101
|
Trejo JL, Pons S. Phosphatidylinositol-3-OH kinase regulatory subunits are differentially expressed during development of the rat cerebellum. JOURNAL OF NEUROBIOLOGY 2001; 47:39-50. [PMID: 11257612 DOI: 10.1002/neu.1014] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin-like growth factor I (IGF-I) most likely represents the main survival signal during neuronal differentiation. IGF-I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF-I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3-kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110alpha or beta) associated with one of a large family of regulatory subunits (p85alpha, p85beta, p55gamma, p55alpha, and p50alpha). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55gamma regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55gamma is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF-IR.
Collapse
Affiliation(s)
- J L Trejo
- Cellular and Molecular Neuroendocrinology Laboratory, Instituto Cajal de Neurobiología, C.S.I.C., Av. Doctor Arce 37, Madrid E28002, Spain
| | | |
Collapse
|
102
|
Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci 2001. [PMID: 11069951 DOI: 10.1523/jneurosci.20-22-08435.2000] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The in vivo actions of insulin-like growth factor-I (IGF-I) on the growth and development of the hippocampal dentate gyrus were investigated in transgenic mice that overexpress IGF-I postnatally in the brain and in normal nontransgenic littermate controls. Stereological analyses of the dentate gyrus were performed by light and electron microscopy on days 7, 14, 21, 28, 35, and 130 to determine postnatal changes in the numerical density and total number of neurons and synapses. The volumes of both the granule cell layer and the molecular layer of the dentate gyrus were significantly increased by 27-69% in transgenic mice after day 7, with the greatest relative increases occurring by day 35. Although the numerical density of neurons in the granule cell layer did not differ significantly between transgenic and control mice at any age studied, the total number of neurons was significantly greater in transgenic mice by 29-61% beginning on day 14. The total number of synapses in the molecular layer was significantly increased by 42-105% in transgenic mice from day 14 to day 130. A transient increase in the synapse-to-neuron ratio was found in transgenic mice at postnatal days 28 and 35 but not at day 130. This finding indicates a disproportionate increase in synaptogenesis, exceeding that expected for the observed increase in neuron number. Our results demonstrate that IGF-I overexpression produces persistent increases in the total number of neurons and synapses in the dentate gyrus, indicating that IGF-I promotes both neurogenesis and synaptogenesis in the developing hippocampus in vivo.
Collapse
|
103
|
Abstract
Thalamic afferents are known to exert a control over the differentiation of cortical areas at late stages of development. Here, we show that thalamic afferents also influence early stages of corticogenesis at the level of the ventricular zone. Using an in vitro approach, we show that embryonic day 14 mouse thalamic axons release a diffusable factor that promotes the proliferation of cortical precursors over a restricted developmental window. The thalamic mitogenic effect on cortical precursors (1) shortens the total cell-cycle duration via a reduction of the G(1) phase; (2) facilitates the G(1)/S transition leading to an increase in proliferative divisions; (3) is significantly reduced by antibodies directed against bFGF; and (4) influences the proliferation of both glial and neuronal precursors and does not preclude the action of signals that induce differentiation in these two lineages. We have related these in vitro findings to the in vivo condition: the organotypic culture of cortical explants in which anatomical thalamocortical innervation is preserved shows significantly increased proliferation rates compared with cortical explants devoid of subcortical afferents. These results are in line with a number of studies at subcortical levels showing the control of neurogenesis via afferent fibers in both vertebrates and invertebrates. Specifically, they indicate the mechanisms whereby embryonic thalamic afferents contribute to the known early regionalization of the ventricular zone, which plays a major role in the specification of neocortical areas.
Collapse
|
104
|
Shapiro BL. Developmental instability of the cerebellum and its relevance to Down syndrome. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001:11-34. [PMID: 11771737 DOI: 10.1007/978-3-7091-6262-0_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
It has been recognized for many years that cerebellar abnormalities are frequently observed in association with Down syndrome (DS). An important question to be asked about these and other findings in DS is whether their occurrence (i) is attributable to specific loci on the triplicated chromosome or chromosomal segment or (ii) derives from exaggerated responses secondary to the genetic imbalance resulting from trisomy (Ts). Recently, similar cerebellar alterations were observed in subjects with DS and in Ts65Dn mice (Baxter et al., 2000), mice segmentally trisomic for a portion of chromosome 16, which is homologous for loci on the long arm of human chromosome 21. It was concluded by these authors that the occurrence of similar cerebellar changes in DS and in the DS mouse model resulted from triplication of these homologous loci in the two trisomic organisms, i.e. cerebellar development is affected similarly by homologous loci in each species. They wrote that their study of Ts65Dn mice "correctly predicts an analagous pathology in humans". . . and that. . . "The candidate region of genes on chromosome 21 affecting cerebellar development in DS is therefore delimited to the subset of genes whose orthologs are at dosage imbalance in Ts65Dn mice, providing the first localization of genes affecting a neuroanatomical phenotype in DS." Findings described in this review suggest otherwise--that cerebellar findings in DS and in the Ts65Dn mouse are a result of exaggerated vulnerability in general of the cerebellum to disturbing events and that liability to expression of response(s) is exacerbated by trisomy. This conclusion is based on the following: (i) the cerebellum has an extended postnatal development; (ii) numerous genetic, environmental, epigenetic and metabolic conditions express cerebellar changes similar to those observed in Down syndrome; (iii) most if not all chromosomal imbalance syndromes express similar cerebellar abnormalities; (iv) the cerebellum is particularly sensitive to diverse toxic agents which may act prenatally, postnatally and/or in the mature organism; and (v) cerebellar abnormalities similar to those found in Ts65Dn mice have been described in Ts19 mice which have no segments homologous to any segment of human chromosome 21. An unavoidable conclusion from the review is that triplication of specific loci on 21q is an unlikely explanation for the cerebellar findings in DS. A simple positive control, in which the effect of triplication of loci other than those in question on a specific phenotype, should be used in experiments comparing human and experimental trisomies. As pointed out many years ago by Lorke and his coworkers (Lorke et al., 1989; Lorke, 1994; Lorke and Albrecht, 1994) similar phenotypic findings in the presence of different trisomies in the same species would suggest that the trisomic state itself rather than the gene content of a particular trisomy is responsible for the genesis of traits at issue.
Collapse
Affiliation(s)
- B L Shapiro
- Department of Oral Science, University of Minnesota, Minneapolis 55455, USA.
| |
Collapse
|
105
|
Kenney AM, Rowitch DH. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 2000; 20:9055-67. [PMID: 11074003 PMCID: PMC86558 DOI: 10.1128/mcb.20.23.9055-9067.2000] [Citation(s) in RCA: 419] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sonic hedgehog (Shh) signal transduction via the G-protein-coupled receptor, Smoothened, is required for proliferation of cerebellar granule neuron precursors (CGNPs) during development. Activating mutations in the Hedgehog pathway are also implicated in basal cell carcinoma and medulloblastoma, a tumor of the cerebellum in humans. However, Shh signaling interactions with cell cycle regulatory components in neural precursors are poorly understood, in part because appropriate immortalized cell lines are not available. We have utilized primary cultures from neonatal mouse cerebella in order to determine (i) whether Shh initiates or maintains cell cycle progression in CGNPs, (ii) if G(1) regulation by Shh resembles that of classical mitogens, and (iii) whether individual D-type cyclins are essential components of Shh proliferative signaling in CGNPs. Our results indicate that Shh can drive continued cycling in immature, proliferating CGNPs. Shh treatment resulted in sustained activity of the G(1) cyclin-Rb axis by regulating levels of cyclinD1, cyclinD2, and cyclinE mRNA transcripts and proteins. Analysis of CGNPs from cyclinD1(-/-) or cyclinD2(-/-) mice demonstrates that the Shh proliferative pathway does not require unique functions of cyclinD1 or cyclinD2 and that D-type cyclins overlap functionally in this regard. In contrast to many known mitogenic pathways, we show that Shh proliferative signaling is mitogen-activated protein kinase independent. Furthermore, protein synthesis is required for early effects on cyclin gene expression. Together, our results suggest that Shh proliferative signaling promotes synthesis of regulatory factor intermediates that upregulate or maintain cyclin gene expression and activity of the G(1) cyclin-Rb axis in proliferating granule neuron precursors.
Collapse
Affiliation(s)
- A M Kenney
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
106
|
Elder DA, Karayal AF, D'Ercole AJ, Calikoglu AS. Effects of hypothyroidism on insulin-like growth factor-I expression during brain development in mice. Neurosci Lett 2000; 293:99-102. [PMID: 11027843 DOI: 10.1016/s0304-3940(00)01508-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypothyroidism has devastating consequences on brain development. While the mechanisms that mediate these effects are not known, several lines of evidence suggest that a reduction in insulin-like growth factor-I (IGF-I) expression and/or action has a role. To assess whether reduced IGF-I expression and/or actions mediates the brain pathology of congenital hypothyroidism, we induced hypothyroidism by treating pregnant mice and lactating dams with 0. 1% propylthiouracil (PTU) in drinking water. Control and PTU-treated pups were sacrificed on postnatal day (P) 7, 10 and 14, and IGF-I mRNA expression was assessed in the cerebral cortex and cerebellum by ribonuclease protection assay. To control for mRNA loading, the signal of IGF-I protected bands was normalized to those for cyclophillin. IGF-I mRNA expression in hypothyroid animals was decreased significantly in cortex at P10 and P14 (42 and 60%, respectively). In the cerebellum, IGF-I mRNA expression was down-regulated at all ages studied, but the decrease was only statistically significant at P7 (31% decreased). We conclude that hypothyroidism alters IGF-I expression in the developing brain. Furthermore, we speculate that IGF-I plays a role in mediating some thyroid hormone actions during brain development.
Collapse
Affiliation(s)
- D A Elder
- Department of Pediatrics, Division of Endocrinology, CB 7220, 108 Burnett-Womack, The University of North Carolina at Chapel Hill, NC 27599-7220, Chapel Hill, USA
| | | | | | | |
Collapse
|
107
|
Gao X, Gillig TA, Ye P, D'Ercole AJ, Matsushima GK, Popko B. Interferon-gamma protects against cuprizone-induced demyelination. Mol Cell Neurosci 2000; 16:338-49. [PMID: 11085872 DOI: 10.1006/mcne.2000.0883] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence suggests that interferon-gamma (IFN-gamma), a proinflammatory cytokine secreted by activated T lymphocytes, contributes a deleterious effect to immune-mediated demyelinating disorders such as multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Nevertheless, mouse strains that are normally resistant to EAE induction become susceptible when the gene encoding either IFN-gamma or its receptor is mutated, demonstrating that the role that this cytokine plays in demyelinating disorders is complex. We have examined the effect of IFN-gamma in a chemically induced model of CNS demyelination. Mice that receive through their diet the copper chelator cuprizone display extensive demyelination of the corpus callosum. Remarkably, transgenic mice that ectopically express low levels of IFN-gamma in the CNS did not display evidence of demyelination when treated with cuprizone, nor did they shows signs of oligodendroglial death, astrogliosis, or microgliosis, which are typically seen in treated animals. Myelin protein gene expression was, however, dramatically reduced in both the treated control and the transgenic animals, indicating that demyelination is not an obligatory consequence of a large diminution of myelin protein synthesis. Interestingly, the CNS of the IFN-gamma-expressing mice contained elevated levels of insulin-like growth factor I, which has been demonstrated to have a protective effect against the demyelinating action of cuprizone.
Collapse
Affiliation(s)
- X Gao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 27599-7250, USA
| | | | | | | | | | | |
Collapse
|
108
|
Brunstrom JE, Pearlman AL. Growth factor influences on the production and migration of cortical neurons. Results Probl Cell Differ 2000; 30:189-215. [PMID: 10857190 DOI: 10.1007/978-3-540-48002-0_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- J E Brunstrom
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
109
|
Monti B, Contestabile A. Blockade of the NMDA receptor increases developmental apoptotic elimination of granule neurons and activates caspases in the rat cerebellum. Eur J Neurosci 2000; 12:3117-23. [PMID: 10998095 DOI: 10.1046/j.1460-9568.2000.00189.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Elimination of neurons produced in excess naturally occurs during brain development through programmed cell death. Among the many survival factors affecting this process, a role for neurotransmitters acting on specific receptors has been suggested. We have performed an in vivo pharmacological blockade of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors, using the competitive NMDA receptor antagonist CGP 39551 at developmental stages corresponding to those at which a survival dependence on the stimulation of this receptor has been demonstrated for cerebellar granule neurons explanted in culture (typically from postnatal day 7 to postnatal day 11 or 13). We were able to demonstrate an increased level of DNA fragmentation in the cerebellum of the treated rats. At the P11 stage, in particular, the fragmented DNA extracted from the cerebellum of CGP 39551-treated pups showed a clear laddering of nucleosomal fragments after agarose-gel electrophoresis. Accordingly, in situ TUNEL technique showed a remarkable increase of cells positive for nucleosomal DNA fragmentation, particularly in the inner granular layer of the cerebellum of treated rats at P11 stage. Therefore, the natural rate of apoptotic elimination of cerebellar granule neurons is considerably enhanced under conditions of pharmacological blockade of the NMDA receptor, thus demonstrating, for the first time in vivo, a clear survival dependence of these neurons upon the stimulation of the NMDA receptor. Concomitantly with the increased rate of apoptotic elimination of granule neurons, the activity of two death proteases of the caspase family, in particular of caspase 3 and caspase 1 at a lower extent, was remarkably increased in the cerebellum of the treated rats. On the contrary, a marker related to the normal differentiation process of granule neurons, the enzyme ornithine decarboxylase, was strongly decreased in its activity in the cerebellum of treated rat pups.
Collapse
Affiliation(s)
- B Monti
- Department of Biology, University of Bologna, 40126 Bologna, Italy
| | | |
Collapse
|
110
|
Abstract
During development, control of proliferation of neuronal precursor cells plays a crucial role in determining the number of neurons. Proliferation is driven by mitogens, but how it is terminated remains a mystery. In this study, we examined the role of cyclin-dependent kinase inhibitors in the control of proliferation of cerebellar granule cell precursors (GCPs). Among the inhibitors we examined, only p27/Kip1 (p27) was expressed at significant levels in cells of the granule cell lineage in the developing and adult cerebellum. In developing cerebella, p27 was expressed in the external germinal layer (the deeper regions), the molecular layer, and the granule layer. In adult cerebella, p27 was expressed in the cells of the granule layer. We isolated and purified GCPs from cerebella of developing mice and examined their bromodeoxyuridine (BrdU) uptake and p27 expression at various times. We found that there was an inverse correlation between BrdU uptake and p27 expression. Even in the presence of saturating amounts of Sonic hedgehog, a potent mitogen, the cells eventually stopped dividing and differentiated, expressing p27 strongly. We also examined mice in which one or both copies of the p27 gene have been inactivated by targeted gene disruption and found that their cerebella were larger than those of wild-type mice. In cell cultures, GCPs prepared from p27-deficient mice showed enhanced proliferation compared with GCPs from wild-type mice. Taken together, these results suggest that there is an intracellular mechanism that stops GCP division and causes GCPs to differentiate and that p27 is part of this mechanism.
Collapse
|
111
|
Abstract
Metabolic insult results in apoptosis and depletion of mature oligodendrocytes during demyelination. To examine the role of insulin-like growth factor-1 (IGF-1) during acute demyelination and remyelination in the adult CNS, we exposed transgenic mice that continuously express IGF-1 (IGF-1 tg) to cuprizone intoxication. Demyelination was observed within the corpus callosum in both wild-type and IGF-1 tg mice 3 weeks after exposure to cuprizone. Wild-type mice showed significant apoptotic mature oligodendrocytes and a dramatic loss of these cells within the lesion that resulted in near complete depletion and demyelination by week 5. In contrast, the demyelinated corpus callosum of the IGF-1 tg mice was near full recovery by week 5. This rapid recovery was apparently caused by survival of the mature oligodendrocyte population because apoptosis was negligible, and by week 4, the mature oligodendrocyte population was completely restored. Furthermore, despite demyelination in both wild-type and IGF-1 tg mice, oligodendrocyte progenitors accumulated only in the absence of mature oligodendrocytes and failed to accumulate if the mature oligodendrocytes remained as demonstrated in the IGF-1 tg mice. These results suggest that IGF-1 may be important in preventing the depletion of mature oligodendrocytes in vivo and thus facilitates an early recovery from demyelination.
Collapse
|
112
|
Mason JL, Jones JJ, Taniike M, Morell P, Suzuki K, Matsushima GK. Mature oligodendrocyte apoptosis precedes IGF-1 production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J Neurosci Res 2000; 61:251-62. [PMID: 10900072 DOI: 10.1002/1097-4547(20000801)61:3<251::aid-jnr3>3.0.co;2-w] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have documented changes in the oligodendrocyte population during demyelinating insult to the adult CNS. Feeding of cuprizone to adult mice led to apoptotic death of mature oligodendrocytes followed by profound demyelination of the corpus callosum. A regenerative response was initiated even during active demyelination. Oligodendrocyte progenitors have begun to proliferate and then accumulate within the lesion. Many of these cells may have migrated from the sub-ventricular zone and fornix before their accumulation in the demyelinating corpus callosum. The accumulation of differentiating oligodendrocyte progenitors was followed closely by the reappearance of mature oligodendrocytes and remyelination. Interestingly, an increase in IGF-1 mRNA was detected at Week 3 through Week 7, suggesting potential involvement in remyelination. Other factors, however, such as PDGF, NT3, FGF, jagged, and notch remained unchanged. These results suggest that the mature oligodendroglial population depleted by apoptosis is replaced by a newly formed oligodendroglial population derived from progenitors; these accumulate and seem to differentiate during remyelination.
Collapse
Affiliation(s)
- J L Mason
- UNC Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
113
|
Abstract
In several species, including humans, the dentate granule cell layer (GCL) of the hippocampus exhibits neurogenesis throughout adult life. The ability to regulate adult neurogenesis pharmacologically may be of therapeutic value as a mechanism for replacing lost neurons. Insulin-like growth factor-I (IGF-I) is a growth-promoting peptide hormone that has been shown to have neurotrophic properties. The relationship between IGF-I and adult hippocampal neurogenesis is to date unknown. The aim of this study was to investigate the effect of the peripheral administration of IGF-I on cellular proliferation in the dentate subgranular proliferative zone, which contains neuronal progenitor cells, and on the subsequent migration and differentiation of progenitor cells within the GCL. Using bromodeoxyuridine (BrdU) labeling, we found a significant increase of BrdU-immunoreactive progenitors in the GCL after 6 d of peripheral IGF-I administration. To determine the cell fate in progenitor progeny, we characterized the colocalization of BrdU-immunolabeled cells with cell-specific markers. In animals treated with IGF-I for 20 d, BrdU-positive cells increased significantly. Furthermore, the fraction of newly generated neurons in the GCL increased, as evaluated by the neuronal markers Calbindin D(28K), microtubule-associated protein-2, and NeuN. There was no difference in the fraction of newly generated astrocytes. Thus, our results show that peripheral infusion of IGF-I increases progenitor cell proliferation and selectively induces neurogenesis in the progeny of adult neural progenitor cells. This corresponds to a 78 +/- 17% (p < 0.001) increase in the number of new neurons in IGF-I-treated animals compared with controls.
Collapse
|
114
|
Brooker GJ, Kalloniatis M, Russo VC, Murphy M, Werther GA, Bartlett PF. Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells. J Neurosci Res 2000; 59:332-41. [PMID: 10679768 DOI: 10.1002/(sici)1097-4547(20000201)59:3<332::aid-jnr6>3.0.co;2-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stem cells from the adult forebrain of mice were stimulated to form clones in vitro using fibroblast growth factor-2 (FGF-2). At concentrations above 10 ng/ml of FGF-2, very few clones gave rise to neurons; however, if FGF-2 was removed after 5 days, 20-30% of clones subsequently gave rise to neurons. The number of neuron-containing clones and the number of neurons per clone was significantly enhanced, if insulin-like growth factor (IGF)-1 or heparin were added subsequent to FGF-2 removal. The spontaneous production of neurons after FGF-2 removal was shown to be due to endogenous IGF-1, since antibodies to IGF-1 and an IGF-1 binding protein totally inhibited neuronal production. Similarly, these reagents also abrogated the neuron-promoting effects of heparin. Thus, it appears that endogenous IGF-1 may be a major regulator of stem cell differentiation into neurons. Furthermore, it was found that high levels of IGF-1 or insulin promoted the maturation and affected the neurotransmitter phenotype of the neurons generated.
Collapse
Affiliation(s)
- G J Brooker
- The Walter and Eliza Hall Institute of Medical Research, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
115
|
Dentremont KD, Ye P, D'Ercole AJ, O'Kusky JR. Increased insulin-like growth factor-I (IGF-I) expression during early postnatal development differentially increases neuron number and growth in medullary nuclei of the mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:135-41. [PMID: 10209251 DOI: 10.1016/s0165-3806(99)00024-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Morphometric analyses of the medulla were performed in transgenic mice that overexpress insulin-like growth factor-I (IGF-I) postnatally and in non-transgenic littermates. The total volume of the medulla was increased in transgenic mice at all postnatal ages studied: 14 days (18%), 21 days (23%), 28 days (23%), and 35 days (27%). By 35 days of age, the volumes of individual medullary nuclei were also increased: nucleus of the tractus solitarius (NTS, 59%), dorsal motor nucleus of the vagus (DMV, 84%), hypoglossal nucleus (HN, 29%) and facial nucleus (FN, 21%). Neuron number in transgenic mice was significantly greater in NTS (50%) and DMV (53%), but not in the HN or the FN. Motor neurons in DMV, HN and FN of transgenic mice exhibited increases in mean profile areas of the soma and decreased numerical densities, suggesting increases in neuritic outgrowth. These results point to IGF-I actions in promoting neuron survival and growth, and suggest that IGF-I has differential effects on distinct neuron populations, possibly depending upon its time of expression.
Collapse
Affiliation(s)
- K D Dentremont
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm 364, C-Floor, Heather Pavilion, 2733 Heather Street, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
116
|
Lee KH, Calikoglu AS, Ye P, D'Ercole AJ. Insulin-like growth factor-I (IGF-I) ameliorates and IGF binding protein-1 (IGFBP-1) exacerbates the effects of undernutrition on brain growth during early postnatal life: studies in IGF-I and IGFBP-1 transgenic mice. Pediatr Res 1999; 45:331-6. [PMID: 10088650 DOI: 10.1203/00006450-199903000-00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Insulin-like growth factor-I (IGF-I) plays an important role in the stimulation of postnatal brain growth. In transgenic (Tg) mice, IGF-I overexpression stimulates postnatal brain growth, whereas decreased IGF-I availability caused by ectopic brain expression of IGF binding protein-1 [(IGFBP-1), an inhibitor of IGF-I action] retards postnatal brain growth. Because undernutrition during early postnatal development profoundly retards growth and maturation of the brain in rodents, we sought to determine the influence of IGF-I on undernutrition-induced brain growth retardation. Caloric restriction was imposed on IGF-I Tg mice, IGFBP-1 Tg mice, and their non-Tg littermates by separating half of each litter from their dams during the suckling period, postnatal d 1 to 21. Undernutrition reduced the brain growth of each group of mice, but the growth of undernourished IGF-I Tg mice was comparable to that of well-fed control mice (increased 4.13- and 4.22-fold, respectively) and greater than that of undernourished control mice (increased 3.45-fold), whereas undernourished IGFBP-1 Tg mice exhibited less growth (increased 3.15-fold) than undernourished control mice. When the effects of undernutrition were examined in specific brain regions of each group, the same pattern was observed, and IGF-I was found to be more effective in preserving the growth of the regions with the highest transgene expression (cerebral cortex, hippocampus, and diencephalon). Despite undernutrition, IGF-I transgene expression stimulated overgrowth of these regions as well as that of the posterior medial barrel subfield, a somatosensory area of the cerebral cortex in which IGF-I may be especially important in development. These data indicate that IGF-I can ameliorate the brain growth retardation caused by undernutrition imposed during development, although it is unclear whether IGF-I directly opposes the impact of undernutrition or acts independently of nutritional status. Nonetheless, these findings raise the possibility that the relatively high IGF-I expression during early postnatal life may be responsible for sparing the brain from the full impact of undernutrition during this time in development.
Collapse
Affiliation(s)
- K H Lee
- Department of Pediatrics, University of North Carolina at Chapel Hill, 27599-7220, USA
| | | | | | | |
Collapse
|
117
|
Abstract
Cerebellar granule cells are the most abundant type of neuron in the brain, but the molecular mechanisms that control their generation are incompletely understood. We show that Sonic hedgehog (Shh), which is made by Purkinje cells, regulates the division of granule cell precursors (GCPs). Treatment of GCPs with Shh prevents differentiation and induces a potent, long-lasting proliferative response. This response can be inhibited by basic fibroblast growth factor or by activation of protein kinase A. Blocking Shh function in vivo dramatically reduces GCP proliferation. These findings provide insight into the mechanisms of normal growth and tumorigenesis in the cerebellum.
Collapse
Affiliation(s)
- R J Wechsler-Reya
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
118
|
Cui H, Meng Y, Bulleit RF. Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 111:177-88. [PMID: 9838099 DOI: 10.1016/s0165-3806(98)00136-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor I (IGF-I) is mitogenic for several types of neuronal progenitors including cerebellar granule neuron progenitors. The present study confirms that IGF-I can function as a mitogen in purified cultures of cerebellar granule cells and identifies intracellular signal transduction molecules that mediate this mitogenesis. In cultured granule cells, IGF-I inhibits GSK-3 activity and leads to phosphorylation of serine9 an inhibitory site on GSK-3beta. Phosphoinositide 3-kinase (PI3-K) activation by IGF-I can lead to phosphorylation and inactivation of GSK-3. A PI3-K inhibitor, LY294002, completely inhibited IGF-I-induced proliferation with half-maximal inhibition occurring at a concentration (1.5 micrograms) close to its reported IC50 value for inhibition of PI3-K. Lithium chloride (LiCl), a direct inhibitor of GSK-3beta, can alone stimulate granule cell proliferation and enhance proliferation induced by IGF-I. LiCl can reverse the inhibitory effect of LY294002 on granule cell proliferation suggesting that GSK-3 inhibition may be downstream of PI3-K activation in IGF-I's mitogenic pathway. Experiments further show that the expression of a dominant active form of GSK-3beta antagonizes IGF-I-induced mitogenesis. These studies support a role for inhibition of GSK-3beta activity in the signal transduction pathway by which IGF-I regulates granule neuron progenitor proliferation.
Collapse
Affiliation(s)
- H Cui
- Department of Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore St. Rm 4-018, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
119
|
|
120
|
Boucher SE, Hitchcock PF. Insulin-like growth factor-I binds in the inner plexiform layer and circumferential germinal zone in the retina of the goldfish. J Comp Neurol 1998; 394:395-401. [PMID: 9579402 DOI: 10.1002/(sici)1096-9861(19980511)394:3<395::aid-cne10>3.0.co;2-o] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Results of the previous study suggest that insulin-related peptides regulate proliferation of retinal progenitors in the adult goldfish. Because of their known roles in retinal neurogenesis, we have chosen to focus future studies on insulin-like growth factor I (IGF-I) and the IGF-I receptor. In the study described here, we characterized the spatial distribution and specificity of IGF-I binding sites in the retina of the adult goldfish by performing receptor-binding autoradiography with [125I]-IGF-I alone and with unlabeled IGF-I-related molecules (IGF-I, IGF-II, insulin, and des-[1-3]-IGF-I) as competitive inhibitors of [125I]-IGF-I binding. The results of these experiments show that IGF-I binds in two locations in the retina of the adult goldfish, within the inner plexiform layer of the differentiated retina and the circumferential germinal zone. The competition experiments suggest that [125I]-IGF-I binds at sites specific for IGF-I, and that both IGF-I receptors and IGF-I binding proteins are present in the retina.
Collapse
Affiliation(s)
- S E Boucher
- The Neuroscience Program, The University of Michigan, Ann Arbor 48105, USA
| | | |
Collapse
|
121
|
Tanaka M, Sawada M, Miura M, Marunouchi T. Insulin-like growth factor-I analogue prevents apoptosis mediated through an interleukin-1 beta converting enzyme (caspase-1)-like protease of cerebellar external granular layer neurons: developmental stage-specific mechanisms of neuronal cell death. Neuroscience 1998; 84:89-100. [PMID: 9522365 DOI: 10.1016/s0306-4522(97)00518-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using an organotypic slice culture system of neonatal rat cerebellum, we examined developmental stage-specific mechanisms of cell death of granule neurons. This culture system allows a serial process of granule neuron development including their proliferation during the early culture period and the proceeding migration from the external granular layer to the internal granular layer in the presence of a supraphysiological concentration (5 micrograms/ml) of insulin. Insulin deprivation induced apoptosis of granule neurons in external granular layer but not in internal granular layer. A truncated analogue of insulin-like growth factor-I (des (1-3) insulin-like growth factor-I) prevented this apoptosis at a concentration of 65-650 ng/ml. Some apoptotic granule neurons expressed proliferating cell nuclear antigen but not TAG-1, a marker protein of the postmitotic and premigratory granule neurons. Thus, this apoptosis occurred at a specific stage in granule neuron development: at the stage before TAG-1 expression and at least partly at the proliferative state. Ac-YVAD-CHO, an inhibitor of interleukin-1 beta converting enzyme (caspase-1)-like proteases, had a protective effect on this apoptosis. Interleukin-1 beta converting enzyme (caspase-1)-like protease activity increased under the apoptosis-induced condition. High concentration of K+, which is known to prevent granule neuron apoptosis in dissociated cultures, had a partial protective effect on this apoptosis. These findings suggest that (i) cerebellar granule neurons fall into apoptosis at the specific developmental stage unless stimulated by insulin-like growth factor-I (analogue), (ii) this apoptosis is mediated through an interleukin-1 beta converting enzyme-like protease, and (iii) this apoptosis consists of K(+)-sensitive and K(+)-insensitive components.
Collapse
Affiliation(s)
- M Tanaka
- Division of Cell Biology, Fujita Health University, Toyoake, Japan
| | | | | | | |
Collapse
|
122
|
Cui H, Bulleit RF. Potassium chloride inhibits proliferation of cerebellar granule neuron progenitors. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 106:129-35. [PMID: 9554981 DOI: 10.1016/s0165-3806(97)00204-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CNS neurogenesis involves a critical transition where neuronal progenitors exit the cell cycle and initiate terminal differentiation. Recent experiments have suggested that depolarization inhibits DNA synthesis in cortical progenitors. Depolarization of proliferating neuronal progenitors may thus activate mechanisms that prevent proliferation and allow the initiation of terminal differentiation. We present evidence that depolarizing concentrations of KCl (25-50 mM) reduce proliferation of developing postnatal cerebellar granule cells in culture. These studies show that KCl antagonizes the mitogenic response of granule cells to insulin-like growth factor-I (IGF-I) and that this reduction in proliferating cells is not the result of a selective cell death. We also examined the differentiation of granule cell cultures using Brn-5 expression as an early differentiation marker. In vivo Brn-5 expression occurs soon after developing granule cells exit the cell cycle and begin their final differentiation. In control cultures and cultures treated with high concentrations of KCl Brn-5 expression increased over 24-48 h of culture. Our results suggest depolarizing concentrations of KCl antagonize proliferation of cerebellar granule neuron progenitors however allow their continued differentiation.
Collapse
Affiliation(s)
- H Cui
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
123
|
Ye P, D'Ercole J. Insulin-like growth factor I (IGF-I) regulates IGF binding protein-5 gene expression in the brain. Endocrinology 1998; 139:65-71. [PMID: 9421399 DOI: 10.1210/endo.139.1.5676] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insulin-like growth factor (IGF-I) plays an important role during brain development. IGF binding protein-5 (IGFBP-5) is known to be capable of modulating IGF-I actions and is expressed in brain during development. To begin to investigate the interaction between IGF-I and IGFBP-5 in brain, we asked whether IGF-I influences the brain expression of IGFBP-5. We quantified IGFBP-5 expression in multiple brain regions of two lines of IGF-I transgenic (Tg) mice that exhibit distinctive patterns of brain transgene expression. MT-I/IGF-I Tg mice carry a transgene driven by metallothionein-I (MT-I) promoter and exhibit highest levels of transgene expression in cerebral cortex, whereas in IGF-II/IGF-I Tg mice the mouse IGF-II promoter drives the transgene and the expression is highest in the cerebellum. In normal adult mice, IGFBP-5 messenger RNA (mRNA) was detected in all brain regions examined, and the highest levels of the mRNA were found in cerebellum, followed by brainstem, diencephalon, hippocampus, and cerebral cortex. Compared to these littermate controls, IGFBP-5 mRNA abundance was increased in both lines of Tg mice. In MT-I/IGF-I Tg mice, cerebral cortex had the greatest increase (approximately 200%), whereas cerebella of IGF-II/IGF-I Tg mice had the greatest increase in IGFBP-5 mRNA (approximately 350%). The increase in IGFBP-5 mRNA correlated with the regional expression of the transgene during development. The abundance of IGFBP-5 protein was also found to be increased in both IGF-I Tg mouse lines. The influence of IGF-I on IGFBP-5 expression was specific because we found no evidence of changes in IGFBP-2, IGFBP-4, or cyclophilin expression. Furthermore, as judged by in situ hybridization histochemistry, IGF-I appeared to increase both the number of IGFBP-5-expressing cells and the magnitude of their expression, an observation that was especially marked in the molecular layer and white matter of the cerebellum. These data indicate that IGF-I regulates IGFBP-5 expression in vivo and is consistent with the in situ hybridization data of others showing that IGFBP-5 expression is temporally and spatially related to that of IGF-I.
Collapse
Affiliation(s)
- P Ye
- Department of Pediatrics, The University of North Carolina at Chapel Hill, 27599-7220, USA
| | | |
Collapse
|
124
|
Ye P, Umayahara Y, Ritter D, Bunting T, Auman H, Rotwein P, D'Ercole AJ. Regulation of insulin-like growth factor I (IGF-I) gene expression in brain of transgenic mice expressing an IGF-I-luciferase fusion gene. Endocrinology 1997; 138:5466-75. [PMID: 9389533 DOI: 10.1210/endo.138.12.5600] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insulin-like growth factor I (IGF-I) plays an important role in the development and function of the central nervous system (CNS). Little is known, however, about the factors and mechanisms involved in regulation of CNS IGF-I gene expression. To facilitate our goal to define mechanisms of IGF-I gene regulation in the CNS, we generated several lines of transgenic (Tg) mice that express firefly luciferase (LUC) under control of a 11.3-kb fragment from the 5' region of the rat IGF-I gene. Consistent with expression of the native IGF-I gene in murine brain, expression of the transgene predominated in neurons and astrocytes and used promoter 1, the major IGF-I promoter in the CNS and in most tissues. Transgene messenger RNA and protein expression rapidly increased after birth and peaked at postnatal (P) day 4 in all brain regions studied. LUC activities in all regions then gradually decreased to 0.5-4% of their peak values at P31, except for the olfactory bulb, which maintained about one third of its maximal activity. Compared with littermate controls, administration of dexamethasone decreased LUC activity and transgenic IGF-I messenger RNA abundance, whereas GH significantly increased the expression of the transgene. Addition of GH to cultured fetal brain cells from Tg mice for 12 h also increased LUC activity in a dose-dependent manner (77-388%). These results show that this IGF-I promoter transgene is expressed in a fashion similar to the endogenous IGF-I gene, and thus indicates that the transgene contains cis-elements essential for developmental, GH, and glucocorticoid regulation of IGF-I gene expression in the CNS. These Tg mice should serve as an useful model to study mechanisms of IGF-I gene regulation in the brain.
Collapse
Affiliation(s)
- P Ye
- Department of Pediatrics, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci 1997. [PMID: 9030615 DOI: 10.1523/jneurosci.17-05-01548.1997] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cultured cerebellar granule neurons die by apoptosis when switched from a medium containing an elevated level of potassium (K+) to one with lower K+ (5 mM). Death resulting from the lowering of K+ can be prevented by insulin-like growth factor (IGF-1). To understand how IGF-1 inhibits apoptosis and maintains neuronal survival, we examined the role of phosphoinositide 3-kinase (PI 3-kinase). Activation of PI 3-kinase has been shown previously to be required for NGF-mediated survival in the PC12 pheochromocytoma cell line. We find that in primary neurons, IGF-1 treatment leads to a robust activation of PI 3-kinase, as judged by lipid kinase assays and Western blot analysis. Activation of PI 3-kinase is likely to occur via tyrosine phosphorylation of the insulin receptor substrate protein. Treatment with two chemically distinct inhibitors of PI 3-kinase, wortmannin and LY294002, reduces PI 3-kinase activation by IGF-1 and inhibits its survival-promoting activity, suggesting that PI 3-kinase is necessary for IGF-1-mediated survival. Death resulting from PI 3-kinase blockade is accompanied by DNA fragmentation, a hallmark of apoptosis. Furthermore, neurons subjected to PI 3-kinase blockade can be rescued by transcriptional and translation inhibitors, suggesting that IGF-1-mediated activation of PI 3-kinase leads to a suppression of "killer gene" expression. In sharp contrast to IGF-1, elevated K+ does not activate PI 3-kinase and can maintain neuronal survival in the presence of PI 3-kinase inhibitors. Therefore, survival of granule neurons can be maintained by PI 3-kinase dependent (IGF-1-activated) and independent (elevated K+-activated) pathways.
Collapse
|
126
|
D'Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G. The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 1996; 13:227-55. [PMID: 8989772 DOI: 10.1007/bf02740625] [Citation(s) in RCA: 336] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Increasing evidence strongly supports a role for insulin-like growth factor-I (IGF-I) in central nervous system (CNS) development. IGF-I, IGF-II, the type IIGF receptor (the cell surface tyrosine kinase receptor that mediates IGF signals), and some IGF binding proteins (IGFBPs; secreted proteins that modulate IGF actions) are expressed in many regions of the CNS beginning in utero. The expression pattern of IGF system proteins during brain growth suggests highly regulated and developmentally timed IGF actions on specific neural cell populations. IGF-I expression is predominantly in neurons and, in many brain regions, peaks in a fashion temporally coincident with periods in development when neuron progenitor proliferation and/or neuritic outgrowth occurs. In contrast, IGF-II expression is confined mainly to cells of mesenchymal and neural crest origin. While expression of type I IGF receptors appears ubiquitous, that of IGFBPs is characterized by regional and developmental specificity, and often occurs coordinately with peaks of IGF expression. In vitro IGF-I has been shown to stimulate the proliferation of neuron progenitors and/or the survival of neurons and oligodendrocytes, and in some cultured neurons, to stimulate function. Transgenic (Tg) mice that overexpress IGF-I in the brain exhibit postnatal brain overgrowth without anatomic abnormality (20-85% increases in weight, depending on the magnitude of expression). In contrast, Tg mice that exhibit ectopic brain expression of IGFBP-1, an inhibitor of IGF action when present in molar excess, manifest postnatal brain growth retardation, and mice with ablated IGF-I gene expression, accomplished by homologous recombination, have brains that are 60% of normal size as adults. Taken together, these in vivo studies indicate that IGF-I can influence the development of most, if not all, brain regions, and suggest that the cerebral cortex and cerebellum are especially sensitive to IGF-I actions. IGF-I's growth-promoting in vivo actions result from its capacity to increase neuron number, at least in certain populations, and from its potent stimulation of myelination. These IGF-I actions, taken together with its neuroprotective effects following CNS and peripheral nerve injury, suggest that it may be of therapeutic benefit in a wide variety of disorders affecting the nervous system.
Collapse
Affiliation(s)
- A J D'Ercole
- Department of Pediatrics CB# 7220, University of North Carolina, Chapel Hill 27599-7220, USA
| | | | | | | |
Collapse
|