally results in transient cell cycle arrest and differentiation. A null allele of the G alpha (GPA1/SCG1) subunit results in cell death due to unchecked signaling from the G beta gamma (STE4, STE18, respectively) heterodimer. We have identified three high copy suppressors of gpa1 lethality. Two of these genes encode known transcription factors. Mat alpha 2p and Mcm1p. The third is a truncated form of a novel gene, SYG1. Overexpressed wild type SYG1 is a weak suppressor of gpa1. In contrast, the isolated mutant allele SYG1-1 is a strong suppressor that completely blocks the cell cycle arrest and differentiation phenotypes of gpa1 cells of both mating types. One deletion mutant (SYG1 delta 340) can suppress the cell cycle arrest associated with gpa1, but the cells retain a differentiated morphology. SYG1-1 can suppress the effects of overexpressed wild type G beta but is not able to suppress the lethality of an activated G beta mutant (STE4Hpl). Consistent with these genetic observations, the suppressing form of Syg1p can interact with the STE4 gene product, as determined by a two-hybrid assay. SYG1-1 is also capable of promoting pheromone recovery in wild type cells, as judged by halo assay. The sequence of SYG1 predicts eight membrane-spanning domains. Deletion mutants of SYG1 indicate that complete gpa1 suppression requires removal of all of these hydrophobic regions. Interestingly, this truncated protein localizes to the same plasma membrane-enriched subcellular fraction as does full-length Syg1p. Three hypothetical yeast proteins, identified by their similarity to the SYG1 primary sequence within the gpa1 suppression domain, also appear to have related structures. The properties of Syg1p are consistent with those of a transmembrane signaling component that can respond to, or transduce signals through, G beta or G beta gamma.
Collapse
Affiliation(s)
- B H Spain
- Department of Biological Chemistry, UCLA School of Medicine 90024, USA
| | | | | | | | | |
Collapse
|
110
|
Tange Y, Niwa O. A selection system for diploid and against haploid cells in Schizosaccharomyces pombe. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:644-8. [PMID: 7476866 DOI: 10.1007/bf02191703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have isolated a mutant of Schizosaccharomyces pombe whose growth is temperature sensitive when it is haploid but not when it is diploid. This mutant may provide a useful system for selecting nonconditional mutants which are defective in diploid formation upon conjugation.
Collapse
Affiliation(s)
- Y Tange
- Kazusa DNA Research Institute, Chiba, Japan
| | | |
Collapse
|
111
|
Whiteway MS, Wu C, Leeuw T, Clark K, Fourest-Lieuvin A, Thomas DY, Leberer E. Association of the yeast pheromone response G protein beta gamma subunits with the MAP kinase scaffold Ste5p. Science 1995; 269:1572-5. [PMID: 7667635 DOI: 10.1126/science.7667635] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mating response pathway of the yeast Saccharomyces cerevisiae includes a heterotrimeric guanine nucleotide-binding protein (G protein) that activates a mitogen-activated protein MAP kinase cascade by an unknown mechanism. An amino-terminal fragment of the MAP kinase scaffold protein Ste5p that interfered with pheromone-induced cell cycle arrest was identified. A haploid-specific interaction between the amino terminus of Ste5p and the G protein beta subunit Ste4p was also detected in a two-hybrid assay, and the product of a signaling-defective allele of STE4 was defective in this interaction. In cells with a constitutively activated pheromone response pathway, epitope-tagged Ste4p was coimmunoprecipitated with Ste5p. Thus, association of the G protein and the MAP kinase cassette via the scaffolding protein Ste5p may transmit the G protein signal.
Collapse
Affiliation(s)
- M S Whiteway
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec
| | | | | | | | | | | | | |
Collapse
|
112
|
Chamovitz DA, Deng XW. The novel components of the Arabidopsis light signaling pathway may define a group of general developmental regulators shared by both animal and plant kingdoms. Cell 1995; 82:353-4. [PMID: 7634324 DOI: 10.1016/0092-8674(95)90423-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
113
|
Dohlman HG, Apaniesk D, Chen Y, Song J, Nusskern D. Inhibition of G-protein signaling by dominant gain-of-function mutations in Sst2p, a pheromone desensitization factor in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:3635-43. [PMID: 7791771 PMCID: PMC230601 DOI: 10.1128/mcb.15.7.3635] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Genetic analysis of cell-cell signaling in Saccharomyces cerevisiae has led to the identification of a novel factor, known as Sst2p, that promotes recovery after pheromone-induced growth arrest (R. K. Chan and C. A. Otte, Mol. Cell. Biol. 2:11-20, 1982). Loss-of-function mutations lead to increased pheromone sensitivity, but this phenotype is partially suppressed by overexpression of the G protein alpha subunit gene (GPA1). Suppression is allele specific, however, suggesting that there is direct interaction between the two gene products. To test this model directly, we isolated and characterized several dominant gain-of-function mutants of SST2. These mutations block the normal pheromone response, including a loss of pheromone-stimulated gene transcription, cell cycle growth arrest, and G protein myristoylation. Although the SST2 mutations confer a pheromone-resistant phenotype, they do not prevent downstream activation by overexpression of G beta (STE4), a constitutively active G beta mutation (STE4Hpl), or a disruption of GPA1. None of the SST2 alleles affects the expression or stability of G alpha. These results point to the G protein alpha subunit as being the direct target of Sst2p action and underscore the importance of this novel desensitization factor in G-protein-mediated signaling.
Collapse
Affiliation(s)
- H G Dohlman
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA
| | | | | | | | | |
Collapse
|
114
|
Yu Y, Hirsch JP. An essential gene pair in Saccharomyces cerevisiae with a potential role in mating. DNA Cell Biol 1995; 14:411-8. [PMID: 7748491 DOI: 10.1089/dna.1995.14.411] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the signal generated by extracellular pheromone is transmitted through the beta and gamma subunits of a trimeric G-protein to downstream signaling molecules that mediate the cellular responses associated with mating. To isolate potential downstream signaling components, a yeast genomic library on a multicopy plasmid was screened for genes that increased the mating efficiency of a strain containing a temperature-sensitive G beta subunit mutation. Overexpression of STE5, STE18 (which encodes the G gamma subunit), and a previously unidentified gene, termed SSF1, partially suppressed the mating defect of a G beta mutant. Hybridization of yeast genomic DNA with an SSF1 probe revealed a closely related homolog, termed SSF2, which was isolated and also found to test positively in the assay for suppression. Null mutations in either SSF1 or SSF2 had no obvious phenotype, but disruption of both genes was lethal. Depletion of SSF gene products from growing cultures caused both an arrest of cell division and a significant decrease in the ability of cells to mate. Because mating efficiency was increased by extra copies of the SSF genes and decreased by elimination of the gene products, it is likely that these genes play a role in mating as well as in an essential function.
Collapse
Affiliation(s)
- Y Yu
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
115
|
La Roche SD, Shafer BK, Strathern JN. A ste12 allele having a differential effect on a versus alpha cells. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:80-90. [PMID: 7823915 DOI: 10.1007/bf00290136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcriptional activator Ste12p is a key component of the yeast pheromone response pathway: phosphorylated as a consequence of signal transduction, it activates transcription of genes that promote mating and the subsequent fusion of the two cell types a and alpha. Activation by Ste12p requires three types of protein-protein interaction between DNA-binding activator proteins: (1) Ste12p by itself can induce non-cell-type-specific genes involved in mating; (2) cooperation of the transactivator Mcm1p with Ste12p induces a-specific genes; and (3) formation of a complex of the activator proteins Mcm1p and alpha 1 (a transcriptional activator of alpha-specific genes) with Ste12p is believed to induce alpha-specific genes. We isolated and characterized a partially functional ste12 allele (ste12-T50), that is defective only in the activation of alpha-specific genes. ste12-T50 was isolated as a second-site mutation conferring the a mating phenotype on mat alpha 2 mutant cells. In mat alpha 2 cells, where due to the lack of repressor, alpha 2, both sets of cell-type-specific genes are expressed, ste12-T50 apparently tips the balance in favor of a-specific gene expression. Thus, mat alpha 2 ste12-T50 cells mate like a cells. Additional ste12 mutants that confer the a mating phenotype on mat alpha 2 cells have also been isolated.
Collapse
Affiliation(s)
- S D La Roche
- Laboratory of Eukaryotic Gene Expression, NCI-Frederick Cancer Research and Development Center, ABL-Basic Research Program, Maryland 21702-1201
| | | | | |
Collapse
|
116
|
Mitsuzawa H, Tamanoi F. In vivo assays for farnesyltransferase inhibitors with Saccharomyces cerevisiae. Methods Enzymol 1995; 250:43-51. [PMID: 7651169 DOI: 10.1016/0076-6879(95)50061-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- H Mitsuzawa
- Department of Microbiology and Molecular Genetics, University of California at Los Angeles 90024, USA
| | | |
Collapse
|
117
|
Affiliation(s)
- Y Inoue
- Research Institute for Food Science, Kyoto University, Japan
| | | |
Collapse
|
118
|
Drayer AL, van Haastert PJ. Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes. PLANT MOLECULAR BIOLOGY 1994; 26:1239-1270. [PMID: 7858189 DOI: 10.1007/bf00016473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- A L Drayer
- Department of Biochemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
119
|
Stadel JM, Ecker DJ, Powers DA, Marsh J, Hoyle K, Gross M, Minnich MD, Butt TR, Crooke ST. Characterization of mammalian Gs-alpha proteins expressed in yeast. JOURNAL OF RECEPTOR RESEARCH 1994; 14:357-79. [PMID: 7877135 DOI: 10.3109/10799899409101510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The guanine nucleotide regulatory protein, GS, mediates transmembrane signaling by coupling membrane receptors to the stimulation of adenylyl cyclase activity. The full length coding sequences for the M(r) = 42-45,000, short form (S), and M(r) = 46-52,000, long form (L), of the alpha-subunits of rat GS were placed in yeast expression vectors under the regulatory control of the copper-inducible CUP1 promoter and transformed into Saccharomyces cerevisiae. In the presence of 100 microM CuSO4, the transformed yeast expressed GS-alpha mRNAs and proteins. In reconstitution experiments, rat GS-alpha(S and L), solubilized from yeast membranes with 1% cholate, conferred NaF-, (-)isoproterenol-, and guanine nucleotide-dependent sensitivity to adenylyl cyclase catalytic units in S49 lymphoma cyc- cell membranes, which are devoid of endogenous GS-alpha. GS-alpha (S) demonstrated twice the activity of GS-alpha(L) in reconstitution assays of fluoride-stimulated adenylyl cyclase activity. Comparison of GS-alpha (S) expressed in yeast with GS purified from rabbit liver or human erythrocytes showed that the crude recombinant protein was fully competent in reconstituting NaF-stimulated adenylyl cyclase activity, but was only 2-5% as potent as purified GS. Addition of bovine brain beta gamma subunits during reconstitution enhanced all parameters of adenylyl cyclase activity for GS-alpha(S and L) obtained from yeast. In contrast, transducin beta gamma only enhanced agonist-stimulated adenylyl cyclase activity for GS-alpha (S and L) following reconstitution. These results demonstrate that the expression of functional mammalian GS-alpha subunits in yeast may be useful for their biochemical characterization.
Collapse
Affiliation(s)
- J M Stadel
- Department of Molecular Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Ma H. GTP-binding proteins in plants: new members of an old family. PLANT MOLECULAR BIOLOGY 1994; 26:1611-1636. [PMID: 7858207 DOI: 10.1007/bf00016493] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Regulatory guanine nucleotide-binding proteins (G proteins) have been studied extensively in animal and microbial organisms, and they are divided into the heterotrimeric and the small (monomeric) classes. Heterotrimeric G proteins are known to mediate signal responses in a variety of pathways in animals and simple eukaryotes, while small G proteins perform diverse functions including signal transduction, secretion, and regulation of cytoskeleton. In recent years, biochemical analyses have produced a large amount of information on the presence and possible functions of G proteins in plants. Further, molecular cloning has clearly demonstrated that plants have both heterotrimeric and small G proteins. Although the functions of the plant heterotrimeric G proteins are yet to be determined, expression analysis of an Arabidopsis G alpha protein suggests that it may be involved in the regulation of cell division and differentiation. In contrast to the very few genes cloned thus far that encode heterotrimeric G proteins in plants, a large number of small G proteins have been identified by molecular cloning from various plants. In addition, several plant small G proteins have been shown to be functional homologues of their counterparts in animals and yeasts. Future studies using a number of approaches are likely to yield insights into the role plant G proteins play.
Collapse
Affiliation(s)
- H Ma
- Cold Spring Harbor Laboratory, NY 11724
| |
Collapse
|
121
|
Marcus S, Polverino A, Barr M, Wigler M. Complexes between STE5 and components of the pheromone-responsive mitogen-activated protein kinase module. Proc Natl Acad Sci U S A 1994; 91:7762-6. [PMID: 8052657 PMCID: PMC44482 DOI: 10.1073/pnas.91.16.7762] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We present genetic evidence for complex formation of STE5 and the STE11, STE7, and FUS3 protein kinases, the pheromone-responsive mitogen-activated protein kinase module of Saccharomyces cerevisiae. Interaction between STE5 and STE11 is not dependent on STE7, and interaction between STE5 and STE7 does not require STE11. The N-terminal regulatory domain of STE11 is both necessary and sufficient for interaction with STE5. Interaction between STE7 and STE11 is bridged by STE5, suggesting the formation of a multiprotein complex. We also demonstrate biochemical interaction between STE5 and STE11 by using a combination of bacterially expressed fusion proteins and extracts prepared from yeast. Our results suggest that STE5 is a scaffolding protein that facilitates interactions between components of the pheromone-responsive mitogen-activated protein kinase module. We further propose that such scaffolding proteins serve to inhibit cross-talk between functionally unrelated mitogen-activated protein kinase modules within the same cell.
Collapse
Affiliation(s)
- S Marcus
- Cold Spring Harbor Laboratory, NY 11724
| | | | | | | |
Collapse
|
122
|
|
123
|
Biochemical and genetic analysis of dominant-negative mutations affecting a yeast G-protein gamma subunit. Mol Cell Biol 1994. [PMID: 8007961 DOI: 10.1128/mcb.14.7.4571] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) consisting of alpha, beta, and gamma subunits mediate signalling between cell surface receptors and intracellular effectors in eukaryotic cells. To define signalling functions of G gamma subunits (STE18 gene product) involved in pheromone response and mating in the yeast Saccharomyces cerevisiae, we isolated and characterized dominant-negative STE18 alleles. We obtained dominant-negative mutations that disrupt C-terminal sequences required for prenylation of G gamma precursors (CAAX box) and that affect residues in the N-terminal half of Ste18p. Overexpression of mutant G gamma subunits in wild-type cells blocked signal transduction; this effect was suppressed upon overexpression of G beta subunits. Mutant G gamma subunits may therefore sequester G beta subunits into nonproductive G beta gamma dimers. Because mutant G gamma subunits blocked the constitutive signal resulting from disruption of the G alpha subunit gene (GPA1), they are defective in functions required for downstream signalling. Ste18p bearing a C107Y substitution in the CAAX box displayed reduced electrophoretic mobility, consistent with a prenylation defect. G gamma subunits carrying N-terminal substitutions had normal electrophoretic mobilities, suggesting that these proteins were prenylated. G gamma subunits bearing substitutions in their N-terminal region or C-terminal CAAX box (C107Y) supported receptor-G protein coupling in vitro, whereas C-terminal truncations caused partial defects in receptor coupling.
Collapse
|
124
|
Johnson D, Knoll L, Rowley N, Gordon J. Genetic analysis of the role of Saccharomyces cerevisiae acyl-CoA synthetase genes in regulating protein N-myristoylation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32414-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
125
|
Tolkacheva T, McNamara P, Piekarz E, Courchesne W. Cloning of a Cryptococcus neoformans gene, GPA1, encoding a G-protein alpha-subunit homolog. Infect Immun 1994; 62:2849-56. [PMID: 8005675 PMCID: PMC302891 DOI: 10.1128/iai.62.7.2849-2856.1994] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have isolated a gene, GPA1, from Cryptococcus neoformans by the PCR technique. DNA sequencing of the GPA1 clone suggested that it encodes a protein homologous to the G-protein alpha-subunit family. Comparison of the deduced amino acid sequence of the GPA1-encoded protein revealed that it is about 45% identical to several mammalian Gi alpha subunits and 48% identical to the G alpha protein Gpa2 from Saccharomyces cerevisiae. G alpha proteins are known to be involved in mating of other yeasts, such as S. cerevisiae and Schizosaccharomyces pombe. Southern analysis demonstrated that GPA1 is present in a single copy within the Cryptococcus genome. Isolation of the cDNA for GPA1 confirmed that the gene contains six introns within the coding region. The GPA1 transcript was identified by Northern (RNA) analysis as a 1.6-kb RNA present in exponentially growing cells of both the alpha and a mating types. Moreover, the abundance of this transcript increased in cells shifted to starvation medium. Coincubation of alpha and a cells on starvation medium is required for mating of cryptococcal cells. Thus, our results are consistent with the involvement of C. neoformans GPA1 in mating.
Collapse
Affiliation(s)
- T Tolkacheva
- Department of Microbiology, University of Nevada School of Medicine, Reno 89557-0046
| | | | | | | |
Collapse
|
126
|
Grishin AV, Weiner JL, Blumer KJ. Biochemical and genetic analysis of dominant-negative mutations affecting a yeast G-protein gamma subunit. Mol Cell Biol 1994; 14:4571-8. [PMID: 8007961 PMCID: PMC358829 DOI: 10.1128/mcb.14.7.4571-4578.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) consisting of alpha, beta, and gamma subunits mediate signalling between cell surface receptors and intracellular effectors in eukaryotic cells. To define signalling functions of G gamma subunits (STE18 gene product) involved in pheromone response and mating in the yeast Saccharomyces cerevisiae, we isolated and characterized dominant-negative STE18 alleles. We obtained dominant-negative mutations that disrupt C-terminal sequences required for prenylation of G gamma precursors (CAAX box) and that affect residues in the N-terminal half of Ste18p. Overexpression of mutant G gamma subunits in wild-type cells blocked signal transduction; this effect was suppressed upon overexpression of G beta subunits. Mutant G gamma subunits may therefore sequester G beta subunits into nonproductive G beta gamma dimers. Because mutant G gamma subunits blocked the constitutive signal resulting from disruption of the G alpha subunit gene (GPA1), they are defective in functions required for downstream signalling. Ste18p bearing a C107Y substitution in the CAAX box displayed reduced electrophoretic mobility, consistent with a prenylation defect. G gamma subunits carrying N-terminal substitutions had normal electrophoretic mobilities, suggesting that these proteins were prenylated. G gamma subunits bearing substitutions in their N-terminal region or C-terminal CAAX box (C107Y) supported receptor-G protein coupling in vitro, whereas C-terminal truncations caused partial defects in receptor coupling.
Collapse
Affiliation(s)
- A V Grishin
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
127
|
Genetic identification of residues involved in association of alpha and beta G-protein subunits. Mol Cell Biol 1994. [PMID: 8164677 DOI: 10.1128/mcb.14.5.3223] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GPA1, STE4, and STE18 genes of Saccharomyces cerevisiae encode the alpha, beta, and gamma subunits, respectively, of a G protein involved in the mating response pathway. We have found that mutations G124D, W136G, W136R, and delta L138 and double mutations W136R L138F and W136G S151C of the Ste4 protein cause constitutive activation of the signaling pathway. The W136R L138F and W136G S151C mutant Ste4 proteins were tested in the two-hybrid protein association assay and found to be defective in association with the Gpa1 protein. A mutation at position E307 of the Gpa1 protein both suppresses the constitutive signaling phenotype of some mutant Ste4 proteins and allows the mutant alpha subunit to physically associate with a specific mutant G beta subunit. The mutation in the Gpa1 protein is adjacent to the hinge, or switch, region that is required for the conformational change which triggers subunit dissociation, but the mutation does not affect the interaction of the alpha subunit with the wild-type beta subunit. Yeast cells constructed to contain only the mutant alpha and beta subunits mate and respond to pheromones, although they exhibit partial induction of the pheromone response pathway. Because the ability of the modified G alpha subunit to suppress the Ste4 mutations is allele specific, it is likely that the residues defined by this analysis play a direct role in G-protein subunit association.
Collapse
|
128
|
The yeast MOT2 gene encodes a putative zinc finger protein that serves as a global negative regulator affecting expression of several categories of genes, including mating-pheromone-responsive genes. Mol Cell Biol 1994. [PMID: 8164670 DOI: 10.1128/mcb.14.5.3150] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The STE4 gene encodes the beta subunit of a heterotrimeric G protein that is an essential component of the pheromone signal transduction pathway. To identify downstream component(s) of Ste4, we sought pseudo-revertants that restored mating competence to ste4 mutants. The suppressor mot2 was isolated as a recessive mutation that restored conjugational competence to a temperature-sensitive ste4 mutant and simultaneously conferred a temperature-sensitive growth phenotype. The MOT2 gene encodes a putative zinc finger protein, the deletion of which resulted in temperature-sensitive growth, increased expression of FUS1 in the absence of pheromones, and suppression of a deletion of the alpha-factor receptor. On the other hand, sterility resulting from deletion of STE4 was not suppressed by the mot2 deletion. These phenotypes are similar to those associated with temperature-sensitive mutations in CDC36 and CDC39, which are proposed to encode general negative regulators of transcription rather than factors involved in the pheromone response pathway. Deletion of MOT2 also caused increased transcription of unrelated genes such as GAL7 and PHO84. Overexpression of MOT2 suppresses the growth defect of temperature-sensitive mutations in CDC36 and CDC39. These observations suggest that Mot2 functions as a general negative regulator of transcription in the same processes as Cdc36 and Cdc39.
Collapse
|
129
|
Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae. Mol Cell Biol 1994. [PMID: 8164654 DOI: 10.1128/mcb.14.5.2958] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated a cDNA (cNPK5) that encodes a protein kinase of 511 amino acids from suspension cultures of tobacco cells. The predicted kinase domain of NPK5 is 65% identical in terms of amino acid sequence to that of the SNF1 serine/threonine protein kinase of Saccharomyces cerevisiae, which plays a central role in catabolite repression in yeast cells. SNF1 positively regulates transcription of various glucose-repressible genes of the yeast, such as the SUC2 gene for a secreted invertase, in response to glucose deprivation: snf1 mutants cannot utilize sucrose as a carbon source. Expression of cNPK5 in yeast cells allowed the snf1 mutant cells to utilize sucrose for growth and caused constitutive expression of the SUC2 gene in wild-type cells even in the presence of glucose, an indication that the NPK5 protein is present in a constitutively active form in S. cerevisiae. On the other hand, expression of cNPK5 failed to suppress the growth defect of the snf4 mutant cells in the presence of sucrose and to induce expression of the SUC2 gene. These results indicate that SNF4 is required for the induction of SUC2 expression by NPK5, as by SNF1, even if NPK5 is constitutively active in S. cerevisiae. The recombinant NPK5 protein is capable of autophosphorylation in vitro in a reaction that requires Mn2+ rather than Mg2+ ions but is inhibited by Ca2+ ions. Both dicotyledonous and monocotyledonous plants have several copies of the NPK5-related gene, which probably constitute a small gene family. NPK5-related genes were found to be expressed in the roots, leaves, and stems of tobacco plants. The high degree of structural conservation and the functional similarity of NPK5 to SNF1 lead us to speculate that NPK5 (or a related kinase) also plays a role in sugar metabolism in higher plants.
Collapse
|
130
|
Yorihuzi T, Ohsumi Y. Saccharomyces cerevisiae MATa mutant cells defective in pointed projection formation in response to alpha-factor at high concentrations. Yeast 1994; 10:579-94. [PMID: 7941743 DOI: 10.1002/yea.320100503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have isolated Saccharomyces cerevisiae MATa mutant cells that do not form a pointed projection but elongate in response to alpha-factor at high concentrations. Complementation tests defined three genes, PPF1, PPF2, and PPF3 (for pointed projection formation), necessary for pointed projection formation. Allelism tests with genes known to be needed for projection formation revealed that PPF1 is identical to SPA2, while PPF2 and PPF3 are not allelic to SST2, STE2, SPA2, BEM1 or SLK1/SSP31/BCK1. The morphology of MATa ppf mutants treated with high concentrations of alpha-factor is similar to that of MATa PPF cells treated with alpha-factor at low concentrations. Quantitative mating tests showed that PPF2 and PPF3 are not essential for mating in either MATa or MAT alpha background. Monitoring of division arrest and expression of an alpha-factor-inducible gene revealed that mutations in the PPF genes do not affect the responses of MATa cells to low concentrations of alpha-factor. Unlike wild-type cells, the ppf mutants exhibited early recovery from alpha-factor-induced division arrest. Furthermore, vegetatively growing ppf3-1 cells are slightly defective in cell separation of mother and daughter cells and in selection of the correct bud sites in all cell types. These results indicate that PPF2 and PPF3 are involved in the response to alpha-factor at high concentrations and that PPF3 is also required for proper establishment of polarity in vegetative growth.
Collapse
Affiliation(s)
- T Yorihuzi
- Department of Biology, College of Arts and Sciences, University of Tokyo, Japan
| | | |
Collapse
|
131
|
Muranaka T, Banno H, Machida Y. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae. Mol Cell Biol 1994; 14:2958-65. [PMID: 8164654 PMCID: PMC358663 DOI: 10.1128/mcb.14.5.2958-2965.1994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have isolated a cDNA (cNPK5) that encodes a protein kinase of 511 amino acids from suspension cultures of tobacco cells. The predicted kinase domain of NPK5 is 65% identical in terms of amino acid sequence to that of the SNF1 serine/threonine protein kinase of Saccharomyces cerevisiae, which plays a central role in catabolite repression in yeast cells. SNF1 positively regulates transcription of various glucose-repressible genes of the yeast, such as the SUC2 gene for a secreted invertase, in response to glucose deprivation: snf1 mutants cannot utilize sucrose as a carbon source. Expression of cNPK5 in yeast cells allowed the snf1 mutant cells to utilize sucrose for growth and caused constitutive expression of the SUC2 gene in wild-type cells even in the presence of glucose, an indication that the NPK5 protein is present in a constitutively active form in S. cerevisiae. On the other hand, expression of cNPK5 failed to suppress the growth defect of the snf4 mutant cells in the presence of sucrose and to induce expression of the SUC2 gene. These results indicate that SNF4 is required for the induction of SUC2 expression by NPK5, as by SNF1, even if NPK5 is constitutively active in S. cerevisiae. The recombinant NPK5 protein is capable of autophosphorylation in vitro in a reaction that requires Mn2+ rather than Mg2+ ions but is inhibited by Ca2+ ions. Both dicotyledonous and monocotyledonous plants have several copies of the NPK5-related gene, which probably constitute a small gene family. NPK5-related genes were found to be expressed in the roots, leaves, and stems of tobacco plants. The high degree of structural conservation and the functional similarity of NPK5 to SNF1 lead us to speculate that NPK5 (or a related kinase) also plays a role in sugar metabolism in higher plants.
Collapse
Affiliation(s)
- T Muranaka
- Department of Biology, Faculty of Science, Nagoya University, Japan
| | | | | |
Collapse
|
132
|
Abstract
STE20 is a newly-discovered element of the Saccharomyces cerevisiae pheromone response pathway. We have isolated a recessive ste20 mutation and have used it to map the gene to the left arm of chromosome VIII, establishing the gene order STE20-CEN8-GPA1-ARG4.
Collapse
Affiliation(s)
- J Horecka
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | |
Collapse
|
133
|
Whiteway M, Clark KL, Leberer E, Dignard D, Thomas DY. Genetic identification of residues involved in association of alpha and beta G-protein subunits. Mol Cell Biol 1994; 14:3223-9. [PMID: 8164677 PMCID: PMC358689 DOI: 10.1128/mcb.14.5.3223-3229.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The GPA1, STE4, and STE18 genes of Saccharomyces cerevisiae encode the alpha, beta, and gamma subunits, respectively, of a G protein involved in the mating response pathway. We have found that mutations G124D, W136G, W136R, and delta L138 and double mutations W136R L138F and W136G S151C of the Ste4 protein cause constitutive activation of the signaling pathway. The W136R L138F and W136G S151C mutant Ste4 proteins were tested in the two-hybrid protein association assay and found to be defective in association with the Gpa1 protein. A mutation at position E307 of the Gpa1 protein both suppresses the constitutive signaling phenotype of some mutant Ste4 proteins and allows the mutant alpha subunit to physically associate with a specific mutant G beta subunit. The mutation in the Gpa1 protein is adjacent to the hinge, or switch, region that is required for the conformational change which triggers subunit dissociation, but the mutation does not affect the interaction of the alpha subunit with the wild-type beta subunit. Yeast cells constructed to contain only the mutant alpha and beta subunits mate and respond to pheromones, although they exhibit partial induction of the pheromone response pathway. Because the ability of the modified G alpha subunit to suppress the Ste4 mutations is allele specific, it is likely that the residues defined by this analysis play a direct role in G-protein subunit association.
Collapse
Affiliation(s)
- M Whiteway
- National Research Council, Biotechnology Research Institute, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
134
|
Oehlen LJ, Cross FR. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle. Genes Dev 1994; 8:1058-70. [PMID: 7926787 DOI: 10.1101/gad.8.9.1058] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transcriptional induction by the mating pheromone alpha-factor was monitored at different stages of the yeast cell cycle. G2/M-phase and pre-Start cells showed strong FUS1 mRNA induction, whereas in post-Start cells the signaling was reduced significantly. This reduction in signaling activity in post-Start cells was correlated with the presence of CLN1 or CLN2 transcripts and was not observed in synchronized cells lacking functional CLN1 and CLN2 genes. Activation of the Cln-Cdc28p kinase by overexpression of CLN2 from the GAL1 promoter strongly reduced FUS1 mRNA induction. CLN1 overexpression had a similar effect when the FAR1 gene, encoding a negative regulator of CLN1/2 function, was deleted. This reduction of pheromone signaling was specific for CLN1 and CLN2, as it was not observed when CLN3 was overexpressed. Inactivation of the Cln-Cdc28p kinase complex by thermal inactivation of temperature-sensitive Cdc28p prevented repression of FUS1 signaling. CLN2 overexpression suppressed the constitutive signaling and division-arrest phenotypes of cells with a disrupted gpa1 gene, indicating that the site of action for repression is downstream of the alpha-subunit (Gpa1p) of the heterotrimeric G protein. The repression at Start of pheromone signaling by Cln1-Cdc28p or Cln2-Cdc28p kinase complexes may contribute to the acquisition of pheromone resistance as cells execute Start.
Collapse
Affiliation(s)
- L J Oehlen
- Rockefeller University, New York, New York 10021
| | | |
Collapse
|
135
|
Irie K, Yamaguchi K, Kawase K, Matsumoto K. The yeast MOT2 gene encodes a putative zinc finger protein that serves as a global negative regulator affecting expression of several categories of genes, including mating-pheromone-responsive genes. Mol Cell Biol 1994; 14:3150-7. [PMID: 8164670 PMCID: PMC358682 DOI: 10.1128/mcb.14.5.3150-3157.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The STE4 gene encodes the beta subunit of a heterotrimeric G protein that is an essential component of the pheromone signal transduction pathway. To identify downstream component(s) of Ste4, we sought pseudo-revertants that restored mating competence to ste4 mutants. The suppressor mot2 was isolated as a recessive mutation that restored conjugational competence to a temperature-sensitive ste4 mutant and simultaneously conferred a temperature-sensitive growth phenotype. The MOT2 gene encodes a putative zinc finger protein, the deletion of which resulted in temperature-sensitive growth, increased expression of FUS1 in the absence of pheromones, and suppression of a deletion of the alpha-factor receptor. On the other hand, sterility resulting from deletion of STE4 was not suppressed by the mot2 deletion. These phenotypes are similar to those associated with temperature-sensitive mutations in CDC36 and CDC39, which are proposed to encode general negative regulators of transcription rather than factors involved in the pheromone response pathway. Deletion of MOT2 also caused increased transcription of unrelated genes such as GAL7 and PHO84. Overexpression of MOT2 suppresses the growth defect of temperature-sensitive mutations in CDC36 and CDC39. These observations suggest that Mot2 functions as a general negative regulator of transcription in the same processes as Cdc36 and Cdc39.
Collapse
Affiliation(s)
- K Irie
- Department of Molecular Biology, Faculty of Science, Nagoya University, Japan
| | | | | | | |
Collapse
|
136
|
Brill JA, Elion EA, Fink GR. A role for autophosphorylation revealed by activated alleles of FUS3, the yeast MAP kinase homolog. Mol Biol Cell 1994; 5:297-312. [PMID: 8049522 PMCID: PMC301038 DOI: 10.1091/mbc.5.3.297] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have isolated dominant gain-of-function (gf) mutations in FUS3, a Saccharomyces cerevisiae mitogen-activated protein (MAP) kinase homolog, that constitutively activate the yeast mating signal transduction pathway and confer hypersensitivity to mating pheromone. Surprisingly, the phenotypes of dominant FUS3gf mutations require the two protein kinases, STE7 and STE11. FUS3gf kinases are hyperphosphorylated in yeast independently of STE7. Consistent with this, FUS3gf kinases expressed in Escherichia coli exhibit an increased ability to autophosphorylate on tyrosine in vivo. FUS3gf mutations suppress the signal transduction defect of a severely catalytically impaired allele of STE7. This finding suggests that the tyrosine-phosphorylated form of FUS3 is a better substrate for activation by STE7. Furthermore, these results imply that the degree of autophosphorylation of a MAP kinase determines its threshold of sensitivity to upstream signals.
Collapse
Affiliation(s)
- J A Brill
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge 02142
| | | | | |
Collapse
|
137
|
Mutational activation of the STE5 gene product bypasses the requirement for G protein beta and gamma subunits in the yeast pheromone response pathway. Mol Cell Biol 1994. [PMID: 8289786 DOI: 10.1128/mcb.14.2.1054] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The STE5 gene encodes an essential element of the pheromone response pathway which is known to act either after the G subunit encoded by the STE4 gene or at the same step. Mutations in STE5, designated STE5Hyp, that partially activate the pathway in the absence of pheromone were isolated. One allele (STE5Hyp-2) was shown to cause a single amino acid substitution near the N terminus of the predicted STE5 protein. Immunoblotting with anti-Ste5 antibodies indicated that the phenotype was not due to an increased level of the mutant STE5 protein. A multicopy episomal plasmid containing a STE5Hyp allele partially suppressed both the block in pheromone-inducible transcription and the sterility phenotype caused by null alleles of the STE2, STE4, or STE18 gene, indicating that the STE5 product acts after the receptor (STE2 product) and after the G protein beta and gamma subunits (STE4 and STE18 products, respectively). However, the phenotypes of the STE5Hyp mutations were less pronounced in ste4 and ste18 mutants, suggesting that the STE5Hyp-generated signal partially depends on the proposed G beta gamma complex. The STE5Hyp alleles did not suppress ste7, ste11, ste12, or fus3 kss1 null mutants, consistent with previous findings that the STE5 product acts before the protein kinases encoded by STE7, STE11, FUS3, and KSS1 and the transcription factor encoded by STE12. The mating defects of the ste2 deletion mutant and the temperature-sensitive ste4-3 mutant were also suppressed by overexpression of wild-type STE5. The slow-growth phenotype manifested by cells carrying STE5Hyp alleles was enhanced by the sst2-1 mutation; this effect was eliminated in ste4 mutants. These results provide the first evidence that the STE5 gene product performs its function after the G protein subunits.
Collapse
|
138
|
Hasson MS, Blinder D, Thorner J, Jenness DD. Mutational activation of the STE5 gene product bypasses the requirement for G protein beta and gamma subunits in the yeast pheromone response pathway. Mol Cell Biol 1994; 14:1054-65. [PMID: 8289786 PMCID: PMC358461 DOI: 10.1128/mcb.14.2.1054-1065.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The STE5 gene encodes an essential element of the pheromone response pathway which is known to act either after the G subunit encoded by the STE4 gene or at the same step. Mutations in STE5, designated STE5Hyp, that partially activate the pathway in the absence of pheromone were isolated. One allele (STE5Hyp-2) was shown to cause a single amino acid substitution near the N terminus of the predicted STE5 protein. Immunoblotting with anti-Ste5 antibodies indicated that the phenotype was not due to an increased level of the mutant STE5 protein. A multicopy episomal plasmid containing a STE5Hyp allele partially suppressed both the block in pheromone-inducible transcription and the sterility phenotype caused by null alleles of the STE2, STE4, or STE18 gene, indicating that the STE5 product acts after the receptor (STE2 product) and after the G protein beta and gamma subunits (STE4 and STE18 products, respectively). However, the phenotypes of the STE5Hyp mutations were less pronounced in ste4 and ste18 mutants, suggesting that the STE5Hyp-generated signal partially depends on the proposed G beta gamma complex. The STE5Hyp alleles did not suppress ste7, ste11, ste12, or fus3 kss1 null mutants, consistent with previous findings that the STE5 product acts before the protein kinases encoded by STE7, STE11, FUS3, and KSS1 and the transcription factor encoded by STE12. The mating defects of the ste2 deletion mutant and the temperature-sensitive ste4-3 mutant were also suppressed by overexpression of wild-type STE5. The slow-growth phenotype manifested by cells carrying STE5Hyp alleles was enhanced by the sst2-1 mutation; this effect was eliminated in ste4 mutants. These results provide the first evidence that the STE5 gene product performs its function after the G protein subunits.
Collapse
Affiliation(s)
- M S Hasson
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | |
Collapse
|
139
|
Concerted action of RAS and G proteins in the sexual response pathways of Schizosaccharomyces pombe. Mol Cell Biol 1994. [PMID: 8264618 DOI: 10.1128/mcb.14.1.50] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that the expression of mam2, the gene encoding the Schizosaccharomyces pombe P-factor pheromone receptor, is dependent upon components of the pheromone signal transduction pathway, including Ras1, Gpa1, Byr1 and Byr2, each of which is required for both conjugation and sporulation. Studies of the expression of mam2 in mutant S. pombe cells confirm previous conclusions, based on the ability of cells to sporulate, that the Byr1 protein kinase acts downstream of the Byr2 protein kinase and that both act downstream of Ras1, the S. pombe RAS homolog, and Gpa1, the G alpha component that mediates the occupancy of the mam2 receptor. In addition, our present studies show that Ras1 and Gpa1 each act downstream from the other and hence act in concert. The Spk1 kinase, which is required for conjugation and sporulation and which is a structural and functional homolog of the vertebrate MAP kinases, is not required for mam2 expression.
Collapse
|
140
|
Xu HP, White M, Marcus S, Wigler M. Concerted action of RAS and G proteins in the sexual response pathways of Schizosaccharomyces pombe. Mol Cell Biol 1994; 14:50-8. [PMID: 8264618 PMCID: PMC358355 DOI: 10.1128/mcb.14.1.50-58.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have shown that the expression of mam2, the gene encoding the Schizosaccharomyces pombe P-factor pheromone receptor, is dependent upon components of the pheromone signal transduction pathway, including Ras1, Gpa1, Byr1 and Byr2, each of which is required for both conjugation and sporulation. Studies of the expression of mam2 in mutant S. pombe cells confirm previous conclusions, based on the ability of cells to sporulate, that the Byr1 protein kinase acts downstream of the Byr2 protein kinase and that both act downstream of Ras1, the S. pombe RAS homolog, and Gpa1, the G alpha component that mediates the occupancy of the mam2 receptor. In addition, our present studies show that Ras1 and Gpa1 each act downstream from the other and hence act in concert. The Spk1 kinase, which is required for conjugation and sporulation and which is a structural and functional homolog of the vertebrate MAP kinases, is not required for mam2 expression.
Collapse
MESH Headings
- Base Sequence
- Conjugation, Genetic
- DNA Primers/genetics
- DNA, Fungal/genetics
- Fungal Proteins/metabolism
- GTP-Binding Protein alpha Subunits
- GTP-Binding Protein alpha Subunits, Gq-G11
- GTP-Binding Proteins/metabolism
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Heterotrimeric GTP-Binding Proteins
- Molecular Sequence Data
- Protein Kinases/metabolism
- Receptors, Mating Factor
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Saccharomyces cerevisiae Proteins
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- Schizosaccharomyces pombe Proteins
- Signal Transduction
- Spores, Fungal/genetics
- Spores, Fungal/metabolism
- Transcription Factors
- ras Proteins
Collapse
Affiliation(s)
- H P Xu
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
141
|
|
142
|
AFR1 acts in conjunction with the alpha-factor receptor to promote morphogenesis and adaptation. Mol Cell Biol 1993. [PMID: 8413281 DOI: 10.1128/mcb.13.11.6876] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mating pheromone receptors activate a G-protein signaling pathway that induces changes in transcription, cell division, and morphogenesis needed for the conjunction of Saccharomyces cerevisiae. The C terminus of the alpha-factor pheromone receptor functions in two complex processes, adaptation and morphogenesis. Adaptation to alpha-factor may occur through receptor desensitization, and alpha-factor-induced morphogenesis forms the conjugation bridge between mating cells. A plasmid overexpression strategy was used to isolate a new gene, AFR1, which acts together with the receptor C terminus to promote adaptation. The expression of AFR1 was highly induced by alpha-factor. Unexpectedly, cells lacking AFR1 showed a defect in alpha-factor-stimulated morphogenesis that was similar to the morphogenesis defect observed in cells producing C-terminally truncated alpha-factor receptors. In contrast, AFR1 overexpression resulted in longer projections of morphogenesis, which suggests that this gene may directly stimulate morphogenesis. These results indicate that AFR1 encodes a developmentally regulated function that coordinates both the regulation of receptor signaling and the induction of morphogenesis during conjugation.
Collapse
|
143
|
Konopka JB. AFR1 acts in conjunction with the alpha-factor receptor to promote morphogenesis and adaptation. Mol Cell Biol 1993; 13:6876-88. [PMID: 8413281 PMCID: PMC364750 DOI: 10.1128/mcb.13.11.6876-6888.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mating pheromone receptors activate a G-protein signaling pathway that induces changes in transcription, cell division, and morphogenesis needed for the conjunction of Saccharomyces cerevisiae. The C terminus of the alpha-factor pheromone receptor functions in two complex processes, adaptation and morphogenesis. Adaptation to alpha-factor may occur through receptor desensitization, and alpha-factor-induced morphogenesis forms the conjugation bridge between mating cells. A plasmid overexpression strategy was used to isolate a new gene, AFR1, which acts together with the receptor C terminus to promote adaptation. The expression of AFR1 was highly induced by alpha-factor. Unexpectedly, cells lacking AFR1 showed a defect in alpha-factor-stimulated morphogenesis that was similar to the morphogenesis defect observed in cells producing C-terminally truncated alpha-factor receptors. In contrast, AFR1 overexpression resulted in longer projections of morphogenesis, which suggests that this gene may directly stimulate morphogenesis. These results indicate that AFR1 encodes a developmentally regulated function that coordinates both the regulation of receptor signaling and the induction of morphogenesis during conjugation.
Collapse
Affiliation(s)
- J B Konopka
- Department of Microbiology, State University of New York at Stony Brook 11794-5222
| |
Collapse
|
144
|
Leberer E, Dignard D, Harcus D, Hougan L, Whiteway M, Thomas DY. Cloning of Saccharomyces cerevisiae STE5 as a suppressor of a Ste20 protein kinase mutant: structural and functional similarity of Ste5 to Far1. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:241-54. [PMID: 8246877 DOI: 10.1007/bf00284675] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The beta and gamma subunits of the mating response G-protein in the yeast Saccharomyces cerevisiae have been shown to transmit the mating pheromone signal to downstream components of the pheromone response pathway. A protein kinase homologue encoded by the STE20 gene has recently been identified as a potential G beta gamma target. We have searched multicopy plasmid genomic DNA libraries for high gene dosage suppressors of the signal transduction defect of ste20 mutant cells. This screen identified the STE5 gene encoding an essential component of the pheromone signal transduction pathway. We provide genetic evidence for a functional interrelationship between the STE5 gene product and the Ste20 protein kinase. We have sequenced the STE5 gene, which encodes a predicted protein of 917 amino acids and is specifically transcribed in haploid cells. Transcription is slightly induced by treatment of cells with pheromone. Ste5 has homology with Far1, a yeast protein required for efficient mating and the pheromone-inducible inhibition of a G1 cyclin, Cln2. A STE5 multicopy plasmid is able to suppress the signal transduction defect of far1 null mutant cells suggesting that Ste5, at elevated levels, is able functionally to replace Far1. The genetically predicted point of function of Ste5 within the pheromone signalling pathway suggests that Ste5 is involved in the regulation of a G beta gamma-activated protein kinase cascade which links a G-protein coupled receptor to yeast homologues of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- E Leberer
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec
| | | | | | | | | | | |
Collapse
|
145
|
Boone C, Davis NG, Sprague GF. Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype. Proc Natl Acad Sci U S A 1993; 90:9921-5. [PMID: 8234336 PMCID: PMC47684 DOI: 10.1073/pnas.90.21.9921] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The STE3 gene of Saccharomyces cerevisiae encodes a G protein-coupled receptor that is specific for the mating pheromone a-factor. The ste3L194Q mutation, which leads to the substitution of glutamine for leucine-194 within the third cytoplasmic loop of the receptor, resulted in a 20-fold increase in pheromone sensitivity and also caused partial constitutive activation of the response pathway. Moreover, other amino acid substitutions at the 194 position and several deletion mutations that collectively remove most of the third cytoplasmic loop resulted in hyperactive receptors. Therefore, we suggest that one role of the third cytoplasmic loop is to function as a negative regulatory domain involved in the maintenance of a nonsignaling state of the receptor. The constitutive activity and the pheromone hypersensitivity of ste3L194Q cells were recessive, suggesting that the wild-type receptor can antagonize the signal associated with the activated receptor. The ste3 delta 306 mutation, which results in truncation of most of the C-terminal domain of the receptor, led to a 20-fold increase in pheromone sensitivity, indicating that this domain also mediates negative regulation of the receptor. The ste3L194Q and ste3 delta 306 mutations appear to affect receptor activity independently, because the double mutant was associated with a 400-fold increase in pheromone sensitivity.
Collapse
Affiliation(s)
- C Boone
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | |
Collapse
|
146
|
Dohlman HG, Goldsmith P, Spiegel AM, Thorner J. Pheromone action regulates G-protein alpha-subunit myristoylation in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1993; 90:9688-92. [PMID: 8415763 PMCID: PMC47635 DOI: 10.1073/pnas.90.20.9688] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Myristic acid (C14:0) is added to the N-terminal glycine residue of the alpha subunits of certain receptor-coupled guanine nucleotide-binding regulatory proteins (G proteins). The G alpha subunit (GPA1 gene product) coupled to yeast pheromone receptors exists as a pool of both myristoylated and unmyristolyated species. After treatment of MATa cells with alpha factor, the myristoylated form of Gpa1p increases dramatically, and the unmyristoylated form decreases concomitantly. This pheromone-stimulated shift depends on the function of STE2 (alpha-factor receptor), STE11 (a protein kinase in the response pathway), and NMT1 (myristoyl-CoA:protein N-myristoyltransferase) genes and uses the existing pool of fatty acids (is not blocked by cerulenin). Myristoylated Gpa1p persists long after pheromone is removed. Because myristoylation is essential for proper G alpha-G beta gamma association and receptor coupling, pheromone-dependent stimulation of Gpa1p myristoylation may be an important contributing factor in adaptation after signal transmission.
Collapse
Affiliation(s)
- H G Dohlman
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
147
|
Zhang M, Tipper DJ. Suppression of a dominant G-protein beta-subunit mutation in yeast by G alpha protein expression. Mol Microbiol 1993; 9:813-21. [PMID: 8231812 DOI: 10.1111/j.1365-2958.1993.tb01740.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SCG1/GPA1, STE4 and STE18 encode the alpha, beta and gamma components of the G protein involved in mating pheromone signal transduction in Saccharomyces cerevisiae. Responses, including G1 arrest and expression of genes such as FUS1, are activated by beta gamma, which is negatively controlled by alpha(GDP). We previously demonstrated that overexpression of Scg1 suppresses responses to alpha factor and that expression of certain hybrids between Scg1 and mammalian G alpha proteins has the same effect and also suppresses growth arrest in an scg1-null mutant. Effects were attributed to sequestration of beta gamma. We now show that effects on growth rate, morphology and FUS1 expression are consistent with this model. The STE4HPL allele causes dominant activation of the response pathway, and is presumed to encode a beta subunit insensitive to control by alpha(GDP). Scg1 overexpression suppresses the growth arrest due to STE4HPL; normal alpha-factor responses and fertility are restored. A model based on sequestration of beta gamma reconciles this result with the apparent paradox that the same level of Scg1 overexpression inhibits responses and mating in wild-type cells. A G alpha i hybrid also restores growth and allows inefficient mating in the STE4HPL strain.
Collapse
Affiliation(s)
- M Zhang
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester 01655
| | | |
Collapse
|
148
|
Davis NG, Horecka JL, Sprague GF. Cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. J Cell Biol 1993; 122:53-65. [PMID: 8391002 PMCID: PMC2119599 DOI: 10.1083/jcb.122.1.53] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Saccharomyces cerevisiae a-factor receptor (STE3) is subject to two modes of endocytosis: a constitutive process that occurs in the absence of ligand and a regulated process that is triggered by binding of ligand. Both processes result in delivery of the receptor to the vacuole for degradation. Receptor mutants deleted for part of the COOH-terminal cytoplasmic domain are disabled for constitutive, but not ligand-dependent internalization. Trans-acting mutants that impair constitutive endocytosis have been isolated. One of these, ren1-1, is blocked at a late step in the endocytic pathway, as receptor accumulates in a prevacuolar endosome-like compartment. REN1 is identical to VPS2, a gene required for delivery of newly synthesized vacuolar enzymes to the vacuole. Based on this identity, we suggest a model in which the transport pathways to the vacuole--the endocytic pathway and the vacuolar biogenesis pathway--merge at an intermediate endocytic compartment. As receptor also accumulates at the surface of ren1 cells, receptor may recycle from the putative endosome to the surface, or REN1 may also be required to carry out an early step in endocytosis.
Collapse
Affiliation(s)
- N G Davis
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | |
Collapse
|
149
|
Lindsley D, Gallant J. On the directional specificity of ribosome frameshifting at a "hungry" codon. Proc Natl Acad Sci U S A 1993; 90:5469-73. [PMID: 8516288 PMCID: PMC46742 DOI: 10.1073/pnas.90.12.5469] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Limitation for aminoacyl-tRNA promotes ribosome frameshifting at certain sites. We have previously demonstrated ribosome frameshifting to the right (3') at an AAG site in one context, and to the left (5') at an AAG site in a different context. Here, we demonstrate that the "rightwing" context is largely specific for frameshifting to the right, and the "leftwing" context is largely specific for frameshifting to the left. Analysis of these context rules, and the conversion of a sequence that promotes leftward frameshifting to one that promotes rightward frameshifting, demonstrated here, permits us to define a minimal heptanucleotide sequence sufficient for shiftiness in each direction at an AAG codon whose lysyl-tRNA is in short supply.
Collapse
Affiliation(s)
- D Lindsley
- Department of Genetics, University of Washington, Seattle 98195
| | | |
Collapse
|
150
|
Perlman R, Yablonski D, Simchen G, Levitzki A. Cloning of the STE5 gene of Saccharomyces cerevisiae as a suppressor of the mating defect of cdc25 temperature-sensitive mutants. Proc Natl Acad Sci U S A 1993; 90:5474-8. [PMID: 8516289 PMCID: PMC46743 DOI: 10.1073/pnas.90.12.5474] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The STE5 gene of Saccharomyces cerevisiae was cloned using a screening procedure designed to isolate genes of the S. cerevisiae pheromone response pathway. We screened a yeast genomic high-copy-number plasmid library for genes that allow mating of cdc25ts mutants at the restrictive temperature without affecting the cell-cycle-arrest phenotype. One of the genes cloned was identified by genetic analysis as STE5. STE5 encodes a predicted open reading frame of 916 amino acids and exhibits significant homology to Far1 protein. RNA blot analysis reveals that STE5 gene transcription is regulated by the mating type of the cell and depends on an intact pheromone-response pathway.
Collapse
Affiliation(s)
- R Perlman
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|