101
|
Kim MC, Hong MH, Lee BH, Choi HJ, Ko YM, Lee YK. Bone Tissue Engineering by Using Calcium Phosphate Glass Scaffolds and the Avidin–Biotin Binding System. Ann Biomed Eng 2015; 43:3004-14. [DOI: 10.1007/s10439-015-1347-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
102
|
Sin MC, Sun YM, Yao CL, Chou CJ, Tseng HW, Zheng J, Chang Y. PEGylated Poly(3-hydroxybutyrate) Scaffold for Hydration-Driven Cell Infiltration, Neo-Tissue Ingrowth, and Osteogenic Potential. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1030657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
103
|
Baudequin T, Bedoui F, Dufresne M, Paullier P, Legallais C. Towards the Development and Characterization of an Easy Handling Sheet-Like Biohybrid Bone Substitute. Tissue Eng Part A 2015; 21:1895-905. [DOI: 10.1089/ten.tea.2014.0580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Timothée Baudequin
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7338 Laboratoire de Biomécanique et Bioingénierie, Compiègne, France
| | - Fahmi Bedoui
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7337 Laboratoire de Mécanique Roberval, Compiègne, France
| | - Murielle Dufresne
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7338 Laboratoire de Biomécanique et Bioingénierie, Compiègne, France
| | - Patrick Paullier
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7338 Laboratoire de Biomécanique et Bioingénierie, Compiègne, France
| | - Cécile Legallais
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7338 Laboratoire de Biomécanique et Bioingénierie, Compiègne, France
| |
Collapse
|
104
|
Watanabe A, Kumagai M, Mishima T, Ito J, Otoki Y, Harada T, Kato T, Yoshida M, Suzuki M, Yoshida I, Fujita K, Watai M, Nakagawa K, Miyazawa T. Toddaculin, Isolated from of Toddalia asiatica (L.) Lam., Inhibited Osteoclastogenesis in RAW 264 Cells and Enhanced Osteoblastogenesis in MC3T3-E1 Cells. PLoS One 2015; 10:e0127158. [PMID: 25993011 PMCID: PMC4436367 DOI: 10.1371/journal.pone.0127158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/12/2015] [Indexed: 11/19/2022] Open
Abstract
Osteoporosis with bone loss is widely recognized as a major health problem. Bone homeostasis is maintained by balancing bone formation and bone resorption. The imbalance caused by increased bone resorption over bone formation can lead to various bone-related diseases such as osteoporosis and rheumatoid arthritis. Osteoclasts are the principal cells responsible for bone resorption and the main targets of anti-resorptive therapies. However, excessive inhibition of osteoclast differentiation may lead to inhibition of osteoblast differentiation. Therefore, it is important to screen for new compounds capable of inhibiting bone resorption and enhancing bone formation. Toddalia asiatica (L.) Lam. has been utilized traditionally for medicinal purposes such as the treatment of rheumatism. Currently, the extract is considered to be a good source of pharmacological agents for the treatment of bone-related diseases, but the active compounds have yet to be identified. We investigated whether toddaculin, derived from Toddalia asiatica (L.) Lam., affects both processes by inhibiting bone resorption and enhancing bone formation. Towards this end, we used pre-osteoclastic RAW 264 cells and pre-osteoblastic MC3T3-E1 cells. We found that toddaculin not only inhibited the differentiation of osteoclasts via activation of the NF-κB, ERK 1/2, and p38 MAPK signaling pathways, but it also induced differentiation and mineralization of osteoblasts by regulating differentiation factors. Thus, toddaculin might be beneficial for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Akio Watanabe
- Food Function Research Team, Saito Laboratory, Japan Food Research Laboratories, Ibaraki, Osaka, Japan
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| | - Momochika Kumagai
- Food Function Research Team, Saito Laboratory, Japan Food Research Laboratories, Ibaraki, Osaka, Japan
| | - Takashi Mishima
- Food Function Research Team, Saito Laboratory, Japan Food Research Laboratories, Ibaraki, Osaka, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teppei Harada
- Food Function Research Team, Saito Laboratory, Japan Food Research Laboratories, Ibaraki, Osaka, Japan
| | - Tsuyoshi Kato
- Section of Applied Testing, Tama Laboratory, Japan Food Research Laboratories, Tama, Tokyo, Japan
| | - Mikihiko Yoshida
- Section of Nutraceutical Analysis, Saito Laboratory, Japan Food Research Laboratories, Ibaraki, Osaka, Japan
| | - Misora Suzuki
- Section of Biological Safety Research, Tama Laboratory, Japan Food Research Laboratories, Tama, Tokyo, Japan
| | - Izumi Yoshida
- Food Function Research Team, Saito Laboratory, Japan Food Research Laboratories, Ibaraki, Osaka, Japan
| | - Kazuhiro Fujita
- Food Function Research Team, Saito Laboratory, Japan Food Research Laboratories, Ibaraki, Osaka, Japan
| | - Masatoshi Watai
- Food Function Research Team, Saito Laboratory, Japan Food Research Laboratories, Ibaraki, Osaka, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
105
|
Pugliese G, Iacobini C, Ricci C, Blasetti Fantauzzi C, Menini S. Galectin-3 in diabetic patients. Clin Chem Lab Med 2015; 52:1413-23. [PMID: 24940712 DOI: 10.1515/cclm-2014-0187] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/26/2014] [Indexed: 01/29/2023]
Abstract
Galectin-3 is a versatile molecule which exerts several and sometimes opposite functions in various pathophysiological processes. Recently, galectin-3 has gained attention as a powerful predictor of heart failure and mortality, thus becoming a useful prognostic marker in clinical practice. Moreover, though not specifically investigated in diabetic cohorts, plasma levels of galectin-3 correlated with the prevalence of diabetes and related metabolic conditions, thus suggesting that pharmacological blockade of this lectin might be successful for treating heart failure especially in subjects suffering from these disorders. Indeed, galectin-3 is considered not only as a marker of heart failure, but also as a mediator of the disease, due to its pro-fibrotic action, though evidence comes mainly from studies in galectin-3 deficient mice. However, these studies have provided contrasting results, with either attenuation or acceleration of organ fibrosis and inflammation, depending on the experimental setting and particularly on the levels of advanced glycation endproducts (AGEs)/advanced lipoxidation endproducts (ALEs), of which galectin-3 is a scavenging receptor. In fact, under conditions of increased AGE/ALE levels, galectin-3 ablation was associated with tissue-specific outcomes, reflecting the AGE/ALE-receptor function of this lectin. Conversely, in experimental models of acute inflammation and fibrosis, galectin-3 deficiency resulted in attenuation of tissue injury. There is a need for prospective studies in diabetic patients specifically investigating the relation of galectin-3 levels with complications and for further animal studies in order to establish the effective role of this lectin in organ damage before considering its pharmacological blockade in the clinical setting.
Collapse
|
106
|
Arrayed three-dimensional structures designed to induce and maintain a cell pattern by a topographical effect on cell behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:256-261. [DOI: 10.1016/j.msec.2015.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/21/2014] [Accepted: 01/06/2015] [Indexed: 11/17/2022]
|
107
|
Aydin A, Halici Z, Albayrak A, Polat B, Karakus E, Yildirim OS, Bayir Y, Cadirci E, Ayan AK, Aksakal AM. Treatment with Carnitine Enhances Bone Fracture Healing under Osteoporotic and/or Inflammatory Conditions. Basic Clin Pharmacol Toxicol 2015; 117:173-9. [PMID: 25625309 DOI: 10.1111/bcpt.12384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/12/2015] [Indexed: 01/20/2023]
Abstract
The aim of this study was to examine the effects of carnitine on bone healing in ovariectomy (OVX) and inflammation (INF)-induced osteoporotic rats. The rats were randomly divided into nine groups (n = 8 animals per group): sham-operated (Group 1: SHAM); sham + magnesium silicate (Mg-silicate) (Group 2: SHAM + INF); ovariectomy (Group 3: OVX); ovariectomy + femoral fracture (Group 4: OVX + FRC); ovariectomy + femoral fracture + Mg-silicate (Group 5: OVX + FRC + INF); ovariectomy + femoral fracture + carnitine 50 mg/kg (Group 6: OVX + FRC + CAR50); ovariectomy + femoral fracture + carnitine 100 mg/kg (Group 7: OVX + FRC + CAR100); ovariectomy + femoral fracture + Mg-silicate + carnitine 50 mg/kg (Group 8: OVX + FRC + INF + CAR50); and ovariectomy + femoral fracture + Mg-silicate + carnitine 100 mg/kg (Group 9: OVX + FRC + INF + CAR100). Eight weeks after OVX, which allowed for osteoporosis to develop, INF was induced with subcutaneous Mg-silicate. On day 80, all of the rats in groups 4-9 underwent fracture operation on the right femur. Bone mineral density (BMD) showed statistically significant improvements in the treatment groups. The serum markers of bone turnover (osteocalcin and osteopontin) and pro-inflammatory cytokines (tumour necrosis factor α, interleukin 1β and interleukin 6) were decreased in the treatment group. The X-ray images showed significantly increased callus formation and fracture healing in the groups treated with carnitine. The present results show that in a rat model with osteoporosis induced by ovariectomy and Mg-silicate, treatment with carnitine improves the healing of femur fractures.
Collapse
Affiliation(s)
- Ali Aydin
- Department of Orthopedics and Traumatology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Abdulmecit Albayrak
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Beyzagul Polat
- Department of Pharmacology, Ataturk University Faculty of Pharmacy, Erzurum, Turkey
| | - Emre Karakus
- Department of Pharmacology, Ataturk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Omer Selim Yildirim
- Department of Orthopedics and Traumatology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Yasin Bayir
- Department of Biochemistry, Ataturk University Faculty of Pharmacy, Erzurum, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Arif Kursad Ayan
- Department of Nuclear Medicine, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Ahmet Murat Aksakal
- Department of Orthopedics and Traumatology, Sevket Yilmaz Education and Research Hospital, Bursa, Turkey
| |
Collapse
|
108
|
He R, Hu X, Tan HC, Feng J, Steffi C, Wang K, Wang W. Surface modification of titanium with curcumin: a promising strategy to combat fibrous encapsulation. J Mater Chem B 2015; 3:2137-2146. [PMID: 32262382 DOI: 10.1039/c4tb01616e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fibrous encapsulation that prevents the direct contact between an implant and the bone can cause implant failure. However, prevention of fibrous encapsulation is difficult because of the lack of effective strategies which can selectively control the growth of fibroblasts and osteoblasts. Because curcumin, an extract from Curcuma longa, was recently found to reduce the formation of fibrous tissue, it is hypothesized that loading curcumin on implant surfaces would be efficacious in inhibiting fibrous encapsulation without adversely affecting the osteoblast functions. To prove this hypothesis, curcumin was loaded on to a titanium surface using poly(dopamine) as an anchor, and the behaviors of fibroblasts and osteoblasts on these curcumin-modified surfaces were investigated. Curcumin was successfully loaded on to titanium and showed a low release after incubation in phosphate-buffered saline for seven days. On the curcumin-modified surfaces, fibroblast proliferation was suppressed, and fibrous marker expressions as well as collagen synthesis were significantly reduced. These reductions were possibly because of the enhancement of fibroblast apoptosis induced by the surface curcumin. In contrast, no significant reduction in osteoblast functions was observed on the curcumin-modified substrates. These findings may provide a promising solution to reduce fibrous encapsulation, and thus may be highly beneficial for orthopaedic applications.
Collapse
Affiliation(s)
- Ronghan He
- Department of Orthopedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, 119228, Singapore.
| | | | | | | | | | | | | |
Collapse
|
109
|
Kim SH, Hur W, Kim JE, Min HJ, Kim S, Min HS, Kim BK, Kim SH, Choi TH, Jung Y. Self-assembling peptide nanofibers coupled with neuropeptide substance P for bone tissue engineering. Tissue Eng Part A 2015; 21:1237-46. [PMID: 25411965 DOI: 10.1089/ten.tea.2014.0472] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The number of patients requiring flat bone transplantation continues to increase worldwide. Cell transplantation has been successfully applied clinically; however, it causes another defect site and the time requirements to harvest cells and expand them are considerable. In this study, KLD12/KLD12-SP (KLD12+KLD12-substance P [SP]) was designed to mimic endogenous tissue-healing processes. The structures of KLD12, KLD12-SP, and KLD12/KLD12-SP were observed by transmission electron microscopy and circular dichroism spectra. KLD12/KLD12-SP nanofibers (5-10 nm) were created under physiological conditions by formation of a β-sheet structure. The ability of mesenchymal stem cells (MSCs) to recruit KLD12/KLD12-SP was observed by using an in vivo fluorescence imaging system. Labeled human bone marrow stromal cells supplied via an intravenous injection were recruited to the scaffold containing KLD12/KLD12-SP. Polylactic acid/beta-tricalcium phosphate (PLA/β-TCP) scaffolds filled with KLD12/KLD12-SP were applied to repair calvarial defects. The composite constructs (groups: defect, PLA/β-TCP, PLA/β-TCP/KLD12, and PLA/β-TCP/KLD12/KLD12-SP) were implanted into rat defect sites. Bone tissue regeneration was evaluated by observing gross morphology by hematoxylin and eosin and Masson's trichrome staining at 12 and 24 weeks after surgery. Gross morphology showed that the defect site was filled with new tissue that was integrated with host tissue in the KLD12/KLD12-SP group. In addition, from the staining data, cells were recruited to the defect site and lacunae structures formed in the KLD12/KLD12-SP group. From these results, the PLA/β-TCP+KLD12/KLD12-SP composite construct was considered for enhancement of bone tissue regeneration without cell transplantation.
Collapse
Affiliation(s)
- Su Hee Kim
- 1 Center for Biomaterials, Biomedical Research Institute , Korea Institute of Science and Technology, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Zidan RA, Elnegris HM. Effect of homocysteine on the histological structure of femur in young male albino rats and the possible protective role of folic acid. ACTA ACUST UNITED AC 2015. [DOI: 10.7243/2055-091x-2-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
111
|
Fang HW, Kao WY, Lin PI, Chang GW, Hung YJ, Chen RM. Effects of Polypropylene Carbonate/Poly(d,l-lactic) Acid/Tricalcium Phosphate Elastic Composites on Improving Osteoblast Maturation. Ann Biomed Eng 2014; 43:1999-2009. [DOI: 10.1007/s10439-014-1236-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022]
|
112
|
Jeon YK, Bae MJ, Kim JI, Kim JH, Choi SJ, Kwon SK, An JH, Kim SS, Kim BH, Kim YK, Kim IJ. Expression of Glucagon-Like Peptide 1 Receptor during Osteogenic Differentiation of Adipose-Derived Stem Cells. Endocrinol Metab (Seoul) 2014; 29:567-73. [PMID: 25325271 PMCID: PMC4285026 DOI: 10.3803/enm.2014.29.4.567] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/13/2014] [Accepted: 05/22/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Glucagon-like peptide 1 (GLP-1), an incretin hormone well known for its glucose-lowering effect, was recently reported to exert an anabolic effect on bone. Although the exact mechanism is not known, it likely involves the GLP-1 receptor (GLP-1R), which is expressed in some osteoblastic cell lines. Adipose-derived stem cells (ADSCs) have mesenchymal stem cell-specific characteristics, including osteoblastic differentiation potential. We evaluated the expression of GLP-1R during osteogenic differentiation of ADSCs. METHODS ADSCs were isolated from subcutaneous adipose tissue obtained from three male donors during plastic surgery and were subjected to osteogenic induction. Mineralization was assessed by Alizarin Red staining on day 21. Expression of alkaline phosphatase (ALP), osteocalcin (OC), and GLP-1R was measured by real-time polymerase chain reaction in triplicate for each patient on days 0, 7, 14, and 21. Target mRNA expression levels were normalized to that of β-actin. RESULTS ADSCs were fibroblast-like in morphology, adhered to plastic, and had multipotent differentiation potential, as assessed using specific antigen markers. The osteogenic markers ALP and OC were notably upregulated at 21 days. Osteogenic differentiation resulted in a time-dependent increase in the expression of GLP-1R (P=0.013). CONCLUSION We demonstrated upregulation of GLP-1R gene expression during osteogenic differentiation of ADSCs. This finding suggests that GLP-1 may induce osteogenic differentiation in bone tissue.
Collapse
Affiliation(s)
- Yun Kyung Jeon
- Department of Internal Medicine, Pusan National University School of Medicine, Korea.; Biomedical Research Institute, Pusan National University, Korea
| | | | - Ju In Kim
- Biomedical Research Institute, Pusan National University, Korea
| | - Joo Hyoung Kim
- Kim Yong Ki Internal Medicine Clinic, Korea.; Department of Plastic and Reconstructive Surgery, Pusan National University Hospital, Korea
| | - Soo Jong Choi
- Kim Yong Ki Internal Medicine Clinic, Korea.; Department of Plastic and Reconstructive Surgery, Pusan National University Hospital, Korea
| | - Su Kyoung Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kosin University College of Medicine, Korea
| | - Joon Hyop An
- Department of Internal Medicine, Good Moonhwa Hospital, Busan, Korea
| | - Sang Soo Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Korea.; Biomedical Research Institute, Pusan National University, Korea
| | - Bo Hyun Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Korea.; Biomedical Research Institute, Pusan National University, Korea
| | | | - In Joo Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Korea.; Biomedical Research Institute, Pusan National University, Korea.
| |
Collapse
|
113
|
Deegan AJ, Cinque G, Wehbe K, Konduru S, Yang Y. Tracking calcification in tissue-engineered bone using synchrotron micro-FTIR and SEM. Anal Bioanal Chem 2014; 407:1097-105. [DOI: 10.1007/s00216-014-8316-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/10/2014] [Accepted: 11/03/2014] [Indexed: 11/28/2022]
|
114
|
Neacsu P, Gordin DM, Mitran V, Gloriant T, Costache M, Cimpean A. In vitro performance assessment of new beta Ti-Mo-Nb alloy compositions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 47:105-13. [PMID: 25492178 DOI: 10.1016/j.msec.2014.11.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/08/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
New β-titanium based alloys with low Young's modulus are currently required for the next generation of metallic implant materials to ensure good mechanical compatibility with bone. Several of these are representatives of the ternary Ti-Mo-Nb system. The aim of this paper is to assess the in vitro biological performance of five new low modulus alloy compositions, namely Ti12Mo, Ti4Mo32Nb, Ti6Mo24Nb, Ti8Mo16Nb and Ti10Mo8Nb. Commercially pure titanium (cpTi) was used as a reference material. Comparative studies of cell activity exhibited by MC3T3-E1 pre-osteoblasts over short- and long-term culture periods demonstrated that these newly-developed metallic substrates exhibited an increased biocompatibility in terms of osteoblast proliferation, collagen production and extracellular matrix mineralization. Furthermore, all analyzed biomaterials elicited an almost identical cell response. Considering that macrophages play a pivotal role in bone remodeling, the behavior of a monocyte-macrophage cell line, RAW 264.7, was also investigated showing a slightly lower inflammatory response to Ti-Mo-Nb biomaterials as compared with cpTi. Thus, the biological performances together with the superior mechanical properties recommend these alloys for bone implant applications.
Collapse
Affiliation(s)
- Patricia Neacsu
- University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Doina-Margareta Gordin
- INSA Rennes, UMR CNRS 6226 ISCR/Chimie-Métallurgie, 20 avenue des Buttes de Coësmes, F-35043 Rennes, Cedex, France
| | - Valentina Mitran
- University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Thierry Gloriant
- INSA Rennes, UMR CNRS 6226 ISCR/Chimie-Métallurgie, 20 avenue des Buttes de Coësmes, F-35043 Rennes, Cedex, France
| | - Marieta Costache
- University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Anisoara Cimpean
- University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest, Romania.
| |
Collapse
|
115
|
Kim HK, Kim MG, Leem KH. Collagen hydrolysates increased osteogenic gene expressions via a MAPK signaling pathway in MG-63 human osteoblasts. Food Funct 2014; 5:573-8. [PMID: 24496382 DOI: 10.1039/c3fo60509d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study investigated the effects of CHs on osteogenic activities and MAPK-regulation on bone matrix gene expressions. The effects of CHs on cell proliferation, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization were measured in human osteoblastic MG-63 cells. Activation of MAPKs and downstream transcription factors such as extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), p38, ELK1, and cJUN was examined using Western blot analysis. The expressions of osteogenic genes were measured by quantitative real-time PCR. CHs dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. CHs activated ERK1/2, JNK1/2, p38, and ELK1 phosphorylation except cJUN. The COL1A1 (collagen, type I, alpha 1), ALPL (alkaline phosphatase), BGLAP (osteocalcin), and SPP1 (secreted phosphoprotein 1, osteopontin) gene expressions were increased by CH treatment. The ERK1/2 inhibitor (PD98509) blocked the CH-induced COL1A1 and ALPL gene expression, as well as ELK1 phosphorylation. The JNK1/2 inhibitor (SP600125) abolished CH-induced COL1A1 expression. The p38 inhibitor (SB203580) blocked CH-induced COL1A1 and SPP1 gene expression. In conclusion, CH treatment stimulates the osteogenic activities and increases bone matrix gene expressions via the MAPK/ELK1 signaling pathway. These results could provide a mechanistic explanation for the bone-strengthening effects of CHs.
Collapse
Affiliation(s)
- Hye Kyung Kim
- Department of Food & Biotechnology, Hanseo University, Seosan, Chungnam 356-706, South Korea
| | | | | |
Collapse
|
116
|
Pugliese G, Iacobini C, Pesce CM, Menini S. Galectin-3: an emerging all-out player in metabolic disorders and their complications. Glycobiology 2014; 25:136-50. [PMID: 25303959 DOI: 10.1093/glycob/cwu111] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Galectin-3 has been increasingly recognized as an important modulator of several biological functions, by interacting with several molecules inside and outside the cell, and an emerging player in numerous disease conditions. Galectin-3 exerts various and sometimes contrasting effects according to its location, type of injury or site of damage. Strong evidence indicates that galectin-3 participates in the pathogenesis of diabetic complications via its receptor function for advanced glycation end-products (AGEs) and advanced lipoxidation end-products (ALEs). AGEs/ALEs are produced to an increased extent in target organs of complications, such as kidney and vessels; here, lack of galectin-3 impairs their removal, leading to accelerated damage. In contrast, in the liver, AGE/ALE tissue content and injury are decreased, because lack of galectin-3 results in reduced uptake and tissue accumulation of these by-products. Some of these effects can be explained by changes in the expression of receptor for AGEs (RAGE), associated with galectin-3 deletion and consequent changes in AGE/ALE tissue levels. Furthermore, galectin-3 might exert AGE/ALE- and RAGE-independent effects, favoring resolution of inflammation and modulating fibrogenesis and ectopic osteogenesis. These effects are mediated by intracellular and extracellular galectin-3, the latter via interaction with N-glycans at the cell surface to form lattice structures. Recently, galectin-3 has been implicated in the development of metabolic disorders because it favors glucose homeostasis and prevents the deleterious activation of adaptive and innate immune response to obesogenic/diabetogenic stimuli. In conclusion, galectin-3 is an emerging all-out player in metabolic disorders and their complications that deserves further investigation as the potential target of therapeutic intervention.
Collapse
Affiliation(s)
- Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039, Rome 00189, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039, Rome 00189, Italy
| | - Carlo M Pesce
- DINOGMI, University of Genoa Medical School, Genoa 16132, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039, Rome 00189, Italy
| |
Collapse
|
117
|
Deegan AJ, Aydin HM, Hu B, Konduru S, Kuiper JH, Yang Y. A facile in vitro model to study rapid mineralization in bone tissues. Biomed Eng Online 2014; 13:136. [PMID: 25224355 PMCID: PMC4228101 DOI: 10.1186/1475-925x-13-136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Mineralization in bone tissue involves stepwise cell-cell and cell-ECM interaction. Regulation of osteoblast culture microenvironments can tailor osteoblast proliferation and mineralization rate, and the quality and/or quantity of the final calcified tissue. An in vitro model to investigate the influencing factors is highly required. Methods We developed a facile in vitro model in which an osteoblast cell line and aggregate culture (through the modification of culture well surfaces) were used to mimic intramembranous bone mineralization. The effect of culture environments including culture duration (up to 72 hours for rapid mineralization study) and aggregates size (monolayer culture as control) on mineralization rate and mineral quantity/quality were examined by osteogenic gene expression (PCR) and mineral markers (histological staining, SEM-EDX and micro-CT). Results Two size aggregates (on average, large aggregates were 745 μm and small 79 μm) were obtained by the facile technique with high yield. Cells in aggregate culture generated visible and quantifiable mineralized matrix within 24 hours, whereas cells in monolayer failed to do so by 72 hours. The gene expression of important ECM molecules for bone formation including collagen type I, alkaline phosphatase, osteopontin and osteocalcin, varied temporally, differed between monolayer and aggregate cultures, and depended on aggregate size. Monolayer specimens stayed in a proliferation phase for the first 24 hours, and remained in matrix synthesis up to 72 hours; whereas the small aggregates were in the maturation phase for the first 24 and 48 hour cultures and then jumped to a mineralization phase at 72 hours. Large aggregates were in a mineralization phase at all these three time points and produced 36% larger bone nodules with a higher calcium content than those in the small aggregates after just 72 hours in culture. Conclusions This study confirms that aggregate culture is sufficient to induce rapid mineralization and that aggregate size determines the mineralization rate. Mineral content depended on aggregate size and culture duration. Thus, our culture system may provide a good model to study regulation factors at different development phases of the osteoblastic lineage. Electronic supplementary material The online version of this article (doi:10.1186/1475-925X-13-136) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Yang
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent ST4 7QB, UK.
| |
Collapse
|
118
|
Ho MH, Liao MH, Lin YL, Lai CH, Lin PI, Chen RM. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation. Int J Nanomedicine 2014; 9:4293-304. [PMID: 25246786 PMCID: PMC4166309 DOI: 10.2147/ijn.s68012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell-cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP) messenger (m)RNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses showed that chitosan nanofibers improved osteoblast mineralization. Taken together, results of this study demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin, osteocalcin, and ALP gene expression.
Collapse
Affiliation(s)
- Ming-Hua Ho
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan ; Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei, Taiwan
| | - Mei-Hsiu Liao
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ling Lin
- Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei, Taiwan
| | - Chien-Hao Lai
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Pei-I Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei, Taiwan ; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan ; Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
119
|
Al-Obaidi MMJ, Al-Bayaty FH, Al Batran R, Hassandarvish P, Rouhollahi E. Protective effect of ellagic acid on healing alveolar bone after tooth extraction in rat—A histological and immunohistochemical study. Arch Oral Biol 2014; 59:987-99. [DOI: 10.1016/j.archoralbio.2014.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 04/26/2014] [Accepted: 06/01/2014] [Indexed: 11/28/2022]
|
120
|
Effects of egg yolk-derived peptide on osteogenic gene expression and MAPK activation. Molecules 2014; 19:12909-24. [PMID: 25157462 PMCID: PMC6271094 DOI: 10.3390/molecules190912909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
The present study investigated the effects of egg yolk-derived peptide (YPEP) on osteogenic activities and MAPK-regulation of osteogenic gene expressions. The effects of YPEP on cell proliferation, alkaline phosphatase activity, collagen synthesis, and mineralization were measured in human osteoblastic MG-63 cells. Activation of MAPKs and downstream transcription factors such as extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), p38, ELK1, and cJUN were examined using western blot analysis. YPEP dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. YPEP activated ERK1/2, p38, and ELK1 phosphorylation whereas JNK and cJUN were not affected by YPEP. The COL1A1 (collagen, type I, alpha 1), ALPL (alkaline phosphatase), and SPP1 (secreted phosphoprotein 1, osteopontin) gene expressions were increased while BGLAP (osteocalcin) was not affected by YPEP. The ERK1/2 inhibitor (PD98509) blocked the YPEP-induced COL1A1 and ALPL gene expressions as well as ELK1 phosphorylation. The p38 inhibitor (SB203580) blocked YPEP-induced COL1A1 and ALPL gene expressions. SPP1 gene expression was not affected by these MAPK inhibitors. In conclusion, YPEP treatment stimulates the osteogenic differentiation via the MAPK/ELK1 signaling pathway. These results could provide a mechanistic explanation for the bone-strengthening effects of YPEP.
Collapse
|
121
|
Katayama N, Kato H, Taguchi Y, Tanaka A, Umeda M. The effects of synthetic oligopeptide derived from enamel matrix derivative on cell proliferation and osteoblastic differentiation of human mesenchymal stem cells. Int J Mol Sci 2014; 15:14026-43. [PMID: 25123134 PMCID: PMC4159837 DOI: 10.3390/ijms150814026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/06/2014] [Accepted: 07/09/2014] [Indexed: 11/26/2022] Open
Abstract
Enamel matrix derivative (EMD) is widely used in periodontal tissue regeneration therapy. However, because the bioactivity of EMD varies from batch to batch, and the use of a synthetic peptide could avoid use from an animal source, a completely synthetic peptide (SP) containing the active component of EMD would be useful. In this study an oligopeptide synthesized derived from EMD was evaluated for whether it contributes to periodontal tissue regeneration. We investigated the effects of the SP on cell proliferation and osteoblast differentiation of human mesenchymal stem cells (MSCs), which are involved in tissue regeneration. MSCs were treated with SP (0 to 1000 ng/mL), to determine the optimal concentration. We examined the effects of SP on cell proliferation and osteoblastic differentiation indicators such as alkaline phosphatase activity, the production of procollagen type 1 C-peptide and osteocalcin, and on mineralization. Additionally, we investigated the role of extracellular signal-related kinases (ERK) in cell proliferation and osteoblastic differentiation induced by SP. Our results suggest that SP promotes these processes in human MSCs, and that ERK inhibitors suppress these effects. In conclusion, SP promotes cell proliferation and osteoblastic differentiation of human MSCs, probably through the ERK pathway.
Collapse
Affiliation(s)
- Nobuhito Katayama
- Department of Periodontology, Osaka Dental University, Osaka 573-1121, Japan.
| | - Hirohito Kato
- Department of Oral Pathology, Osaka Dental University, Osaka 573-1121, Japan.
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka 573-1121, Japan.
| | - Akio Tanaka
- Department of Oral Pathology, Osaka Dental University, Osaka 573-1121, Japan.
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka 573-1121, Japan.
| |
Collapse
|
122
|
Gordin DM, Ion R, Vasilescu C, Drob SI, Cimpean A, Gloriant T. Potentiality of the "Gum Metal" titanium-based alloy for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:362-70. [PMID: 25280716 DOI: 10.1016/j.msec.2014.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/24/2014] [Accepted: 08/01/2014] [Indexed: 11/17/2022]
Abstract
In this study, the "Gum Metal" titanium-based alloy (Ti-23Nb-0.7Ta-2Zr-1.2O) was synthesized by melting and then characterized in order to evaluate its potential for biomedical applications. Thus, the mechanical properties, the corrosion resistance in simulated body fluid and the in vitro cell response were investigated. It was shown that this alloy presents a very high strength, a low Young's modulus and a high recoverable strain by comparison with the titanium alloys currently used in medicine. On the other hand, all electrochemical and corrosion parameters exhibited more favorable values showing a nobler behavior and negligible toxicity in comparison with the commercially pure Ti taken as reference. Furthermore, the biocompatibility tests showed that this alloy induced an excellent response of MC3T3-E1 pre-osteoblasts in terms of attachment, spreading, viability, proliferation and differentiation. Consequently, the "Gum Metal" titanium-based alloy processes useful characteristics for the manufacturing of highly biocompatible medical devices.
Collapse
Affiliation(s)
- D M Gordin
- Institut des Sciences Chimiques de Rennes (UMR CNRS 6226), INSA Rennes, 20 Avenue des Buttes de Coësmes, F-35043 Rennes Cedex, France
| | - R Ion
- University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - C Vasilescu
- Institute of Physical Chemistry "Ilie Murgulescu" of Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania
| | - S I Drob
- Institute of Physical Chemistry "Ilie Murgulescu" of Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania
| | - A Cimpean
- University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - T Gloriant
- Institut des Sciences Chimiques de Rennes (UMR CNRS 6226), INSA Rennes, 20 Avenue des Buttes de Coësmes, F-35043 Rennes Cedex, France.
| |
Collapse
|
123
|
Zhu X, Wang Y, Liu Y, Huang GTJ, Zhang C. Immunohistochemical and histochemical analysis of newly formed tissues in root canal space transplanted with dental pulp stem cells plus platelet-rich plasma. J Endod 2014; 40:1573-8. [PMID: 25260728 DOI: 10.1016/j.joen.2014.05.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Tissue regeneration in root canals after pulpectomy can be achieved by transplantation of autologous dental pulp stem cells and/or platelet-rich plasma. However, the identity of the newly formed tissue in the pulp space has been only examined by histologic analysis. This study aimed to apply immunohistochemistry and histochemistry to detect specific markers in the newly generated tissues after root canal regenerative treatment. METHODS In our previous study, 32 root canals in 4 mature dogs were treated with a pulp regeneration procedure after pulpectomy using either blood clot, transplantation of dental pulp stem cells, platelet-rich plasma, or a combination of cells and plasma. In the present study, the tissues were examined for the expression of periostin to detect periodontal ligament tissue, nestin and dentin sialoprotein for odontoblasts, and bone sialoprotein and osteocalcin for bone tissues. Samples were also stained for tartrate-resistant acid phosphatase (TRAP) as a marker for osteoclastic lineages. RESULTS Continuous periostin-positive tissue was observed extending from the periodontal ligament into the inner canal surface in which the mineral islands were surrounded by weak periostin staining. There was also positive staining for TRAP, bone sialoprotein, and osteocalcin in the canal space, suggesting the presence of bone tissue. A layer of mineralized tissue along the inner surface of the root canal was negative for TRAP, suggesting the tissue likely to be cementum. In all samples, no nestin-positive reaction was observed, whereas dentin sialoprotein was detected in PDL, dentinal tubules, and intracanal fibrous tissues. There was no difference between any of the 4 groups. CONCLUSIONS The tissues formed in the dog mature root canals after regenerative endodontic procedures are not pulp tissues but mainly periodontal tissues.
Collapse
Affiliation(s)
- Xiaofei Zhu
- VIP Dental Service, School and Hospital of Stomatology, Peking University, Beijing, China; The University of Hong Kong, Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - Yu Wang
- School and Hospital of Stomatology, Peking University, Beijing, China
| | - Yuan Liu
- The University of Hong Kong, Shenzhen Institute of Research and Innovation, Hong Kong, China; Comprehensive Dental Care, The University of Hong Kong, Hong Kong, China
| | - George T-J Huang
- Department of Bioscience Research, University of Tennessee Health Science Center, College of Dentistry, Memphis, Tennessee
| | - Chengfei Zhang
- The University of Hong Kong, Shenzhen Institute of Research and Innovation, Hong Kong, China; Comprehensive Dental Care, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
124
|
Mao YW, Lin RD, Hung HC, Lee MH. Stimulation of osteogenic activity in human osteoblast cells by edible Uraria crinita. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5581-5588. [PMID: 24785825 DOI: 10.1021/jf5012177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Uraria crinita is an edible herb used as a natural food for childhood skeletal dysplasia. Ethyl acetate, n-butanol, and aqueous fractions of a 95% ethanol crude extract of U. crinita were obtained and the active ingredients isolated and purified using a bioguided method. In this manner, we isolated and identified a new active flavone glycoside, apigenin 6-C-β-d-apiofuranosyl(1→2)-α-d-xylopyranoside (3) and 10 known components with stimulatory activity on human osteoblast cells. The new compound 3 at 100 μM significantly increased alkaline phosphatase activity (114.10 ± 4.41%), mineralization (150.10 ± 0.80%), as well as osteopontin (1.39 ± 0.01-fold), bone morphogenetic protein-2 (BMP-2, 1.30 ± 0.04-fold), and runt-related transcription factor 2 (Runx2, 1.43 ± 0.10-fold) mRNA expression through the activation of the BMP-2/Runx2 pathway. Two other components, dalbergioidin (1) and byzantionoside B (9), displayed similar effects. These results show that U. crinita and its active compounds may have the potential to stimulate bone formation and regeneration.
Collapse
Affiliation(s)
- Yi-Wen Mao
- School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei 110, Taiwan
| | | | | | | |
Collapse
|
125
|
Quilhac A, de Ricqlès A, Lamrous H, Zylberberg L. Globuliosseiin the long limb bones ofPleurodeleswaltl(Amphibia, Urodela, Salamandridae). J Morphol 2014; 275:1226-37. [DOI: 10.1002/jmor.20296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/04/2014] [Accepted: 05/15/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Alexandra Quilhac
- Sorbonne Universités; UPMC Univ Paris 06; UMR 7193; Institut des Sciences de la Terre Paris (ISTeP), Equipe Biominéralisations et Environnements Sédimentaires; F-75005 Paris France
- CNRS, UMR 7193, Institut des Sciences de la Terre Paris (ISTeP); F-75005 Paris France
| | - Armand de Ricqlès
- Sorbonne Universités; UPMC Univ Paris 06; UMR 7193; Institut des Sciences de la Terre Paris (ISTeP), Equipe Biominéralisations et Environnements Sédimentaires; F-75005 Paris France
- CNRS, UMR 7193, Institut des Sciences de la Terre Paris (ISTeP); F-75005 Paris France
| | - Hayat Lamrous
- Sorbonne Universités; UPMC Univ Paris 06; UMR 7193; Institut des Sciences de la Terre Paris (ISTeP), Equipe Biominéralisations et Environnements Sédimentaires; F-75005 Paris France
- CNRS, UMR 7193, Institut des Sciences de la Terre Paris (ISTeP); F-75005 Paris France
| | - Louise Zylberberg
- Sorbonne Universités; UPMC Univ Paris 06; UMR 7193; Institut des Sciences de la Terre Paris (ISTeP), Equipe Biominéralisations et Environnements Sédimentaires; F-75005 Paris France
- CNRS, UMR 7193, Institut des Sciences de la Terre Paris (ISTeP); F-75005 Paris France
| |
Collapse
|
126
|
Wang Y, Peng W, Liu X, Zhu M, Sun T, Peng Q, Zeng Y, Feng B, Zhi W, Weng J, Wang J. Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/N-succinyl chitosan hydrogels and synergistic effects of RGD modification and low-intensity pulsed ultrasound. Acta Biomater 2014; 10:2518-28. [PMID: 24394634 DOI: 10.1016/j.actbio.2013.12.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/05/2013] [Accepted: 12/26/2013] [Indexed: 12/15/2022]
Abstract
The level of formation of new bone and vascularization in bone tissue engineering scaffold implants is considered as a critical factor for clinical application. In this study, an approach using an RGD-grafted oxidized sodium alginate/N-succinyl chitosan (RGD-OSA/NSC) hydrogel as a scaffold and low-intensity pulsed ultrasound (LIPUS) as mechanical stimulation was proposed to achieve a high level of formation of new bone and vascularization. An in vitro study of endothelial and osteogenic differentiations of human-bone-marrow-derived mesenchymal stem cells (hMSCs) was conducted to evaluate it. The results showed that RGD-OSA/NSC composite hydrogels presented good biological properties in attachment, proliferation and differentiation of cells. The MTT cell viability assay showed that the total number of cells increased more significantly in the LIPUS-stimulated groups with RGD than that in the control ones; similar results were obtained for alkaline phosphatase activity/staining and mineralized nodule formation assay of osteogenic induction and immunohistochemical test of endothelial induction. The positive synergistic effect of LIPUS and RGD on the enhancement of proliferation and differentiation of hMSCs was observed. These findings suggest that the hybrid use of RGD modification and LIPUS might provide one approach to achieve a high level of formation of new bone and vascularization in bone tissue engineering scaffold implants.
Collapse
|
127
|
Krzyzankova M, Chovanova S, Chlapek P, Radsetoulal M, Neradil J, Zitterbart K, Sterba J, Veselska R. LOX/COX inhibitors enhance the antineoplastic effects of all-trans retinoic acid in osteosarcoma cell lines. Tumour Biol 2014; 35:7617-27. [DOI: 10.1007/s13277-014-2019-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/23/2014] [Indexed: 01/31/2023] Open
|
128
|
Killian MS, Schmuki P. Influence of bioactive linker molecules on protein adsorption. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Manuela S. Killian
- Department of Materials Science and Engineering, WW4-LKO; University of Erlangen-Nuremberg; Germany
| | - Patrik Schmuki
- Department of Materials Science and Engineering, WW4-LKO; University of Erlangen-Nuremberg; Germany
- Department of Chemistry; King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|
129
|
Raeth S, Sacchetti B, Siegel G, Mau-Holzmann UA, Hansmann J, Vacun G, Hauk TG, Pfizenmaier K, Hausser A. A mouse bone marrow stromal cell line with skeletal stem cell characteristics to study osteogenesis in vitro and in vivo. Stem Cells Dev 2014; 23:1097-108. [PMID: 24405418 DOI: 10.1089/scd.2013.0367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are composed of progenitor and multipotent skeletal stem cells, which are able to differentiate in vitro into osteocytes, adipocytes, and chondrocytes. Mouse BMSCs (mBMSCs) are a versatile model system to investigate factors involved in BMSC differentiation in vitro and in vivo as a variety of transgenic mouse models are available. In this study, mBMSCs were isolated and osteogenic differentiation was investigated in tissue culture and in vivo. Three out of seven independent cell isolates showed the ability to differentiate into osteocytes, adipocytes, and chondrocytes in vitro. In vitro multipotency of an established mBMSC line was maintained over 45 passages. The osteogenic differentiation of this cell line was confirmed by quantitative polymerase chain reaction (qPCR) analysis of specific markers such as osteocalcin and shown to be Runx2 dependent. Notably, the cell line, when transplanted subcutaneously into mice, possesses full skeletal stem cell characteristics in vivo in early and late passages, evident from bone tissue formation, induction of vascularization, and hematopoiesis. This cell line provides, thus, a versatile tool to unravel the molecular mechanisms governing osteogenesis in vivo thereby aiding to improve current strategies in bone regenerative therapy.
Collapse
Affiliation(s)
- Sebastian Raeth
- 1 Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Willems BAG, Vermeer C, Reutelingsperger CPM, Schurgers LJ. The realm of vitamin K dependent proteins: shifting from coagulation toward calcification. Mol Nutr Food Res 2014; 58:1620-35. [PMID: 24668744 DOI: 10.1002/mnfr.201300743] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/27/2013] [Accepted: 01/01/2014] [Indexed: 12/20/2022]
Abstract
In the past few decades vitamin K has emerged from a single-function "haemostasis vitamin" to a "multi-function vitamin." The use of vitamin K antagonists (VKA) inevitably showed that the inhibition was not restricted to vitamin K dependent coagulation factors but also synthesis of functional extrahepatic vitamin K dependent proteins (VKDPs), thereby eliciting undesired side effects. Vascular calcification is one of the recently revealed detrimental effects of VKA. The discovery that VKDPs are involved in vascular calcification has propelled our mechanistic understanding of this process and has opened novel avenues for diagnosis and treatment. This review addresses mechanisms of VKDPs and their significance for physiological and pathological calcification.
Collapse
Affiliation(s)
- Brecht A G Willems
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands; VitaK BV, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
131
|
Varma SR, Sharath Kumar LM, Vidyashankar S, Patki PS. Water Soluble Components of 'Osteocare' Promote Cell Proliferation, Differentiation, and Matrix Mineralization in Human Osteoblast-Like SaOS-2 Cells. Sci Pharm 2014; 82:375-91. [PMID: 24959407 PMCID: PMC4065129 DOI: 10.3797/scipharm.1310-25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/08/2014] [Indexed: 11/22/2022] Open
Abstract
Osteocare, a herbal formulation, has been found to be very effective in bone mineralization and support of the microstructure of bone tissue. The water-soluble components of Osteocare (WSCO) induced osteogenic activity in human osteoblast-like SaOS-2 cells. The addition of WSCO (100 μg/ml) to SaOS-2 cells was effective in increasing the cell proliferation by 41.49% and DNA content by 1.9-fold. WSCO increased matrix mineralization in SaOS-2 cells by increased alkaline phosphatase levels and calcium-rich deposits as observed by Alizarin red staining. WSCO markedly increased mRNA expression for osteopontin (OPN), osteocalcin (OCN), type I collagen (Col I) in SaOS-2 cells, and it down-regulated IL-6 mRNA levels in SaOS-2 cells. The present study showed that WSCO plays an important role in osteoblastic bone formation through enhanced activities of ALP, Col I, bone matrix proteins such as OPN and OCN, down-regulation of cytokines like IL-6, as well as promoting mineralization in SaOS-2 cells.
Collapse
Affiliation(s)
- Sandeep R Varma
- Department of Cell Biology, Research and Development, The Himalaya Drug Company, Bangalore-562 162, India
| | - L M Sharath Kumar
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bangalore-562 162, India
| | - Satyakumar Vidyashankar
- Department of Cell Biology, Research and Development, The Himalaya Drug Company, Bangalore-562 162, India
| | - Pralhad Sadashiv Patki
- Medical Services and Clinical Trials, Research and Development, The Himalaya Drug Company, Bangalore-562 162, India
| |
Collapse
|
132
|
de Vrieze E, van Kessel MAHJ, Peters HM, Spanings FAT, Flik G, Metz JR. Prednisolone induces osteoporosis-like phenotype in regenerating zebrafish scales. Osteoporos Int 2014; 25:567-78. [PMID: 23903952 DOI: 10.1007/s00198-013-2441-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/03/2013] [Indexed: 11/29/2022]
Abstract
UNLABELLED We demonstrate that glucocorticoids induce an osteoporotic phenotype in regenerating scales of zebrafish. Exposure to prednisolone results in altered mineral content, enhanced matrix breakdown, and an osteoporotic gene-expression profile in osteoblasts and osteoclasts. This highlights that the zebrafish scale provides a powerful tool for preclinical osteoporosis research. INTRODUCTION This study aims to evaluate whether glucocorticoid (prednisolone) treatment of zebrafish induces an osteoporotic phenotype in regenerating scales. Scales, a readily accessible dermal bone tissue, may provide a tool to study direct osteogenesis and its disturbance by glucocorticoids. METHODS In adult zebrafish, treated with 25 μM prednisolone phosphate via the water, scales were removed and allowed to regenerate. During regeneration scale morphology and the molar calcium/phosphorus ratio in scales were assessed and osteoblast and osteoclast activities were monitored by time profiling of cell-specific genes; mineralization was visualized by Von Kossa staining, osteoclast activity by tartrate-resistant acid phosphatase histochemistry. RESULTS Prednisolone (compared to controls) enhances osteoclast activity and matrix resorption and slows down the build up of the calcium/phosphorus molar ratio indicative of altered crystal maturation. Prednisolone treatment further impedes regeneration through a shift in the time profiles of osteoblast and osteoclast genes that commensurates with an osteoporosis-like imbalance in bone formation. CONCLUSIONS A glucocorticoid-induced osteoporosis phenotype as seen in mammals was induced in regenerating scalar bone of zebrafish treated with prednisolone. An unsurpassed convenience and low cost then make the zebrafish scale a superior model for preclinical studies in osteoporosis research.
Collapse
Affiliation(s)
- E de Vrieze
- Department of Organismal Animal Physiology, Faculty of Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
133
|
Synergistic effects of orbital shear stress on in vitro growth and osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:316803. [PMID: 24575406 PMCID: PMC3914586 DOI: 10.1155/2014/316803] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/18/2013] [Accepted: 09/30/2013] [Indexed: 11/17/2022]
Abstract
Cellular behavior is dependent on a variety of physical cues required for normal tissue function. In order to mimic native tissue environments, human alveolar bone-derived mesenchymal stem cells (hABMSCs) were exposed to orbital shear stress (OSS) in a low-speed orbital shaker. The synergistic effects of OSS on proliferation and differentiation of hABMSCs were investigated. In particular, we induced the osteoblastic differentiation of hABMSCs cultured in the absence of OM by exposing hABMSCs to OSS (0.86-1.51 dyne/cm(2)). Activation of Cx43 was associated with exposure of hABMSCs to OSS. The viability of cells stimulated for 10, 30, 60, 120, and 180 min/day increased by approximately 10% compared with that of control. The OSS groups with stimulation of 10, 30, and 60 min/day had more intense mineralized nodules compared with the control group. In quantification of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) protein, VEGF protein levels under stimulation for 10, 60, and 180 min/day and BMP-2 levels under stimulation for 60, 120, and 180 min/day were significantly different compared with those of the control. In conclusion, the results indicated that exposing hABMSCs to OSS enhanced their differentiation and maturation.
Collapse
|
134
|
Tonna S, Sims NA. Talking among ourselves: paracrine control of bone formation within the osteoblast lineage. Calcif Tissue Int 2014; 94:35-45. [PMID: 23695526 DOI: 10.1007/s00223-013-9738-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/23/2013] [Indexed: 12/31/2022]
Abstract
While much research focuses on the range of signals detected by the osteoblast lineage that originate from endocrine influences, or from other cells within the body, there are also multiple interactions that occur within this family of cells. Osteoblasts exist as teams and form extensive communication networks both on, and within, the bone matrix. We provide four snapshots of communication pathways that exist within the osteoblast lineage between different stages of their differentiation, as follows: (1) PTHrP, a factor produced by early osteoblasts that stimulates the activity of more mature bone-forming cells and the most mature osteoblast embedded within the bone matrix, the osteocyte; (2) sclerostin, a secreted factor, released by osteocytes into their extensive communication network to restrict the activity of younger osteoblasts on the bone surface; (3) oncostatin M, a member of the IL-6/gp130 family of cytokines, expressed throughout osteoblast differentiation and acting to stimulate osteoblast activity that works on a different receptor in the mature osteocyte compared to the preosteoblast; and (4) Eph/ephrins, cell-contact-dependent kinases, and the osteoblast-lineage-specific interaction of EphB4 and ephrinB2, which provides a checkpoint for entry to the late stages of osteoblast differentiation and restricts RANKL expression.
Collapse
Affiliation(s)
- Stephen Tonna
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | | |
Collapse
|
135
|
Kato H, Taguchi Y, Tominaga K, Umeda M, Tanaka A. Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Arch Oral Biol 2013; 59:167-75. [PMID: 24370188 DOI: 10.1016/j.archoralbio.2013.11.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/07/2013] [Accepted: 11/16/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) induces pro-inflammatory cytokines, such as interleukin-1 β (IL-1β), IL-6, and IL-8, which induce periodontal tissue destruction. Periodontal ligament stem cells (PDLSCs) play an important role in periodontal tissue regeneration and are expected to have future applications in cellular therapies for periodontitis. However, no studies have examined the effects of P. gingivalis LPS on PDLSCs. The aim of this study was to investigate how P. gingivalis LPS affects the osteoblastic differentiation and pro-inflammatory cytokine production of PDLSCs. DESIGN PDLSCs were obtained from healthy adult human mandibular third molars. The identification of PDLSCs was confirmed by immunohistochemical evaluations of the mesenchymal stem cell markers STRO-1 and SSEA-4. Cell proliferation and osteoblastic differentiation were investigated by culturing the PDLSCs in a normal or osteogenic medium with P. gingivalis LPS (0, 1, or 10μg/mL) and then measuring the alkaline phosphatase (ALP) activity and the production of collagen type 1 Alpha 1 (COL1A1), osteocalcin production, and mineralisation. Additionally, we examined the production of IL-1β, IL-6, and IL-8 in the PDLSCs. RESULTS P. gingivalis LPS inhibited the ALP activity, COL1A1 and osteocalcin production, and mineralisation in the PDLSCs, which are positive for STRO-1 and SSEA-4. P. gingivalis LPS also promoted cell proliferation and produced IL-1β, IL-6, and IL-8. CONCLUSIONS This study provides the first findings that P. gingivalis LPS inhibits osteoblastic differentiation and induces pro-inflammatory cytokines in PDLSCs. These findings will help clarify the relationship between periodontitis and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Hirohito Kato
- Department of Oral Pathology, Osaka Dental University, Osaka, Japan.
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Kazuya Tominaga
- Department of Oral Pathology, Osaka Dental University, Osaka, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Akio Tanaka
- Department of Oral Pathology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
136
|
Kato H, Katayama N, Taguchi Y, Tominaga K, Umeda M, Tanaka A. A Synthetic Oligopeptide Derived From Enamel Matrix Derivative Promotes the Differentiation of Human Periodontal Ligament Stem Cells Into Osteoblast-Like Cells With Increased Mineralization. J Periodontol 2013; 84:1476-83. [DOI: 10.1902/jop.2012.120469] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
137
|
Lin HY, Chen JH. Osteoblast differentiation and phenotype expressions on chitosan-coated Ti-6Al-4V. Carbohydr Polym 2013; 97:618-26. [DOI: 10.1016/j.carbpol.2013.05.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/25/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
|
138
|
Feng R, Lengner C. Application of Stem Cell Technology in Dental Regenerative Medicine. Adv Wound Care (New Rochelle) 2013; 2:296-305. [PMID: 24527351 DOI: 10.1089/wound.2012.0375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Indexed: 12/19/2022] Open
Abstract
SIGNIFICANCE In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. RECENT ADVANCES Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. CRITICAL ISSUES We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. FUTURE DIRECTIONS From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.
Collapse
Affiliation(s)
- Ruoxue Feng
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chistopher Lengner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
139
|
Leedy MR, Jennings JA, Haggard WO, Bumgardner JD. Effects of VEGF-loaded chitosan coatings. J Biomed Mater Res A 2013; 102:752-9. [PMID: 23564543 DOI: 10.1002/jbm.a.34745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/21/2013] [Accepted: 04/02/2013] [Indexed: 11/08/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a powerful growth factor that promotes vascularization as well as osteoblastic differentiation and bone regeneration, all of which are key processes in the osseointegration of dental implants. Strategies to increase vascularization through delivery of VEGF may improve osseointegration, especially in patients with reduced bone healing potential. The aim of this study was to determine the potential of chitosan coatings on titanium to deliver VEGF and to support growth and matrix production of osteoblastic cells in vitro. Chitosan was chemically bonded to titanium coupons via silane-glutaraldehyde linker molecules and loaded with 0, 20, 50, or 100 ng of VEGF. Protein was released during a three day period with around 75% of VEGF (4.44, 11.37, and 22.10 ng/mL/cm(2) from the 20, 50, and 100 ng loaded levels, respectively) released during the first 12 h, and 90-95% of the VEGF released from the coatings by day 3. Saos-2 bone cells continued to proliferate over the 28-day period on the VEGF-loaded chitosan coatings in contrast to cells seeded on uncoated titanium, which plateaued after 14 days. Cells on uncoated titanium exhibited a peak in alkaline phosphatase expression at approximately 14 days, concomitant with the plateau in growth. While osteoblast-like cells on all chitosan coatings exhibited up to a 2-fold enhancement of the alkaline phosphatase activity and 10-fold increase in calcium deposition compared to uncoated controls, the incorporation of VEGF into the coatings did not enhance osteoblast matrix production over plain chitosan coatings throughout this study.
Collapse
Affiliation(s)
- Megan R Leedy
- University of Memphis, Biomedical Engineering, 330 Engineering Technology Building, Memphis, Tennessee, 38122
| | | | | | | |
Collapse
|
140
|
Henstock JR, Rotherham M, Rose JB, El Haj AJ. Cyclic hydrostatic pressure stimulates enhanced bone development in the foetal chick femur in vitro. Bone 2013; 53:468-77. [PMID: 23333177 DOI: 10.1016/j.bone.2013.01.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 12/20/2012] [Accepted: 01/06/2013] [Indexed: 01/23/2023]
Abstract
Mechanical loading of bone and cartilage in vivo results in the generation of cyclic hydrostatic forces as bone compression is transduced to fluid pressure in the canalicular network and the joint synovium. It has therefore been suggested that hydrostatic pressure is an important stimulus by which osteochondral cells and their progenitors sense and respond to mechanical loading in vivo. In this study, hydrostatic pressure regimes of 0-279kPa at 0.005-2Hz were applied to organotypically cultured ex vivo chick foetal femurs (e11) for 1hour per day in a custom designed bioreactor for 14days and bone formation assessed by X-ray microtomography and qualified by histology. We found that the mineralised portion of the developing femur cultured under any cyclic hydrostatic pressure regime was significantly larger and/or denser than unstimulated controls but that constant (non-cycling) hydrostatic pressure had no effect on bone growth. Further experiments showed that the increase in bone formation was directly proportional to stimulation frequency (R(2)=0.917), but independent of the magnitude of the pressure applied, whilst even very low frequencies of stimulation (0.005Hz) had significant effects on bone growth. Expression of Type-II collagen in both epiphyses and diaphysis was significantly upregulated (1.48-fold and 1.95-fold respectively), together with osteogenic genes (osteonectin and osteopontin) and the osteocyte maturation marker CD44. This work demonstrates that cyclic hydrostatic pressure promotes bone growth and mineralisation in a developmental model and supports the hypothesis that hydrostatic forces play an important role in regulating bone growth and remodelling in vivo.
Collapse
Affiliation(s)
- J R Henstock
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, ST4 7QB, UK.
| | | | | | | |
Collapse
|
141
|
Silvent J, Nassif N, Helary C, Azaïs T, Sire JY, Guille MMG. Collagen osteoid-like model allows kinetic gene expression studies of non-collagenous proteins in relation with mineral development to understand bone biomineralization. PLoS One 2013; 8:e57344. [PMID: 23460841 PMCID: PMC3583827 DOI: 10.1371/journal.pone.0057344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/21/2013] [Indexed: 01/14/2023] Open
Abstract
Among persisting questions on bone calcification, a major one is the link between protein expression and mineral deposition. A cell culture system is here proposed opening new integrative studies on biomineralization, improving our knowledge on the role played by non-collagenous proteins in bone. This experimental in vitro model consisted in human primary osteoblasts cultured for 60 days at the surface of a 3D collagen scaffold mimicking an osteoid matrix. Various techniques were used to analyze the results at the cellular and molecular level (adhesion and viability tests, histology and electron microscopy, RT- and qPCR) and to characterize the mineral phase (histological staining, EDX, ATG, SAED and RMN). On long term cultures human bone cells seeded on the osteoid-like matrix displayed a clear osteoblast phenotype as revealed by the osteoblast-like morphology, expression of specific protein such as alkaline phosphatase and expression of eight genes classically considered as osteoblast markers, including BGLAP, COL1A1, and BMP2. Von Kossa and alizarine red allowed us to identify divalent calcium ions at the surface of the matrix, EDX revealed the correct Ca/P ratio, and SAED showed the apatite crystal diffraction pattern. In addition RMN led to the conclusion that contaminant phases were absent and that the hydration state of the mineral was similar to fresh bone. A temporal correlation was established between quantified gene expression of DMP1 and IBSP, and the presence of hydroxyapatite, confirming the contribution of these proteins to the mineralization process. In parallel a difference was observed in the expression pattern of SPP1 and BGLAP, which questioned their attributed role in the literature. The present model opens new experimental possibilities to study spatio-temporal relations between bone cells, dense collagen scaffolds, NCPs and hydroxyapatite mineral deposition. It also emphasizes the importance of high collagen density environment in bone cell physiology.
Collapse
Affiliation(s)
- Jérémie Silvent
- UMR 7574, Chimie de la Matière Condensée de Paris, Ecole Pratique des Hautes Etudes, Université Pierre et Marie Curie, Paris, France
- UMR 7138, Equipe Evolution et développement du squelette, Université Pierre et Marie Curie, Paris, France
| | - Nadine Nassif
- UMR 7574, Chimie de la Matière Condensée de Paris, Ecole Pratique des Hautes Etudes, Université Pierre et Marie Curie, Paris, France
| | - Christophe Helary
- UMR 7574, Chimie de la Matière Condensée de Paris, Ecole Pratique des Hautes Etudes, Université Pierre et Marie Curie, Paris, France
| | - Thierry Azaïs
- UMR 7574, Chimie de la Matière Condensée de Paris, Ecole Pratique des Hautes Etudes, Université Pierre et Marie Curie, Paris, France
| | - Jean-Yves Sire
- UMR 7138, Equipe Evolution et développement du squelette, Université Pierre et Marie Curie, Paris, France
| | - Marie Madeleine Giraud Guille
- UMR 7574, Chimie de la Matière Condensée de Paris, Ecole Pratique des Hautes Etudes, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
142
|
Supronowicz P, Gill E, Trujillo A, Thula T, Zhukauskas R, Perry R, Cobb RR. Multipotent adult progenitor cell-loaded demineralized bone matrix for bone tissue engineering. J Tissue Eng Regen Med 2013; 10:275-83. [PMID: 23413005 DOI: 10.1002/term.1706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 11/28/2012] [Accepted: 12/20/2012] [Indexed: 11/10/2022]
Abstract
Multipotent adult progenitor cells (MAPCs) from bone marrow have been shown to be capable of forming bone, cartilage and other connective tissues. In addition, MAPCs differentiate into lineages that are different from their germ layers of origin. Previous studies showed the ability of MAPCs to improve cardiac function and control allogenic-reactive responses associated with acute graft versus host disease. In the current study, we evaluated the ability of MAPCs to produce bone matrix on demineralized bone allograft substrates. Specifically, MAPCs expressed alkaline phosphatase, produced extracellular matrix proteins and deposited calcium-containing mineral on demineralized bone matrices. Furthermore, the addition of MAPCs on demineralized bone matrix (DBM) scaffolds enhanced osteoinductivity of the carrier in a rat ectopic pouch model. These results demonstrated the potential of MAPCs as a new approach for bone repair in tissue-engineering applications.
Collapse
Affiliation(s)
- Peter Supronowicz
- Biotechnology Development Department, RTI Biologics, Alachua, FL, USA
| | - Elise Gill
- Biotechnology Development Department, RTI Biologics, Alachua, FL, USA
| | - Angelica Trujillo
- Biotechnology Development Department, RTI Biologics, Alachua, FL, USA
| | - Taili Thula
- Biotechnology Development Department, RTI Biologics, Alachua, FL, USA
| | | | | | - Ronald R Cobb
- Biotechnology Development Department, RTI Biologics, Alachua, FL, USA
| |
Collapse
|
143
|
Development of collagen/demineralized bone powder scaffolds and periosteum-derived cells for bone tissue engineering application. Int J Mol Sci 2013; 14:2056-71. [PMID: 23337204 PMCID: PMC3565365 DOI: 10.3390/ijms14012056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate physical and biological properties of collagen (COL) and demineralized bone powder (DBP) scaffolds for bone tissue engineering. DBP was prepared and divided into three groups, based on various particle sizes: 75-125 µm, 125-250 µm, and 250-500 µm. DBP was homogeneously mixed with type I collagen and three-dimensional scaffolds were constructed, applying chemical crosslinking and lyophilization. Upon culture with human periosteum-derived cells (PD cells), osteogenic differentiation of PD cells was investigated using alkaline phosphatase (ALP) activity and calcium assay kits. The physical properties of the COL/DBP scaffolds were obviously different from COL scaffolds, irrespective of the size of DBP. In addition, PD cells cultured with COL scaffolds showed significantly higher cell adhesion and proliferation than those with COL/DBP scaffolds. In contrast, COL/DBP scaffolds exhibited greater osteoinductive potential than COL scaffolds. The PD cells with COL/DBP scaffolds possessed higher ALP activity than those with COL scaffolds. PD cells cultured with COL/DBP scaffolds with 250-500 mm particle size yielded the maximum calcium deposition. In conclusion, PD cells cultured on the scaffolds could exhibit osteoinductive potential. The composite scaffold of COL/DBP with 250-500 mm particle size could be considered a potential bone tissue engineering implant.
Collapse
|
144
|
Guo Y, Zhang CQ, Zeng QC, Li RX, Liu L, Hao QX, Shi CH, Zhang XZ, Yan YX. Mechanical strain promotes osteoblast ECM formation and improves its osteoinductive potential. Biomed Eng Online 2012; 11:80. [PMID: 23098360 PMCID: PMC3502495 DOI: 10.1186/1475-925x-11-80] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) provides a supportive microenvironment for cells, which is suitable as a tissue engineering scaffold. Mechanical stimulus plays a significant role in the fate of osteoblast, suggesting that it regulates ECM formation. Therefore, we investigated the influence of mechanical stimulus on ECM formation and bioactivity. METHODS Mouse osteoblastic MC3T3-E1 cells were cultured in cell culture dishes and stimulated with mechanical tensile strain. After removing the cells, the ECMs coated on dishes were prepared. The ECM protein and calcium were assayed and MC3T3-E1 cells were re-seeded on the ECM-coated dishes to assess osteoinductive potential of the ECM. RESULTS The cyclic tensile strain increased collagen, bone morphogenetic protein 2 (BMP-2), BMP-4, and calcium levels in the ECM. Compared with the ECM produced by unstrained osteoblasts, those of mechanically stimulated osteoblasts promoted alkaline phosphatase activity, elevated BMP-2 and osteopontin levels and mRNA levels of runt-related transcriptional factor 2 (Runx2) and osteocalcin (OCN), and increased secreted calcium of the re-seeded MC3T3-E1 cells. CONCLUSION Mechanical strain promoted ECM production of osteoblasts in vitro, increased BMP-2/4 levels, and improved osteoinductive potential of the ECM. This study provided a novel method to enhance bioactivity of bone ECM in vitro via mechanical strain to osteoblasts.
Collapse
Affiliation(s)
- Yong Guo
- Academy of Military Medical Science, Tianjin Institute of Medical Equipment, No 106 Wandong Road, Hedong District, Tianjin, 300161, China
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Gu Q, Cai Y, Huang C, Shi Q, Yang H. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacogn Mag 2012; 8:202-8. [PMID: 23060694 PMCID: PMC3466455 DOI: 10.4103/0973-1296.99285] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/12/2011] [Accepted: 08/02/2012] [Indexed: 12/31/2022] Open
Abstract
Background: Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (turmeric) and has effects on bone health and fat formation. The bone marrow mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into osteoblasts and adipocytes. Osteoblast differentiation of MSCs can be a result of upregulation of heme oxygenase (HO)-1 expression. Curcumin can potently induce HO-1 expression. Objective: The present study describes the effects of curcumin on rat MSC (rMSCs) differentiation into osteoblasts and adipocytes. Materials and Methods: Rat bone marrow MSCs were isolated and treated with or without curcumin. Osteoblast differentiation was confirmed and determined by alkaline phosphatase (ALP) activity, mineralized nodule formation, the expression of Runx2 (runt-related transcription factor 2) and osteocalcin. Adipocyte differentiation was determined by Oil red O staining and the expression of peroxisome proliferator-activated receptor-γ 2 (PPARγ2) and CCAAT/enhancer-binding protein (C/EBP) α. Results: Curcumin increased ALP activity and osteoblast-specific mRNA expression of Runx2 and osteocalcin when rMSCs were cultured in osteogenic medium. In contrast, curcumin decreased adipocyte differentiation and inhibited adipocyte-specific mRNA expression of PPARγ2 and C/EBPα when rMSCs were cultured in adipogenic medium. HO-1 expression was increased during osteogenic differentiation of rMSCs. Conclusions: These findings demonstrate that curcumin can promote osteogenic differentiation of rMSCs and inhibit adipocyte formation. The effect of curcumin on osteogenic differentiation of rMSCs is correlated with HO-1 expression.
Collapse
Affiliation(s)
- Qiaoli Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu- 215006, People's Republic of China
| | | | | | | | | |
Collapse
|
146
|
An SH, Matsumoto T, Miyajima H, Nakahira A, Kim KH, Imazato S. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. Dent Mater 2012; 28:1221-31. [PMID: 23018082 DOI: 10.1016/j.dental.2012.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 09/04/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Highly porous apatite-based bioceramic scaffolds have been widely investigated as three-dimensional (3D) templates for cell adhesion, proliferation, and differentiation promoting the bone regeneration. Their fragility, however, limits their clinical application especially for a large bone defect. METHODS To address the hypothesis that using a ZrO(2)/hydroxyapatite (HAp) composite might improve both the mechanical properties and cellular compatibility of the porous material, we fabricated ZrO(2)/HAp composite scaffolds with different ZrO(2)/HAp ratios, and evaluated their characteristics. In addition, porous ZrO(2)/HAp scaffolds containing bone marrow derived stromal cells (BMSCs) were implanted into critical-size bone defects for 6 weeks in order to evaluate the bone tissue reconstruction with this material. RESULTS The porosity of a ZrO(2)/HAp scaffold can be adjusted from 72% to 91%, and the compressive strength of the scaffold increased from 2.5 to 13.8MPa when the ZrO(2) content increased from 50 to 100wt%. The cell adhesion and proliferation in the ZrO(2)/HAp scaffold was greatly improved when compared to the scaffold made with ZrO(2) alone. Moreover, in vivo study showed that a BMSCs-loaded ZrO(2)/HAp scaffold provided a suitable 3D environment for BMSC survival and enhanced bone regeneration around the implanted material. SIGNIFICANCE We thus showed that a porous ZrO(2)/HAp composite scaffold has excellent mechanical properties, and cellular/tissue compatibility, and would be a promising substrate to achieve both bone reconstruction and regeneration needed in the treatment of large bone defects.
Collapse
Affiliation(s)
- Sang-Hyun An
- Department of Biomaterials Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
147
|
Evans ND, Swain RJ, Gentleman E, Gentleman MM, Stevens MM. Gene-expression analysis reveals that embryonic stem cells cultured under osteogenic conditions produce mineral non-specifically compared to marrow stromal cells or osteoblasts. Eur Cell Mater 2012; 24:211-23. [PMID: 23007907 PMCID: PMC5833941 DOI: 10.22203/ecm.v024a15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pluripotent cells, such as embryonic stem cells (ESCs), divide indefinitely and can differentiate to form mineralised nodules in response to osteogenic supplements. This suggests that they may be used as a cell source for bone replacement strategies. Here, we related the expression of osteogenic and chondrogenic genes in cultures of murine ESCs, marrow stromal cells (MSCs) and calvarial osteoblasts (OBs) cultured under osteogenic conditions to the biochemical composition and quantity of mineral formed. Mineralisation, measured by calcium sequestration, was >2-fold greater in ESC cultures than in either MSCs or OBs. Micro-Raman spectroscopy and spectral mapping revealed a lower mineral-to-matrix ratio and confirmed a more diffuse pattern of mineralisation in ESCs compared to MSCs and OBs. Baseline expression of chondrogenic and osteogenic genes was between 1 and 4 orders of magnitude greater in MSCs and OBs than in ESCs. Osteogenic culture of MSCs and OBs was accompanied by increases in osteogenic gene expression by factors of ~100 compared to only ~10 in ESCs. Consequentially, peak expression of osteogenic and chondrogenic genes was greater in MSCs and OBs than ESCs by factors of 100-1000, despite the fact that mineralisation was more extensive in ESCs than either MSCs or OBs. We also observed significant cell death in ESC nodules. We conclude that the mineralised material observed in cultures of murine ESCs during osteogenic differentiation may accumulate non-specifically, perhaps in necrotic cell layers, and that thorough characterisation of the tissue formed by ESCs must be achieved before these cells can be considered as a cell source for clinical applications.
Collapse
Affiliation(s)
- Nicholas D. Evans
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, UK,Institute of Biomedical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Robin J. Swain
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, UK,Institute of Biomedical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Eileen Gentleman
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, UK,Institute of Biomedical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Molly M. Gentleman
- Mechanical Engineering Department, Texas A&M University, College Station TX 77843, USA
| | - Molly M. Stevens
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, UK,Institute of Biomedical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK,To whom correspondence should be addressed.
Tel: +44 (0)20 7594 6804; Fax: +44 (0)20 7594 6757.
| |
Collapse
|
148
|
Abstract
Porous tantalum is a biomaterial that was recently introduced in orthopedics in order to overcome problems related to implant loosening. It is found to have osteoconductive, and possibly, osteoinductive properties hence useful in difficult cases with severe bone defects. So, it is of great interest to shed light on the mechanisms through which this material leads to new bone formation, after being implanted. Porous tantalum is biologically relatively inert, with restricted bonding capacity to the bone is restricted. In order to overcome this obstacle, it undergoes thermal processing in an alkaline environment. This process leads to extensive hydroxyapatite formation on its surface, and thus, to better integration of porous tantalum implants. Apart from this, new bone tissue formation occurs inside the pores of the porous tantalum after its implantation and this new bone retains the characteristics of the normal bone, that is, bone remodeling and Haversian systems formation. This finding is enhanced by the observation that porous tantalum is an appropriate substrate for osteoblast adherence, proliferation, and differentiation. Furthermore, the finding that osteoblasts derived from old women (> 60 years old) and cultivated on porous tantalum may grow faster than osteoblasts taken from younger women (< 45 years old) and cultivated on other substrates, can partially explain porous tantalum's good performance in cases of patients with severe bone defects. In conclusion, porous tantalum's chemical and mechanical properties are those that probably define the already noticed good performance of this material. However, further research is needed to totally clarify the mechanisms.
Collapse
Affiliation(s)
| | - George A Tsakotos
- Fourth Department of Orthopedics, KAT Hospital, Kifissia, Athens, Greece
| | | | - George A Macheras
- Fourth Department of Orthopedics, KAT Hospital, Kifissia, Athens, Greece
| |
Collapse
|
149
|
Icaritin, an exogenous phytomolecule, enhances osteogenesis but not angiogenesis--an in vitro efficacy study. PLoS One 2012; 7:e41264. [PMID: 22952579 PMCID: PMC3431393 DOI: 10.1371/journal.pone.0041264] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 06/24/2012] [Indexed: 11/25/2022] Open
Abstract
We found that Icaritin, an intestinal metabolite of Epimedium-derived flavonoids (EF) enhanced osteoblastic differentiation of mesenchymal stem cells (MSCs) only under osteogenic induction conditions. We also demonstrated its effect on inhibition of adipogenic differentiation of MSCs. Unlike the findings of others on EF compounds, we showed that Icaritin was unable to promote proliferation, migration and tube like structure formation by human umbilical vein endothelial cells (HUVECs) in vitro. These results suggested that the exogenous phytomolecule Icaritin possessed the potential for enhancing bone formation via its osteopromotive but not an osteoinductive mechanism. Though some flavonoids were shown to regulate the coupling process of angiogenesis and osteogenesis during bone repair, our results suggested that Icaritin did not have direct effect on enhancing angiogenesis in vitro.
Collapse
|
150
|
Marcos-Campos I, Marolt D, Petridis P, Bhumiratana S, Schmidt D, Vunjak-Novakovic G. Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials 2012; 33:8329-42. [PMID: 22901965 DOI: 10.1016/j.biomaterials.2012.08.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/05/2012] [Indexed: 01/25/2023]
Abstract
Decellularized bone has been widely used as a scaffold for bone formation, due to its similarity to the native bone matrix and excellent osteoinductive and biomechanical properties. We have previously shown that human mesenchymal and embryonic stem cells form functional bone matrix on such scaffolds, without the use of growth factors. In this study, we focused on differences in bone matrix that exist even among identical harvesting sites, and the effects of the matrix architecture and mineral content on bone formation by human embryonic stem cells (hESC). Mesenchymal progenitors derived from hESCs were cultured for 5 weeks in decellularized bone scaffolds with three different densities: low (0.281 ± 0.018 mg/mm(3)), medium (0.434 ± 0.015 mg/mm(3)) and high (0.618 ± 0.027 mg/mm(3)). The medium-density group yielded highest densities of cells and newly assembled bone matrix, presumably due to the best balance between the transport of nutrients and metabolites to and from the cells, space for cell infiltration, surface for cell attachment and the mechanical strength of the scaffolds, all of which depend on the scaffold density. Bone mineral was beneficial for the higher expression of bone markers in cultured cells and more robust accumulation of the new bone matrix.
Collapse
Affiliation(s)
- Ivan Marcos-Campos
- Department of Biomedical Engineering, Columbia University, NY 10032, USA
| | | | | | | | | | | |
Collapse
|