101
|
HUANG ZL, QU WM, EGUCHI N, CHU M, OKADA T, SATO Y, SAKATA M, MOCHIZUKI T, URADE Y, HAYAISHI O. Histaminergic role in sleep-wake cycle of orexin, adenosine, and prostaglandin E2 and D2. Sleep Biol Rhythms 2004. [DOI: 10.1111/j.1479-8425.2004.00094.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
102
|
Dere E, De Souza-Silva MA, Topic B, Spieler RE, Haas HL, Huston JP. Histidine-decarboxylase knockout mice show deficient nonreinforced episodic object memory, improved negatively reinforced water-maze performance, and increased neo- and ventro-striatal dopamine turnover. Learn Mem 2004; 10:510-9. [PMID: 14657262 PMCID: PMC305466 DOI: 10.1101/lm.67603] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The brain's histaminergic system has been implicated in hippocampal synaptic plasticity, learning, and memory, as well as brain reward and reinforcement. Our past pharmacological and lesion studies indicated that the brain's histamine system exerts inhibitory effects on the brain's reinforcement respective reward system reciprocal to mesolimbic dopamine systems, thereby modulating learning and memory performance. Given the close functional relationship between brain reinforcement and memory processes, the total disruption of brain histamine synthesis via genetic disruption of its synthesizing enzyme, histidine decarboxylase (HDC), in the mouse might have differential effects on learning dependent on the task-inherent reinforcement contingencies. Here, we investigated the effects of an HDC gene disruption in the mouse in a nonreinforced object exploration task and a negatively reinforced water-maze task as well as on neo- and ventro-striatal dopamine systems known to be involved in brain reward and reinforcement. Histidine decarboxylase knockout (HDC-KO) mice had higher dihydrophenylacetic acid concentrations and a higher dihydrophenylacetic acid/dopamine ratio in the neostriatum. In the ventral striatum, dihydrophenylacetic acid/dopamine and 3-methoxytyramine/dopamine ratios were higher in HDC-KO mice. Furthermore, the HDC-KO mice showed improved water-maze performance during both hidden and cued platform tasks, but deficient object discrimination based on temporal relationships. Our data imply that disruption of brain histamine synthesis can have both memory promoting and suppressive effects via distinct and independent mechanisms and further indicate that these opposed effects are related to the task-inherent reinforcement contingencies.
Collapse
Affiliation(s)
- Ekrem Dere
- Institute of Physiological Psychology, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
103
|
Miklós IH, Kovács KJ. Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur J Neurosci 2004; 18:3069-79. [PMID: 14656302 DOI: 10.1111/j.1460-9568.2003.03033.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In rats, the cell bodies of the histaminergic neuronal system are clustered in five distinct cell groups (E1-E5) within the posterior hypothalamus. On the basis of tract tracing studies, these histaminergic subgroups have been regarded as one functional unit. In addition to its well-characterized role in arousal, locomotor activity, metabolism, feeding, drinking and behaviour, as well as in coordination of autonomic functions, histamine has been implicated in regulation of the hypothalamo-pituitary-adrenocortical axis during stress. To address the capacity of different histaminergic subgroups to respond to various challenges, we revealed c-Fos, the immediate early gene marker of activated neurons, in histamine synthesizing neurons by combining c-Fos immunocytochemistry with in situ hybridization of histidine decarboxylase (HDC) mRNA. Compared to the negligible colocalization of these markers in control rats, restraint, insulin-induced hypoglycaemia and foot shock resulted in specific activation of histamine synthesizing neurons of the E4 and E5 subgroup in the tuberomammillary region. Up to 36% of HDC mRNA-expressing cells show c-Fos immunoreactivity in the E5 region. In addition, some neurons of the E1, E2 and E3 histaminergic groups were activated after restraint stress. Many less c-Fos-positive histaminergic neurons were detected after immobilization and dehydration. Ether stress, acute hyperosmotic stimulus or injection of bacterial lipopolysaccharide did not activate hypothalamic HDC-positive neurons. These results suggest, for the first time, the functional heterogeneity of histaminergic neuron population, the components of which are recruited in a stressor- and subgroup-specific manner.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- Cell Count
- Dehydration
- Electroshock
- Histamine/metabolism
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- History, Ancient
- Hypoglycemia/chemically induced
- Hypoglycemia/metabolism
- Hypoglycemia/physiopathology
- Hypothalamic Area, Lateral/cytology
- Hypothalamic Area, Lateral/metabolism
- Hypothalamic Area, Lateral/physiopathology
- Immobilization
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Insulin
- Lipopolysaccharides/toxicity
- Male
- Neurons/classification
- Neurons/metabolism
- Paraventricular Hypothalamic Nucleus/cytology
- Paraventricular Hypothalamic Nucleus/metabolism
- Paraventricular Hypothalamic Nucleus/physiopathology
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Restraint, Physical/methods
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Saline Solution, Hypertonic/pharmacology
- Stress, Physiological/chemically induced
- Stress, Physiological/metabolism
- Stress, Physiological/physiopathology
Collapse
Affiliation(s)
- I H Miklós
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Szigony u. 43. H-1083, Budapest, Hungary
| | | |
Collapse
|
104
|
Blandina P, Efoudebe M, Cenni G, Mannaioni P, Passani MB. Acetylcholine, Histamine, and Cognition: Two Sides of the Same Coin. Learn Mem 2004; 11:1-8. [PMID: 14747511 DOI: 10.1101/lm.68004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Patrizio Blandina
- Dipartimento di Farmacologia Preclinica e Clinica, V.le G. Pieraccini 6, Universitá di Firenze, 50139 Firenze, Italy.
| | | | | | | | | |
Collapse
|
105
|
Abstract
BACKGROUND Recent case reports have implicated subtentorial lesions of the brainstem or cerebellum as part of the neurocognitive circuitry. AIM To determine whether cognitive impairment is part of the neurological deficit in isolated brainstem (IBSS) or cerebellar stroke (ICS), using bedside screening and formal neurocognitive assessment of higher cortical function. METHODS Accrual occurred through a hospital based stroke registry. Cognitive bedside tests and neuropsychological tests were employed for the detection of higher cortical function. Scores from each test were converted to age and education based z-scores. Scores at or below -1.5 SD were clinically defined 'impaired'. Scores were averaged across tests in each functional area. RESULTS Of the stroke patients (n = 1360), the infarct was isolated within the brainstem (IBSS) in (45 of 120 or 38%) and isolated within the cerebellum (ICI) in (37 of 79 or 46.8%). Comparison of the IBSS patients with cognitive impairment in one or more domains to those with brainstem (24 of 45 or 53%) and hemispheric cerebral infarcts: (43 of 72 or 58%) (Pearson Chi Square) was not significantly different (P = 0.49). The admission Canadian Neurological Score (mean 10.2, 95% CI: 9.7-10.2) and Rankin score at 1 month (mean 1.7, 95% CI: 2.1-1.4). Comparison of the number of ICI patients with cognitive impairment in one or more domains (13 of 37 or 35.1%) to those with cerebellar and hemispheric cerebral infarcts who had abnormal cognitive testing in one or more domains (16 of 36 or 44.4%) (Pearson Chi Square) was not significantly different (P = 0.41). The mean admission Canadian Neurological Scores for the ICI cases was 10.9 (95% CI: 10.5-11.2) on average. Their mean admission Rankin score was 1.7 (95% CI: 1.4-2.1). Neuropsychological testing for frontal/executive skills, immediate and delayed memory, and visuospatial abilities (n = 15), revealed that frontal abilities were most impacted by the isolated strokes in these patients (average frontal impairment index = -1.29 +/- 0.79) followed by delayed recall of verbal and visual information (mean = -1.18 +/- 1.17). Immediate memory (-0.51 +/- 0.75) and visuoconstructive skills (-0.06 +/- 0.88) were relatively spared. Overall, 47% of the patients showed impairment on frontal tasks while 40% had significant impairment in delayed recall. In contrast, only 13% had scores below the cutoff for immediate memory and none fell below the cutoff for visuoconstructive skills. CONCLUSION Cognitive impairment is a common sequel of isolated subtentorial stroke. The frequency of impairment is similar either because of isolated brainstem or isolated cerebellar infarct, and similar to cognitive impairment with cerebral hemispheric lesions. Frontal networks or metacognition is the most frequently involved domain.
Collapse
Affiliation(s)
- Michael Hoffmann
- Cerebrovascular Program, Department of Neurology, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
106
|
Sun YG, Li J, Yang BN, Yu LC. Antinociceptive effects of galanin in the rat tuberomammillary nucleus and the plasticity of galanin receptor 1 during hyperalgesia. J Neurosci Res 2004; 77:718-22. [PMID: 15352218 DOI: 10.1002/jnr.20206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although the tuberomammillary nucleus (TM) is well defined in terms of anatomy and neurochemistry, little is known about its function in nociceptive modulation. There was an abundance of galanin-immunoreactive fibers in the TM, and galanin has been implicated in pain processing. The present study assessed the role of galanin in the modulation of nociception in the TM of rats. Intra-TM injection of galanin dose-dependently increased the hindpaw withdrawal latency of rats to a noxious thermal stimulus, indicating an antinociceptive role of galanin in the TM. The antinociceptive effect of galanin was blocked by a subsequent intra-TM injection of galantide, a putative galanin receptor antagonist, suggesting that the antinociceptive effect of galanin is mediated by galanin receptors. Moreover, there was abundant galanin receptor 1 (GalR1) in the TM, and the number of GalR1-positive neurons in the ipsilateral TM increased significantly after unilateral loose ligation of the sciatic nerve compared with the contralateral TM or the TM of intact rats. However, the number of GalR1-positive neurons was not significantly altered by carrageenan-induced inflammation, in either the ipsilateral or the contralateral TM. The results suggest that galanin and GalR1 in the TM may play important roles in pain regulation.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Department of Physiology, College of Life Sciences, National Laboratory of Biomembrane and Membrane Biotechnology and Center for Brain and Cognitive Science, Peking University, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
107
|
Choich JA, El-Nabawi A, Silbergeld EK. Evidence of histamine receptors in fish brain using an in vivo [14C]2-deoxyglucose autoradiographic method and an in vitro receptor-binding autoradiographic method. ENVIRONMENTAL RESEARCH 2004; 94:86-93. [PMID: 14643290 DOI: 10.1016/s0013-9351(03)00111-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It was hypothesized that fish possess functioning H1 histamine receptors that have the ability to bind agonists and antagonists specific to the H1 histamine receptor subtype. For these experiments, a combination of a novel, in vivo 2-deoxyglucose method and a standard in vitro autoradiography procedure was utilized. A regional, statistically significant dose response in neurological functioning was observed when fish were exposed to histaminergic agents (i.e., H1 agonists and antagonists), which created the first neurological profile for the H1 histamine receptor in fish brain. The H1 histamine receptor was chosen as a characterization receptor in fish because histamine has been linked to a variety of neurological functions such as the control of arousal, attention, sensory processing, and cognition. Histamine also plays a role in pituitary hormone secretion, appetite control, and, potentially, regulation of vestigular reactivity. In addition, the fish brain is well characterized structurally, and the existence of an H3-like receptor has been documented recently in zebrafish. However, to date there is little detailed information about specific localization and functioning of the H1 histamine receptor in fish.
Collapse
Affiliation(s)
- J A Choich
- Department of Toxicology, University of Maryland at Baltimore, Baltimore, MD, USA
| | | | | |
Collapse
|
108
|
Sallmen T, Lozada AF, Anichtchik OV, Beckman AL, Leurs R, Panula P. Changes in hippocampal histamine receptors across the hibernation cycle in ground squirrels. Hippocampus 2003; 13:745-54. [PMID: 12962318 DOI: 10.1002/hipo.10120] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hibernation is a physiological state characterized by a dramatic reduction in various functions, such as body temperature, heart rate, and metabolism. The hippocampus is thought to be important for regulation of the hibernation bout because it remains electrophysiologically active throughout this extremely depressed state. The question arises as to what neuronal influences act within the hippocampus during hibernation to sustain its activity. We hypothesized that histaminergic input might be an important contributor. Brain histamine is involved in functions relevant to hibernation, such as the regulation of diurnal rhythms, body temperature, and energy metabolism. Furthermore, we have previously shown that the histaminergic system appears to be activated during the hibernating state. In this study, we used receptor binding autoradiography, in situ hybridization, and GTP-gamma-S binding autoradiography to study changes in histamine receptors across the hibernation bout. We were able to demonstrate an increase in histamine H1 and H2 receptors in the hippocampus during hibernation, whereas the mRNA expression and receptor density of the inhibitory H3 receptor decreased. Histamine H3 receptors were shown to exhibit both histamine-activated and constitutive GTP-gamma-S-binding activity in the ground squirrel hippocampus, both of which decreased during hibernation, indicating a decrease in H3 receptor G-protein activation. Taken together, our results indicate that histamine may be involved in maintaining hibernation by sustaining hippocampal activity, possibly through H1 and H2 receptor activity and decreased inhibition by H3 receptors. The involvement of brain histamine, which is generally thought of as an arousal molecule, in maintaining a depressed state of the brain suggests a more general role for the amine in controlling arousal state.
Collapse
MESH Headings
- Afferent Pathways/cytology
- Afferent Pathways/metabolism
- Animals
- Arousal/physiology
- Binding, Competitive/physiology
- Down-Regulation/physiology
- Female
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)
- Hibernation/physiology
- Hippocampus/cytology
- Hippocampus/metabolism
- Histamine/metabolism
- Neurons/cytology
- Neurons/metabolism
- RNA, Messenger/metabolism
- Receptors, Histamine/genetics
- Receptors, Histamine/metabolism
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Histamine H2/genetics
- Receptors, Histamine H2/metabolism
- Receptors, Histamine H3/genetics
- Receptors, Histamine H3/metabolism
- Sciuridae/anatomy & histology
- Sciuridae/physiology
Collapse
Affiliation(s)
- Tina Sallmen
- Department of Biology, Abo Akademi University, Turku, Finland
| | | | | | | | | | | |
Collapse
|
109
|
Yao BB, Sharma R, Cassar S, Esbenshade TA, Hancock AA. Cloning and pharmacological characterization of the monkey histamine H3 receptor. Eur J Pharmacol 2003; 482:49-60. [PMID: 14660004 DOI: 10.1016/j.ejphar.2003.09.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Species differences have been described previously for histamine H(3) receptor pharmacology. Rat selective histamine H(3) receptor ligands such as ciproxifan and A-304121 (2-amino-1-[4-[3-(4-cyclopropanecarbonyl-phenoxy)-propyl]-piperazin-1-yl]-propan-1-one) show over 100-fold selectivity for the rat receptor compared to the human receptor. To date, however, the pharmacology of the cloned monkey histamine H(3) receptor has not been examined. In this study, we cloned the monkey histamine H(3) receptor gene (H(3)R) and evaluated the receptor pharmacology in binding and functional assays. The monkey histamine H(3) receptor is highly homologous to the human receptor with 438 identities in their 445 amino acid sequences, but less homologous to the rat receptor. However, unlike the human or rat, we found no evidence for additional splicing for the monkey H(3)R. Pharmacological analysis indicated that the monkey receptor exhibited similar pharmacological profiles to those of the human receptor, providing critical information for characterizing histamine H(3) receptor ligands in monkey behavioral models.
Collapse
Affiliation(s)
- Betty Bei Yao
- Neuroscience Research, Global Pharmaceutical Research & Development, Abbott Laboratories, R4MN, AP9A, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | |
Collapse
|
110
|
Faganello FR, Medalha CC, Mattioli R. Haloperidol and chlorpheniramine interaction in inhibitory avoidance in goldfish. Behav Brain Res 2003; 147:83-8. [PMID: 14659573 DOI: 10.1016/s0166-4328(03)00137-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this study was to investigate a possible interaction between histaminergic and dopaminergic systems in learning and memory processes, in an inhibitory avoidance test in goldfish. Haloperidol, a dopaminergic antagonist, was administrated pre-training and the chlorpheniramine (CPA), a histaminergic antagonist, post-training. The inhibitory avoidance procedure was performed in 3 days, using a rectangular aquarium divided into two compartments (black and white), with a central door. On the first day, the animals were habituated for 10 min. On the second day, they were injected with 2 mg/kg of haloperidol or dimethyl sulfoxide (DMSO) 20 min before training. Then, the animals were placed in the white compartment, the central door was opened and the time spent for crossing between compartments was recorded. After the fish crossed the line between compartments a 45 g weight was dropped. This procedure was done five times in a row. Immediately after the fifth trial, the fish were injected intraperitoneally (i.p.) with either saline or CPA (0.4, 1.0, 4.0, 8.0 or 16 mg/kg). On the next day (test) the time to cross was recorded again. On the training trials, the animals treated with DMSO or haloperidol presented a significant increase in the latencies indicating learning (Friedman P = 0.0062 and 0.0001). The latencies in the test day showed that groups pre-treated with haloperidol and treated with CPA presented a dose-dependent increase in latencies, and those treated with the 16 mg/kg CPA group showed a significant increase (ANOVA two-way followed by Student-Newman-Keuls (SNK) P < 0.01). Thus, it can be suggested that the facilitatory action occurs due to an additive interaction between both systems, in a dose-dependent way.
Collapse
Affiliation(s)
- F R Faganello
- Laboratory of Neuroscience, Center for Biological and Health Sciences, Universidade Federal de São Carlos, SP, Brazil
| | | | | |
Collapse
|
111
|
Chen K, Zhu JN, Li HZ, Wang JJ. Histamine elicits neuronal excitatory response of red nucleus in the rat via H2 receptors in vitro. Neurosci Lett 2003; 351:25-8. [PMID: 14550905 DOI: 10.1016/s0304-3940(03)00926-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Perfusing slices with histamine (1-100 microM) produced an excitatory response in rat rubral neurons (118/132, 89.4%). The histamine-induced excitation was not blocked by the low-Ca2+/high-Mg2+ medium (n=10), supporting a direct postsynaptic action of the amine. Histamine H2 receptor antagonist ranitidine effectively blocked the excitatory response of rubral neurons to histamine (n=26), but H1 receptor antagonist triprolidine did not (n=24). The excitatory effect of histamine could be mimicked by dimaprit, a highly selective H2 receptor agonist (n=24), and the dimaprit-elicited excitation of the rubral neurons could be blocked by ranitidine (n=16), but not by triprolidine (n=9). In addition, H1 receptor agonist 2-pyridylethylamine could not elicit any response in rubral neurons (n=12). These results indicate that histamine excites red nucleus neurons through H2 receptors and suggest that the histaminergic afferent fibers may play an important functional role in the sensorimotor integration through the red nucleus.
Collapse
Affiliation(s)
- Kun Chen
- Department of Biological Science and Technology, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | | | | | | |
Collapse
|
112
|
Ishunina TA, van Heerikhuize JJ, Ravid R, Swaab DF. Estrogen receptors and metabolic activity in the human tuberomamillary nucleus: changes in relation to sex, aging and Alzheimer’s disease. Brain Res 2003; 988:84-96. [PMID: 14519529 DOI: 10.1016/s0006-8993(03)03347-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human tuberomamillary nucleus (TMN), that is the sole source of histamine in the brain, is involved in arousal, learning and memory and is impaired in Alzheimer's disease (AD) as shown by the presence of cytoskeletal alterations, a reduction in the number of large neurons, a diminished neuronal metabolic activity and decreased histamine levels in the hypothalamus and cortex. Experimental data and the presence of sex hormone receptors suggest an important role of sex steroids in the regulation of the function of TMN neurons. Therefore, we investigated sex-, age- and Alzheimer-related changes in estrogen receptor alpha and beta (ERalpha and ERbeta) in the TMN. In addition, metabolic activity changes of TMN neurons were determined by measuring Golgi apparatus (GA) and cell size. In the present study, ERalpha immunocytochemical expression in AD patients did not differ from that in elderly controls. However, a larger amount of cytoplasmic ERbeta was found in the TMN cells of AD patients. Earlier studies, using the GA size as a parameter, have shown a clearly decreased metabolic activity in the TMN neurons in AD. In the present study, the size of the GA did not change during aging, indicating the absence of strong metabolic changes. Cell size of the TMN neurons appeared to increase during normal aging in men but not in women. Concluding, the enhanced cytoplasmic expression of ERbeta in the TMN may be involved in the diminished neuronal metabolism of these neurons in AD patients.
Collapse
Affiliation(s)
- Tatjana A Ishunina
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
113
|
Sallmen T, Lozada AF, Anichtchik OV, Beckman AL, Panula P. Increased brain histamine H3 receptor expression during hibernation in golden-mantled ground squirrels. BMC Neurosci 2003; 4:24. [PMID: 14505495 PMCID: PMC212552 DOI: 10.1186/1471-2202-4-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 09/24/2003] [Indexed: 12/02/2022] Open
Abstract
Background Hibernation is a state of extremely reduced physiological functions and a deep depression of CNS activity. We have previously shown that the histamine levels increase in the brain during hibernation, as does the ratio between histamine and its first metabolite, suggesting increased histamine turnover during this state. The inhibitory histamine H3 receptor has both auto- and heteroreceptor function, rendering it the most likely histamine receptor to be involved in regulating the activity of histamine as well as other neurotransmitters during hibernation. In view of accumulating evidence that there is a global depression of transcription and translation during hibernation, of all but a few proteins that are important for this physiological condition, we reasoned that an increase in histamine H3 receptor expression would clearly indicate an important hibernation-related function for the receptor. Results In this study we show, using in situ hybridization, that histamine H3 receptor mRNA increases in the cortex, caudate nucleus and putamen during hibernation, an increase that is accompanied by elevated receptor binding in the cerebral cortex, globus pallidus and substantia nigra. These results indicate that there is a hibernation-related increase in H3 receptor expression in cortical neurons and in striatopallidal and striatonigral GABAergic neurons. GTP-γ-S binding autoradiography shows that the H3 receptors in the globus pallidus and substantia nigra can be stimulated by histamine throughout the hibernation cycle, suggesting that they are functionally active during hibernation. Conclusions These results show that the histamine H3 receptor gene is one of the few with a transcript that increases during hibernation, indicating an important role for the receptor in regulating this state. Moreover, the receptor is functionally active in the basal ganglia, suggesting a function for it in regulating e.g. dopaminergic transmission during hibernation.
Collapse
Affiliation(s)
- Tina Sallmen
- Department of Biology, Abo Akademi University, Åbo/Turku, Finland
| | - Adrian F Lozada
- Department of Biology, Abo Akademi University, Åbo/Turku, Finland
| | - Oleg V Anichtchik
- Department of Biology, Abo Akademi University, Åbo/Turku, Finland
- Institute for Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Alexander L Beckman
- Department of Psychology, California State University, Long Beach, California
| | - Pertti Panula
- Department of Biology, Abo Akademi University, Åbo/Turku, Finland
- Institute for Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
114
|
Takemura M, Kitanaka N, Kitanaka J. Signal transduction by histamine in the cerebellum and its modulation by N-methyltransferase. CEREBELLUM (LONDON, ENGLAND) 2003; 2:39-43. [PMID: 12882233 DOI: 10.1080/14734220310015601] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Histamine has been suggested to have roles as a neurotransmitter or a neuromodulator. Direct fiber connections between the hypothalamus and the cerebellum have recently been demonstrated and it is suggested that the cerebellum is involved in the control of autonomic and emotional functions. These fibers include histaminergic fibers. The components of histaminergic signal transmission are demonstrated in the cerebellum as follows: (1) the histaminergic fibers are visualized immunohistochemically in the cerebellar cortex of rat, guinea pig and human; (2) histamine H1 receptors are visualized by autoradiographic studies in the molecular layer of mouse and guinea pig. In situ hybridization study also detects the expression of H1 receptors in the Purkinje cells. H2 receptors are expressed in the Purkinje cells and granule cells of guinea pig; and (3) the application of histamine to the slices of guinea pig or rat cerebellar cortex elicits an increase in the turnover of phosphoinositides, so H1 receptors in the cerebellum are functional. Additionally, we have recently shown in the guinea pig that Purkinje cells express one of the histamine inactivating enzymes, and that inhibition of this enzyme enhances phosphoinositide turnover by histamine. Therefore, all the components of histaminergic neurotransmission are demonstrated in the cerebellum. These data suggest that histamine is involved in the signal transmission from the hypothalamus to the cerebellum. Here we review each component of histaminergic neurotransmission in the cerebellum.
Collapse
Affiliation(s)
- Motohiko Takemura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | |
Collapse
|
115
|
Kanayama H, Yasuhara O, Matsuo A, Tooyama I, Aimi Y, Bellier JP, Nagy JI, Fukui K, Kimura H. Expression of a splice variant of choline acetyltransferase in magnocellular neurons of the tuberomammillary nucleus of rat. Neuroscience 2003; 118:243-51. [PMID: 12676154 DOI: 10.1016/s0306-4522(02)00868-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A splice variant of choline acetyltransferase mRNA has recently been identified in the pterygopalatine ganglion of rat. An antibody against this variant protein (designated pChAT) was demonstrated to immunolabel peripheral cholinergic neurons. In the present study, we investigated the expression of pChAT in rat brain. Amongst the brain regions examined, magnocellular neurons in the tuberomammillary nucleus of the posterior hypothalamus were immunohistochemically labelled with anti-pChAT antibody, whilst no immunolabelling was detected in cholinergic neurons in the basal forebrain or striatum. RT-PCR analysis confirmed the expression of pChAT mRNA in the posterior hypothalamus. The distribution of pChAT-positive neurons in the tuberomammillary nucleus was compared with that of neurons positive for adenosine deaminase, which is contained in all neurons of this nucleus. After colchicine treatment to inhibit axonal transport of enzyme, virtually all pChAT-positive cells contained adenosine deaminase. Conversely, about 85% of adenosine deaminase-positive cells contained pChAT in the ventral area, whilst 19% of adenosine deaminase-positive cells were pChAT-positive in the dorsal area. Long axonal projections of pChAT-positive cells in the tuberomammillary nucleus were shown by retrograde labelling of these cells after injection of cholera-toxin B subunit into the cerebral cortex. This study demonstrates that a splice variant of choline acetyltransferase is expressed in the tuberomammillary nucleus of rat. The results raise the possibility that some of the known diverse projection areas of this nucleus may have a cholinergic component.
Collapse
Affiliation(s)
- H Kanayama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Shiga, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Kukko-Lukjanov TK, Panula P. Subcellular distribution of histamine, GABA and galanin in tuberomamillary neurons in vitro. J Chem Neuroanat 2003; 25:279-92. [PMID: 12842273 DOI: 10.1016/s0891-0618(03)00043-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Histamine acts as a neurotransmitter in the brain and regulates e.g. sleep, hibernation, vigilance, and release of several other transmitters. All histaminergic neurons are found in the tuberomamillary nucleus (TM), and send axons to almost all parts of the CNS. Despite the obvious importance of these neurons, their development, transmitter storage, and compartmentalization of cotransmitters are poorly known. Histaminergic neurons from fetal rat hypothalamus were studied in primary explant cultures and analyzed by confocal microscopy. Most histaminergic neurons were oval in shape, but round and triangular ones were also found. The average size of the 212 analyzed neurons was 19.2 microm (length), 12.5 microm (width) and 11.7 microm (thickness). The cells possessed two to five microtubule-associated protein (MAP2) positive processes, putative dendrites, and in general one MAP2-negative thin process, a putative axon. Granular histamine-immunoreactivity was found in the cell bodies, axons, and dendrites. In tuberomamillary neurons, most histamine-containing structures displayed immunoreactivity for vesicular monoamine transporter 2 (VMAT2), indicating that the two markers may coexist in the same structures. Lack of VMAT2 in some histamine-immunoreactive structures indicates that another transporter for histamine may exist. In the same neurons, gamma-aminobutyric acid (GABA)-immunoreactivity was found in structures, distinct from those containing histamine, indicating that the two transmitters may be differentially localized, regulated and released. Galanin-immunoreactivity in the cultured tuberomamillary neurons was partially located in the same structures as VMAT2. The results suggest that histamine and GABA, the two principal transmitters of tuberomamillary neurons, are not costored in the same structures in tuberomamillary neurons.
Collapse
|
117
|
Yao BB, Hutchins CW, Carr TL, Cassar S, Masters JN, Bennani YL, Esbenshade TA, Hancock AA. Molecular modeling and pharmacological analysis of species-related histamine H(3) receptor heterogeneity. Neuropharmacology 2003; 44:773-86. [PMID: 12681376 DOI: 10.1016/s0028-3908(03)00056-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Presynaptic histamine H(3) receptors (H(3)R) regulate neurotransmitter release in the central nervous system, suggesting an important role for H(3) ligands in human diseases such as cognitive disorders, sleep disturbances, epilepsy, or obesity. Drug development for many of these human diseases relies upon rodent-based models. Although there is significant sequence homology between the human and rat H(3)Rs, some compounds show distinct affinity profiles. To identify the amino acids responsible for these species disparities, various mutant receptors were generated and their pharmacology studied. The N-terminal portion was shown to determine the species differences in ligand binding since a chimeric H(3)R containing N-terminal human and C-terminal rat receptor sequences exhibited similar pharmacology to the human receptor. Sequence analysis and molecular modeling studies suggested key amino acids at positions 119 and 122 in transmembrane region 3 play important roles in ligand recognition. Mutant receptors changing amino acids 119 or 122 of the human receptor to those in the rat improved ligand binding affinities and functional potencies of antagonist ligands, confirming the significant role that these amino acids play in species-related pharmacological differences. A model has been developed to elucidate the ligand receptor interactions for H(3)Rs, and pharmacological aspects of this model are described.
Collapse
Affiliation(s)
- B B Yao
- Neuroscience Research, Abbott Laboratories, R4MN, AP9A, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Casatti CA, Elias CF, Sita LV, Frigo L, Furlani VCG, Bauer JA, Bittencourt JC. Distribution of melanin-concentrating hormone neurons projecting to the medial mammillary nucleus. Neuroscience 2003; 115:899-915. [PMID: 12435428 DOI: 10.1016/s0306-4522(02)00508-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The melanin-concentrating hormone and neuropeptide glutamic acid-isoleucine are expressed in neurons located mainly in the hypothalamus that project widely throughout the CNS. One of the melanin-concentrating hormone main targets is the medial mammillary nucleus, but the exact origin of these fibers is unknown. We observed melanin-concentrating hormone and neuropeptide glutamic acid-isoleucine immunoreactive fibers coursing throughout the mammillary complex, showing higher density in the pars lateralis of the medial mammillary nucleus, while the lateral mammillary nucleus showed sparse melanin-concentrating hormone innervation. The origins of these afferents were determined by using implant of the retrograde tracer True Blue in the medial mammillary nucleus. Double-labeled neurons were observed in the lateral hypothalamic area, rostromedial zona incerta and dorsal tuberomammillary nucleus. A considerable population of retrogradely labeled melanin-concentrating hormone perikaryal profiles was also immunoreactive to neuropeptide glutamic acid-isoleucine (74+/-15% to 85+/-15%). The afferents from the lateral hypothalamic area, rostromedial zona incerta and dorsal tuberomammillary nucleus to the medial mammillary nucleus were confirmed using implant of the anterograde tracer Phaseolus vulgaris leucoagglutinin. In addition, using double-labeled immunohistochemistry, we found no co-localization between neurons expressing melanin-concentrating hormone and adenosine deaminase (histaminergic marker) in the dorsal tuberomammillary nucleus. We hypothesize that these melanin-concentrating hormone projections participate in spatial memory process mediated by the medial mammillary nucleus. These pathways would enable the animal to look for food during the initial moments of appetite stimulation.
Collapse
Affiliation(s)
- C A Casatti
- Department of Basic Sciences, School of Dentistry of Araçatuba, University of Sao Paulo State - UNESP, 16015-050, Sao Paulo, Araçatuba, Brazil
| | | | | | | | | | | | | |
Collapse
|
119
|
Uteshev VV, Meyer EM, Papke RL. Regulation of neuronal function by choline and 4OH-GTS-21 through alpha 7 nicotinic receptors. J Neurophysiol 2003; 89:1797-806. [PMID: 12611953 DOI: 10.1152/jn.00943.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A unique feature of alpha7 nicotinic acetylcholine receptor physiology is that, under normal physiological conditions, alpha7 receptors are constantly perfused with their natural selective agonist, choline. Studying neurons of hypothalamic tuberomammillary (TM) nucleus, we show that choline and the selective alpha7 receptor agonist 4OH-GTS-21 can regulate neuronal functions directly, via activation of the native alpha7 receptors, and indirectly, via desensitizing those receptors or transferring them into a state "primed" for desensitization. The direct action produces depolarization and thereby increases the TM neuron spontaneous firing (SF) rate. The regulation of the spontaneous firing rate is robust in a nonphysiological range of choline concentrations >200 microM. However, modest effects persist at concentrations of choline that are likely to be attained perineuronally under some conditions (20-100 microM). At high physiological concentration levels, the indirect choline action reduces or even eliminates the responsiveness of alpha7 receptors and their availability to other strong cholinergic inputs. Similarly to choline, 4OH-GTS-21 increases the TM neuron spontaneous firing rate via activation of alpha7 receptors, and this regulation is robust in the range of clinically relevant concentrations of 4OH-GTS-21. We conclude that factors that regulate choline accumulation in the brain and in experimental slices such as choline uptake, hydrolysis of ACh, membrane phosphatidylcholine catabolism, and solution perfusion rate influence alpha7 nAChR neuronal and synaptic functions, especially under pathological conditions such as stroke, seizures, Alzheimer's disease, and head trauma, when the choline concentration in the CSF is expected to rise.
Collapse
Affiliation(s)
- Vladimir V Uteshev
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, University of Florida, Gainesville, Florida 32610-0267, USA
| | | | | |
Collapse
|
120
|
Abstract
Hibernation is a state of extremely reduced physiological functions and a deep depression of CNS activity, which is thought to be under hippocampal control. Our previous findings indicate increased histamine turnover during hibernation in several brain regions, including the hippocampus. In this study we showed that histamine infused into the hippocampus significantly delayed arousal from hibernation. These findings indicate that histamine may contribute to maintaining the hibernating state, suggesting a novel role for histamine in controlling arousal state.
Collapse
Affiliation(s)
- Tina Sallmen
- Department of Biology, Abo Akademi University, Artillerigatan 6, BioCity, 20520, Abo/Turku, Finland.
| | | | | | | |
Collapse
|
121
|
Matsuo SI, Jang IS, Nabekura J, Akaike N. alpha 2-Adrenoceptor-mediated presynaptic modulation of GABAergic transmission in mechanically dissociated rat ventrolateral preoptic neurons. J Neurophysiol 2003; 89:1640-8. [PMID: 12626630 DOI: 10.1152/jn.00491.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ventrolateral preoptic nucleus (VLPO) is a key nucleus involved in the homeostatic regulation of sleep-wakefulness. Little is known, however, about the cellular mechanisms underlying its role in sleep regulation and how the neurotransmitters, such as GABA and noradrenaline (NA), are involved. In the present study we investigated GABAergic transmission to acutely dissociated VLPO neurons using an enzyme-free, mechanical dissociation procedure in which functional terminals remained adherent and we investigated how this GABAergic transmission was modulated by NA. As previously reported in slices, NA hyperpolarized multipolar VLPO neurons and depolarized bipolar VLPO neurons. NA also inhibited the release of GABA onto multipolar VLPO neurons but had no effect on GABAergic transmission to bipolar neurons. The inhibition of release was mediated by presynaptic alpha(2) adrenoceptors coupled to N-ethylmaleimide (NEM)-sensitive G-proteins which appeared to act via inhibition of adenylate cyclase and subsequent decreases in protein kinase A activity. The inhibition of GABA release did not, however, involve an inhibition of external Ca(2+) influx. The results indicate that all VLPO neurons contain GABAergic inputs and that the different morphological subgroups of VLPO neurons are correlated not only to different postsynaptic responses to NA but also to different presynaptic NA responses. Furthermore our results demonstrate an additional mechanism by which NA can modulate the excitability of multipolar VLPO neurons which may have important implications for its role in regulating sleep/wakefulness.
Collapse
Affiliation(s)
- Shin-Ichiro Matsuo
- Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
122
|
Vorobjev VS, Sharonova IN, Haas HL, Sergeeva OA. Expression and function of P2X purinoceptors in rat histaminergic neurons. Br J Pharmacol 2003; 138:1013-9. [PMID: 12642404 PMCID: PMC1573743 DOI: 10.1038/sj.bjp.0705144] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(1) The pharmacology of ATP responses and the expression pattern of seven known subunits of the P2X receptor were investigated in individual histaminergic neurons of the tuberomamillary nucleus (TM). (2) ATP (3-1000 micro M) evoked fast non-desensitizing inward currents in TM neurons. 2-methylthioATP (2MeSATP) displayed the same efficacy but a lower potency, EC(50)s 84 micro M versus 48 micro M, when compared with ATP. Adenosine-diphosphate (ADP), uridine-triphosphate (UTP) and alpha beta methylene-ATP (alphabeta-meATP) were inactive. (3) ATP-mediated whole cell currents were potentiated by acidification of the recording solution (pH 7.5 and 6.6 were compared). (4) Single-cell RT-PCR (scRT-PCR) analysis revealed that the P2X(2) receptor is expressed in all PCR-positive neurons. Each of the P2X(1), P2X(3), P2X(4), P2X(5) and P2X(6) mRNAs were detected in less than 35% of the cells. (5) Suramin antagonized ATP responses with an IC(50) of 4.2 micro M and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 1 micro M) reduced ATP responses to 43% of control, when antagonists were pre-applied 90s before the agonist. Cibacron blue (3 micro M) given together with ATP potentiated control responses by 67%, but inhibited it to 10% after pre-application. (6) 2',3'-O-(2,4,6-Trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) antagonized ATP responses with an IC(50) of 7 micro M. (7) Pharmacological properties of ATP responses together with scRT-PCR data suggest that P2X(2) is the major purinoceptor on the soma of TM neurons, however the presence of heteromeric P2X(2/5) receptors in some neurons cannot be excluded.
Collapse
Affiliation(s)
- Vladimir S Vorobjev
- Department of Neurophysiology, Heinrich-Heine-Universität, POB 101007, D-40001 Düsseldorf, Germany
| | - Irina N Sharonova
- Department of Neurophysiology, Heinrich-Heine-Universität, POB 101007, D-40001 Düsseldorf, Germany
| | - Helmut L Haas
- Department of Neurophysiology, Heinrich-Heine-Universität, POB 101007, D-40001 Düsseldorf, Germany
| | - Olga A Sergeeva
- Department of Neurophysiology, Heinrich-Heine-Universität, POB 101007, D-40001 Düsseldorf, Germany
- Author for correspondence:
| |
Collapse
|
123
|
Treesukosol Y, Ishizuka T, Yamamoto T, Yamatodani A. The effect of taste stimuli on histamine release in the anterior hypothalamus of rats. Brain Res 2003; 964:51-5. [PMID: 12573512 DOI: 10.1016/s0006-8993(02)04061-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied the effect of gustatory stimulation on hypothalamic histamine release. Administering a four-basic taste mixture significantly increased histamine release, but not in the chorda tympani-transected rats. 0.1 M NaCl significantly increased histamine release, whereas 0.5 M sucrose, 0.02 M quinine HCl and 0.01 M HCl had no effect. However, when the concentration of HCl was increased to 0.03 M, a significant increase in histamine release was seen. These results suggest that taste information via the chorda tympani activates the histaminergic system.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Behavioral Physiology, Faculty of Human Sciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
124
|
Strecker RE, Nalwalk J, Dauphin LJ, Thakkar MM, Chen Y, Ramesh V, Hough LB, McCarley RW. Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience 2002; 113:663-70. [PMID: 12150786 DOI: 10.1016/s0306-4522(02)00158-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Increased activity of the histaminergic neurons of the posterior hypothalamus has been implicated in the facilitation of behavioral wakefulness. Recent evidence of reciprocal projections between the sleep-active neurons of the preoptic/anterior hypothalamus and the histaminergic neurons of the tuberomammillary nucleus suggests that histaminergic innervation of the preoptic/anterior hypothalamic area may be of particular importance in the wakefulness-promoting properties of histamine. To test this possibility, we used microdialysis sample collection in the preoptic/anterior hypothalamic area of cats during natural sleep-wakefulness cycles, 6 h of sleep deprivation induced by gentle handling/playing, and recovery sleep. Samples were analyzed by a sensitive radioenzymatic assay. Mean basal levels of histamine in microdialysate during periods of wakefulness (1.155+/-0.225 pg/microl) did not vary during the 6 h of sleep deprivation. However, during the different sleep states, dramatic changes were observed in the extracellular histamine levels of preoptic/anterior hypothalamic area: wakefulness>non-rapid eye movement sleep>rapid eye movement sleep. Levels of histamine during rapid eye movement sleep were lowest (0.245+/-0.032 pg/microl), being significantly lower than levels during non-rapid eye movement sleep (0.395+/-0.081 pg/microl) and being only 21% of wakefulness levels. This pattern of preoptic/anterior hypothalamic area extracellular histamine levels across the sleep-wakefulness cycle closely resembles the reported single unit activity of histaminergic neurons. However, the invariance of histamine levels during sleep deprivation suggests that changes in histamine level do not relay information about sleep drive to the sleep-promoting neurons of the preoptic/anterior hypothalamic area.
Collapse
Affiliation(s)
- R E Strecker
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, Research, 151C, 940 Belmont Street, Brockton, MA 02301, USA.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Bárbara A, Aceves J, Arias-Montaño JA. Histamine H1 receptors in rat dorsal raphe nucleus: pharmacological characterisation and linking to increased neuronal activity. Brain Res 2002; 954:247-55. [PMID: 12414108 DOI: 10.1016/s0006-8993(02)03352-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this work we studied the presence of histamine H(1) receptors in the rat dorsal raphe nucleus (DRN) and the effect of their activation on the activity of presumed serotonergic DRN neurones. [(3)H]-Mepyramine bound to DRN membranes with best-fit values of 107+/-13 fmol/mg protein for maximum binding (B(max)) and 1.2+/-0.4 nM for the equilibrium dissociation constant (K(d)). In DRN slices labelled with [(3)H]-inositol and in the presence of 10 mM LiCl, histamine stimulated the accumulation of [(3)H]-inositol phosphates ([(3)H]-IPs) with maximum effect 172+/-6% of basal and EC(50) 3.2+/-1.3 microM. [(3)H]-IPs accumulation induced by 100 microM histamine (162+/-5% of basal) was markedly, but not fully blocked by the selective H(1) antagonist mepyramine (300 nM; 64+/-6% inhibition). The simultaneous addition of mepyramine and the selective H(2) antagonist ranitidine (10 microM) abolished histamine-induced [(3)H]-IPs accumulation. The presence of H(2) receptors was confirmed by [(3)H]-tiotidine binding and by the determination of histamine-induced [(3)H]-cyclic AMP formation. Extracellular single-unit recording in brain stem slices showed that the exposure to histamine resulted in a marked increase in the firing rate of DRN presumed serotonergic neurones (471+/-10% of basal), that was dependent on the concentration of the agonist (EC(50) 4.5+/-0.3 microM). The action of histamine was not affected by the H(2) antagonist tiotidine (2 microM) but was fully prevented by 1 microM mepyramine. Taken together, our results indicate that histamine modulates the firing of DRN presumed serotonergic neurones through the activation of H(1) receptors coupled to phosphonositide hydrolysis.
Collapse
Affiliation(s)
- Alfonso Bárbara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Apdo postal 14-740, 07000 México, DF, Mexico
| | | | | |
Collapse
|
126
|
Shen B, Li HZ, Wang JJ. Excitatory effects of histamine on cerebellar interpositus nuclear cells of rats through H(2) receptors in vitro. Brain Res 2002; 948:64-71. [PMID: 12383956 DOI: 10.1016/s0006-8993(02)02950-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuroanatomical studies have revealed a direct hypothalamocerebellar histaminergic pathway, and our previous studies have demonstrated an excitatory effect of histamine on granule and Purkinje cells of the cerebellar cortex. In this study, we further investigated the effect of histamine on the neuronal firing of cerebellar interpositus nucleus (IN) by using cerebellar slice preparations. Eighty-seven IN cells were recorded from 38 slices. The vast majority of the cells responded to histamine stimulation with an excitatory response (79/87, 90.8%), and the rest of them showed no reaction (8/87, 9.2%). The histamine-induced excitation was not blocked by application of low-Ca(2+)/high-Mg(2+) medium (n=8), supporting a direct postsynaptic action of histamine. The histamine H(2) receptor antagonist ranitidine effectively blocked the excitatory response of IN cells to histamine (n=23), but the histamine H(1) receptor antagonist triprolidine could not significantly block the histamine-induced excitation, or only very slightly decreased the excitatory effect of histamine on the cells (n=21). On the other hand, the highly selective histamine H(2) receptor agonist dimaprit mimicked the excitatory effect of histamine on IN cells and the dimaprit-induced excitation was also blocked by ranitidine (n=14). Successively perfusing slices with the medium containing ranitidine and triprolidine, respectively, we found that ranitidine exhibited the same blocking effect on the dimaprit-induced excitation, but triprolidine had no such effect (n=8). Moreover, the histamine H(1) receptor agonist 2-pyridylethylamine did not show any effect on the IN cells (n=9). These results demonstrate that histamine excites cerebellar IN cells via the histamine H(2) receptor mechanism. Together with our previous results, we suggest that the hypothalamocerebellar histaminergic fibers may modulate neuronal activities of the cerebellar cortex and deep nuclei in parallel. The significance of the excitatory effect of histamine on the cerebellar nuclear cells is discussed.
Collapse
Affiliation(s)
- Bin Shen
- Department of Biological Science and Technology, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | | | | |
Collapse
|
127
|
Summy-Long JY, Bui V, Gestl S, Kadekaro M. Nitric oxide, interleukin and prostaglandin interactions affecting the magnocellular system. Brain Res 2002; 940:10-20. [PMID: 12020869 DOI: 10.1016/s0006-8993(02)02556-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnocellular neurons are innervated by an excitatory histaminergic pathway. They also express neuronal NO synthase, interleukin-1beta (IL-1beta) and cyclo-oxygenase (COX). In normally hydrated rats when NO synthase activity is inhibited with N(G)-nitro-L-arginine methyl ester (L-NAME), administered intracerebroventricularly (i.c.v.), OT concentration in plasma increases. In the present study, the increase in hormone after L-NAME is attenuated by indomethacin, an inhibitor of COX, as well as by antagonists of histamine receptors at H1 (pyrilamine) and H2 (cimetidine) subtypes injected i.c.v. Moreover, enhanced OT secretion induced by centrally administered IL-1beta, but not naloxone (opiate receptor antagonist), is prevented by indomethacin. PGE2 and PGD2 (i.c.v.) stimulate OT release, but only PGD2 affects circulating vasopressin levels. Thus, NO inhibits release of OT stimulated by: (1) a COX-dependent mechanism, i.e. NO-->-(COX-->+PG-->+OT release); (2) histamine, i.e. NO-->-(histamine-->H1 and H2 receptors-->+OT release); and possibly (3) IL-1beta, i.e. NO-->-(IL-1beta-->+COX-->+PG-->+OT release). These interactions of NO, cytokine and histamine may be important for management of stress-induced activation of neuroendocrine systems.
Collapse
Affiliation(s)
- Joan Y Summy-Long
- Department of Pharmacology-MCH108, The Pennsylvania State University, The Milton S. Hershey Medical Center, P.O. Box 850, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
128
|
Bacciottini L, Passani MB, Giovannelli L, Cangioli I, Mannaioni PF, Schunack W, Blandina P. Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 2002; 15:1669-80. [PMID: 12059975 DOI: 10.1046/j.1460-9568.2002.02005.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of histaminergic ligands on both ACh spontaneous release from the hippocampus and the expression of c-fos in the medial septum-diagonal band (MSA-DB) of freely moving rats were investigated. Because the majority of cholinergic innervation to the hippocampus is provided by MSA-DB neurons, we used the dual-probe microdialysis technique to apply drugs to the MSA-DB and record the induced effects in the projection area. Perfusion of MSA-DB with high-KCl medium strongly stimulated hippocampal ACh release which, conversely, was significantly reduced by intra-MSA-DB administration of tetrodotoxin. Histamine or the H2 receptor agonist dimaprit, applied directly to the hippocampus, failed to alter ACh release. Conversely, perfusion of MSA-DB with these two compounds increased ACh release from the hippocampus. Also, thioperamide and ciproxifan, two H3 receptor antagonists, administered into MSA-DB, increased the release of hippocampal ACh, whereas R-alpha-methylhistamine, an H3 receptor agonist, produced the opposite effect. The blockade of MSA-DB H2 receptors, caused by local perfusion with the H2 receptor antagonist cimetidine, moderated the spontaneous release of hippocampal ACh and antagonized the facilitation produced by H3 receptor antagonists. Triprolidine, an H1 receptor antagonist, was without effect. Moreover, cells expressing c-fos immunoreactivity were significantly more numerous in ciproxifan- or thioperamide-treated rats than in controls, although no colocalization of anti-c-fos and anti-ChAT immunoreactivity was observed. These results indicate a role for endogenous histamine in modulating the cholinergic tone in the hippocampus.
Collapse
Affiliation(s)
- Lucia Bacciottini
- Dipartimento di Farmacologia Preclinica e Clinica, Universitá di Firenze, V.le G. Pieraccini 6, Italy
| | | | | | | | | | | | | |
Collapse
|
129
|
Jin CY, Kalimo H, Panula P. The histaminergic system in human thalamus: correlation of innervation to receptor expression. Eur J Neurosci 2002; 15:1125-38. [PMID: 11982624 DOI: 10.1046/j.1460-9568.2002.01951.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mRNA expression of three histamine receptors (H1, H2 and H3) and H1 and H3 receptor binding were mapped and quantified in normal human thalamus by in situ hybridization and receptor binding autoradiography, respectively. Immunohistochemistry was applied to study the distribution of histaminergic fibres and terminals in the normal human thalamus. mRNAs for all three histamine receptors were detected mainly in the dorsal thalamus, but the expression intensities were different. Briefly, H1 and H3 receptor mRNAs were relatively enriched in the anterior, medial, and part of the lateral nuclei regions; whereas the expression level was much lower in the ventral and posterior parts of the thalamus, and the reticular nucleus. H2 receptor mRNA displayed in general very low expression intensity with slightly higher expression level in the anterior and lateropolar regions. H1 receptor binding was mainly detected in the mediodorsal, ventroposterolateral nuclei, and the pulvinar. H3 receptor binding was detected mainly in the dorsal thalamus, predominantly the periventricular, mediodorsal, and posterior regions. Very high or high histaminergic fibre densities were observed in the midline nuclear region and other nuclei next to the third ventricle, ventroposterior lateral nucleus and medial geniculate nucleus. In most of the core structures of the thalamus, the fibre density was very low or absent. The results suggest that histamine in human brain regulates tactile and proprioceptory thalamocortical functions through multiple receptors. Also, other, e.g. visual areas and those not making cortical connections expressed histamine receptors and contained histaminergic nerve fibres.
Collapse
Affiliation(s)
- C Y Jin
- Department of Biology, Abo Akademi University, BioCity, Tykistokatu 6A, FIN-20520 Turku, Finland
| | | | | |
Collapse
|
130
|
Effects of activation of the histaminergic tuberomammillary nucleus on visual responses of neurons in the dorsal lateral geniculate nucleus. J Neurosci 2002. [PMID: 11826138 DOI: 10.1523/jneurosci.22-03-01098.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the effects of the central histaminergic system on afferent sensory signals in the retinogeniculocortical pathway in the intact brain. Extracellular physiological recordings in vivo were obtained from neurons in the cat dorsal lateral geniculate nucleus (LGN) in conjunction with electrical activation of the histamine-containing cells in the tuberomammillary nucleus of the hypothalamus. Tuberomammillary activation resulted in a rapid and significant increase in the amplitude of baseline activity and visual responses in LGN neurons. Geniculate X- and Y-cells were affected similarly. LGN cells that exhibited a burst pattern of activity in the control condition switched to a tonic firing pattern during tuberomammillary activation. Effects on visual response properties were assessed using drifting sinusoidal gratings of varied spatial frequency. The resultant spatial tuning curves were elevated by tuberomammillary activation, but there was no change in tuning curve shape. Rather, the effect was proportionate to the control response, with the greatest tuberomammillary effects at spatial frequencies already optimal for the cell. Tuberomammillary activation caused a small phase lag in the visual response that was similar at all spatial frequencies, consistent with the induced shift from burst to tonic firing mode. These results indicate a significant histaminergic effect on LGN thalamocortical cells, with no clear effect on thalamic inhibitory neurons. The histaminergic system appears to strengthen central transmission of afferent information, intensifying but not transforming the retinally derived signals. Promoting sensory input may be one way in which the histaminergic system plays a role in arousal.
Collapse
|
131
|
Taddese A, Bean BP. Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron 2002; 33:587-600. [PMID: 11856532 DOI: 10.1016/s0896-6273(02)00574-3] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A role for "persistent," subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking by performing voltage-clamp experiments using a cell's own pacemaking cycle as voltage command. TTX-sensitive sodium current flows throughout the pacemaking cycle, even at voltages as negative as -70 mV, and this current is sufficient to drive spontaneous firing. When sodium channels underlying transient current were driven into slow inactivation by rapid stimulation, persistent current decreased in parallel, suggesting that persistent sodium current originates from subthreshold gating of the same sodium channels that underlie the phasic sodium current. This behavior of sodium channels may endow all neurons with an intrinsic propensity for rhythmic, spontaneous firing.
Collapse
Affiliation(s)
- Abraha Taddese
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
132
|
Rubio S, Begega A, Santin LJ, Arias JL. Improvement of spatial memory by (R)-alpha-methylhistamine, a histamine H(3)-receptor agonist, on the Morris water-maze in rat. Behav Brain Res 2002; 129:77-82. [PMID: 11809497 DOI: 10.1016/s0166-4328(01)00328-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work aims to clarify the role of histamine in learning and memory. This is done by studying the effect of administration of the histamine precursor, L-histidine (His), and the agonist of the H(3) receptor (R)-alpha-methylhistamine (RAMH), on acquisition and retention of spatial reference memory in rats. Treatment with RAMH (10 mg/kg i.p.) facilitates recovery of spatial memory. In contrast, administration of His (500 mg/kg i.p.) does not affect the performance of this task. Moreover, pharmacological modulation of the cerebral histaminergic system does not impair the animal's behavioral flexibility, i.e. their ability to adapt to a new learning task in the same stimular context. Improved retention of spatial memory after a reduction in cerebral histamine confirms the modulating role of this neurotransmitter in memory processes.
Collapse
Affiliation(s)
- S Rubio
- Laboratory of Psychobiology, Faculty of Psychology, Oviedo, Plaza Feijoo s/n, E-33003 Oviedo, Spain
| | | | | | | |
Collapse
|
133
|
Molina-Hernández A, Nuñez A, Sierra JJ, Arias-Montaño JA. Histamine H3 receptor activation inhibits glutamate release from rat striatal synaptosomes. Neuropharmacology 2001; 41:928-34. [PMID: 11747897 DOI: 10.1016/s0028-3908(01)00144-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The release of glutamate from striatal synaptosomes induced by depolarisation with 4-aminopyridine (4-AP) was studied by a method based on the fluorescent properties of the NAPDH formed by the metabolism of the neurotransmitter by glutamate dehydrogenase.Ca(2+)-dependent, depolarisation-induced glutamate release was inhibited in a concentration-dependent manner by the selective histamine H(3) agonist immepip. Best-fit estimates were: maximum inhibition 60+/-10% and IC(50) 68+/-10 nM. The effect of 300 nM immepip on depolarisation-evoked glutamate release was reversed by the selective H(3) antagonist thioperamide in a concentration-dependent manner (EC(50) 23 nM, K(i) 4 nM). In fura-2-loaded synaptosomes, the increase in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) evoked by 4-AP-induced depolarisation (resting level 167+/-14 nM; Delta[Ca(2+)](i) 88+/-15 nM) was modestly, but significantly reduced (29+/-5% inhibition) by 300 nM immepip. The action of the H(3) agonist on depolarisation-induced changes in [Ca(2+)](i) was reversed by 100 nM thioperamide. Taken together, our results indicate that histamine modulates the release of glutamate from corticostriatal nerve terminals. Inhibition of depolarisation-induced Ca(2+) entry through voltage-dependent Ca(2+) channels appears to account for the effect of H(3) receptor activation on neurotransmitter release. Modulation of glutamatergic transmission in rat striatum may have important consequences for the function of basal ganglia and therefore for the control of motor behaviour.
Collapse
Affiliation(s)
- A Molina-Hernández
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Apdo. postal 14-740, 07000, D.F., Mexico, Mexico
| | | | | | | |
Collapse
|
134
|
Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 2001; 440:342-77. [PMID: 11745628 DOI: 10.1002/cne.1390] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The histaminergic system and its relationships to the other aminergic transmitter systems in the brain of the zebrafish were studied by using confocal microscopy and immunohistochemistry on brain whole-mounts and sections. All monoaminergic systems displayed extensive, widespread fiber systems that innervated all major brain areas, often in a complementary manner. The ventrocaudal hypothalamus contained all monoamine neurons except noradrenaline cells. Histamine (HA), tyrosine hydroxylase (TH), and serotonin (5-HT) -containing neurons were all found around the posterior recess (PR) of the caudal hypothalamus. TH- and 5-HT-containing neurons were found in the periventricular cell layer of PR, whereas the HA-containing neurons were in the surrounding cell layer as a distinct boundary. Histaminergic neurons, which send widespread ascending and descending fibers, were all confined to the ventrocaudal hypothalamus. Histaminergic neurons were medium in size (approximately 12 microm) with varicose ascending and descending ipsilateral and contralateral fiber projections. Histamine was stored in vesicles in two types of neurons and fibers. A close relationship between HA fibers and serotonergic raphe neurons and noradrenergic locus coeruleus neurons was evident. Putative synaptic contacts were occasionally detected between HA and TH or 5-HT neurons. These results indicate that reciprocal contacts between monoaminergic systems are abundant and complex. The results also provide evidence of homologies to mammalian systems and allow identification of several previously uncharacterized systems in zebrafish mutants.
Collapse
Affiliation(s)
- J Kaslin
- Department of Biology, Abo Akademi University, Biocity, FIN-20520 Turku/Abo, Finland
| | | |
Collapse
|
135
|
Hernández-Angeles A, Soria-Jasso LE, Ortega A, Arias-Montaño JA. Histamine H1 receptor activation stimulates mitogenesis in human astrocytoma U373 MG cells. J Neurooncol 2001; 55:81-9. [PMID: 11817705 DOI: 10.1023/a:1013338515229] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In human astrocytoma U373 MG cells that express histamine H1 receptors (180 +/- 6 fmol/mg protein) but not H2 or H3 receptors, histamine stimulated mitogenesis as assessed by [3H]-thymidine incorporation (173 +/- 2% of basal; EC50, 2.5 +/- 0.4 microM). The effect of 100 microM histamine was fully blocked by the selective H1 antagonist mepyramine (1 microM) and was markedly reduced (93 +/- 4% inhibition) by the phospholipase C inhibitor U73122 (10 microM). The activator of protein kinase C (PKC) phorbol 12-tetradecanoyl-13-acetate (TPA, 100nM) stimulated [3H]-thymidine incorporation (270 +/- 8% of basal), and this response was not additive with that to 100 microM histamine. The incorporation of [3H]-thymidine induced by 100 microM histamine was partially reduced by the PKC inhibitor Ro 31-8220 (57 +/- 7% inhibition at 300 nM) and by the compound PD 098,059 (30 microM, 62 +/- 14% inhibition), an inhibitor of the mitogen-activated kinase (MAPK) kinases MEK1/MEK2. These results show that histamine H1 receptor activation stimulates the proliferation of human astrocytoma U373 MG cells. The action of histamine appears to be partially mediated by PKC stimulation and MAPK activation.
Collapse
Affiliation(s)
- A Hernández-Angeles
- Departamento de Fisiología, Biofísica y Neurociencias y, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | | | | | | |
Collapse
|
136
|
Abstract
Experimental and epidemiological studies have indicated that central histaminergic neuron system plays an important role in inhibition of convulsive disorders through histamine H(1)-receptors, especially in developing period. Histamine H(1) antagonists increase the duration of electrically induced convulsions in 21-day-old mice, but not in 42-day-old mice. Epidemiological studies suggested that histamine H(1) antagonist may be one of the risk factors in febrile convulsions. In histidinemic patients who were considered to have high brain histamine content, the incidence of convulsions was lower than that of ordinary population.The centrally acting histamine H(1) antagonists including pyrilamine and ketotifen facilitate the development of amygdaloid kindling in rats, an experimental model of epileptogenic process. On the contrary, epinastine, a histamine H(1) antagonist which scarcely enters the brain, shows no facilitation. These findings suggest that the central histaminergic neuron system plays an inhibitory role on the seizure development through central histamine H(1)-receptors.Recently, three cases has been reported in which West syndrome developed 8-10 days after ketotifen or oxatomide administration. Considering experimental and clinical studies, histamine H(1) antagonists may be associated with West syndrome and may be hazardous to infants. Further careful experimental and clinical studies will be required to elucidate the relationships between West syndrome and central histaminergic neuron system.
Collapse
Affiliation(s)
- H Yokoyama
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
137
|
Son LZ, Yanai K, Mobarakeh JI, Kuramasu A, Li ZY, Sakurai E, Hashimoto Y, Watanabe T, Watanabe T. Histamine H1 receptor-mediated inhibition of potassium-evoked release of 5-hydroxytryptamine from mouse forebrains. Behav Brain Res 2001; 124:113-20. [PMID: 11640963 DOI: 10.1016/s0166-4328(01)00220-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The release of endogenous serotonin and dopamine from slices of mouse forebrains induced by high extracellular K(+) was examined in histamine H1 receptor knockout mice. The release of 5-hydroxytryptamine (5-HT) evoked by 30 mM K(+) significantly decreased in the presence of 10-50 microM histamine in wild-type mice, but was not inhibited in the mutant mice. Histamine H1 receptor-mediated inhibition of serotonin release in wild-type mice was also observed in the presence of thioperamide, an H3 antagonist. From these data, we postulate that endogenous histamine indirectly inhibits the release of 5-HT through H1 receptors in addition to H3 receptors. The treatment of 2 microM tetrodotoxin could partly abolish the effects of histamine on K(+)-evoked 5-HT release. Bicuculline, a GABA(A) antagonist, could reverse the histamine-induced inhibition of 5-HT release in wild-type mice, suggesting that H1 receptors facilitate the release of GABA, which in turn inhibits 5-HT release through GABA(A) receptors. The difference in the effects of d- and l-chlorpheniramine on K(+)-evoked 5-HT release in wild-type mice further supports the evidence of the function of H1 receptor modulating 5-HT release.
Collapse
Affiliation(s)
- L Z Son
- Department of Pharmacology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Watanabe T. [Studies on histamine with L-histidine decarboxylase, a histamine-forming enzyme, as a probe: from purification to gene knockout]. Nihon Yakurigaku Zasshi 2001; 118:159-69. [PMID: 11577456 DOI: 10.1254/fpj.118.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
I have been studying the functions of the histaminergic neuron system in the brain, the location and distribution of which we elucidated with antibody raised against L-histidine decarboxylase (a histamine-forming enzyme) as a marker in 1984. For this purpose, we used two methods employing (1) pharmacological agents like alpha-fluoromethylhistidine, an HDC inhibitor, and agonists and antagonists of H1, H2 and H3 receptors and (2) knockout mice of the HDC- and H1- and H2-receptor genes. In some cases, we used positron emission tomography (PET) of H1 receptors in living human brains. It turned out that histamine neurons are involved in many brain functions, and particularly, histamine is one of the neuron systems to keep awakefulness. Histamine also plays important roles in bioprotection against various noxious or unfavorable stimuli (convulsion, nociception, drug sensitization, ischemic lesions, stress and so on). Finally, I briefly described interesting phenotypes found in peripheral tissues of HDC-KO mice; the most striking finding is that mast cells in HDC-KO mice are fewer in number, smaller in size and less dense in granule density than those of wild type mice, indicating that histamine is related to the proliferation and differentiation of mast cells. In conclusion, histamine is important not only in the central and peripheral systems as studied so far but also may be related to some new functions that are now under investigation in our laboratories.
Collapse
Affiliation(s)
- T Watanabe
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
139
|
Ionotropic histamine receptors and H2 receptors modulate supraoptic oxytocin neuronal excitability and dye coupling. J Neurosci 2001. [PMID: 11312281 DOI: 10.1523/jneurosci.21-09-02974.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Histaminergic neurons of the tuberomammillary nucleus (TM) project monosynaptically to the supraoptic nucleus (SON). This projection remains intact in our hypothalamic slices and permits investigation of both brief synaptic responses and the effects of repetitively activating this pathway. SON oxytocin (OX) neurons respond to single TM stimuli with fast IPSPs, whose kinetics resemble those of GABA(A) or glycine receptors. IPSPs were blocked by the Cl(-) channel blocker picrotoxin, but not by bicuculline or strychnine, and by histamine H(2), but not by H(1) or H(3) receptor antagonists, suggesting the presence of an ionotropic histamine receptor and the possible nonspecificity of currently used H(2) antagonists. G-protein mediation of the IPSPs was ruled out using guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS), pertussis toxin, and Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Rp-cAMPs), none of which blocked evoked IPSPs. We also investigated the effects of synaptically released histamine on dye coupling and neuronal excitability. One hundred seventy-three OX neurons were Lucifer yellow-injected in horizontal slices. Repetitive TM stimulation (10 Hz, 5-10 min) reduced coupling, an effect blocked by H(2), but not by H(1) or H(3), receptor antagonists. Because H(2) receptors are linked to activation of adenylyl cyclase, TM-stimulated reduction in coupling was blocked by GDP-betaS, pertussis toxin, and Rp-cAMPs and was mimicked by 8-bromo-cAMP, 3-isobutyl-1-methylxanthine, and Sp-cAMP. Membrane potentials of OX and vasopressin neurons were hyperpolarized, accompanied by decreased conductances, in response to bath application of 8-bromo-cAMP but not the membrane-impermeable cAMP. These results suggest that synaptically released histamine, in addition to evoking fast IPSPs in OX cells, mediates a prolonged decrease in excitability and uncoupling of the neurons.
Collapse
|
140
|
Skaper SD, Facci L, Strijbos PJ. Neuronal protein kinase signaling cascades and excitotoxic cell death. Ann N Y Acad Sci 2001; 939:11-22. [PMID: 11462762 DOI: 10.1111/j.1749-6632.2001.tb03606.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Perturbation of normal survival mechanisms may play a role in a large number of disease processes. Glutamate neurotoxicity, particularly when mediated by the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors, has been hypothesized to underlie several types of acute brain injury, including stroke. Several neurological insults linked to excessive release of glutamate and neuronal death result in tyrosine kinase activation, including p44/42 mitogen activated protein (MAP) kinase. To further explore a role for MAP kinase activation in excitotoxicity, we used a novel tissue culture model to induce neurotoxicity. Removal of the endogenous blockade by Mg2+ of the NMDA receptor in cultured hippocampal neurons triggers a self perpetuating cycle of excitotoxicity, which has relatively slow onset, and is critically dependent on NMDA receptors and activation of voltage gated Na+ channels. These injury conditions led to a rapid phosphorylation of p44/42 that was blocked by MAP kinase kinase (MEK) inhibitors. MEK inhibition was associated with protection against synaptically mediated excitotoxicity. Interestingly, hippocampal neurons preconditioned by a sublethal exposure to Mg(2+)-free conditions were rendered resistant to injury induced by a subsequently longer exposure to this insult; the preconditioning effect was MAP kinase dependent. The MAP kinase signaling pathway can also promote polypeptide growth factor mediated neuronal survival. MAP kinase regulated pathways may act to promote survival or death, depending upon the cellular context in which they are activated.
Collapse
Affiliation(s)
- S D Skaper
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline Beecham Pharmaceuticals, New Frontiers Science Park North, Third Avenue, Harlow CM19 5AW, Essex, U.K.
| | | | | |
Collapse
|
141
|
Abstract
Histamine-releasing neurons are located exclusively in the TM of the hypothalamus, from where they project to practically all brain regions, with ventral areas (hypothalamus, basal forebrain, amygdala) receiving a particularly strong innervation. The intrinsic electrophysiological properties of TM neurons (slow spontaneous firing, broad action potentials, deep after hyperpolarisations, etc.) are extremely similar to other aminergic neurons. Their firing rate varies across the sleep-wake cycle, being highest during waking and lowest during rapid-eye movement sleep. In contrast to other aminergic neurons somatodendritic autoreceptors (H3) do not activate an inwardly rectifying potassium channel but instead control firing by inhibiting voltage-dependent calcium channels. Histamine release is enhanced under extreme conditions such as dehydration or hypoglycemia or by a variety of stressors. Histamine activates four types of receptors. H1 receptors are mainly postsynaptically located and are coupled positively to phospholipase C. High densities are found especially in the hypothalamus and other limbic regions. Activation of these receptors causes large depolarisations via blockade of a leak potassium conductance, activation of a non-specific cation channel or activation of a sodium-calcium exchanger. H2 receptors are also mainly postsynaptically located and are coupled positively to adenylyl cyclase. High densities are found in hippocampus, amygdala and basal ganglia. Activation of these receptors also leads to mainly excitatory effects through blockade of calcium-dependent potassium channels and modulation of the hyperpolarisation-activated cation channel. H3 receptors are exclusively presynaptically located and are negatively coupled to adenylyl cyclase. High densities are found in the basal ganglia. These receptors mediated presynaptic inhibition of histamine release and the release of other neurotransmitters, most likely via inhibition of presynaptic calcium channels. Finally, histamine modulates the glutamate NMDA receptor via an action at the polyamine binding site. The central histamine system is involved in many central nervous system functions: arousal; anxiety; activation of the sympathetic nervous system; the stress-related release of hormones from the pituitary and of central aminergic neurotransmitters; antinociception; water retention and suppression of eating. A role for the neuronal histamine system as a danger response system is proposed.
Collapse
Affiliation(s)
- R E Brown
- Institut für Neurophysiologie, Heinrich-Heine-Universität, D-40001, Düsseldorf, Germany.
| | | | | |
Collapse
|
142
|
Kim SH, Cairns N, Fountoulakisc M, Lubec G. Decreased brain histamine-releasing factor protein in patients with Down syndrome and Alzheimer's disease. Neurosci Lett 2001; 300:41-4. [PMID: 11172935 DOI: 10.1016/s0304-3940(01)01545-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Histamine-releasing factor (HRF) stimulates secretion of histamine that is widely distributed in brain and released as neurotransmitter. Several studies suggested that histaminergic deficits could contribute to the cognitive decline in Alzheimer's disease (AD). Based upon deranged histamine metabolism in brain of patients with AD and Down Syndrome (DS), we aimed to study HRF in brain of AD and DS. We used two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization mass spectroscopy and specific software to quantify HRF. HRF was significantly reduced in temporal cortex, thalamus and caudate nucleus of DS and in temporal cortex of AD as compared to controls. This is the first report to show decreased HRF brain levels in DS and AD suggesting the explanation for the decreased cognitive function in neurodegenerative/dementing disorders.
Collapse
Affiliation(s)
- S H Kim
- Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090, Vienna, Austria
| | | | | | | |
Collapse
|
143
|
Eriksson KS, Stevens DR, Haas HL. Serotonin excites tuberomammillary neurons by activation of Na(+)/Ca(2+)-exchange. Neuropharmacology 2001; 40:345-51. [PMID: 11166327 DOI: 10.1016/s0028-3908(00)00175-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have studied the effects of serotonin on the histaminergic neurons in the hypothalamic tuberomammillary nucleus. Intracellular recordings of the membrane potential were made with sharp electrodes from superfused rat hypothalamic slices. We found that serotonin increased the firing rate of the neurons to 224% of the control rate and depolarized them dose-dependently. Insensitivity to tetrodotoxin indicated a postsynaptic effect, which was unrelated to any conductance change. The involved receptor appeared to be a 5-HT2C receptor. The depolarization was strongly dependent on temperature and replacement of extracellular Na(+) with Li(+) or with N-methyl-D-glucamine suppressed the depolarization. Pretreatment with Ni(2+), 2',4'-dichlorobenzamil or KB-R7943 strongly attenuated the effect. These features indicate that the depolarization is the result of activation of an electrogenic Na(+)/Ca(2+)-exchanger which leads to an net inward current. These results support the view that the Na(+)/Ca(2+)-exchanger can play a role in determining the excitability of neurons. The results also provide a functional connection between two transmitter systems, the histaminergic and serotonergic, which modulate many physiological functions in the brain.
Collapse
Affiliation(s)
- K S Eriksson
- Department of Physiology II, Heinrich-Heine-Universität, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | | | | |
Collapse
|
144
|
Endou M, Yanai K, Sakurai E, Fukudo S, Hongo M, Watanabe T. Food-deprived activity stress decreased the activity of the histaminergic neuron system in rats. Brain Res 2001; 891:32-41. [PMID: 11164807 DOI: 10.1016/s0006-8993(00)03226-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The hypothalamus, which is rich in histaminergic neurons, is highly sensitive to aversive stimuli such as stress. Histamine H3 receptors, which regulate histamine release from the presynaptic site, are associated with stress-induced brain activity. In this study, we investigated the changes of histamine content and histamine H1 and H3 receptors in the brains of rats subjected to stress induced through food deprivation and physical activity on a running wheel (food-deprived activity stress). For purposes of comparison, we also examined the stressful effects of forced swimming on the histaminergic neuron system of rats. The H3 receptor density rapidly declined in the acute phase of stress but gradually returned to the control level in the chronic phase. On the other hand, the H1 receptor slowly decreased and remained at a low level during the chronic phase. These results reveal that there is a discrepancy between the levels of H1 and H3 receptors in the acute and chronic phases of stress. Brain histamine content gradually increased during the late phase of both food-deprived activity stress and forced swimming stress. These changes presumably resulted in the inhibition of histaminergic neuronal activity in the chronic stress condition. In accordance with this hypothesis, the intraventricular administration of histamine significantly reduced the hyperactivity caused by food-deprived activity stress. Since extensive exercise and restricted feeding are thought to be associated with anorexia nervosa, the abnormalities in the histaminergic neuron system might contribute to trait status in anorexia nervosa.
Collapse
Affiliation(s)
- M Endou
- Department of Pharmacology, Tohoku University School of Medicine, Seiryou-machi 2-1, Aoba-ku, 980-8575, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
145
|
Skaper SD, Facci L, Kee WJ, Strijbos PJ. Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: a possible role for mast cells. J Neurochem 2001; 76:47-55. [PMID: 11145977 DOI: 10.1046/j.1471-4159.2001.00008.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Excessive glutamatergic neurotransmission, particularly when mediated by the N:-methyl-D-aspartate (NMDA) subtype of glutamate receptor, is thought to underlie neuronal death in a number of neurological disorders. Histamine has been reported to potentiate NMDA receptor-mediated events under a variety of conditions. In the present study we have utilized primary hippocampal neurone cultures to investigate the effect of mast cell-derived, as well as exogenously applied, histamine on neurotoxicity evoked by excessive synaptic activity. Exposure of mature cultures for 15 min to an Mg(2+)-free/glycine-containing buffer to trigger synaptic transmission through NMDA receptors, caused a 30-35% neuronal loss over 24 h. When co-cultured with hippocampal neurones, activated mast cells increased excitotoxic injury to 60%, an effect that was abolished in the presence of histaminase. Similarly, addition of histamine during magnesium deprivation produced a concentration-dependent potentiation (+ 60%; EC(50) : 5 microM) of neuronal death which was inhibited by sodium channel blockers and NMDA receptor antagonists, although this effect did not involve known histamine receptors. The histamine effect was further potentiated by acidification of the culture medium. Cultures 'preconditioned' by sublethal (5 min) Mg(2+) deprivation exhibited less neuronal death than controls when exposed to a more severe insult. NMDA receptor activation and the extracellular regulated kinase cascade were required for preconditioning neuroprotection. The finding that histamine potentiates NMDA receptor-mediated excitotoxicity may have important implications for our understanding of conditions where enhanced glutamatergic neurotransmission is observed in conjunction with tissue acidification, such as cerebral ischaemia and epilepsy.
Collapse
Affiliation(s)
- S D Skaper
- Department of Neuroscience Research, SmithKline Beecham Pharmaceuticals, Harlow, UK.
| | | | | | | |
Collapse
|
146
|
Karasawa N, Isomura G, Yamada K, Arai R, Takeuchi T, Nagatsu I, Usuda N. Distribution of Histamine-Containing Neurons in the Laboratory Shrew (Suncus murinus) Brain. Acta Histochem Cytochem 2001. [DOI: 10.1267/ahc.34.431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Nobuyuki Karasawa
- Department of 2nd Anatomy, School of Medicine, Fujita Health University
| | | | - Keiki Yamada
- School of Health Sciences, Fujita Health University
| | - Ryohachi Arai
- Department of 1st Anatomy, Shiga University of Medical Science
| | - Terumi Takeuchi
- Department of 2nd Anatomy, School of Medicine, Fujita Health University
| | - Ikuko Nagatsu
- Department of 2nd Anatomy, School of Medicine, Fujita Health University
| | - Nobuteru Usuda
- Department of 2nd Anatomy, School of Medicine, Fujita Health University
| |
Collapse
|
147
|
Honrubia MA, Vilaró MT, Palacios JM, Mengod G. Distribution of the histamine H(2) receptor in monkey brain and its mRNA localization in monkey and human brain. Synapse 2000; 38:343-54. [PMID: 11020238 DOI: 10.1002/1098-2396(20001201)38:3<343::aid-syn14>3.0.co;2-m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The distribution of histamine H(2) receptor mRNA was determined by in situ hybridization histochemistry in human and monkey brain. In the case of monkey brain, we combined this technique with receptor ligand autoradiography to compare the distribution of mRNA and receptor binding sites. [(125)I]Iodoaminopotentidine ([(125)I]-APT), a reversible, high specific activity antagonist with high affinity and selectivity for the H(2) receptor, was used for receptor autoradiography. Radiolabeled oligonucleotides derived from the human mRNA sequence encoding this receptor were used as hybridization probes. The highest density of the H(2) receptor mRNA in human and monkey brain was found in caudate and putamen nuclei and external layers of cerebral cortex. Moderate levels were seen in the hippocampal formation and lower densities in the dentate nucleus of cerebellum. Areas such as globus pallidus, amygdaloid complex, cerebellar cortex, and substantia nigra were devoid of hybridization signal. The distribution of H(2) receptor mRNA in monkey brain is generally in good agreement with that of the corresponding binding sites: prominent in caudate, putamen, accumbens nuclei, and cortical areas. The hippocampus showed lower densities of receptors and low levels were detected in the globus pallidus pars lateralis. No binding sites were seen in amygdaloid complex and substantia nigra. The distribution of histaminergic innervation is in good correlation with the areas of high density for H(2) receptors: caudate, putamen, and external layers of cerebral cortex in monkey and human brain. The presence of mRNA in caudate and putamen nuclei, together with its absence from substantia nigra, suggests that the H(2) receptors found in the striatum are synthesized by intrinsic cells and not by nigral dopaminergic cells. These striatal H(2) receptors may be located on short circuit striatal interneurons or somatodendritically on striatal projection neurons which project to the globus pallidus pars lateralis. In conclusion, the present results, which constitute, to our knowledge, the first report of the regional distribution of mRNA encoding H(2) receptors detected by in situ hybridization, define the sites of synthesis of H(2) receptors and are the basis for future, more detailed studies that should result in a better understanding of H(2) receptor function.
Collapse
Affiliation(s)
- M A Honrubia
- Department of Neurochemistry, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, Barcelona, Spain
| | | | | | | |
Collapse
|
148
|
Yuzurihara M, Ikarashi Y, Ishige A, Sasaki H, Maruyama Y. Anxiolytic-like effect of saiboku-to, an oriental herbal medicine, on histaminergics-induced anxiety in mice. Pharmacol Biochem Behav 2000; 67:489-95. [PMID: 11164077 DOI: 10.1016/s0091-3057(00)00393-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effect of saiboku-to, an oriental herbal medicine, on anxiety in mice was investigated using a light/dark test. Anxiogenic- and anxiolytic-like effects were evaluated on the basis of shortened and prolonged time spent in the light zone of the test. Subacute administration (once a day for 7 days) of saiboku-to (0.5-2.0 g/kg, p.o.) induced anxiolytic-like effect. To assess the effect of saiboku-to on brain histaminergic system in a state of anxiety, Compound 48/80 (1.0 microg/2 microl, i.c.v.), a non-neuronal mast cell histamine releaser, or thioperamide (10.0 mg/kg, i.p.), a neuronal histamine releaser possessing the inhibitory effect of histamine H(3) autoreceptors, induced decrease in the time spent in the light zone by co-injection with cimetidine (10.0 microg/2 microl, i.c.v.), a H(2) inhibitor, suggesting anxiety-like effect. These histaminergics-induced experimental anxieties were inhibited by pre-treatment with subacute administration of saiboku-to, as well as single treatment with diazepam. The results suggest that saiboku-to exhibits anxiolytic-like effect closely related to histaminergic system in the brain.
Collapse
Affiliation(s)
- M Yuzurihara
- Kampo and Pharmacognosy Laboratories, Tsumura, 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | | | | | | | | |
Collapse
|
149
|
Inzunza O, Serón-Ferré MJ, Bravo H, Torrealba F. Tuberomammillary nucleus activation anticipates feeding under a restricted schedule in rats. Neurosci Lett 2000; 293:139-42. [PMID: 11027853 DOI: 10.1016/s0304-3940(00)01516-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used FOS-immunoreactivity to map changes in the neuronal activity of brain nuclei related to the state of arousal, in rats under a restricted feeding schedule. Our main finding was the outstanding activation of the tuberomammillary nucleus 24h after a meal, and its steep deactivation, which was independent of actually having the meal. The time course of FOS activation and deactivation indicated a burst of tuberomammilary nucleus activity in close temporal relation with the increased locomotor activity shown by rats in anticipation of the next meal.
Collapse
Affiliation(s)
- O Inzunza
- Departamento de Anatomía, Facultad de Medicina, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | |
Collapse
|
150
|
Eriksson KS, Stevens DR, Haas HL. Opposite modulation of histaminergic neurons by nociceptin and morphine. Neuropharmacology 2000; 39:2492-8. [PMID: 10974333 DOI: 10.1016/s0028-3908(00)00062-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have studied the effects of nociceptin/orphanin FQ on the histaminergic neurons in the tuberomammillary (TM) nucleus and compared them with the actions of opioid agonists. Intracellular recordings of the membrane potential were made with sharp electrodes from superfused rat hypothalamic slices. Nociceptin strongly inhibited the firing of the TM neurons. In the concentration range 10-300 nM, nociceptin hyperpolarized the neurons in a dose-dependent and reversible manner. Insensitivity to tetrodotoxin indicated a postsynaptic effect which was associated with decreased input resistance. Voltage-current plots suggested the involvement of a potassium conductance which was highly sensitive to Ba(2+) and decreased by Cs(+), in keeping with the activation of an inwardly rectifying potassium channel. Morphine (20-100 microM) depolarized the TM neurons and increased their firing, and this effect was blocked by tetrodotoxin. Dynorphin A(1-13) at 100-300 nM did not affect the TM neurons. Nociceptin and morphine modulate the activity of the TM neurons, and most likely histamine release, in opposite ways. Histamine has an antinociceptive effect in the brain and may be involved in opioid-induced analgesia. Nociceptin might therefore influence pain transmission by inhibiting opioid-induced histamine release from the TM nucleus and also modulate other physiological mechanisms which have been ascribed to the histaminergic system.
Collapse
Affiliation(s)
- K S Eriksson
- Department of Physiology II, Heinrich-Heine-Universität, Moorenstrasse 5, D-40225, Düsseldorf, Germany.
| | | | | |
Collapse
|