101
|
Hoang VH, Ngo VTH, Cui M, Manh NV, Tran PT, Ann J, Ha HJ, Kim H, Choi K, Kim YH, Chang H, Macalino SJY, Lee J, Choi S, Lee J. Discovery of Conformationally Restricted Human Glutaminyl Cyclase Inhibitors as Potent Anti-Alzheimer's Agents by Structure-Based Design. J Med Chem 2019; 62:8011-8027. [PMID: 31411468 DOI: 10.1021/acs.jmedchem.9b00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disease whose pathogenesis cannot be defined by one single element but consists of various factors; thus, there is a call for alternative approaches to tackle the multifaceted aspects of AD. Among the potential alternative targets, we aim to focus on glutaminyl cyclase (QC), which reduces the toxic pyroform of β-amyloid in the brains of AD patients. On the basis of a putative active conformation of the prototype inhibitor 1, a series of N-substituted thiourea, urea, and α-substituted amide derivatives were developed. The structure-activity relationship analyses indicated that conformationally restrained inhibitors demonstrated much improved QC inhibition in vitro compared to nonrestricted analogues, and several selected compounds demonstrated desirable therapeutic activity in an AD mouse model. The conformational analysis of a representative inhibitor indicated that the inhibitor appeared to maintain the Z-E conformation at the active site, as it is critical for its potent activity.
Collapse
Affiliation(s)
- Van-Hai Hoang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Van T H Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City 75307 , Vietnam
| | - Minghua Cui
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Nguyen Van Manh
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry , Hanoi University of Pharmacy , Hanoi 10000 , Vietnam
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Hee-Jin Ha
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Hee Kim
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Kwanghyun Choi
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Young-Ho Kim
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Hyerim Chang
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Stephani Joy Y Macalino
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Seoul 01133 , Republic of Korea
| | - Sun Choi
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
102
|
Festa G, Mallamace F, Sancesario GM, Corsaro C, Mallamace D, Fazio E, Arcidiacono L, Garcia Sakai V, Senesi R, Preziosi E, Sancesario G, Andreani C. Aggregation States of A β1-40, A β1-42 and A βp 3-42 Amyloid Beta Peptides: A SANS Study. Int J Mol Sci 2019; 20:ijms20174126. [PMID: 31450543 PMCID: PMC6747079 DOI: 10.3390/ijms20174126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
Aggregation states of amyloid beta peptides for amyloid beta A β 1 - 40 to A β 1 - 42 and A β p 3 - 42 are investigated through small angle neutron scattering (SANS). The knowledge of these small peptides and their aggregation state are of key importance for the comprehension of neurodegenerative diseases (e.g., Alzheimer's disease). The SANS technique allows to study the size and fractal nature of the monomers, oligomers and fibrils of the three different peptides. Results show that all the investigated peptides have monomers with a radius of gyration of the order of 10 Å, while the oligomers and fibrils display differences in size and aggregation ability, with A β p 3 - 42 showing larger oligomers. These properties are strictly related to the toxicity of the corresponding amyloid peptide and indeed to the development of the associated disease.
Collapse
Affiliation(s)
- Giulia Festa
- CENTRO FERMI-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy
| | - Francesco Mallamace
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giulia Maria Sancesario
- IRCCS Fondazione Santa Lucia, 00142 Rome, Italy
- Department of Experimental Medicine and Surgery, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy
| | - Carmelo Corsaro
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, 98166 Messina, Italy.
| | - Domenico Mallamace
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, 98166 Messina, Italy.
| | - Enza Fazio
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, 98166 Messina, Italy
| | - Laura Arcidiacono
- CENTRO FERMI-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy
- Science and Technology Facilities Council, ISIS Pulsed Neutron and Muon Source, Didcot OX11 0QX, UK
| | - Victoria Garcia Sakai
- Science and Technology Facilities Council, ISIS Pulsed Neutron and Muon Source, Didcot OX11 0QX, UK
| | - Roberto Senesi
- CENTRO FERMI-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy
- NAST Centre and Department of Physics, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy
| | - Enrico Preziosi
- NAST Centre and Department of Physics, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy
| | - Giuseppe Sancesario
- Department of Systems Medicine, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy
| | - Carla Andreani
- CENTRO FERMI-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy
- NAST Centre and Department of Physics, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
103
|
Abstract
Prion diseases are progressive, incurable and fatal neurodegenerative conditions. The term 'prion' was first nominated to express the revolutionary concept that a protein could be infectious. We now know that prions consist of PrPSc, the pathological aggregated form of the cellular prion protein PrPC. Over the years, the term has been semantically broadened to describe aggregates irrespective of their infectivity, and the prion concept is now being applied, perhaps overenthusiastically, to all neurodegenerative diseases that involve protein aggregation. Indeed, recent studies suggest that prion diseases (PrDs) and protein misfolding disorders (PMDs) share some common disease mechanisms, which could have implications for potential treatments. Nevertheless, the transmissibility of bona fide prions is unique, and PrDs should be considered as distinct from other PMDs.
Collapse
Affiliation(s)
- Claudia Scheckel
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
104
|
Saito T, Mihira N, Matsuba Y, Sasaguri H, Hashimoto S, Narasimhan S, Zhang B, Murayama S, Higuchi M, Lee VMY, Trojanowski JQ, Saido TC. Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation. J Biol Chem 2019; 294:12754-12765. [PMID: 31273083 DOI: 10.1074/jbc.ra119.009487] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Indexed: 11/06/2022] Open
Abstract
In cortical regions of brains from individuals with preclinical or clinical Alzheimer's disease (AD), extracellular β-amyloid (Aβ) deposition precedes the aggregation of pathological intracellular tau (the product of the gene microtubule-associated protein tau (MAPT)). To our knowledge, current mouse models of tauopathy reconstitute tau pathology by overexpressing mutant human tau protein. Here, through a homologous recombination approach that replaced the entire murine Mapt gene with the human ortholog, we developed knock-in mice with humanized Mapt to create an in vivo platform for studying human tauopathy. Of note, the humanized Mapt expressed all six tau isoforms present in humans. We next cross-bred the MAPT knock-in mice with single amyloid precursor protein (App) knock-in mice to investigate the Aβ-tau axis in AD etiology. The double-knock-in mice exhibited higher tau phosphorylation than did single MAPT knock-in mice but initially lacked apparent tauopathy and neurodegeneration, as observed in the single App knock-in mice. We further observed that tau humanization significantly accelerates cell-to-cell propagation of AD brain-derived pathological tau both in the absence and presence of Aβ-amyloidosis. In the presence of Aβ-amyloidosis, tau accumulation was intensified and closely associated with dystrophic neurites, consistently showing that Aβ-amyloidosis affects tau pathology. Our results also indicated that the pathological human tau interacts better with human tau than with murine tau, suggesting species-specific differences between these orthologous pathogenic proteins. We propose that the MAPT knock-in mice will make it feasible to investigate the behaviors and characteristics of human tau in an animal model.
Collapse
Affiliation(s)
- Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan .,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Sneha Narasimhan
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi, Tokyo 173-0015, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| |
Collapse
|
105
|
Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis 2019; 64:S567-S610. [PMID: 29843241 PMCID: PMC6004937 DOI: 10.3233/jad-179941] [Citation(s) in RCA: 598] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amyloid-β oligomer (AβO) hypothesis was introduced in 1998. It proposed that the brain damage leading to Alzheimer’s disease (AD) was instigated by soluble, ligand-like AβOs. This hypothesis was based on the discovery that fibril-free synthetic preparations of AβOs were potent CNS neurotoxins that rapidly inhibited long-term potentiation and, with time, caused selective nerve cell death (Lambert et al., 1998). The mechanism was attributed to disrupted signaling involving the tyrosine-protein kinase Fyn, mediated by an unknown toxin receptor. Over 4,000 articles concerning AβOs have been published since then, including more than 400 reviews. AβOs have been shown to accumulate in an AD-dependent manner in human and animal model brain tissue and, experimentally, to impair learning and memory and instigate major facets of AD neuropathology, including tau pathology, synapse deterioration and loss, inflammation, and oxidative damage. As reviewed by Hayden and Teplow in 2013, the AβO hypothesis “has all but supplanted the amyloid cascade.” Despite the emerging understanding of the role played by AβOs in AD pathogenesis, AβOs have not yet received the clinical attention given to amyloid plaques, which have been at the core of major attempts at therapeutics and diagnostics but are no longer regarded as the most pathogenic form of Aβ. However, if the momentum of AβO research continues, particularly efforts to elucidate key aspects of structure, a clear path to a successful disease modifying therapy can be envisioned. Ensuring that lessons learned from recent, late-stage clinical failures are applied appropriately throughout therapeutic development will further enable the likelihood of a successful therapy in the near-term.
Collapse
Affiliation(s)
- Erika N Cline
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Maíra Assunção Bicca
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
106
|
Conant CR, Fuller DR, El-Baba TJ, Zhang Z, Russell DH, Clemmer DE. Substance P in Solution: Trans-to-Cis Configurational Changes of Penultimate Prolines Initiate Non-enzymatic Peptide Bond Cleavages. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:919-931. [PMID: 30980380 PMCID: PMC6824264 DOI: 10.1007/s13361-019-02159-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 05/02/2023]
Abstract
We report ion mobility spectrometry and mass spectrometry studies of the non-enzymatic step-by-step degradation of substance P (subP), an 11-residue neuropeptide, with the sequence Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7-Phe8-Gly9-Leu10-Met11-NH2, in ethanol. At elevated solution temperatures (55 to 75 °C), several reactions are observed, including a protonation event, i.e., [subP+2H]2+ + H+ → [subP+3H]3+, that appears to be regulated by a configurational change and two sequential bond cleavages (the Pro2-Lys3 peptide bond is cleaved to form the smaller nonapeptide Lys3-Met11-NH2 [subP(3-11)], and subsequently, subP(3-11) is cleaved at the Pro4-Gln5 peptide bond to yield the heptapeptide Gln5-Met11-NH2 [subP(5-11)]). Each of the product peptides [subP(3-11) and subP(5-11)] is accompanied by a complementary diketopiperazine (DKP): cyclo-Arg1-Pro2 (cRP) for the first cleavage, and cyclo-Lys3-Pro4 (cKP) for the second. Insight about the mechanism of degradation is obtained by comparing kinetics calculations of trial model mechanisms with experimental data. The best model of our experimental data indicates that the initial cleavage of subP is regulated by a conformational change, likely a trans→cis isomerization of the Arg1-Pro2 peptide bond. The subP(3-11) product has a long lifetime (t1/2 ~ 30 h at 55 °C) and appears to transition through several structural intermediates prior to dissociation, suggesting that subP(3-11) is initially formed with a Lys3-trans-Pro4 peptide bond configuration and that slow trans→cis isomerization regulates the second bond cleavage event as well. From these data and our model mechanisms, we obtain transition state thermochemistry ranging from ΔH‡ = 41 to 85 kJ mol-1 and ΔS‡ = - 43 to - 157 J mol-1 K-1 for each step in the reaction. Graphical Abstract.
Collapse
Affiliation(s)
- Christopher R Conant
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Daniel R Fuller
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Zhichao Zhang
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA.
| |
Collapse
|
107
|
Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy. Nat Med 2019; 25:612-619. [PMID: 30833751 PMCID: PMC7025889 DOI: 10.1038/s41591-019-0356-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/14/2019] [Indexed: 12/28/2022]
Abstract
Cancer cells can evade immune surveillance through the expression of inhibitory ligands that bind their cognate receptors on immune effector cells. Expression of programmed death ligand 1 in tumor microenvironments is a major immune checkpoint for tumor-specific T cell responses as it binds to programmed cell death protein-1 on activated and dysfunctional T cells1. The activity of myeloid cells such as macrophages and neutrophils is likewise regulated by a balance between stimulatory and inhibitory signals. In particular, cell surface expression of the CD47 protein creates a 'don't eat me' signal on tumor cells by binding to SIRPα expressed on myeloid cells2-5. Using a haploid genetic screen, we here identify glutaminyl-peptide cyclotransferase-like protein (QPCTL) as a major component of the CD47-SIRPα checkpoint. Biochemical analysis demonstrates that QPCTL is critical for pyroglutamate formation on CD47 at the SIRPα binding site shortly after biosynthesis. Genetic and pharmacological interference with QPCTL activity enhances antibody-dependent cellular phagocytosis and cellular cytotoxicity of tumor cells. Furthermore, interference with QPCTL expression leads to a major increase in neutrophil-mediated killing of tumor cells in vivo. These data identify QPCTL as a novel target to interfere with the CD47 pathway and thereby augment antibody therapy of cancer.
Collapse
|
108
|
Michno W, Nyström S, Wehrli P, Lashley T, Brinkmalm G, Guerard L, Syvänen S, Sehlin D, Kaya I, Brinet D, Nilsson KPR, Hammarström P, Blennow K, Zetterberg H, Hanrieder J. Pyroglutamation of amyloid-βx-42 (Aβx-42) followed by Aβ1-40 deposition underlies plaque polymorphism in progressing Alzheimer's disease pathology. J Biol Chem 2019; 294:6719-6732. [PMID: 30814252 PMCID: PMC6497931 DOI: 10.1074/jbc.ra118.006604] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Amyloid-β (Aβ) pathology in Alzheimer's disease (AD) is characterized by the formation of polymorphic deposits comprising diffuse and cored plaques. Because diffuse plaques are predominantly observed in cognitively unaffected, amyloid-positive (CU-AP) individuals, pathogenic conversion into cored plaques appears to be critical to AD pathogenesis. Herein, we identified the distinct Aβ species associated with amyloid polymorphism in brain tissue from individuals with sporadic AD (s-AD) and CU-AP. To this end, we interrogated Aβ polymorphism with amyloid conformation–sensitive dyes and a novel in situ MS paradigm for chemical characterization of hyperspectrally delineated plaque morphotypes. We found that maturation of diffuse into cored plaques correlated with increased Aβ1–40 deposition. Using spatial in situ delineation with imaging MS (IMS), we show that Aβ1–40 aggregates at the core structure of mature plaques, whereas Aβ1–42 localizes to diffuse amyloid aggregates. Moreover, we observed that diffuse plaques have increased pyroglutamated Aβx-42 levels in s-AD but not CU-AP, suggesting an AD pathology–related, hydrophobic functionalization of diffuse plaques facilitating Aβ1–40 deposition. Experiments in tgAPPSwe mice verified that, similar to what has been observed in human brain pathology, diffuse deposits display higher levels of Aβ1–42 and that Aβ plaque maturation over time is associated with increases in Aβ1–40. Finally, we found that Aβ1–40 deposition is characteristic for cerebral amyloid angiopathy deposition and maturation in both humans and mice. These results indicate that N-terminal Aβx-42 pyroglutamation and Aβ1–40 deposition are critical events in priming and maturation of pathogenic Aβ from diffuse into cored plaques, underlying neurotoxic plaque development in AD.
Collapse
Affiliation(s)
- Wojciech Michno
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Sofie Nyström
- the Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Patrick Wehrli
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Tammaryn Lashley
- the Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Gunnar Brinkmalm
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Laurent Guerard
- the Center for Cellular Imaging, Core Facilities, Sahlgrenska Academy at the University of Gothenburg, 41390 Gothenburg, Sweden
| | - Stina Syvänen
- the Department of Public Health and Caring Sciences, Uppsala University, 75236 Uppsala, Sweden
| | - Dag Sehlin
- the Department of Public Health and Caring Sciences, Uppsala University, 75236 Uppsala, Sweden
| | - Ibrahim Kaya
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Dimitri Brinet
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - K Peter R Nilsson
- the Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Per Hammarström
- the Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Kaj Blennow
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden.,the Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden.,the Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.,the Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden.,the UK Dementia Research Institute at UCL, London WC1E 6BT, United Kingdom, and
| | - Jörg Hanrieder
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden, .,the Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
109
|
Dunys J, Valverde A, Checler F. Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer's disease? J Biol Chem 2018; 293:15419-15428. [PMID: 30143530 DOI: 10.1074/jbc.r118.003999] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The histopathology of Alzheimer's disease (AD) is characterized by neuronal loss, neurofibrillary tangles, and senile plaque formation. The latter results from an exacerbated production (familial AD cases) or altered degradation (sporadic cases) of 40/42-amino acid-long β-amyloid peptides (Aβ peptides) that are produced by sequential cleavages of Aβ precursor protein (βAPP) by β- and γ-secretases. The amyloid cascade hypothesis proposes a key role for the full-length Aβ42 and the Aβ40/42 ratio in AD etiology, in which soluble Aβ oligomers lead to neurotoxicity, tau hyperphosphorylation, aggregation, and, ultimately, cognitive defects. However, following this postulate, during the last decade, several clinical approaches aimed at decreasing full-length Aβ42 production or neutralizing it by immunotherapy have failed to reduce or even stabilize AD-related decline. Thus, the Aβ peptide (Aβ40/42)-centric hypothesis is probably a simplified view of a much more complex situation involving a multiplicity of APP fragments and Aβ catabolites. Indeed, biochemical analyses of AD brain deposits and fluids have unraveled an Aβ peptidome consisting of additional Aβ-related species. Such Aβ catabolites could be due to either primary enzymatic cleavages of βAPP or secondary processing of Aβ itself by exopeptidases. Here, we review the diversity of N- and C-terminally truncated Aβ peptides and their biosynthesis and outline their potential function/toxicity. We also highlight their potential as new pharmaceutical targets and biomarkers.
Collapse
Affiliation(s)
- Julie Dunys
- From the Université Côte d'Azur, INSERM, CNRS, IPMC, Team labeled "Laboratory of Excellence (LABEX) Distalz," 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Audrey Valverde
- From the Université Côte d'Azur, INSERM, CNRS, IPMC, Team labeled "Laboratory of Excellence (LABEX) Distalz," 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Frédéric Checler
- From the Université Côte d'Azur, INSERM, CNRS, IPMC, Team labeled "Laboratory of Excellence (LABEX) Distalz," 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| |
Collapse
|
110
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
111
|
Herline K, Drummond E, Wisniewski T. Recent advancements toward therapeutic vaccines against Alzheimer's disease. Expert Rev Vaccines 2018; 17:707-721. [PMID: 30005578 DOI: 10.1080/14760584.2018.1500905] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by protein aggregates of amyloid β (Aβ) and tau. These proteins have normal physiological functions, but in AD, they undergo a conformational change and aggregate as toxic oligomeric and fibrillar species with a high β-sheet content. AREAS COVERED Active and passive immunotherapeutic approaches are among the most attractive methods for targeting misfolded Aβ and tau. Promising preclinical testing of various immunotherapeutic approaches has yet to translate to cognitive benefits in human clinical trials. Knowledge gained from these past failures has led to the development of second-generation Aβ-active immunotherapies, anti-Aβ monoclonal antibodies targeting a wide array of Aβ conformations, and to a number of immunotherapies targeting pathological tau. This review covers the more recent advances in vaccine development for AD from 2016 to present. EXPERT COMMENTARY Due to the complex pathophysiology of AD, greatest clinical efficacy will most likely be achieved by concurrently targeting the most toxic forms of both Aβ and tau.
Collapse
Affiliation(s)
- Krystal Herline
- a Center for Cognitive Neurology , New York University School of Medicine , New York , NY , USA.,b Departments of Neurology , New York University School of Medicine , New York , NY , USA
| | - Eleanor Drummond
- a Center for Cognitive Neurology , New York University School of Medicine , New York , NY , USA.,b Departments of Neurology , New York University School of Medicine , New York , NY , USA
| | - Thomas Wisniewski
- a Center for Cognitive Neurology , New York University School of Medicine , New York , NY , USA.,b Departments of Neurology , New York University School of Medicine , New York , NY , USA.,c Pathology , New York University School of Medicine , New York , NY , USA.,d Psychiatry , New York University School of Medicine , New York , NY , USA
| |
Collapse
|
112
|
Son HJ, Jeong YJ, Yoon HJ, Lee SY, Choi GE, Park JA, Kim MH, Lee KC, Lee YJ, Kim MK, Cho K, Kang DY. Assessment of brain beta-amyloid deposition in transgenic mouse models of Alzheimer's disease with PET imaging agents 18F-flutemetamol and 18F-florbetaben. BMC Neurosci 2018; 19:45. [PMID: 30053803 PMCID: PMC6063010 DOI: 10.1186/s12868-018-0447-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although amyloid beta (Aβ) imaging is widely used for diagnosing and monitoring Alzheimer's disease in clinical fields, paralleling comparison between 18F-flutemetamol and 18F-florbetaben was rarely attempted in AD mouse model. We performed a comparison of Aβ PET images between 18F-flutemetamol and 18F-florbetaben in a recently developed APPswe mouse model, C57BL/6-Tg (NSE-hAPPsw) Korl. RESULTS After an injection (0.23 mCi) of 18F-flutemetamol and 18F-florbetaben at a time interval of 2-3 days, we compared group difference of SUVR and kinetic parameters between the AD (n = 7) and control (n = 7) mice, as well as between 18F-flutemetamol and 18F-florbetaben image. In addition, bio-distribution and histopathology were conducted. With visual image and VOI-based SUVR analysis, the AD group presented more prominent uptake than did the control group in both the 18F-florbetaben and 18F-flutemetamol images. With kinetic analysis, the 18F-florbetaben images showed differences in K1 and k4 between the AD and control groups, although 18F-flutemetamol images did not show significant difference. 18F-florbetaben images showed more prominent cortical uptake and matched well to the thioflavin S staining images than did the 18F-flutemetamol image. In contrast, 18F-flutemetamol images presented higher K1, k4, K1/k2 values than those of 18F-florbetaben images. Also, 18F-flutemetamol images presented prominent uptake in the bowel and bladder, consistent with higher bio-distribution in kidney, lung, blood and heart. CONCLUSIONS Compared with 18F-flutemetamol images, 18F-florbetaben images showed prominent visual uptake intensity, SUVR, and higher correlations with the pathology. In contrast, 18F-flutemetamol was more actively metabolized than was 18F-florbetaben (Son et al. in J Nucl Med 58(Suppl 1):S278, 2017].
Collapse
Affiliation(s)
- Hye Joo Son
- Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 602-812 Korea
| | - Young Jin Jeong
- Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 602-812 Korea
| | - Hyun Jin Yoon
- Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 602-812 Korea
| | - Sang Yoon Lee
- Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 602-812 Korea
| | - Go-Eun Choi
- Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| | - Ji-Ae Park
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Min Hwan Kim
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kyo Chul Lee
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Yong Jin Lee
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Mun Ki Kim
- Pohang Center of Evolution of Biomaterials, Pohang Technopark, Pohang, Korea
| | - Kook Cho
- Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| | - Do-Young Kang
- Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 602-812 Korea
- Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| |
Collapse
|
113
|
Structure-activity relationship investigation of Phe-Arg mimetic region of human glutaminyl cyclase inhibitors. Bioorg Med Chem 2018; 26:3133-3144. [DOI: 10.1016/j.bmc.2018.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022]
|
114
|
Gerth J, Kumar S, Rijal Upadhaya A, Ghebremedhin E, von Arnim CAF, Thal DR, Walter J. Modified amyloid variants in pathological subgroups of β-amyloidosis. Ann Clin Transl Neurol 2018; 5:815-831. [PMID: 30009199 PMCID: PMC6043770 DOI: 10.1002/acn3.577] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
Objective Amyloid β (Aβ) depositions in plaques and cerebral amyloid angiopathy (CAA) represent common features of Alzheimer's disease (AD). Sequential deposition of post-translationally modified Aβ in plaques characterizes distinct biochemical stages of Aβ maturation. However, the molecular composition of vascular Aβ deposits in CAA and its relation to plaques remain enigmatic. Methods Vascular and parenchymal deposits were immunohistochemically analyzed for pyroglutaminated and phosphorylated Aβ in the medial temporal and occipital lobe of 24 controls, 27 pathologically-defined preclinical AD, and 20 symptomatic AD cases. Results Sequential deposition of Aβ in CAA resembled Aβ maturation in plaques and enabled the distinction of three biochemical stages of CAA. B-CAA stage 1 was characterized by deposition of Aβ in the absence of pyroglutaminated AβN3pE and phosphorylated AβpS8. B-CAA stage 2 showed additional AβN3pE and B-CAA stage 3 additional AβpS8. Based on the Aβ maturation staging in CAA and plaques, three case groups for Aβ pathology could be distinguished: group 1 with advanced Aβ maturation in CAA; group 2 with equal Aβ maturation in CAA and plaques; group 3 with advanced Aβ maturation in plaques. All symptomatic AD cases presented with end-stage plaque maturation, whereas CAA could exhibit immature Aβ deposits. Notably, Aβ pathology group 1 was associated with arterial hypertension, and group 2 with the development of dementia. Interpretation Balance of Aβ maturation in CAA and plaques defines distinct pathological subgroups of β-amyloidosis. The association of CAA-related Aβ maturation with cognitive decline, the individual contribution of CAA and plaque pathology to the development of dementia within the defined Aβ pathology subgroups, and the subgroup-related association with arterial hypertension should be considered for differential diagnosis and therapeutic intervention.
Collapse
Affiliation(s)
- Janina Gerth
- Department of Neurology University of Bonn Bonn Germany
| | - Sathish Kumar
- Department of Neurology University of Bonn Bonn Germany
| | - Ajeet Rijal Upadhaya
- Laboratory for Neuropathology Institute for Pathology University of Ulm Ulm Germany
| | | | | | - Dietmar R Thal
- Laboratory for Neuropathology Institute for Pathology University of Ulm Ulm Germany.,Department of Neurosciences KU Leuven Leuven Belgium.,Department of Pathology UZ Leuven Leuven Belgium
| | - Jochen Walter
- Department of Neurology University of Bonn Bonn Germany
| |
Collapse
|
115
|
Hartlage-Rübsamen M, Bluhm A, Piechotta A, Linnert M, Rahfeld JU, Demuth HU, Lues I, Kuhn PH, Lichtenthaler SF, Roßner S, Höfling C. Immunohistochemical Evidence from APP-Transgenic Mice for Glutaminyl Cyclase as Drug Target to Diminish pE-Abeta Formation. Molecules 2018; 23:molecules23040924. [PMID: 29673150 PMCID: PMC6017857 DOI: 10.3390/molecules23040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
Oligomeric assemblies of neurotoxic amyloid beta (Abeta) peptides generated by proteolytical processing of the amyloid precursor protein (APP) play a key role in the pathogenesis of Alzheimer’s disease (AD). In recent years, a substantial heterogeneity of Abeta peptides with distinct biophysical and cell biological properties has been demonstrated. Among these, a particularly neurotoxic and disease-specific Abeta variant is N-terminally truncated and modified to pyroglutamate (pE-Abeta). Cell biological and animal experimental studies imply the catalysis of this modification by the enzyme glutaminyl cyclase (QC). However, direct histopathological evidence in transgenic animals from comparative brain region and cell type-specific expression of transgenic hAPP and QC, on the one hand, and on the formation of pE-Abeta aggregates, on the other, is lacking. Here, using single light microscopic, as well as triple immunofluorescent, labeling, we report the deposition of pE-Abeta only in the brain regions of APP-transgenic Tg2576 mice with detectable human APP and endogenous QC expression, such as the hippocampus, piriform cortex, and amygdala. Brain regions showing human APP expression without the concomitant presence of QC (the anterodorsal thalamic nucleus and perifornical nucleus) do not display pE-Abeta plaque formation. However, we also identified brain regions with substantial expression of human APP and QC in the absence of pE-Abeta deposition (the Edinger-Westphal nucleus and locus coeruleus). In these brain regions, the enzymes required to generate N-truncated Abeta peptides as substrates for QC might be lacking. Our observations provide additional evidence for an involvement of QC in AD pathogenesis via QC-catalyzed pE-Abeta formation.
Collapse
Affiliation(s)
| | - Alexandra Bluhm
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Miriam Linnert
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Jens-Ulrich Rahfeld
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Hans-Ulrich Demuth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Inge Lues
- Probiodrug AG, 06120 Halle (Saale), Germany.
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany.
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 81377 Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
116
|
Greene D, Po T, Pan J, Tabibian T, Luo R. Computational Analysis for the Rational Design of Anti-Amyloid Beta (Aβ) Antibodies. J Phys Chem B 2018; 122:4521-4536. [PMID: 29617557 DOI: 10.1021/acs.jpcb.8b01837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that lacks effective treatment options. Anti-amyloid beta (Aβ) antibodies are the leading drug candidates to treat AD, but the results of clinical trials have been disappointing. Introducing rational mutations into anti-Aβ antibodies to increase their effectiveness is a way forward, but the path to take is unclear. In this study, we demonstrate the use of computational fragment-based docking and MMPBSA binding free energy calculations in the analysis of anti-Aβ antibodies for rational drug design efforts. Our fragment-based docking method successfully predicts the emergence of the common EFRH epitope. MD simulations coupled with MMPBSA binding free energy calculations are used to analyze scenarios described in prior studies, and we computationally introduce rational mutations into PFA1 to predict mutations that can improve its binding affinity toward the pE3-Aβ3-8 form of Aβ. Two out of our four proposed mutations are predicted to stabilize binding. Our study demonstrates that a computational approach may lead to an improved drug candidate for AD in the future.
Collapse
|
117
|
Mehta PD, Patrick BA, Barshatzky M, Mehta SP, Frackowiak J, Mazur-Kolecka B, Wegiel J, Wisniewski T, Miller DL. Generation and Partial Characterization of Rabbit Monoclonal Antibody to Pyroglutamate Amyloid-β3-42 (pE3-Aβ). J Alzheimers Dis 2018; 62:1635-1649. [DOI: 10.3233/jad-170898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pankaj D. Mehta
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Bruce A. Patrick
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Marc Barshatzky
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Sangita P. Mehta
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Janusz Frackowiak
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Bozena Mazur-Kolecka
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jerzy Wegiel
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, USA
| | - David L. Miller
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
118
|
Dietrich K, Bouter Y, Müller M, Bayer TA. Synaptic Alterations in Mouse Models for Alzheimer Disease-A Special Focus on N-Truncated Abeta 4-42. Molecules 2018; 23:E718. [PMID: 29561816 PMCID: PMC6017701 DOI: 10.3390/molecules23040718] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
This commentary reviews the role of the Alzheimer amyloid peptide Aβ on basal synaptic transmission, synaptic short-term plasticity, as well as short- and long-term potentiation in transgenic mice, with a special focus on N-terminal truncated Aβ4-42. Aβ4-42 is highly abundant in the brain of Alzheimer's disease (AD) patients. It demonstrates increased neurotoxicity compared to full length Aβ, suggesting an important role in the pathogenesis of AD. Transgenic Tg4-42 mice, a model for sporadic AD, express human Aβ4-42 in Cornu Ammonis (CA1) neurons, and develop age-dependent hippocampal neuron loss and neurological deficits. In contrast to other transgenic AD mouse models, the Tg4-42 model exhibits synaptic hyperexcitability, altered synaptic short-term plasticity with no alterations in short- and long-term potentiation. The outcomes of this study are discussed in comparison with controversial results from other AD mouse models.
Collapse
Affiliation(s)
- Katharina Dietrich
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| | - Michael Müller
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Humboldtallee 23, 37073 Göttingen, Germany.
- Center for Physiology and Pathophysiology, Institute for Neuro- and Sense Physiology, University Medical Center (UMG), Georg-August-University, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| |
Collapse
|
119
|
Lopez-Noguerola JS, Giessen NME, Ueberück M, Meißner JN, Pelgrim CE, Adams J, Wirths O, Bouter Y, Bayer TA. Synergistic Effect on Neurodegeneration by N-Truncated Aβ 4-42 and Pyroglutamate Aβ 3-42 in a Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2018; 10:64. [PMID: 29568268 PMCID: PMC5852075 DOI: 10.3389/fnagi.2018.00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/23/2018] [Indexed: 01/09/2023] Open
Abstract
The N-terminally truncated pyroglutamate Aβ3-42 (AβpE3-42) and Aβ4-42 peptides are known to be highly abundant in the brain of Alzheimer's disease (AD) patients. Both peptides show enhanced aggregation and neurotoxicity in comparison to full-length Aβ, suggesting that these amyloid peptides may play an important role in the pathogenesis of AD. The aim of the present work was to study the direct effect of the combination of AβpE3-42 and Aβ4-42 on ongoing AD-related neuron loss, pathology, and neurological deficits in transgenic mice. Bigenic mice were generated by crossing the established TBA42 and Tg4-42 mouse models expressing the N-truncated Aβ peptides AβpE3-42 and Aβ4-42, respectively. After generation of the bigenic mice, detailed phenotypical characterization was performed using either immunostainings to evaluate amyloid pathology or quantification of neuron numbers using design-based stereology. The elevated plus maze was used to study anxiety levels. In order to evaluate sensori-motor deficits, the inverted grid, the balance beam and the string suspension tasks were applied. We could demonstrate that co-expression of AβpE3-42 and Aβ4-42 accelerates neuron loss in the CA1 pyramidal layer of young bigenic mice as seen by reduced neuron numbers in comparison to single transgenic homozygous mice expressing either AβpE3-42 or Aβ4-42. This observation coincides with the robust intraneuronal Aβ accumulation observed in the bigenic mice. In addition, loss of anxiety and motor deficits were enhanced in an age-dependent manner. The sensori-motor deficits correlate with the abundant spinal cord pathology, as demonstrated by robust intracellular Aβ accumulation within motor neurons and extracellular Aβ deposition. Our observations demonstrate that a combination of AβpE3-42 and Aβ4-42 has a stronger effect on ongoing AD pathology than the peptides alone. Therefore, AβpE3-42 and Aβ4-42 might represent excellent potential therapeutic targets and diagnostic markers for AD.
Collapse
Affiliation(s)
- Jose S Lopez-Noguerola
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Nicolai M E Giessen
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Maximilian Ueberück
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Julius N Meißner
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Charlotte E Pelgrim
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Johnathan Adams
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Yvonne Bouter
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Thomas A Bayer
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| |
Collapse
|
120
|
Yano Y, Takeno A, Matsuzaki K. Trace amounts of pyroglutaminated Aβ-(3-42) enhance aggregation of Aβ-(1-42) on neuronal membranes at physiological concentrations: FCS analysis of cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1603-1608. [PMID: 29410161 DOI: 10.1016/j.bbamem.2018.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
Minor species of amyloid β-peptide (Aβ), such as Aβ-(1-43) and pyroglutaminated Aβ-(3-42) (Aβ-(3pE-42)), have been suggested to be involved in the initiation of the Aβ aggregation process, which is closely associated with the etiology of Alzheimer's disease. They can play important roles in aggregation not only in the aqueous phase but also on neuroral membranes; however, the latter behaviors remain mostly unexplored. Here, initial aggregation processes of Aβ on living cells were monitored at physiological nanomolar concentrations by fluorescence correlation spectroscopy. Membrane-bound Aβ-(1-42) and Aβ-(1-40) formed oligomers composed of ~4 Aβ molecules during 48-h incubation, whereas the peptides remained monomeric in the culture medium, indicating that the membranes facilitated Aβ aggregation. The presence of 5 mol% Aβ-(3pE-42), but not Aβ-(1-43), significantly enhanced the aggregation of Aβ-(1-42) up to ~10-mers. On the other hand, neither trace amounts of Aβ-(1-42) nor Aβ-(3pE-42) enhanced the aggregation of Aβ-(1-40). The observed small Aβ oligomers are expected to act as pathogenic seeds for amyloid fibrils responsible for neurotoxicity. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - An Takeno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
121
|
Alzheimer's Disease Model System Using Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:25-40. [PMID: 29951813 DOI: 10.1007/978-981-13-0529-0_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most epidemic neuronal dysfunctions among elderly people. It is accompanied by neuronal disorders along with learning and memory defects, as well as massive neurodegeneration phenotype. The presence of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques, called senile plaques (SPs), and brain atrophy are typically observed in the brains of AD patients. It has been over 20 years since the discovery that small peptide, called beta-amyloid (Aβ), has pivotal role for the disease formation. Since then, a variety of drugs have been developed to cure AD; however, there is currently no effective drug for the disorder. This therapeutic void reflects lacks of ideal model system, which can evaluate the progression of AD in a short period. Recently, large numbers of AD model system have been established using Drosophila melanogaster by overproducing Aβ molecules in the brain. These systems successfully reflect some of the symptoms along with AD. In this review, we would like to point out "pros and cons" of Drosophila AD models.
Collapse
|
122
|
Head E, Helman AM, Powell D, Schmitt FA. Down syndrome, beta-amyloid and neuroimaging. Free Radic Biol Med 2018; 114:102-109. [PMID: 28935420 PMCID: PMC5748259 DOI: 10.1016/j.freeradbiomed.2017.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
This review focuses on the role of Aβ in AD pathogenesis in Down syndrome and current approaches for imaging Aβ in vivo. We will describe how Aβ deposits with age, the posttranslational modifications that can occur, and detection in biofluids. Three unique case studies describing partial trisomy 21 cases without APP triplication, and the occurrences of low level mosaic trisomy 21 in an early onset AD patient are presented. Brain imaging for Aβ includes those by positron emission tomography and ligands (Pittsburgh Compound B, Florbetapir, and FDDNP) that bind Aβ have been published and are summarized here. In combination, we have learned a great deal about Aβ in DS in terms of characterizing age of onset of this pathology and it is exciting to note that there is a clinical trial in DS targeting Aβ that may lead to clinical benefits.
Collapse
Affiliation(s)
- Elizabeth Head
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Pharmacology & Nutritional Sciences, Lexington, KY 40536, United States.
| | - Alex M Helman
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Pharmacology & Nutritional Sciences, Lexington, KY 40536, United States; University of Kentucky, Magnetic Resonance Imaging and Spectroscopy Center, Lexington, KY 40536, United States; University of Kentucky, Department of Neurology, Lexington, KY 40536, United States
| | - David Powell
- University of Kentucky, Magnetic Resonance Imaging and Spectroscopy Center, Lexington, KY 40536, United States
| | - Frederick A Schmitt
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Neurology, Lexington, KY 40536, United States
| |
Collapse
|
123
|
Akinyemi RO, Allan LM, Oakley A, Kalaria RN. Hippocampal Neurodegenerative Pathology in Post-stroke Dementia Compared to Other Dementias and Aging Controls. Front Neurosci 2017; 11:717. [PMID: 29311794 PMCID: PMC5742173 DOI: 10.3389/fnins.2017.00717] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022] Open
Abstract
Neuroimaging evidence from older stroke survivors in Nigeria and Northeast England showed medial temporal lobe atrophy (MTLA) to be independently associated with post-stroke cognitive impairment and dementia. Given the hypothesis ascribing MTLA to neurodegenerative processes, we assessed Alzheimer pathology in the hippocampal formation and entorhinal cortex of autopsied brains from of post-stroke demented and non-demented subjects in comparison with controls and other dementias. We quantified markers of amyloid β (total Aβ, Aβ-40, Aβ-42, and soluble Aβ) and hyperphosphorylated tau in the hippocampal formation and entorhinal cortex of 94 subjects consisting of normal controls (n = 12), vascular dementia, VaD (17), post-stroke demented, PSD (n = 15), and post-stroke non-demented, PSND (n = 23), Alzheimer's disease, AD (n = 14), and mixed AD and vascular dementia, AD_VAD (n = 13) using immunohistochemical techniques. We found differential expression of amyloid and tau across the disease groups, and across hippocampal sub-regions. Among amyloid markers, the pattern of Aβ-42 immunoreactivity was similar to that of total Aβ. Tau immunoreactivity showed highest expression in the AD and mixed AD and vascular dementia, AD_VaD, which was higher than in control, post - stroke and VaD groups (p < 0.05). APOE ε4 allele positivity was associated with higher expression of amyloid and tau pathology in the subiculum and entorhinal cortex of post-stroke cases (p < 0.05). Comparison between PSND and PSD revealed higher total Aβ immunoreactivity in PSND compared to PSD in the CA1, subiculum and entorhinal cortex (p < 0.05) but no differences between PSND and PSD in Aβ-42, Aβ-40, soluble Aβ or tau immunoreactivities (p > 0.05). Correlation of MMSE and CAMCOG scores with AD pathological measures showed lack of correlation with amyloid species although tau immunoreactivity demonstrated correlation with memory scores (p < 0.05). Our findings suggest hippocampal AD pathology does not necessarily differ between demented and non-demented post-stroke subjects. The dissociation of cognitive performance with hippocampal AD pathological burden suggests more dominant roles for non-Alzheimer neurodegenerative and / or other non-neurodegenerative substrates for dementia following stroke.
Collapse
Affiliation(s)
- Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Oyo, Nigeria.,Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louise M Allan
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arthur Oakley
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rajesh N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
124
|
Antonyan A, Schlenzig D, Schilling S, Naumann M, Sharoyan S, Mardanyan S, Demuth HU. Concerted action of dipeptidyl peptidase IV and glutaminyl cyclase results in formation of pyroglutamate-modified amyloid peptides in vitro. Neurochem Int 2017; 113:112-119. [PMID: 29224965 DOI: 10.1016/j.neuint.2017.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022]
Abstract
Compelling evidence suggests a crucial role of amyloid beta peptides (Aβ(1-40/42)) in the etiology of Alzheimer's disease (AD). The N-terminal truncation of Aβ(1-40/42) and their modification, e.g. by glutaminyl cyclase (QC), is expected to enhance the amyloid toxicity. In this work, the MALDI-TOF mass spectrometry application proved N-terminal cleavage of Aβ(1-40/42) by purified dipeptidyl peptidase IV (DPPIV) in vitro observed earlier. The subsequent transformation of resulted Aβ(3-40/42) to pE-Aβ(3-40/42) in QC catalyzed glutamate cyclization was manifested. Hence, consecutive conversion of Aβ(1-40/42) by DPPIV and QC can be assumed as a potential mechanism of formation of non-degrading pyroglutamated pE-Aβ(3-40/42), which might accumulate and contribute to AD progression. The in vitro acceleration of Aβ(1-40) aggregation in the simultaneous presence of DPPIV and QC was shown also.
Collapse
Affiliation(s)
- Alvard Antonyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan 0014, Armenia.
| | - Dagmar Schlenzig
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Marcel Naumann
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Svetlana Sharoyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan 0014, Armenia
| | - Sona Mardanyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan 0014, Armenia
| | - Hans-Ulrich Demuth
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| |
Collapse
|
125
|
Hou S, Gu RX, Wei DQ. Inhibition of β-Amyloid Channels with a Drug Candidate wgx-50 Revealed by Molecular Dynamics Simulations. J Chem Inf Model 2017; 57:2811-2821. [DOI: 10.1021/acs.jcim.7b00452] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuang Hou
- State
Key Laboratory of Microbial Metabolism and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruo-Xu Gu
- Department
of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada
| | - Dong-Qing Wei
- State
Key Laboratory of Microbial Metabolism and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
126
|
Roher AE, Kokjohn TA, Clarke SG, Sierks MR, Maarouf CL, Serrano GE, Sabbagh MS, Beach TG. APP/Aβ structural diversity and Alzheimer's disease pathogenesis. Neurochem Int 2017; 110:1-13. [PMID: 28811267 PMCID: PMC5688956 DOI: 10.1016/j.neuint.2017.08.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/11/2017] [Indexed: 02/01/2023]
Abstract
The amyloid cascade hypothesis of Alzheimer's disease (AD) proposes amyloid- β (Aβ) is a chief pathological element of dementia. AD therapies have targeted monomeric and oligomeric Aβ 1-40 and 1-42 peptides. However, alternative APP proteolytic processing produces a complex roster of Aβ species. In addition, Aβ peptides are subject to extensive posttranslational modification (PTM). We propose that amplified production of some APP/Aβ species, perhaps exacerbated by differential gene expression and reduced peptide degradation, creates a diverse spectrum of modified species which disrupt brain homeostasis and accelerate AD neurodegeneration. We surveyed the literature to catalog Aβ PTM including species with isoAsp at positions 7 and 23 which may phenocopy the Tottori and Iowa Aβ mutations that result in early onset AD. We speculate that accumulation of these alterations induce changes in secondary and tertiary structure of Aβ that favor increased toxicity, and seeding and propagation in sporadic AD. Additionally, amyloid-β peptides with a pyroglutamate modification at position 3 and oxidation of Met35 make up a substantial portion of sporadic AD amyloid deposits. The intrinsic physical properties of these species, including resistance to degradation, an enhanced aggregation rate, increased neurotoxicity, and association with behavioral deficits, suggest their emergence is linked to dementia. The generation of specific 3D-molecular conformations of Aβ impart unique biophysical properties and a capacity to seed the prion-like global transmission of amyloid through the brain. The accumulation of rogue Aβ ultimately contributes to the destruction of vascular walls, neurons and glial cells culminating in dementia. A systematic examination of Aβ PTM and the analysis of the toxicity that they induced may help create essential biomarkers to more precisely stage AD pathology, design countermeasures and gauge the impacts of interventions.
Collapse
Affiliation(s)
- Alex E Roher
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Division of Clinical Education, Midwestern University, Glendale, AZ 85308, USA.
| | - Tyler A Kokjohn
- Department of Microbiology, Midwestern University, Glendale, AZ 85308, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles CA 90095-1569, USA
| | - Michael R Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Chera L Maarouf
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Geidy E Serrano
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Marwan S Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Thomas G Beach
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| |
Collapse
|
127
|
Kakuda N, Miyasaka T, Iwasaki N, Nirasawa T, Wada-Kakuda S, Takahashi-Fujigasaki J, Murayama S, Ihara Y, Ikegawa M. Distinct deposition of amyloid-β species in brains with Alzheimer's disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol Commun 2017; 5:73. [PMID: 29037261 PMCID: PMC5641992 DOI: 10.1186/s40478-017-0477-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/02/2017] [Indexed: 02/08/2023] Open
Abstract
Amyloid β (Aβ) deposition in the brain is an early and invariable feature of Alzheimer's disease (AD). The Aβ peptides are composed of about 40 amino acids and are generated from amyloid precursor proteins (APP), by β- and γ-secretases. The distribution of individual Aβ peptides in the brains of aged people, and those suffering from AD and cerebral amyloid angiopathy (CAA), is not fully characterized. We employed the matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) to illustrate the spatial distribution of a broad range of Aβ species in human autopsied brains. With technical advancements such as formic acid pretreatment of frozen autopsied brain samples, we have: i) demonstrated that Aβ1-42 and Aβ1-43 were selectively deposited in senile plaques while full-length Aβ peptides such as Aβ1-36, 1-37, 1-38, 1-39, 1-40, and Aβ1-41 were deposited in leptomeningeal blood vessels. ii) Visualized distinct depositions of N-terminal truncated Aβ40 and Aβ42, including pyroglutamate modified at Glu-3 (N3pE), only with IMS for the first time. iii) Demonstrated that one single amino acid alteration at the C-terminus between Aβ1-42 and Aβ1-41 results in profound changes in their distribution pattern. In vitro, this can be attributed to the difference in the self-aggregation ability amongst Aβ1-40, Aβ1-41, and Aβ1-42. These observations were further confirmed with immunohistochemistry (IHC), using the newly developed anti-Aβ1-41 antibody. Here, distinct depositions of truncated and/or modified C- and N-terminal fragments of Aβs in AD and CAA brains with MALDI-IMS were visualized in a spacio-temporal specific manner. Specifically, Aβ1-41 was detected both with MALDI-IMS and IHC suggesting that a single amino acid alteration at the C-terminus of Aβ results in drastic distribution changes. These results suggest that MALDI-IMS could be used as a standard approach in combination with clinical, genetic, and pathological observations in understanding the pathology of AD and CAA.
Collapse
|
128
|
BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer's Disease Pathology. Molecules 2017; 22:molecules22101723. [PMID: 29027981 PMCID: PMC6151801 DOI: 10.3390/molecules22101723] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a fatal progressive neurodegenerative disorder characterized by increasing loss in memory, cognition, and function of daily living. Among the many pathologic events observed in the progression of AD, changes in amyloid β peptide (Aβ) metabolism proceed fastest, and precede clinical symptoms. BACE1 (β-secretase 1) catalyzes the initial cleavage of the amyloid precursor protein to generate Aβ. Therefore inhibition of BACE1 activity could block one of the earliest pathologic events in AD. However, therapeutic BACE1 inhibition to block Aβ production may need to be balanced with possible effects that might result from diminished physiologic functions BACE1, in particular processing of substrates involved in neuronal function of the brain and periphery. Potentials for beneficial or consequential effects resulting from pharmacologic inhibition of BACE1 are reviewed in context of ongoing clinical trials testing the effect of BACE1 candidate inhibitor drugs in AD populations.
Collapse
|
129
|
Scheidt HA, Adler J, Zeitschel U, Höfling C, Korn A, Krueger M, Roßner S, Huster D. Pyroglutamate-Modified Amyloid β (11- 40) Fibrils Are More Toxic than Wildtype Fibrils but Structurally Very Similar. Chemistry 2017; 23:15834-15838. [DOI: 10.1002/chem.201703909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Holger A. Scheidt
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| | - Juliane Adler
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain Research; Leipzig University; Liebigstr. 19 04103 Leipzig Germany
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research; Leipzig University; Liebigstr. 19 04103 Leipzig Germany
| | - Alexander Korn
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| | - Martin Krueger
- Institute of Anatomy; Leipzig University; Eilenburger Str. 14-15 04317 Leipzig Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research; Leipzig University; Liebigstr. 19 04103 Leipzig Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| |
Collapse
|
130
|
Association of body mass index-related single nucleotide polymorphisms with psychiatric disease and memory performance in a Japanese population. Acta Neuropsychiatr 2017; 29:299-308. [PMID: 27923415 DOI: 10.1017/neu.2016.66] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Obesity is a risk factor for psychiatric diseases. Recently, a number of single nucleotide polymorphisms (SNPs) have been shown to be related to body mass index (BMI). In this study, we investigated the association of BMI-related SNPs with psychiatric diseases and one of their endophenotypes, memory performance, in a Japanese population. METHODS The subjects were 1624 patients with one of three psychiatric diseases (799 patients with major depressive disorder, 594 with schizophrenia, and 231 with bipolar disorder) and 1189 healthy controls. Memory performance was assessed using the Wechsler Memory Scale - Revised (WMS-R). Genomic DNA was prepared from venous blood and used to genotype 23 BMI-related SNPs using the TaqMan 5'-exonuclease allelic discrimination assay. We then analysed the relationships between the SNPs and psychiatric disease and various subscales of the WMS-R. RESULTS Three SNPs (rs11142387, rs12597579, and rs6548238) showed significant differences in the genotype or allele frequency between patients with any psychiatric diseases and controls. Furthermore, six SNPs (rs11142387, rs12597579, rs2815752, rs2074356, rs4776970, and rs2287019) showed significant differences in at least one subscale of the WMS-R depending on the genotypes of the healthy controls. Interestingly, rs11142387 near the Kruppel-like factor 9 (KLF9) was significantly associated with psychiatric disease and poor memory function. CONCLUSIONS We identified three and six BMI-related SNPs associated with psychiatric disease and memory performance, respectively. In particular, carrying the A allele of rs11142387 near KLF9 was found to be associated with psychiatric disease and poor memory performance, which warrants further investigations.
Collapse
|
131
|
Memantine inhibits β-amyloid aggregation and disassembles preformed β-amyloid aggregates. Biochem Biophys Res Commun 2017; 493:158-163. [PMID: 28917837 DOI: 10.1016/j.bbrc.2017.09.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
Memantine, an uncompetitive glutamatergic N-methyl-d-aspartate (NMDA) receptor antagonist, is widely used as a medication for the treatment of Alzheimer's disease (AD). We previously reported that chronic treatment of AD with memantine reduces the amount of insoluble β-amyloid (Aβ) and soluble Aβ oligomers in animal models of AD. The mechanisms by which memantine reduces Aβ levels in the brain were evaluated by determining the effect of memantine on Aβ aggregation using thioflavin T and transmission electron microscopy. Memantine inhibited the formation of Aβ(1-42) aggregates in a concentration-dependent manner, whereas amantadine, a structurally similar compound, did not affect Aβ aggregation at the same concentrations. Furthermore, memantine inhibited the formation of different types of Aβ aggregates, including Aβs carrying familial AD mutations, and disaggregated preformed Aβ(1-42) fibrils. These results suggest that the inhibition of Aβ aggregation and induction of Aβ disaggregation may be involved in the mechanisms by which memantine reduces Aβ deposition in the brain.
Collapse
|
132
|
Diversity of Amyloid-beta Proteoforms in the Alzheimer's Disease Brain. Sci Rep 2017; 7:9520. [PMID: 28842697 PMCID: PMC5572664 DOI: 10.1038/s41598-017-10422-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022] Open
Abstract
Amyloid-beta (Aβ) plays a key role in the pathogenesis of Alzheimer’s disease (AD), but little is known about the proteoforms present in AD brain. We used high-resolution mass spectrometry to analyze intact Aβ from soluble aggregates and insoluble material in brains of six cases with severe dementia and pathologically confirmed AD. The soluble aggregates are especially relevant because they are believed to be the most toxic form of Aβ. We found a diversity of Aβ peptides, with 26 unique proteoforms including various N- and C-terminal truncations. N- and C-terminal truncations comprised 73% and 30%, respectively, of the total Aβ proteoforms detected. The Aβ proteoforms segregated between the soluble and more insoluble aggregates with N-terminal truncations predominating in the insoluble material and C- terminal truncations segregating into the soluble aggregates. In contrast, canonical Aβ comprised the minority of the identified proteoforms (15.3%) and did not distinguish between the soluble and more insoluble aggregates. The relative abundance of many truncated Aβ proteoforms did not correlate with post-mortem interval, suggesting they are not artefacts. This heterogeneity of Aβ proteoforms deepens our understanding of AD and offers many new avenues for investigation into pathological mechanisms of the disease, with implications for therapeutic development.
Collapse
|
133
|
Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, Hardy J, Vassar R, Winblad B, Saido TC. APP mouse models for Alzheimer's disease preclinical studies. EMBO J 2017; 36:2473-2487. [PMID: 28768718 PMCID: PMC5579350 DOI: 10.15252/embj.201797397] [Citation(s) in RCA: 519] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/09/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first‐generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD. Second‐generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aβ accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD. In this review, we evaluate different APP mouse models of AD, and review recent studies using the second‐generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study.
Collapse
Affiliation(s)
- Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan .,Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan
| | - Kenichi Nagata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan.,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Bart De Strooper
- Dementia Research Institute, University College London, London, UK.,Department for Neurosciences, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - John Hardy
- Reta Lila Research Laboratories and the Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan
| |
Collapse
|
134
|
Piechotta A, Parthier C, Kleinschmidt M, Gnoth K, Pillot T, Lues I, Demuth HU, Schilling S, Rahfeld JU, Stubbs MT. Structural and functional analyses of pyroglutamate-amyloid-β-specific antibodies as a basis for Alzheimer immunotherapy. J Biol Chem 2017; 292:12713-12724. [PMID: 28623233 PMCID: PMC5535044 DOI: 10.1074/jbc.m117.777839] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/07/2017] [Indexed: 12/22/2022] Open
Abstract
Alzheimer disease is associated with deposition of the amyloidogenic peptide Aβ in the brain. Passive immunization using Aβ-specific antibodies has been demonstrated to reduce amyloid deposition both in vitro and in vivo Because N-terminally truncated pyroglutamate (pE)-modified Aβ species (AβpE3) exhibit enhanced aggregation potential and propensity to form toxic oligomers, they represent particularly attractive targets for antibody therapy. Here we present three separate monoclonal antibodies that specifically recognize AβpE3 with affinities of 1-10 nm and inhibit AβpE3 fibril formation in vitro. In vivo application of one of these resulted in improved memory in AβpE3 oligomer-treated mice. Crystal structures of Fab-AβpE3 complexes revealed two distinct binding modes for the peptide. Juxtaposition of pyroglutamate pE3 and the F4 side chain (the "pEF head") confers a pronounced bulky hydrophobic nature to the AβpE3 N terminus that might explain the enhanced aggregation properties of the modified peptide. The deep burial of the pEF head by two of the antibodies explains their high target specificity and low cross-reactivity, making them promising candidates for the development of clinical antibodies.
Collapse
Affiliation(s)
- Anke Piechotta
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Institute of Biotechnology, Martin Luther University, 06108 Halle-Wittenberg, Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Christoph Parthier
- Institute of Biotechnology, Martin Luther University, 06108 Halle-Wittenberg, Germany
| | - Martin Kleinschmidt
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Kathrin Gnoth
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | | | - Inge Lues
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Hans-Ulrich Demuth
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Stephan Schilling
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Jens-Ulrich Rahfeld
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany.
| | - Milton T Stubbs
- Institute of Biotechnology, Martin Luther University, 06108 Halle-Wittenberg, Germany.
| |
Collapse
|
135
|
Li M, Dong Y, Yu X, Li Y, Zou Y, Zheng Y, He Z, Liu Z, Quan J, Bu X, Wu H. Synthesis and Evaluation of Diphenyl Conjugated Imidazole Derivatives as Potential Glutaminyl Cyclase Inhibitors for Treatment of Alzheimer's Disease. J Med Chem 2017; 60:6664-6677. [PMID: 28700245 DOI: 10.1021/acs.jmedchem.7b00648] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High expression of glutaminyl cyclase (QC) contributes to the initiation of Alzheimer's disease (AD) by catalyzing the generation of neurotoxic pyroglutamate (pE)-modified β-amyloid (Aβ) peptides. Preventing the generation of pE-Aβs by QC inhibition has been suggested as a novel approach to a disease-modifying therapy for AD. In this work, a series of diphenyl conjugated imidazole derivatives (DPCIs) was rationally designed and synthesized. Analogues with this scaffold exhibited potent inhibitory activity against human QC (hQC) and good in vitro blood-brain barrier (BBB) permeability. Further assessments corroborated that the selected hQC inhibitor 28 inhibits the activity of hQC, dramatically reduces the generation of pE-Aβs in cultured cells and in vivo, and improves the behavior of AD mice.
Collapse
Affiliation(s)
- Manman Li
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yao Dong
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Xi Yu
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yue Li
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Yongdong Zou
- College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yizhi Zheng
- College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Zhendan He
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Zhigang Liu
- School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Junmin Quan
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School , Shenzhen 518055, China
| | - Xianzhang Bu
- School of Pharmaceutical Science, Sun Yat-sen University , Guangzhou, 510006, China
| | - Haiqiang Wu
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
136
|
Hoffmann T, Meyer A, Heiser U, Kurat S, Böhme L, Kleinschmidt M, Bühring KU, Hutter-Paier B, Farcher M, Demuth HU, Lues I, Schilling S. Glutaminyl Cyclase Inhibitor PQ912 Improves Cognition in Mouse Models of Alzheimer's Disease-Studies on Relation to Effective Target Occupancy. J Pharmacol Exp Ther 2017; 362:119-130. [PMID: 28446518 DOI: 10.1124/jpet.117.240614] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Numerous studies suggest that the majority of amyloid-β (Aβ) peptides deposited in Alzheimer's disease (AD) are truncated and post-translationally modified at the N terminus. Among these modified species, pyroglutamyl-Aβ (pE-Aβ, including N3pE-Aβ40/42 and N11pE-Aβ40/42) has been identified as particularly neurotoxic. The N-terminal modification renders the peptide hydrophobic, accelerates formation of oligomers, and reduces degradation by peptidases, leading ultimately to the accumulation of the peptide and progression of AD. It has been shown that the formation of pyroglutamyl residues is catalyzed by glutaminyl cyclase (QC). Here, we present data about the pharmacological in vitro and in vivo efficacy of the QC inhibitor (S)-1-(1H-benzo[d]imidazol-5-yl)-5-(4-propoxyphenyl)imidazolidin-2-one (PQ912), the first-in-class compound that is in clinical development. PQ912 inhibits human, rat, and mouse QC activity, with Ki values ranging between 20 and 65 nM. Chronic oral treatment of hAPPSLxhQC double-transgenic mice with approximately 200 mg/kg/day via chow shows a significant reduction of pE-Aβ levels and concomitant improvement of spatial learning in a Morris water maze test paradigm. This dose results in a brain and cerebrospinal fluid concentration of PQ912 which relates to a QC target occupancy of about 60%. Thus, we conclude that >50% inhibition of QC activity in the brain leads to robust treatment effects. Secondary pharmacology experiments in mice indicate a fairly large potency difference for Aβ cyclization compared with cyclization of physiologic substrates, suggesting a robust therapeutic window in humans. This information constitutes an important translational guidance for predicting the therapeutic dose range in clinical studies with PQ912.
Collapse
Affiliation(s)
- Torsten Hoffmann
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Antje Meyer
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Ulrich Heiser
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Stephan Kurat
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Livia Böhme
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Martin Kleinschmidt
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Karl-Ulrich Bühring
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Birgit Hutter-Paier
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Martina Farcher
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Hans-Ulrich Demuth
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Inge Lues
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Stephan Schilling
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| |
Collapse
|
137
|
Dammers C, Schwarten M, Buell AK, Willbold D. Pyroglutamate-modified Aβ(3-42) affects aggregation kinetics of Aβ(1-42) by accelerating primary and secondary pathways. Chem Sci 2017; 8:4996-5004. [PMID: 28970886 PMCID: PMC5612032 DOI: 10.1039/c6sc04797a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
The aggregation into amyloid fibrils of amyloid-β (Aβ) peptides is a hallmark of Alzheimer's disease. A variety of Aβ peptides have been discovered in vivo, with pyroglutamate-modified Aβ (pEAβ) forming a significant proportion. pEAβ is mainly localized in the core of plaques, suggesting a possible role in inducing and facilitating Aβ oligomerization and accumulation. Despite this potential importance, the aggregation mechanism of pEAβ and its influence on the aggregation kinetics of other Aβ variants have not yet been elucidated. Here we show that pEAβ(3-42) forms fibrils much faster than Aβ(1-42) and the critical concentration above which aggregation was observed was drastically decreased by one order of magnitude compared to Aβ(1-42). We elucidated the co-aggregation mechanism of Aβ(1-42) with pEAβ(3-42). At concentrations at which both species do not aggregate as homofibrils, mixtures of pEAβ(3-42) and Aβ(1-42) aggregate, suggesting the formation of mixed nuclei. We show that the presence of pEAβ(3-42) monomers increases the rate of primary nucleation of Aβ(1-42) and that fibrils of pEAβ(3-42) serve as highly efficient templates for elongation and catalytic surfaces for secondary nucleation of Aβ(1-42). On the other hand, the addition of Aβ(1-42) monomers drastically decelerates the primary and secondary nucleation of pEAβ(3-42) while not altering the pEAβ(3-42) elongation rate. In addition, even moderate concentrations of fibrillar Aβ(1-42) prevent pEAβ(3-42) aggregation, likely due to non-reactive binding of pEAβ(3-42) monomers to the surfaces of Aβ(1-42) fibrils. Thus, pEAβ(3-42) accelerates aggregation of Aβ(1-42) by affecting all individual reaction steps of the aggregation process while Aβ(1-42) dramatically slows down the primary and secondary nucleation of pEAβ(3-42).
Collapse
Affiliation(s)
- C Dammers
- Institute of Complex Systems (ICS-6) Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany .
| | - M Schwarten
- Institute of Complex Systems (ICS-6) Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany .
| | - A K Buell
- Institut für Physikalische Biologie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany
| | - D Willbold
- Institute of Complex Systems (ICS-6) Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany .
- Institut für Physikalische Biologie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany
| |
Collapse
|
138
|
Kikuchi K, Kidana K, Tatebe T, Tomita T. Dysregulated Metabolism of the Amyloid‐β Protein and Therapeutic Approaches in Alzheimer Disease. J Cell Biochem 2017; 118:4183-4190. [DOI: 10.1002/jcb.26129] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Kazunori Kikuchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Kiwami Kidana
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Takuya Tatebe
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
139
|
Ono M, Sahara N, Kumata K, Ji B, Ni R, Koga S, Dickson DW, Trojanowski JQ, Lee VMY, Yoshida M, Hozumi I, Yoshiyama Y, van Swieten JC, Nordberg A, Suhara T, Zhang MR, Higuchi M. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain 2017; 140:764-780. [PMID: 28087578 DOI: 10.1093/brain/aww339] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/16/2016] [Indexed: 11/12/2022] Open
Abstract
Diverse neurodegenerative disorders are characterized by deposition of tau fibrils composed of conformers (i.e. strains) unique to each illness. The development of tau imaging agents has enabled visualization of tau lesions in tauopathy patients, but the modes of their binding to different tau strains remain elusive. Here we compared binding of tau positron emission tomography ligands, PBB3 and AV-1451, by fluorescence, autoradiography and homogenate binding assays with homologous and heterologous blockades using tauopathy brain samples. Fluorescence microscopy demonstrated intense labelling of non-ghost and ghost tangles with PBB3 and AV-1451, while dystrophic neurites were more clearly detected by PBB3 in brains of Alzheimer's disease and diffuse neurofibrillary tangles with calcification, characterized by accumulation of all six tau isoforms. Correspondingly, partially distinct distributions of autoradiographic labelling of Alzheimer's disease slices with 11C-PBB3 and 18F-AV-1451 were noted. Neuronal and glial tau lesions comprised of 4-repeat isoforms in brains of progressive supranuclear palsy, corticobasal degeneration and familial tauopathy due to N279K tau mutation and 3-repeat isoforms in brains of Pick's disease and familial tauopathy due to G272V tau mutation were sensitively detected by PBB3 fluorescence in contrast to very weak AV-1451 signals. This was in line with moderate 11C-PBB3 versus faint 18F-AV-1451 autoradiographic labelling of these tissues. Radioligand binding to brain homogenates revealed multiple binding components with differential affinities for 11C-PBB3 and 18F-AV-1451, and higher availability of binding sites on progressive supranuclear palsy tau deposits for 11C-PBB3 than 18F-AV-1451. Our data indicate distinct selectivity of PBB3 compared to AV-1451 for diverse tau fibril strains. This highlights the more robust ability of PBB3 to capture wide-range tau pathologies.
Collapse
Affiliation(s)
- Maiko Ono
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.,Department of Molecular Neuroimaging, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Naruhiko Sahara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Katsushi Kumata
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Bin Ji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ruiqing Ni
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm 14157, Sweden
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yasumasa Yoshiyama
- Department of Neurology, Chiba-East National Hospital, Chiba 260-8712, Japan
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm 14157, Sweden
| | - Tetsuya Suhara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
140
|
Dammers C, Reiss K, Gremer L, Lecher J, Ziehm T, Stoldt M, Schwarten M, Willbold D. Pyroglutamate-Modified Amyloid-β(3-42) Shows α-Helical Intermediates before Amyloid Formation. Biophys J 2017; 112:1621-1633. [PMID: 28445753 PMCID: PMC5406372 DOI: 10.1016/j.bpj.2017.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/02/2017] [Accepted: 03/08/2017] [Indexed: 01/15/2023] Open
Abstract
Pyroglutamate-modified amyloid-β (pEAβ) has been described as a relevant Aβ species in Alzheimer's-disease-affected brains, with pEAβ (3-42) as a dominant isoform. Aβ (1-40) and Aβ (1-42) have been well characterized under various solution conditions, including aqueous solutions containing trifluoroethanol (TFE). To characterize structural properties of pEAβ (3-42) possibly underlying its drastically increased aggregation propensity compared to Aβ (1-42), we started our studies in various TFE-water mixtures and found striking differences between the two Aβ species. Soluble pEAβ (3-42) has an increased tendency to form β-sheet-rich structures compared to Aβ (1-42), as indicated by circular dichroism spectroscopy data. Kinetic assays monitored by thioflavin-T show drastically accelerated aggregation leading to large fibrils visualized by electron microscopy of pEAβ (3-42) in contrast to Aβ (1-42). NMR spectroscopy was performed for backbone and side-chain chemical-shift assignments of monomeric pEAβ (3-42) in 40% TFE solution. Although the difference between pEAβ (3-42) and Aβ (1-42) is purely N-terminal, it has a significant impact on the chemical environment of >20% of the total amino acid residues, as revealed by their NMR chemical-shift differences. Freshly dissolved pEAβ (3-42) contains two α-helical regions connected by a flexible linker, whereas the N-terminus remains unstructured. We found that these α-helices act as a transient intermediate to β-sheet and fibril formation of pEAβ (3-42).
Collapse
Affiliation(s)
- Christina Dammers
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Kerstin Reiss
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Lothar Gremer
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Justin Lecher
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tamar Ziehm
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Matthias Stoldt
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Melanie Schwarten
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
141
|
Grochowska KM, Yuanxiang P, Bär J, Raman R, Brugal G, Sahu G, Schweizer M, Bikbaev A, Schilling S, Demuth HU, Kreutz MR. Posttranslational modification impact on the mechanism by which amyloid-β induces synaptic dysfunction. EMBO Rep 2017; 18:962-981. [PMID: 28420656 DOI: 10.15252/embr.201643519] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 11/09/2022] Open
Abstract
Oligomeric amyloid-β (Aβ) 1-42 disrupts synaptic function at an early stage of Alzheimer's disease (AD). Multiple posttranslational modifications of Aβ have been identified, among which N-terminally truncated forms are the most abundant. It is not clear, however, whether modified species can induce synaptic dysfunction on their own and how altered biochemical properties can contribute to the synaptotoxic mechanisms. Here, we show that a prominent isoform, pyroglutamated Aβ3(pE)-42, induces synaptic dysfunction to a similar extent like Aβ1-42 but by clearly different mechanisms. In contrast to Aβ1-42, Aβ3(pE)-42 does not directly associate with synaptic membranes or the prion protein but is instead taken up by astrocytes and potently induces glial release of the proinflammatory cytokine TNFα. Moreover, Aβ3(pE)-42-induced synaptic dysfunction is not related to NMDAR signalling and Aβ3(pE)-42-induced impairment of synaptic plasticity cannot be rescued by D1-agonists. Collectively, the data point to a scenario where neuroinflammatory processes together with direct synaptotoxic effects are caused by posttranslational modification of soluble oligomeric Aβ and contribute synergistically to the onset of synaptic dysfunction in AD.
Collapse
Affiliation(s)
| | - PingAn Yuanxiang
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia Bär
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Emmy-Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rajeev Raman
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Gemma Brugal
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Giriraj Sahu
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michaela Schweizer
- Morphology Unit, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arthur Bikbaev
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Stephan Schilling
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Halle, Germany
| | - Hans-Ulrich Demuth
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Halle, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany .,Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| |
Collapse
|
142
|
Hoang VH, Tran PT, Cui M, Ngo VTH, Ann J, Park J, Lee J, Choi K, Cho H, Kim H, Ha HJ, Hong HS, Choi S, Kim YH, Lee J. Discovery of Potent Human Glutaminyl Cyclase Inhibitors as Anti-Alzheimer’s Agents Based on Rational Design. J Med Chem 2017; 60:2573-2590. [DOI: 10.1021/acs.jmedchem.7b00098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Van-Hai Hoang
- Laboratory
of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences,
College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Phuong-Thao Tran
- Laboratory
of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences,
College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department
of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Minghua Cui
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Van T. H. Ngo
- Laboratory
of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences,
College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyae Ann
- Laboratory
of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences,
College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongmi Park
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jiyoun Lee
- Department
of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea
| | - Kwanghyun Choi
- Medifron DBT, Sandanro 349, Danwon-Gu, Ansan-City, Gyeonggi-Do 15426, Republic of Korea
| | - Hanyang Cho
- Medifron DBT, Sandanro 349, Danwon-Gu, Ansan-City, Gyeonggi-Do 15426, Republic of Korea
| | - Hee Kim
- Medifron DBT, Sandanro 349, Danwon-Gu, Ansan-City, Gyeonggi-Do 15426, Republic of Korea
| | - Hee-Jin Ha
- Medifron DBT, Sandanro 349, Danwon-Gu, Ansan-City, Gyeonggi-Do 15426, Republic of Korea
| | - Hyun-Seok Hong
- Medifron DBT, Sandanro 349, Danwon-Gu, Ansan-City, Gyeonggi-Do 15426, Republic of Korea
| | - Sun Choi
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young-Ho Kim
- Medifron DBT, Sandanro 349, Danwon-Gu, Ansan-City, Gyeonggi-Do 15426, Republic of Korea
| | - Jeewoo Lee
- Laboratory
of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences,
College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
143
|
Worsening of memory deficit induced by energy-dense diet in a rat model of early-Alzheimer's disease is associated to neurotoxic Aβ species and independent of neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2017; 1863:731-743. [DOI: 10.1016/j.bbadis.2016.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 01/20/2023]
|
144
|
Urbanc B. Flexible N‐Termini of Amyloid β‐Protein Oligomers: A Link between Structure and Activity? Isr J Chem 2017. [DOI: 10.1002/ijch.201600097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brigita Urbanc
- Department of Physics Drexel University Philadelphia, PA 19104 USA
- Faculty of Mathematics and Physics Jadranska ulica 19 1000 Ljubljana Slovenia
| |
Collapse
|
145
|
Bonet-Costa V, Pomatto LCD, Davies KJA. The Proteasome and Oxidative Stress in Alzheimer's Disease. Antioxid Redox Signal 2016; 25:886-901. [PMID: 27392670 PMCID: PMC5124752 DOI: 10.1089/ars.2016.6802] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Alzheimer's disease is a neurodegenerative disorder that is projected to exceed more than 100 million cases worldwide by 2050. Aging is considered the primary risk factor for some 90% of Alzheimer's cases but a significant 10% of patients suffer from aggressive, early-onset forms of the disease. There is currently no effective Alzheimer's treatment and this, coupled with a growing aging population, highlights the necessity to understand the mechanism(s) of disease initiation and propagation. A major hallmark of Alzheimer's disease pathology is the accumulation of amyloid-β (Aβ) aggregates (an early marker of Alzheimer's disease), and neurofibrillary tangles, comprising the hyper-phosphorylated microtubule-associated protein Tau. Recent Advances: Protein oxidation is frequently invoked as a potential factor in the progression of Alzheimer's disease; however, whether it is a cause or a consequence of the pathology is still being debated. The Proteasome complex is a major regulator of intracellular protein quality control and an essential proteolytic enzyme for the processing of both Aβ and Tau. Recent studies have indicated that both protein oxidation and excessive phosphorylation may limit Proteasomal processing of Aβ and Tau in Alzheimer's disease. CRITICAL ISSUES Thus, the Proteasome may be a key factor in understanding the development of Alzheimer's disease pathology; however, its significance is still very much under investigation. FUTURE DIRECTIONS Discovering how the proteasome is affected, regulated, or dysregulated in Alzheimer's disease could be a valuable tool in the efforts to understand and, ultimately, eradicate the disease. Antioxid. Redox Signal. 25, 886-901.
Collapse
Affiliation(s)
- Vicent Bonet-Costa
- Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, The Division of Molecular and Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California , Los Angeles, California
| | - Laura Corrales-Diaz Pomatto
- Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, The Division of Molecular and Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California , Los Angeles, California
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, The Division of Molecular and Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California , Los Angeles, California
| |
Collapse
|
146
|
Vingtdeux V, Zhao H, Chandakkar P, Acker CM, Davies P, Marambaud P. A modification-specific peptide-based immunization approach using CRM197 carrier protein: Development of a selective vaccine against pyroglutamate Aβ peptides. Mol Med 2016; 22:841-849. [PMID: 27900387 DOI: 10.2119/molmed.2016.00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 01/26/2023] Open
Abstract
Strategies aimed at reducing cerebral accumulation of the amyloid-β (Aβ) peptides have therapeutic potential in Alzheimer's disease (AD). Aβ immunization has proven to be effective at promoting Aβ clearance in animal models but adverse effects have hampered its clinical evaluation. The first anti-Aβ immunization clinical trial, which assessed a full-length Aβ1-42 vaccine, increased the risk of encephalitis most likely because of autoimmune pro-inflammatory T helper 1 (Th1) response against all forms of Aβ. Immunization against less abundant but potentially more pathologically relevant Aβ products, such as N-terminally-truncated pyroglutamate-3 Aβ (AβpE3), could provide efficacy and improve tolerability in Aβ immunotherapy. Here, we describe a selective vaccine against AβpE3, which uses the diphtheria toxin mutant CRM197 as carrier protein for epitope presentation. CRM197 is currently used in licensed vaccines and has demonstrated excellent immunogenicity and safety in humans. In mice, our AβpE3:CRM197 vaccine triggered the production of specific anti-AβpE3 antibodies that did not cross-react with Aβ1-42, non-cyclized AβE3, or N-terminally-truncated pyroglutamate-11 Aβ (AβpE11). AβpE3:CRM197 antiserum strongly labeled AβpE3 in insoluble protein extracts and decorated cortical amyloid plaques in human AD brains. Anti-AβpE3 antibodies were almost exclusively of the IgG1 isotype, suggesting an anti-inflammatory Th2 response bias to the AβpE3:CRM197 vaccine. To the best of our knowledge, this study shows for the first time that CRM197 has potential as a safe and suitable vaccine carrier for active and selective immunization against specific protein sequence modifications or conformations, such as AβpE3.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- The Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA
| | - Haitian Zhao
- The Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA
| | - Pallavi Chandakkar
- The Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA
| | - Christopher M Acker
- The Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA
| | - Peter Davies
- The Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA
| | - Philippe Marambaud
- The Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA
| |
Collapse
|
147
|
Sofola-Adesakin O, Khericha M, Snoeren I, Tsuda L, Partridge L. pGluAβ increases accumulation of Aβ in vivo and exacerbates its toxicity. Acta Neuropathol Commun 2016; 4:109. [PMID: 27717375 PMCID: PMC5055666 DOI: 10.1186/s40478-016-0380-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
Several species of β-amyloid peptides (Aβ) exist as a result of differential cleavage from amyloid precursor protein (APP) to yield various C-terminal Aβ peptides. Several N-terminal modified Aβ peptides have also been identified in Alzheimer’s disease (AD) brains, the most common of which is pyroglutamate-modified Aβ (AβpE3-42). AβpE3-42 peptide has an increased propensity to aggregate, appears to accumulate in the brain before the appearance of clinical symptoms of AD, and precedes Aβ1-42 deposition. Moreover, in vitro studies have shown that AβpE3-42 can act as a seed for full length Aβ1-42. In this study, we characterized the Drosophila model of AβpE3-42 toxicity by expressing the peptide in specific sets of neurons using the GAL4-UAS system, and measuring different phenotypic outcomes. We found that AβpE3-42 peptide had an increased propensity to aggregate. Expression of AβpE3-42 in the neurons of adult flies led to behavioural dysfunction and shortened lifespan. Expression of AβpE3-42 constitutively in the eyes led to disorganised ommatidia, and activation of the c-Jun N-terminal kinase (JNK) signaling pathway. The eye disruption was almost completely rescued by co-expressing a candidate Aβ degrading enzyme, neprilysin2. Furthermore, we found that neprilysin2 was capable of degrading AβpE3-42. Also, we tested the seeding hypothesis for AβpE3-42 in vivo, and measured its effect on Aβ1-42 levels. We found that Aβ1-42 levels were significantly increased when Aβ1-42 and AβpE3-42 peptides were co-expressed. Furthermore, we found that AβpE3-42 enhanced Aβ1-42 toxicity in vivo. Our findings implicate AβpE3-42 as an important source of toxicity in AD, and suggest that its specific degradation could be therapeutic.
Collapse
|
148
|
Galante D, Ruggeri FS, Dietler G, Pellistri F, Gatta E, Corsaro A, Florio T, Perico A, D'Arrigo C. A critical concentration of N-terminal pyroglutamylated amyloid beta drives the misfolding of Ab1-42 into more toxic aggregates. Int J Biochem Cell Biol 2016; 79:261-270. [PMID: 27592450 DOI: 10.1016/j.biocel.2016.08.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 01/26/2023]
Abstract
A wide consensus based on robust experimental evidence indicates pyroglutamylated amyloid-β isoform (AβpE3-42) as one of the most neurotoxic peptides involved in the onset of Alzheimer's disease. Furthermore, AβpE3-42 co-oligomerized with excess of Aβ1-42, produces oligomers and aggregates that are structurally distinct and far more cytotoxic than those made from Aβ1-42 alone. Here, we investigate quantitatively the influence of AβpE3-42 on biophysical properties and biological activity of Aβ1-42. We tested different ratios of AβpE3-42/Aβ1-42 mixtures finding a correlation between the biological activity and the structural conformation and morphology of the analyzed mixtures. We find that a mixture containing 5% AβpE3-42, induces the highest disruption of intracellular calcium homeostasis and the highest neuronal toxicity. These data correlate to an high content of relaxed antiparallel β-sheet structure and the coexistence of a population of big spheroidal aggregates together with short fibrils. Our experiments provide also evidence that AβpE3-42 causes template-induced misfolding of Aβ1-42 at ratios below 33%. This means that there exists a critical concentration required to have seeding on Aβ1-42 aggregation, above this threshold, the seed effect is not possible anymore and AβpE3-42 controls the total aggregation kinetics.
Collapse
Affiliation(s)
- Denise Galante
- Institute for Macromolecular Studies, National Research Council, 16149 Genova, Italy; Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| | - Francesco Simone Ruggeri
- Ecole Polytechnique Federale de Lausanne (EPLF), 1015 Lausanne, Switzerland; Department of Chemistry, University of Cambridge, CB21EW, United Kingdom
| | - Giovanni Dietler
- Ecole Polytechnique Federale de Lausanne (EPLF), 1015 Lausanne, Switzerland
| | | | - Elena Gatta
- Department of Physics, University of Genova, 16100 Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| | - Angelo Perico
- Institute for Macromolecular Studies, National Research Council, 16149 Genova, Italy
| | - Cristina D'Arrigo
- Institute for Macromolecular Studies, National Research Council, 16149 Genova, Italy.
| |
Collapse
|
149
|
Goldblatt G, Matos JO, Gornto J, Tatulian SA. Isotope-edited FTIR reveals distinct aggregation and structural behaviors of unmodified and pyroglutamylated amyloid β peptides. Phys Chem Chem Phys 2016. [PMID: 26214017 DOI: 10.1039/c5cp03343h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid β peptide (Aβ) is causatively associated with Alzheimer's disease (AD), and N-terminally truncated and pyroglutamylated Aβ peptides (AβpE) exert hypertoxic effect by an unknown mechanism. Recent evidence has identified the prefibrillar oligomers of Aβ, not the fibrils, as the prevalent cytotoxic species. Structural characterization of Aβ and AβpE oligomers is therefore important for better understanding of their toxic effect. Here we have used isotope-edited Fourier transform infrared (FTIR) spectroscopy to identify the conformational changes in Aβ(1-42) and AβpE(3-42) upon aggregation, individually and in 1 : 1 molar combination. During the first two hours of exposure to aqueous buffer, the peptides undergo transition from mostly α-helical to mostly β-sheet structure. Data on peptides (13)C,(15)N-labeled at K(16)L(17)V(18) or V(36)G(37)G(38)V(39) allowed construction of structural models for the monomer and early oligomers. The peptide monomer comprises a β-hairpin that involves residues upstream of the K(16)L(17)V(18) sequence and an N-terminal α-helix. The oligomers form by non-H-bonding interactions between the β-strands of neighboring β-hairpins, in lateral or staggered manner, with the strands running parallel or antiparallel. Relative α-helical and β-sheet propensities of Aβ(1-42) and AβpE(3-42) depend on the ionic strength of the buffer, emphasizing the importance of ionic interactions in Aβ peptide structure and aggregation. It is inferred that N-terminal modification of AβpE(3-42) affects the helix stability and thereby modulates β-sheet oligomer formation. The data thus provide new insight into the molecular mechanism of Aβ oligomerization by emphasizing the role of the N-terminal transient α-helical structure and by identifying structural constraints for molecular organization of the oligomers.
Collapse
Affiliation(s)
- Greg Goldblatt
- Biomedical Sciences Graduate Program, University of Central Florida, Orlando, FL, USA
| | - Jason O Matos
- Biotechnology Graduate Program, University of Central Florida, Orlando, FL, USA
| | - Jeremy Gornto
- Undergraduate student, University of Central Florida, Orlando, FL, USA
| | - Suren A Tatulian
- Department of Physics, Physical Sciences Room 456, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, USA.
| |
Collapse
|
150
|
Old Proteins in Man: A Field in its Infancy. Trends Biochem Sci 2016; 41:654-664. [PMID: 27426990 DOI: 10.1016/j.tibs.2016.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
Abstract
It has only recently been appreciated that the human body contains many long-lived proteins (LLPs). Their gradual degradation over time contributes to human aging and probably also to a range of age-related disorders. Indeed, the role of progressive damage of proteins in aging may be indicated by the fact that many neurological diseases do not appear until after middle age. A major factor responsible for the deterioration of old proteins is the spontaneous breakdown of susceptible amino acid residues resulting in racemization, truncation, deamidation, and crosslinking. When proteins decompose in this way, their structures and functions may be altered and novel epitopes can be formed that can induce an autoimmune response.
Collapse
|