101
|
Song SJ, Shin YC, Kim SE, Kwon IK, Lee JH, Hyon SH, Han DW, Kim B. Aligned laminin core-polydioxanone/collagen shell fiber matrices effective for neuritogenesis. Sci Rep 2018; 8:5570. [PMID: 29615798 PMCID: PMC5882927 DOI: 10.1038/s41598-018-23958-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/23/2018] [Indexed: 11/21/2022] Open
Abstract
Neural tissue regeneration is a significant challenge, because severe nerve injury is quite difficult to regenerate spontaneously. Although, many studies have been devoted to promote nerve regeneration, there are still many technical challenges to achieve satisfactory results. In this study, we designed biomimetic matrices composed of aligned laminin core-polydioxanone/collagen shell (Lam-PDO/Col) fibers, which can provide both topographical and biochemical cues for promoting neuritogenesis. The aligned Lam-PDO/Col core-shell fiber matrices were fabricated by magnetic field-assisted electrospinning with the coaxial system, and their potential as biofunctional scaffolds for promoting neuritogenesis was explored. It was demonstrated that the aligned Lam-PDO/Col core-shell fibers were successfully fabricated, and the laminin in the core of fibers was steadily and continuously released from fibers. In addition, the cellular behaviors of hippocampal neuronal cells on the matrices were significantly enhanced. Moreover, the aligned Lam-PDO/Col fiber matrices effectively improved and guided neurite outgrowth as well as the neurogenic differentiation by providing both topographical and biochemical cues through aligned fiber structure and sustained release of laminin. Collectively, it is suggested that the aligned Lam-PDO/Col core-shell fiber matrices are one of the most promising approaches for promoting neuritogenesis and neural tissue regeneration.
Collapse
Affiliation(s)
- Su-Jin Song
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yong Cheol Shin
- Research Center for Energy Convergence Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Sung Eun Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Suong-Hyu Hyon
- Center for Fiber and Textile Science, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Bongju Kim
- Dental Life Science Research Institute, Seoul National University Dental Hospital, Seoul, 03080, Republic of Korea.
| |
Collapse
|
102
|
Wieringa PA, Gonçalves de Pinho AR, Micera S, Wezel RJA, Moroni L. Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies. Adv Healthc Mater 2018; 7:e1701164. [PMID: 29349931 DOI: 10.1002/adhm.201701164] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/13/2017] [Indexed: 12/19/2022]
Abstract
Biofabrication techniques have endeavored to improve the regeneration of the peripheral nervous system (PNS), but nothing has surpassed the performance of current clinical practices. However, these current approaches have intrinsic limitations that compromise patient care. The "gold standard" autograft provides the best outcomes but requires suitable donor material, while implantable hollow nerve guide conduits (NGCs) can only repair small nerve defects. This review places emphasis on approaches that create structural cues within a hollow NGC lumen in order to match or exceed the regenerative performance of the autograft. An overview of the PNS and nerve regeneration is provided. This is followed by an assessment of reported devices, divided into three major categories: isotropic hydrogel fillers, acting as unstructured interluminal support for regenerating nerves; fibrous interluminal fillers, presenting neurites with topographical guidance within the lumen; and patterned interluminal scaffolds, providing 3D support for nerve growth via structures that mimic native PNS tissue. Also presented is a critical framework to evaluate the impact of reported outcomes. While a universal and versatile nerve repair strategy remains elusive, outlined here is a roadmap of past, present, and emerging fabrication techniques to inform and motivate new developments in the field of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Paul A. Wieringa
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht University Universiteitssingel 40 Maastricht 6229 ER The Netherlands
| | - Ana Rita Gonçalves de Pinho
- Tissue Regeneration DepartmentMIRA InstituteUniversity of Twente Drienerlolaan 5 Enschede 7522 NB The Netherlands
| | - Silvestro Micera
- BioRobotics InstituteScuola Superiore Sant'Anna Viale Rinaldo Piaggio 34 Pontedera 56025 Italy
- Translational Neural Engineering LaboratoryEcole Polytechnique Federale de Lausanne Ch. des Mines 9 Geneva CH‐1202 Switzerland
| | - Richard J. A. Wezel
- BiophysicsDonders Institute for BrainCognition and BehaviourRadboud University Kapittelweg 29 Nijmegen 6525 EN The Netherlands
- Biomedical Signals and SystemsMIRA InstituteUniversity of Twente Drienerlolaan 5 Enschede 7522 NB The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht University Universiteitssingel 40 Maastricht 6229 ER The Netherlands
| |
Collapse
|
103
|
Batth A, Thompson I. Nylon as an in vitro
scaffold for three-dimensional study of neural cells. J Biomed Mater Res A 2018; 106:1575-1584. [DOI: 10.1002/jbm.a.36367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Aran Batth
- Division of Tissue Engineering and Biophotonics; Dental Institute, King's College London, Guy's Hospital; London SE1 9RT United Kingdom
| | - Ian Thompson
- Division of Tissue Engineering and Biophotonics; Dental Institute, King's College London, Guy's Hospital; London SE1 9RT United Kingdom
| |
Collapse
|
104
|
Wang L, Lu G, Lu Q, Kaplan DL. Controlling Cell Behavior on Silk Nanofiber Hydrogels with Tunable Anisotropic Structures. ACS Biomater Sci Eng 2018; 4:933-941. [DOI: 10.1021/acsbiomaterials.7b00969] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi 214041, People’s Republic of China
| | | | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
105
|
Lau YT, Kwok LF, Tam KW, Chan YS, Shum DKY, Shea GKH. Genipin-treated chitosan nanofibers as a novel scaffold for nerve guidance channel design. Colloids Surf B Biointerfaces 2018; 162:126-134. [DOI: 10.1016/j.colsurfb.2017.11.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/30/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
|
106
|
Design of Fiber Networks for Studying Metastatic Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:289-318. [DOI: 10.1007/978-3-319-95294-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
107
|
Turetta M, Del Ben F, Brisotto G, Biscontin E, Bulfoni M, Cesselli D, Colombatti A, Scoles G, Gigli G, del Mercato LL. Emerging Technologies for Cancer Research: Towards Personalized Medicine with Microfluidic Platforms and 3D Tumor Models. Curr Med Chem 2018; 25:4616-4637. [PMID: 29874987 PMCID: PMC6302350 DOI: 10.2174/0929867325666180605122633] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/24/2017] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
In the present review, we describe three hot topics in cancer research such as circulating tumor cells, exosomes, and 3D environment models. The first section is dedicated to microfluidic platforms for detecting circulating tumor cells, including both affinity-based methods that take advantage of antibodies and aptamers, and "label-free" approaches, exploiting cancer cells physical features and, more recently, abnormal cancer metabolism. In the second section, we briefly describe the biology of exosomes and their role in cancer, as well as conventional techniques for their isolation and innovative microfluidic platforms. In the third section, the importance of tumor microenvironment is highlighted, along with techniques for modeling it in vitro. Finally, we discuss limitations of two-dimensional monolayer methods and describe advantages and disadvantages of different three-dimensional tumor systems for cell-cell interaction analysis and their potential applications in cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Loretta L. del Mercato
- Address correspondence to this author at the CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy; E-mail:
| |
Collapse
|
108
|
Lin C, Liu C, Zhang L, Huang Z, Zhao P, Chen R, Pang M, Chen Z, He L, Luo C, Rong L, Liu B. Interaction of iPSC-derived neural stem cells on poly(L-lactic acid) nanofibrous scaffolds for possible use in neural tissue engineering. Int J Mol Med 2017; 41:697-708. [PMID: 29207038 PMCID: PMC5752187 DOI: 10.3892/ijmm.2017.3299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering is a rapidly growing technological area for the regeneration and reconstruction of damage to the central nervous system. By combining seed cells with appropriate biomaterial scaffolds, tissue engineering has the ability to improve nerve regeneration and functional recovery. In the present study, mouse induced pluripotent stem cells (iPSCs) were generated from mouse embryonic fibroblasts (MEFs) with the non-integrating episomal vectors pCEP4-EO2S-ET2K and pCEP4-miR-302-367 cluster, and differentiated into neural stem cells (NSCs) as transplanting cells. Electrospinning was then used to fabricate randomly oriented poly(L-lactic acid) (PLLA) nanofibers and aligned PLLA nanofibers and assessed their cytocompatibility and neurite guidance effect with iPSC-derived NSCs (iNSCs). The results demonstrated that non-integrated iPSCs were effectively generated and differentiated into iNSCs. PLLA nanofiber scaffolds were able to promote the adhesion, growth, survival and proliferation of the iNSCs. Furthermore, compared with randomly oriented PLLA nanofibers, the aligned PLLA nanofibers greatly directed neurite outgrowth from the iNSCs and significantly promoted neurite growth along the nanofibrous alignment. Overall, these findings indicate the feasibility of using PLLA nanofiber scaffolds in combination with iNSCs in vitro and support their potential for use in nerve tissue engineering.
Collapse
Affiliation(s)
- Chengkai Lin
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Chang Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhi Huang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Peipei Zhao
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ruiqiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhenxiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Liumin He
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chunxiao Luo
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
109
|
Shin YM, Shin HJ, Yang DH, Koh YJ, Shin H, Chun HJ. Advanced capability of radially aligned fibrous scaffolds coated with polydopamine for guiding directional migration of human mesenchymal stem cells. J Mater Chem B 2017; 5:8725-8737. [PMID: 32264266 DOI: 10.1039/c7tb01758h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In a large tissue defect, faster migration of adjacent tissue toward the defect shortens the tissue regeneration time. Little has been explored on guiding of directional migration from all fronts of the defect boundary towards the center in tissue engineering. This paper demonstrates the effect of radially aligned fibrous scaffolds (RAFSs) coated with polydopamine in order to guide directional migration of human mesenchymal stem cells (hMSCs). RAFSs were electrospun using a collector with a set of electrodes, each constructed with a metallic ring and a point. The polydopamine was then coated by dipping the scaffolds in a dopamine solution (PD-RAFS). The RAFSs exhibited radial distribution of the fibers from the peripheral region toward the center, and polydopamine was uniformly coated over the entire surface by presenting characteristics of the aromatic ring from dopamine. When hMSCs were seeded on the scaffolds, cells grew in an elongated form toward the center along the fiber direction. In particular, the polydopamine coating improved adhesion and spreading of hMSCs on the scaffolds while preserving initial cell orientation. The hMSCs migrated toward the center of the scaffolds at the border of the seeded area; it was enhanced in the order of PD-RAFS > RAFS > random fibrous scaffolds. Therefore, PD-RAFSs can be utilized as an alternate scaffold that can lead to fast and directional migration of cells for finally facilitating tissue regeneration.
Collapse
Affiliation(s)
- Young Min Shin
- Institute of Cell & Tissue Engineering, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
110
|
Kim D, Kim SM, Lee S, Yoon MH. Investigation of neuronal pathfinding and construction of artificial neuronal networks on 3D-arranged porous fibrillar scaffolds with controlled geometry. Sci Rep 2017; 7:7716. [PMID: 28798490 PMCID: PMC5552865 DOI: 10.1038/s41598-017-08231-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
Herein, we investigated the neurite pathfinding on electrospun microfibers with various fiber densities, diameters, and microbead islands, and demonstrated the development of 3D connected artificial neuronal network within a nanofiber-microbead-based porous scaffold. The primary culture of rat hippocampal embryonic neurons was deposited on geometry-controlled polystyrene (PS) fiber scaffolds while growth cone morphology, neurite outgrowth patterns, and focal adhesion protein expression were cautiously examined by microscopic imaging of immunostained and live neuronal cells derived from actin-GFP transgenic mice. It was demonstrated that the neurite outgrowth was guided by the overall microfiber orientation, but the increase in fiber density induced the neurite path alteration, thus, the reduction in neurite linearity. Indeed, we experimentally confirmed that growth cone could migrate to a neighboring, but, spatially disconnected microfiber by spontaneous filopodium extrusion, which is possibly responsible for the observed neurite steering. Furthermore, thinner microfiber scaffolds showed more pronounced expression of focal adhesion proteins than thicker ones, suggesting that the neuron-microfiber interaction can be delicately modulated by the underlying microfiber geometry. Finally, 3D connected functional neuronal networks were successfully constructed using PS nanofiber-microbead scaffolds where enhanced porosity and vertical fiber orientation permitted cell body inclusion within the scaffold and substantial neurite outgrowth in a vertical direction, respectively.
Collapse
Affiliation(s)
- Dongyoon Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seong-Min Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seyeong Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
- Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
111
|
Bandegi A, Moghbeli MR. Effect of solvent quality and humidity on the porous formation and oil absorbency of SAN electrospun nanofibers. J Appl Polym Sci 2017. [DOI: 10.1002/app.45586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alireza Bandegi
- Smart Polymers and Nanocomposites Research Group; School of Chemical Engineering, Iran University of Science and Technology; Tehran 16846 − 13114 Iran
| | - Mohammad Reza Moghbeli
- Smart Polymers and Nanocomposites Research Group; School of Chemical Engineering, Iran University of Science and Technology; Tehran 16846 − 13114 Iran
| |
Collapse
|
112
|
Marcus M, Baranes K, Park M, Choi IS, Kang K, Shefi O. Interactions of Neurons with Physical Environments. Adv Healthc Mater 2017. [PMID: 28640544 DOI: 10.1002/adhm.201700267] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nerve growth strongly relies on multiple chemical and physical signals throughout development and regeneration. Currently, a cure for injured neuronal tissue is an unmet need. Recent advances in fabrication technologies and materials led to the development of synthetic interfaces for neurons. Such engineered platforms that come in 2D and 3D forms can mimic the native extracellular environment and create a deeper understanding of neuronal growth mechanisms, and ultimately advance the development of potential therapies for neuronal regeneration. This progress report aims to present a comprehensive discussion of this field, focusing on physical feature design and fabrication with additional information about considerations of chemical modifications. We review studies of platforms generated with a range of topographies, from micro-scale features down to topographical elements at the nanoscale that demonstrate effective interactions with neuronal cells. Fabrication methods are discussed as well as their biological outcomes. This report highlights the interplay between neuronal systems and the important roles played by topography on neuronal differentiation, outgrowth, and development. The influence of substrate structures on different neuronal cells and parameters including cell fate, outgrowth, intracellular remodeling, gene expression and activity is discussed. Matching these effects to specific needs may lead to the emergence of clinical solutions for patients suffering from neuronal injuries or brain-machine interface (BMI) applications.
Collapse
Affiliation(s)
- Michal Marcus
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Koby Baranes
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Matthew Park
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Kyungtae Kang
- Department of Applied Chemistry; Kyung Hee University; Yongin Gyeonggi 17104 Korea
| | - Orit Shefi
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| |
Collapse
|
113
|
Luo H, Li W, Yang Z, Ao H, Xiong G, Zhu Y, Tu J, Wan Y. Preparation of oriented bacterial cellulose nanofibers by flowing medium-assisted biosynthesis and influence of flowing velocity. JOURNAL OF POLYMER ENGINEERING 2017. [DOI: 10.1515/polyeng-2017-0040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Nanofiber alignment in tissue engineering scaffolds is a crucial factor controlling the cell behavior. In this work, we report a facile approach to obtain aligned nanofibers of bacterial cellulose (BC) by forcing the culture medium of bacteria to flow along a fixed direction. The emphasis of this work was placed on the effect of flowing velocity on the alignment of the as-prepared oriented BC (OBC). X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses indicated that the velocity affected the crystallinity and thermal stability of BC while the chemical structure did not change with the velocity. The controllable alignment of BC nanofibers makes them a promising material for the construction of biomimetic scaffolds for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Honglin Luo
- School of Materials Science and Engineering , East China Jiaotong University , Nanchang 330013 , China
- School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Wei Li
- School of Materials Science and Engineering , East China Jiaotong University , Nanchang 330013 , China
| | - Zhiwei Yang
- School of Materials Science and Engineering , East China Jiaotong University , Nanchang 330013 , China
| | - Haiyong Ao
- School of Materials Science and Engineering , East China Jiaotong University , Nanchang 330013 , China
| | - Guangyao Xiong
- School of Materials Science and Engineering , East China Jiaotong University , Nanchang 330013 , China
| | - Yong Zhu
- School of Chemical Engineering , Tianjin University , Tianjin 300072 , China
| | - Junpin Tu
- School of Materials Science and Engineering , East China Jiaotong University , Nanchang 330013 , China
| | - Yizao Wan
- School of Materials Science and Engineering , East China Jiaotong University , Nanchang 330013 , China
- School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
114
|
Du J, Liu J, Yao S, Mao H, Peng J, Sun X, Cao Z, Yang Y, Xiao B, Wang Y, Tang P, Wang X. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater 2017; 55:296-309. [PMID: 28412554 DOI: 10.1016/j.actbio.2017.04.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022]
Abstract
Fibrin plays a crucial role in peripheral nerve regeneration, which could occur spontaneously in the format of longitudinally oriented fibrin cables during the initial stage of nerve regeneration. This fibrin cable can direct migration and proliferation of Schwann cells and axonal regrowth, which is very important to nerve regeneration. In the present study, we prepared a three-dimensional hierarchically aligned fibrin nanofiber hydrogel (AFG) through electrospinning and molecular self-assembly to resemble the architecture and biological function of the native fibrin cable. The AFG displayed a hierarchically aligned topography as well as low elasticity (∼1.5kPa) that were similar to nerve extracellular matrix (ECM) and the native fibrin cable. Rapid, directional cell adhesion and migration of Schwann cells (SCs) and dorsal root ganglions were observed in vitro. The AFG was then used as a potential intraluminal substrate in a bioengineered chitosan tube to bridge a 10-mm-long sciatic nerve gap in rats. We found that the AFG served as a beneficial microenvironment to support SCs cable formation and axonal regrowth within 2weeks. Further histological and morphological analyses as well as electrophysiological and functional examinations were performed after AFG implantation for up to 12weeks. The results from morphological analysis and electrophysiological examination indicated that regenerative outcomes achieved by our developed graft were close to those by an autologous nerve graft, but superior to those by hollow chitosan tubes (hCST) and random fibrin nanofiber hydrogel (RFG). Our results demonstrate that the AFG creates an instructive microenvironment by mimicking the native fibrin cable as well as the oriented and soft features of nerve ECM to accelerate axonal regrowth, thus showing great promising potential for applications in neural regeneration. STATEMENT OF SIGNIFICANCE In peripheral nervous system defect repair, a wide variety of strategies have been proposed for preparing functionalized nerve guidance conduits (NGC) with more complex configurations to obtain optimal repair effects. Longitudinally oriented fibrin cables were reported to form spontaneously during the initial stages of peripheral nerve regeneration in an empty NGC, which can direct the migration and proliferation of Schwann cells and promote axonal regrowth. Therefore, based on the biomimetic idea, we prepared a three-dimensional hierarchically aligned fibrin nanofiber hydrogel (AFG) through electrospinning and molecular self-assembly, resembling the architecture and biological function of the native fibrin cable and serving as an intraluminal filling to accelerate axon regeneration. We found that the AFG was a beneficial microenvironment to support SCs cable formation and accelerate axonal regrowth with improved motor functional recovery.
Collapse
|
115
|
Ziemba AM, Gilbert RJ. Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord. Front Pharmacol 2017; 8:245. [PMID: 28539887 PMCID: PMC5423911 DOI: 10.3389/fphar.2017.00245] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
Affecting approximately 17,000 new people each year, spinal cord injury (SCI) is a devastating injury that leads to permanent paraplegia or tetraplegia. Current pharmacological approaches are limited in their ability to ameliorate this injury pathophysiology, as many are not delivered locally, for a sustained duration, or at the correct injury time point. With this review, we aim to communicate the importance of combinatorial biomaterial and pharmacological approaches that target certain aspects of the dynamically changing pathophysiology of SCI. After reviewing the pathophysiology timeline, we present experimental biomaterial approaches to provide local sustained doses of drug. In this review, we present studies using a variety of biomaterials, including hydrogels, particles, and fibers/conduits for drug delivery. Subsequently, we discuss how each may be manipulated to optimize drug release during a specific time frame following SCI. Developing polymer biomaterials that can effectively release drug to target specific aspects of SCI pathophysiology will result in more efficacious approaches leading to better regeneration and recovery following SCI.
Collapse
Affiliation(s)
| | - Ryan J. Gilbert
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, TroyNY, USA
| |
Collapse
|
116
|
Schaub NJ, D'Amato AR, Mason A, Corr DT, Harmon EY, Lennartz MR, Gilbert RJ. The effect of engineered nanotopography of electrospun microfibers on fiber rigidity and macrophage cytokine production. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1303-1323. [PMID: 28420296 DOI: 10.1080/09205063.2017.1321345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently, it is unknown how the mechanical properties of electrospun fibers, and the presentation of surface nanotopography influence macrophage gene expression and protein production. By further elucidating how specific fiber properties (mechanical properties or surface properties) alter macrophage behavior, it may be possible to create electrospun fiber scaffolds capable of initiating unique cellular and tissue responses. In this study, we determined the elastic modulus and rigidity of fibers with varying topographies created by finely controlling humidity and including a non-solvent during electrospinning. In total,five fiber scaffold types were produced. Analysis of fiber physical properties demonstrated no change in fiber diameter amongst the five different fiber groups. However, the four different fibrous scaffolds with nanopits or divots each possessed different numbers of pits with different nanoscale dimensions. Unpolarized bone marrow derived murine macrophages (M0), macrophages polarized towards a pro-inflammatory phenotype (M1), or macrophages polarized towards anti-inflammatory phenotype (M2b) were placed onto each of the scaffolds and cytokine RNA expression and protein production were analyzed. Specific nanotopographies did not appreciably alter cytokine production from undifferentiated macrophages (M0) or anti-inflammatory macrophages (M2b), but a specific fiber (with many small pits) did increase IL-12 transcript and IL-12 protein production compared to fibers with small divots. When analyzing the mechanical properties between fibers with divots or with many small pits,divoted fibers possessed similar elastic moduli but different stiffness values. In total,we present techniques capable of creating unique electrospun fibers. These unique fibers have varying fiber mechanical characteristics and modestly modulate macrophage cytokine expression.
Collapse
Affiliation(s)
- Nicholas J Schaub
- a Department of Biomedical Engineering , Rensselaer Polytechnic Institute , Troy , NY , USA.,b Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , NY , USA
| | - Anthony R D'Amato
- a Department of Biomedical Engineering , Rensselaer Polytechnic Institute , Troy , NY , USA.,b Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , NY , USA
| | - Andrew Mason
- a Department of Biomedical Engineering , Rensselaer Polytechnic Institute , Troy , NY , USA
| | - David T Corr
- a Department of Biomedical Engineering , Rensselaer Polytechnic Institute , Troy , NY , USA
| | - Erin Y Harmon
- c Department of Regenerative and Cancer Cell Biology , Albany Medical College , Albany , NY , USA
| | - Michelle R Lennartz
- c Department of Regenerative and Cancer Cell Biology , Albany Medical College , Albany , NY , USA
| | - Ryan J Gilbert
- a Department of Biomedical Engineering , Rensselaer Polytechnic Institute , Troy , NY , USA.,b Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , NY , USA
| |
Collapse
|
117
|
Zhang K, Huang D, Yan Z, Wang C. Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering. J Biomed Mater Res A 2017; 105:1900-1910. [PMID: 28256802 DOI: 10.1002/jbm.a.36053] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 11/06/2022]
Abstract
Biomimicing topological structure of natural nerve tissue to direct axon growth and controlling sustained release of moderate neurotrophic factors are extremely propitious to the functional recovery of damaged nervous systems. In this study, the heparin/collagen encapsulating nerve growth factor (NGF) multilayers were coated onto the aligned poly-L-lactide (PLLA) nanofibrous scaffolds via a layer-by-layer (LbL) self-assembly technique to combine biomolecular signals, and physical guidance cues for peripheral nerve regeneration. Scanning electronic microscopy (SEM) revealed that the surface of aligned PLLA nanofibrous scaffolds coated with heparin/collagen multilayers became rougher and appeared some net-like filaments and protuberances in comparison with PLLA nanofibrous scaffolds. The heparin/collagen multilayers did not destroy the alignment of nanofibers. X-ray photoelectron spectroscopy and water contact angles displayed that heparin and collagen were successfully coated onto the aligned PLLA nanofibrous scaffolds and improved its hydrophilicity. Three-dimensional (3 D) confocal microscopy images further demonstrated that collagen, heparin, and NGF were not only coated onto the surface of aligned PLLA nanofibrous scaffolds but also permeated into the inner of scaffolds. Moreover, NGF presented a sustained release for 2 weeks from aligned nanofibrous scaffolds coated with 5.5 bilayers or above and remained good bioactivity. The heparin/collagen encapsulating NGF multilayers coated aligned nanofibrous scaffolds, in particular 5.5 bilayers or above, was more beneficial to Schwann cells (SCs) proliferation and PC12 cells differentiation as well as the SC cytoskeleton and neurite growth along the direction of nanofibrous alignment compared to the aligned PLLA nanofibrous scaffolds. This novel scaffolds combining sustained release of bioactive NGF and aligned nanofibrous topography presented an excellent potential in peripheral nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1900-1910, 2017.
Collapse
Affiliation(s)
- Kuihua Zhang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Dianwu Huang
- College of Civil Engineering and Architecture, Jiaxing University, Jiaxing, 314001, China
| | - Zhiyong Yan
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Chunyang Wang
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
118
|
Santos D, Wieringa P, Moroni L, Navarro X, Valle JD. PEOT/PBT Guides Enhance Nerve Regeneration in Long Gap Defects. Adv Healthc Mater 2017; 6. [PMID: 27973708 DOI: 10.1002/adhm.201600298] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 11/07/2016] [Indexed: 12/21/2022]
Abstract
Development of new nerve guides is required for replacing autologous nerve grafts for the repair of long gap defects after nerve injury. A nerve guide comprised only of electrospun fibers able to bridge a critical (15 mm) nerve gap in a rat animal model is reported for the first time. The nerve conduits are made of poly(ethylene oxide terephthalate) and poly(butylene terephthalate) (PEOT/PBT), a biocompatible copolymer composed of alternating amorphous, hydrophilic poly(ethylene oxide terephthalate), and crystalline, hydrophobic poly(butylene terephthalate) segments. These guides show suitable mechanical properties, high porosity, and fibers aligned in the longitudinal axis of the guide. In vitro studies show that both neurites and Schwann cells exhibit growth alignment with PA fibers. In vivo studies reveal that, after rat sciatic nerve transection and repair with PEOT/PBT guides, axons grow occupying a larger area compared to silicone tubes. Moreover, after repair of limiting (10 mm) and critical (15 mm) nerve gaps, PEOT/PBT guides significantly increase the percentage of regenerated nerves, the number of regenerated myelinated axons, and improve motor, sensory, and autonomic reinnervation in both gaps. This nerve conduit design combines the properties of PEOT/PBT with electrospun structure, demonstrating that nerve regeneration through long gaps can be achieved through the design of instructive biomaterial constructs.
Collapse
Affiliation(s)
- Daniel Santos
- Institute of Neurosciences; Department of Cell Biology; Physiology and Immunology; Universitat Autònoma de Barcelona, and CIBERNED; 08193 Bellaterra Spain
| | - Paul Wieringa
- Department of Complex Tissue Regeneration; MERLN Institute; Maastricht University; 6229 ER Maastricht The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration; MERLN Institute; Maastricht University; 6229 ER Maastricht The Netherlands
| | - Xavier Navarro
- Institute of Neurosciences; Department of Cell Biology; Physiology and Immunology; Universitat Autònoma de Barcelona, and CIBERNED; 08193 Bellaterra Spain
| | - Jaume Del Valle
- Institute of Neurosciences; Department of Cell Biology; Physiology and Immunology; Universitat Autònoma de Barcelona, and CIBERNED; 08193 Bellaterra Spain
| |
Collapse
|
119
|
Jalili-Firoozinezhad S, Mohamadzadeh Moghadam MH, Ghanian MH, Ashtiani MK, Alimadadi H, Baharvand H, Martin I, Scherberich A. Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications. RSC Adv 2017. [DOI: 10.1039/c7ra06178a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we report a facile method to generate electrically conductive nanofibers by coating and subsequently chemically reducing graphene oxide (GO) liquid crystals on a polycaprolactone (PCL) mat.
Collapse
Affiliation(s)
| | | | - Mohammad Hossein Ghanian
- Department of Stem Cells and Developmental Biology
- Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
| | - Mohammad Kazemi Ashtiani
- Department of Stem Cells and Developmental Biology
- Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
| | - Hossein Alimadadi
- Center for Electron Nanoscopy
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology
- Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
| | - Ivan Martin
- Department of Biomedicine
- University Hospital Basel
- University of Basel
- CH-4031 Basel
- Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine
- University Hospital Basel
- University of Basel
- CH-4031 Basel
- Switzerland
| |
Collapse
|
120
|
Alaribe FN, Manoto SL, Motaung SCKM. Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0056] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
121
|
Electrical stimulation inhibits cytosine arabinoside-induced neuronal death by preventing apoptosis in dorsal root ganglion neurons. Neuroreport 2016; 27:1217-24. [PMID: 27603731 DOI: 10.1097/wnr.0000000000000681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The current study aimed to investigate whether electrical stimulation could prevent apoptotic neuronal cell death during treatment with cytosine arabinoside (ara-C). From in-vitro experiments, the effects of electrical stimulation were assessed on neurite fragmentation and neuronal cell death in ara-C-treated dorsal root ganglion (DRG) explants. Ara-C treatment increased neurite fragmentation and neuronal cell death in DRG explants and activated caspase-3 by cleaving it, which could induce apoptosis. Electrical stimulation can significantly reduce neurite fragmentation and neuronal cell death compared with nonelectrically stimulated groups. Furthermore, electrical stimulation inhibited caspase-3 activation and reduced apoptotic neuronal death in DRG explants. It was suggested that the neuroprotective effect of electrical stimulation is likely mediated by the inhibition of caspase-3 activation and therefore the inhibition of apoptosis following ara-C treatment.
Collapse
|
122
|
Johnson CD, D’Amato AR, Gilbert RJ. Electrospun Fibers for Drug Delivery after Spinal Cord Injury and the Effects of Drug Incorporation on Fiber Properties. Cells Tissues Organs 2016; 202:116-135. [PMID: 27701153 PMCID: PMC5067174 DOI: 10.1159/000446621] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2016] [Indexed: 12/20/2022] Open
Abstract
There is currently no cure for individuals with spinal cord injury (SCI). While many promising approaches are being tested in clinical trials, the complexity of SCI limits several of these approaches from aiding complete functional recovery. Several different categories of biomaterials are investigated for their ability to guide axonal regeneration, to deliver proteins or small molecules locally, or to improve the viability of transplanted stem cells. The purpose of this study is to provide a brief overview of SCI, present the different categories of biomaterial scaffolds that direct and guide axonal regeneration, and then focus specifically on electrospun fiber guidance scaffolds. Much like other polymer guidance approaches, electrospun fibers can retain and deliver therapeutic drugs. The experimental section presents new data showing the incorporation of two therapeutic drugs into electrospun poly-L-lactic acid fibers. Two different concentrations of either riluzole or neurotrophin-3 were loaded into the electrospun fibers to examine the effect of drug concentration on the physical characteristics of the fibers (fiber alignment and fiber diameter). Overall, the drugs were successfully incorporated into the fibers and the release was related to the loading concentration. The fiber diameter decreased with the inclusion of the drug, and the decreased diameter was correlated with a decrease in fiber alignment. Subsequently, the study includes considerations for successful incorporation of a therapeutic drug without changing the physical properties of the fibers.
Collapse
Affiliation(s)
- Christopher D.L. Johnson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY. 12180-3590, USA
| | - Anthony R. D’Amato
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY. 12180-3590, USA
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY. 12180-3590, USA
| |
Collapse
|
123
|
Zhang Y, Huang J, Huang L, Liu Q, Shao H, Hu X, Song L. Silk Fibroin-Based Scaffolds with Controlled Delivery Order of VEGF and BDNF for Cavernous Nerve Regeneration. ACS Biomater Sci Eng 2016; 2:2018-2025. [DOI: 10.1021/acsbiomaterials.6b00436] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaopeng Zhang
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jianwen Huang
- Department
of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, P. R. China
| | - Li Huang
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qiangqiang Liu
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Huili Shao
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xuechao Hu
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Lujie Song
- Department
of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, P. R. China
| |
Collapse
|
124
|
Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:425-32. [DOI: 10.1016/j.msec.2016.04.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/20/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023]
|
125
|
Baldassarro VA, Dolci LS, Mangano C, Giardino L, Gualandi C, Focarete ML, Calzà L. In Vitro Testing of Biomaterials for Neural Repair: Focus on Cellular Systems and High-Content Analysis. Biores Open Access 2016; 5:201-11. [PMID: 27588220 PMCID: PMC4991583 DOI: 10.1089/biores.2016.0025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Biomimetic materials are designed to stimulate specific cellular responses at the molecular level. To improve the soundness of in vitro testing of the biological impact of new materials, appropriate cell systems and technologies must be standardized also taking regulatory issues into consideration. In this study, the biological and molecular effects of different scaffolds on three neural systems, that is, the neural cell line SH-SY5Y, primary cortical neurons, and neural stem cells, were compared. The effect of poly(L-lactic acid) scaffolds having different surface geometry (conventional two-dimensional seeding flat surface, random or aligned fibers as semi3D structure) and chemical functionalization (laminin or ECM extract) were studied. The endpoints were defined for efficacy (i.e., neural differentiation and neurite elongation) and for safety (i.e., cell death/survival) using high-content analysis. It is demonstrated that (i) the definition of the biological properties of biomaterials is profoundly influenced by the test system used; (ii) the definition of the in vitro safety profile of biomaterials for neural repair is also influenced by the test system; (iii) cell-based high-content screening may well be successfully used to characterize both the efficacy and safety of novel biomaterials, thus speeding up and improving the soundness of this critical step in material science having medical applications.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Luisa Stella Dolci
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Chiara Mangano
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna , Bologna, Italy
| | - Luciana Giardino
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and National Consortium of Materials, Science, and Technology (INSTM, Bologna RU), University of Bologna , Bologna, Italy
| | - Maria Letizia Focarete
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Chemistry "G. Ciamician" and National Consortium of Materials, Science, and Technology (INSTM, Bologna RU), University of Bologna, Bologna, Italy
| | - Laura Calzà
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| |
Collapse
|
126
|
Placek LM, Keenan TJ, Wren AW. Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics. J Biomater Appl 2016; 31:165-80. [DOI: 10.1177/0885328216651392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24 -xNa2O- xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces.
Collapse
Affiliation(s)
- LM Placek
- Inamori School of Engineering, Alfred University, Alfred, NY, USA
| | - TJ Keenan
- Inamori School of Engineering, Alfred University, Alfred, NY, USA
| | - AW Wren
- Inamori School of Engineering, Alfred University, Alfred, NY, USA
| |
Collapse
|
127
|
Liu C, Kray J, Toomajian V, Chan C. Schwann Cells Migration on Patterned Polydimethylsiloxane Microgrooved Surface. Tissue Eng Part C Methods 2016; 22:644-51. [PMID: 27216726 PMCID: PMC4943468 DOI: 10.1089/ten.tec.2015.0539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/03/2016] [Indexed: 11/13/2022] Open
Abstract
Schwann cells (SCs) aid in nerve repair in the peripheral nervous system, and their ability to migrate into the injury site is critical for nerve regeneration after injury. The majority of studies on SC behavior have focused on SC alignment through contact guidance, rather than migration. The few studies on SC migration primarily investigated the migration of individual cells over several hours with time-lapse microscopy. However, during neural tissue repair, SCs do not migrate as single cells but as a population of cells over physiologically relevant time and length scales. Thus from a practical perspective, there is a need to understand the migration of large populations of SC and the collective guidance cues from the surrounding environment in designing optimal transplantable scaffolds. This study investigates a large population of migrating SCs over a period of 2 weeks on patterned polydimethylsiloxane (PDMS) microgrooved channels of different sizes. Two methods were used to quantify the migration velocity of a large cell population that minimized the confounding effect due to cell proliferation: one based on a leading edge velocity and a second based on a binary velocity. Both approaches showed that the SC population migrated the fastest on the smallest sized microgrooved channels. The insights provided in this study could inform on future designs of transplantable scaffolds for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Chun Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Jeremy Kray
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Victoria Toomajian
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
128
|
Oprych KM, Whitby RLD, Mikhalovsky SV, Tomlins P, Adu J. Repairing Peripheral Nerves: Is there a Role for Carbon Nanotubes? Adv Healthc Mater 2016; 5:1253-71. [PMID: 27027923 DOI: 10.1002/adhm.201500864] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/10/2016] [Indexed: 12/16/2022]
Abstract
Peripheral nerve injury continues to be a major global health problem that can result in debilitating neurological deficits and neuropathic pain. Current state-of-the-art treatment involves reforming the damaged nerve pathway using a nerve autograft. Engineered nerve repair conduits can provide an alternative to the nerve autograft avoiding the inevitable tissue damage caused at the graft donor site. Commercially available nerve repair conduits are currently only considered suitable for repairing small nerve lesions; the design and performance of engineered conduits requires significant improvements to enable their use for repairing larger nerve defects. Carbon nanotubes (CNTs) are an emerging novel material for biomedical applications currently being developed for a range of therapeutic technologies including scaffolds for engineering and interfacing with neurological tissues. CNTs possess a unique set of physicochemical properties that could be useful within nerve repair conduits. This progress report aims to evaluate and consolidate the current literature pertinent to CNTs as a biomaterial for supporting peripheral nerve regeneration. The report is presented in the context of the state-of-the-art in nerve repair conduit design; outlining how CNTs may enhance the performance of next generation peripheral nerve repair conduits.
Collapse
Affiliation(s)
- Karen M. Oprych
- Department of Brain, Repair and Rehabilitation; Institute of Neurology; University College London; Queen Square London WC1N 3BG UK
| | | | - Sergey V. Mikhalovsky
- School of Engineering; Nazarbayev University; Astana 010000 Kazakhstan
- School of Pharmacy and Biomolecular Sciences; University of Brighton; Brighton BN2 4GJ UK
| | | | - Jimi Adu
- School of Pharmacy and Biomolecular Science; University of Brighton; Brighton BN2 4GJ UK
| |
Collapse
|
129
|
Zhang K, Zheng H, Liang S, Gao C. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 2016; 37:131-42. [PMID: 27063493 DOI: 10.1016/j.actbio.2016.04.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED The graphene oxide (GO) has attracted tremendous attention in biomedical fields. In order to combine the unique physicochemical properties of GO nanosheets with topological structure of aligned nanofibrous scaffolds for nerve regeneration, the GO nanosheets were coated onto aligned and aminolyzed poly-l-lactide (PLLA) nanofibrous scaffolds. Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) revealed that the surface of aligned PLLA nanofibers after being coated with GO became rougher than those of the aligned PLLA and aminolyzed PLLA nanofibrous scaffolds. The GO nanosheets did not destroy the alignment of nanofibers. The characterizations of X-ray photoelectron spectroscopy (XPS) and water contact angle displayed that the aligned PLLA nanofibrous scaffolds were introduced with hydrophilic groups such as NH2, COOH, and OH after aminolysis and GO nanosheets coating, showing better hydrophilicity. The GO-coated and aligned PLLA nanofibrous scaffolds significantly promoted Schwann cells (SCs) proliferation with directed cytoskeleton along the nanofibers compared with the aligned PLLA and aminolyzed PLLA nanofibrous scaffolds. These scaffolds also greatly improved the proliferation of rat pheochromocytoma 12 (PC12) cells, and significantly promoted their differentiation and neurite growth along the nanofibrous alignment in the presence of nerve growth factor (NGF). This type of scaffolds with nanofibrous surface topography and GO nanosheets is expected to show better performance in nerve regeneration. STATEMENT OF SIGNIFICANCE Recovery of damaged nerve functions remains a principal clinical challenge in spite of surgical intervention and entubulation. The use of aligned fibrous scaffolds provides suitable microenvironment for nerve cell attachment, proliferation and migration, enhancing the regeneration outcome of nerve tissue. Surface modification is generally required for the synthetic polymeric fibers by laminin, fibronectin and YIGSR peptides to stimulate specific cell functions and neurite outgrowth. Yet these proteins or peptides present the poor processibility, limited availability, and high cost, influencing their application in clinic. In this work, we combined GO nanosheets and topological structure of aligned nanofibrous scaffolds to direct cell migration, proliferation, and differentiation, and to induce neurite outgrowth for nerve regeneration. The GO coating improved several biomedical properties of the aligned PLLA nanofibrous scaffolds including surface roughness, hydrophilicity and promotion of cells/material interactions, which significantly promoted SCs growth and regulated cell orientation, and induced PC12 cells differentiation and neurite growth. The design of this type of structure is of both scientific and technical importance, and possesses broad interest in the fields of biomaterials, tissue engineering and regenerative medicine.
Collapse
|
130
|
Schaub NJ, Johnson CD, Cooper B, Gilbert RJ. Electrospun Fibers for Spinal Cord Injury Research and Regeneration. J Neurotrauma 2016; 33:1405-15. [PMID: 26650778 DOI: 10.1089/neu.2015.4165] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Electrospinning is the process by which a scaffold containing micrometer and nanometer diameter fibers are drawn from a polymer solution or melt using a large voltage gradient between a polymer emitting source and a grounded collector. Ramakrishna and colleagues first investigated electrospun fibers for neural applications in 2004. After this initial study, electrospun fibers are increasingly investigated for neural tissue engineering applications. Electrospun fibers robustly support axonal regeneration within in vivo rodent models of spinal cord injury. These findings suggest the possibility of their eventual use within patients. Indeed, both spinal cord and peripheral nervous system regeneration research over the last several years shows that physical guidance cues induce recovery of limb, respiration, or bladder control in rodent models. Electrospun fibers may be an alternative to the peripheral nerve graft (PNG), because PNG autografts injure the patient and are limited in supply, and allografts risk host rejection. In addition, electrospun fibers can be engineered easily to confront new therapeutic challenges. Fibers can be modified to release therapies locally or can be physically modified to direct neural stem cell differentiation. This review summarizes the major findings and trends in the last decade of research, with a particular focus on spinal cord injury. This review also demonstrates how electrospun fibers can be used to study the central nervous system in vitro.
Collapse
Affiliation(s)
- Nicholas J Schaub
- 1 Center for Biotechnology and Interdisciplinary Studies, Rensselear Polytechnic Institute , Troy, New York.,2 Department of Biomedical Engineering, Rensselear Polytechnic Institute , Troy, New York
| | - Christopher D Johnson
- 1 Center for Biotechnology and Interdisciplinary Studies, Rensselear Polytechnic Institute , Troy, New York.,2 Department of Biomedical Engineering, Rensselear Polytechnic Institute , Troy, New York
| | | | - Ryan J Gilbert
- 1 Center for Biotechnology and Interdisciplinary Studies, Rensselear Polytechnic Institute , Troy, New York.,2 Department of Biomedical Engineering, Rensselear Polytechnic Institute , Troy, New York
| |
Collapse
|
131
|
Bhutto MA, Zhang J, Sun B, El-Hamshary H, Al-Deyab SS, Mo X. Development of poly (L-lactide-co-caprolactone) multichannel nerve conduit with aligned electrospun nanofibers for Schwann cell proliferation. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2015.1099104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
132
|
Liu Q, Huang J, Shao H, Song L, Zhang Y. Dual-factor loaded functional silk fibroin scaffolds for peripheral nerve regeneration with the aid of neovascularization. RSC Adv 2016. [DOI: 10.1039/c5ra22054h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual-factor loaded functional silk fibroin scaffolds enhanced peripheral nerve regeneration with the aid of neovascularization.
Collapse
Affiliation(s)
- Qiangqiang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Jianwen Huang
- Department of Urology
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
- Shanghai 200233
- P. R. China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Lujie Song
- Department of Urology
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
- Shanghai 200233
- P. R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| |
Collapse
|
133
|
Schaub NJ. Electrospun fibers: a guiding scaffold for research and regeneration of the spinal cord. Neural Regen Res 2016; 11:1764-1765. [PMID: 28123416 PMCID: PMC5204228 DOI: 10.4103/1673-5374.194719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nicholas J Schaub
- National Institute of Standards & Technology, Biosystems and Biomaterials Division, Gaithersburg, MD, USA
| |
Collapse
|
134
|
Providing the right cues in nerve guidance conduits: Biofunctionalization versus fiber profile to facilitate oriented neuronal outgrowth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 61:466-72. [PMID: 26838873 DOI: 10.1016/j.msec.2015.12.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/17/2015] [Accepted: 12/28/2015] [Indexed: 01/03/2023]
Abstract
Following peripheral nerve injury, rapid and spatially oriented axonal outgrowth from the proximal nerve stump is required for successful tissue regeneration. Regenerative strategies such as introducing fiber bundles into the nerve guidance conduits improve the directional growth of neurons and Schwann cells. Recently, it has been proposed that fiber profiling increases cell alignment and could accelerate neuronal growth. Here, we evaluate the impact of fiber profiling on the extent of neurite outgrowth in vitro as compared to non-profiled round fibers. We developed novel profiled trilobal poly(lactic acid) (PLA) fibers and systematically tested their potency to support nerve regeneration in vitro. The profiled fibers did not improve neurite outgrowth as compared to the round fibers. Instead, we show that growing neurites are merely guided by the type and quantity of proteins adsorbed on the polymer surface. Together this data has significant implications for in vivo experiments focusing on directional regrowth of severed axons across lesion sites during peripheral nerve regeneration.
Collapse
|
135
|
Koppes RA, Park S, Hood T, Jia X, Abdolrahim Poorheravi N, Achyuta AH, Fink Y, Anikeeva P. Thermally drawn fibers as nerve guidance scaffolds. Biomaterials 2015; 81:27-35. [PMID: 26717246 DOI: 10.1016/j.biomaterials.2015.11.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth.
Collapse
Affiliation(s)
- Ryan A Koppes
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tiffany Hood
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaoting Jia
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Negin Abdolrahim Poorheravi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
136
|
Zuidema JM, Provenza C, Caliendo T, Dutz S, Gilbert RJ. Magnetic NGF-releasing PLLA/iron oxide nanoparticles direct extending neurites and preferentially guide neurites along aligned electrospun microfibers. ACS Chem Neurosci 2015; 6:1781-8. [PMID: 26322376 DOI: 10.1021/acschemneuro.5b00189] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nerve growth factor releasing composite nanoparticles (NGF-cNPs) were developed to direct the extension of neurite outgrowth from dorsal root ganglia (DRG). Iron oxide magnetic nanoparticles were incorporated into poly-l-lactic acid (PLLA) nanoparticles in order to position the NGF-cNPs in a culture dish. Neurites growing from DRG extended toward the NGF released from the NGF-cNPs. DRG were then cultured on aligned PLLA microfibers in the presence of NGF-cNPs, and these biomaterials combined to align DRG neurite extension along one axis and preferentially toward the NGF-cNPs. This combinatorial biomaterial approach shows promise as a strategy to direct the extension of regenerating neurites.
Collapse
Affiliation(s)
- Jonathan M. Zuidema
- Department
of Chemistry and Biochemistry, University of California—San Diego, La Jolla, California 92093, United States
| | | | | | - Silvio Dutz
- Institute
of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, G-Kirchhoff-Str. 2, D-98693 Ilmenau, Germany
- Department
of Nano Biophotonics, Leibniz Institute of Photonic Technology (IPHT), A.-Einstein-Str. 9, D-07745 Jena, Germany
| | | |
Collapse
|
137
|
Liu C, Pyne R, Kim J, Wright NT, Baek S, Chan C. The Impact of Prestretch Induced Surface Anisotropy on Axon Regeneration. Tissue Eng Part C Methods 2015; 22:102-112. [PMID: 26563431 DOI: 10.1089/ten.tec.2015.0328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nerve regeneration after spinal cord injury requires proper axon alignment to bridge the lesion site and myelination to achieve functional recovery. Significant effort has been invested in developing engineering approaches to induce axon alignment with less focus on myelination. Topological features, such as aligned fibers and channels, have been shown to induce axon alignment, but do not enhance axon thickness. We previously demonstrated that surface anisotropy generated through mechanical prestretch induced mesenchymal stem cells to align in the direction of prestretch. In this study, we demonstrate that static prestretch-induced anisotropy promotes dorsal root ganglion (DRG) neurons to extend thicker axon aggregates along the stretched direction and form aligned fascicular-like axon tracts. Moreover, Schwann cells, when cocultured with DRG neurons on the prestretched surface colocalized with the aligned axons and expressed P0 protein, are indicative of myelination of the aligned axons, thereby demonstrating that prestretch-induced surface anisotropy is beneficial in enhancing axon alignment, growth, and myelination.
Collapse
Affiliation(s)
- Chun Liu
- 1 Department of Chemical Engineering and Materials Science, Michigan State University , East Lansing, Michigan
| | - Ryan Pyne
- 1 Department of Chemical Engineering and Materials Science, Michigan State University , East Lansing, Michigan
| | - Jungsil Kim
- 2 Department of Mechanical Engineering & Materials Science, Washington University , Saint Louis, Missouri
| | - Neil Thomas Wright
- 3 Department of Mechanical Engineering, Michigan State University , East Lansing, Michigan
| | - Seungik Baek
- 3 Department of Mechanical Engineering, Michigan State University , East Lansing, Michigan
| | - Christina Chan
- 1 Department of Chemical Engineering and Materials Science, Michigan State University , East Lansing, Michigan.,4 Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
138
|
Sweet L, Kang Y, Czisch C, Witek L, Shi Y, Smay J, Plant GW, Yang Y. Geometrical versus Random β-TCP Scaffolds: Exploring the Effects on Schwann Cell Growth and Behavior. PLoS One 2015; 10:e0139820. [PMID: 26444999 PMCID: PMC4596809 DOI: 10.1371/journal.pone.0139820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 09/17/2015] [Indexed: 12/22/2022] Open
Abstract
Numerous studies have demonstrated that Schwann cells (SCs) play a role in nerve regeneration; however, their role in innervating a bioceramic scaffold for potential application in bone regeneration is still unknown. Here we report the cell growth and functional behavior of SCs on β-tricalcium phosphate (β-TCP) scaffolds arranged in 3D printed-lattice (P-β-TCP) and randomly-porous, template-casted (N-β-TCP) structures. Our results indicate that SCs proliferated well and expressed the phenotypic markers p75LNGFR and the S100-β subunit of SCs as well as displayed growth morphology on both scaffolds, but SCs showed spindle-shaped morphology with a significant degree of SCs alignment on the P-β-TCP scaffolds, seen to a lesser degree in the N-β-TCP scaffold. The gene expressions of nerve growth factor (β-ngf), neutrophin–3 (nt–3), platelet-derived growth factor (pdgf-bb), and vascular endothelial growth factor (vegf-a) were higher at day 7 than at day 14. While no significant differences in protein secretion were measured between these last two time points, the scaffolds promoted the protein secretion at day 3 compared to that on the cell culture plates. These results together imply that the β-TCP scaffolds can support SC cell growth and that the 3D-printed scaffold appeared to significantly promote the alignment of SCs along the struts. Further studies are needed to investigate the early and late stage relationship between gene expression and protein secretion of SCs on the scaffolds with refined characteristics, thus better exploring the potential of SCs to support vascularization and innervation in synthetic bone grafts.
Collapse
Affiliation(s)
- Lauren Sweet
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yunqing Kang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, United States of America
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Christopher Czisch
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| | - Lukasz Witek
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Yang Shi
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jim Smay
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Giles W. Plant
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| | - Yunzhi Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, United States of America
- Department of Materials Science and Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
139
|
Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering. J Biotechnol 2015; 212:71-89. [DOI: 10.1016/j.jbiotec.2015.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 01/13/2023]
|
140
|
Schaub NJ, Le Beux C, Miao J, Linhardt RJ, Alauzun JG, Laurencin D, Gilbert RJ. The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension. PLoS One 2015; 10:e0136780. [PMID: 26340351 PMCID: PMC4560380 DOI: 10.1371/journal.pone.0136780] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.05). Scanning electron microscopy (SEM) of fibers revealed that surface modification changed fiber topography modestly, with DTA modified fibers displaying the roughest surface structure. Degradation of chemically modified fibers revealed no change in fiber diameter in any group over a period of seven days. Unexpectedly, neurites from chick DRG were longest on fibers without surface modification (1651 ± 488 μm) and fibers containing GRGDS (1560 ± 107 μm). Fibers modified with oxygen plasma (1240 ± 143 μm) or DTA (1118 ± 82 μm) produced shorter neurites than the GRGDS or unmodified fibers, but were not statistically shorter than unmodified and GRGDS modified fibers. Fibers modified with AEO (844 ± 151 μm) were significantly shorter than unmodified and GRGDS modified fibers (p<0.05). Based on these results, we conclude that fiber hydrophilic enhancement alone on electrospun PLLA fibers does not enhance neurite outgrowth. Further work must be conducted to better understand why neurite extension was not improved on more hydrophilic fibers, but the results presented here do not recommend hydrophilic surface modification for the purpose of improving neurite extension unless a bioactive ligand is used.
Collapse
Affiliation(s)
- Nicholas J. Schaub
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
| | - Clémentine Le Beux
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, CC 1701, Place E. Bataillon, F-34095 Montpellier cedex 05, France
| | - Jianjun Miao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY, 12180–3590, United States of America
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY, 12180–3590, United States of America
- Department of Biology, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY, 12180–3590, United States of America
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
| | - Johan G. Alauzun
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, CC 1701, Place E. Bataillon, F-34095 Montpellier cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, CC 1701, Place E. Bataillon, F-34095 Montpellier cedex 05, France
| | - Ryan J. Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
| |
Collapse
|
141
|
In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials 2015; 62:66-75. [DOI: 10.1016/j.biomaterials.2015.04.047] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/19/2015] [Accepted: 04/30/2015] [Indexed: 11/23/2022]
|
142
|
Ren T, Yu S, Mao Z, Gao C. A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of Schwann cells. Biomaterials 2015; 56:58-67. [DOI: 10.1016/j.biomaterials.2015.03.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
|
143
|
Pateman CJ, Harding AJ, Glen A, Taylor CS, Christmas CR, Robinson PP, Rimmer S, Boissonade FM, Claeyssens F, Haycock JW. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials 2015; 49:77-89. [DOI: 10.1016/j.biomaterials.2015.01.055] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/21/2014] [Accepted: 01/20/2015] [Indexed: 12/24/2022]
|
144
|
Huang C, Ozdemir T, Xu LC, Butler PJ, Siedlecki CA, Brown JL, Zhang S. The role of substrate topography on the cellular uptake of nanoparticles. J Biomed Mater Res B Appl Biomater 2015; 104:488-95. [PMID: 25939598 DOI: 10.1002/jbm.b.33397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/15/2015] [Accepted: 02/08/2015] [Indexed: 12/12/2022]
Abstract
Improving targeting efficacy has been a central focus of the studies on nanoparticle (NP)-based drug delivery nanocarriers over the past decades. As cells actively sense and respond to the local physical environments, not only the NP design (e.g., size, shape, ligand density, etc.) but also the cell mechanics (e.g., stiffness, spreading, expressed receptors, etc.) affect the cellular uptake efficiency. While much work has been done to elucidate the roles of NP design for cells seeded on a flat tissue culture surface, how the local physical environments of cells mediate uptake of NPs remains unexplored, despite the widely known effect of local physical environments on cellular responses in vitro and disease states in vivo. Here, we report the active responses of human osteosarcoma cells to fibrous substrate topographies and the subsequent changes in the cellular uptake of NPs. Our experiments demonstrate that surface topography modulates cellular uptake efficacy by mediating cell spreading and membrane mechanics. The findings provide a concrete example of the regulative role of the physical environments of cells on cellular uptake of NPs, therefore advancing the rational design of NPs for enhanced drug delivery in targeted cancer therapy.
Collapse
Affiliation(s)
- Changjin Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Tugba Ozdemir
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, 17033
| | - Peter J Butler
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Christopher A Siedlecki
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, 16802.,Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, 17033
| | - Justin L Brown
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802.,Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| |
Collapse
|
145
|
Lorden ER, Levinson HM, Leong KW. Integration of drug, protein, and gene delivery systems with regenerative medicine. Drug Deliv Transl Res 2015; 5:168-86. [PMID: 25787742 PMCID: PMC4382089 DOI: 10.1007/s13346-013-0165-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regenerative medicine has the potential to drastically change the field of health care from reactive to preventative and restorative. Exciting advances in stem cell biology and cellular reprogramming have fueled the progress of this field. Biochemical cues in the form of small molecule drugs, growth factors, zinc finger protein transcription factors and nucleases, transcription activator-like effector nucleases, monoclonal antibodies, plasmid DNA, aptamers, or RNA interference agents can play an important role to influence stem cell differentiation and the outcome of tissue regeneration. Many of these biochemical factors are fragile and must act intracellularly at the molecular level. They require an effective delivery system, which can take the form of a scaffold (e.g., hydrogels and electrospun fibers), carrier (viral and nonviral), nano- and microparticle, or genetically modified cell. In this review, we will discuss the history and current technologies of drug, protein, and gene delivery in the context of regenerative medicine. Next, we will present case examples of how delivery technologies are being applied to promote angiogenesis in nonhealing wounds or prevent angiogenesis in age related macular degeneration. Finally, we will conclude with a brief discussion of the regulatory pathway from bench to bedside for the clinical translation of these novel therapeutics.
Collapse
Affiliation(s)
| | - Howard M. Levinson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
146
|
Handarmin, Tan GJY, Sundaray B, Marcy GT, Goh ELK, Chew SY. Nanofibrous scaffold with incorporated protein gradient for directing neurite outgrowth. Drug Deliv Transl Res 2015; 1:147-60. [PMID: 25788113 DOI: 10.1007/s13346-011-0017-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Concentration gradient of diffusible bioactive chemicals assumes many important roles in regulating cellular behavior. Among the many factors influencing functional recovery after nerve injury, such as topographical and biochemical signals, concentration gradients of neurotrophic factors provide chemotactic cues for neurite outgrowth and targeted renervation. In this study, a concentration gradient of nerve growth factor (NGF, 0-250 μg/ml) was incorporated throughout the thickness of poly(ε-caprolactone)-poly(ethylene glycol) coaxial electrospun nanofibrous scaffolds (∼700 μm thick with ∼800 nm average fiber diameter). The existence of the protein gradient upon protein release was demonstrated using a customized under-agarose-PC12 neurite outgrowth assay. When exposed to scaffolds endowed with NGF concentration gradient (NGF-CG), a significant difference in the percentage of cells bearing neurite outgrowth was observed (7.1 ± 1.9% vs. 0.8 ± 0.3% for cells exposed to high vs. low concentration surface, respectively; p < 0.05). In contrast, no significant difference was observed when cells were exposed to scaffolds that encapsulated a fixed concentration of NGF. Direct culture of PC12 cells on the substrates demonstrated the cytocompatibility and the effect of diffusible NGF gradient on neurite outgrowth. A significant difference in the percentage of cells with neurite extensions was observed when PC12 cells were seeded on NGF-CG scaffolds (21.2 ± 3.6% vs. 10.4 ± 1.3% on high vs. low concentration surface, respectively; p < 0.05). Furthermore, Z-stack confocal microscopy tracking of neurite extensions revealed the chemotatic guidance effect of NGF concentration gradient. Directed and enhanced neurite penetration into the scaffolds towards increasing NGF concentration was observed. In vitro release study indicated that the encapsulated NGF was released in a sustained manner for at least 30 days (80.4 ± 3.6% released). Taken together, this study demonstrates the feasibility of incorporating concentration gradient of diffusible bioactive chemicals in nanofibrous scaffolds via the coaxial electrospinning technique.
Collapse
Affiliation(s)
- Handarmin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, N1.2-B2-20, 62 Nanyang Drive, Singapore, 637459, Singapore
| | | | | | | | | | | |
Collapse
|
147
|
Continual cell deformation induced via attachment to oriented fibers enhances fibroblast cell migration. PLoS One 2015; 10:e0119094. [PMID: 25774792 PMCID: PMC4361054 DOI: 10.1371/journal.pone.0119094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/09/2015] [Indexed: 12/15/2022] Open
Abstract
Fibroblast migration is critical to the wound healing process. In vivo, migration occurs on fibrillar substrates, and previous observations have shown that a significant time lag exists before the onset of granulation tissue. We therefore conducted a series of experiments to understand the impact of both fibrillar morphology and migration time. Substrate topography was first shown to have a profound influence. Fibroblasts preferentially attach to fibrillar surfaces, and orient their cytoplasm for maximal contact with the fiber edge. In the case of en-mass cell migration out of an agarose droplet, fibroblasts on flat surfaces emerged with an enhanced velocity, v = 52μm/h, that decreases to the single cell value, v = 28μm/h within 24 hours and remained constant for at least four days. Fibroblasts emerging on fibrillar surfaces emerged with the single cell velocity, which remained constant for the first 24 hours and then increased reaching a plateau with more than twice the initial velocity within the next three days. The focal adhesions were distributed uniformly in cells on flat surfaces, while on the fibrillar surface they were clustered along the cell periphery. Furthermore, the number of focal adhesions for the cells on the flat surfaces remained constant, while it decreased on the fibrillar surface during the next three days. The deformation of the cell nuclei was found to be 50% larger on the fiber surfaces for the first 24 hours. While the mean deformation remained constant on the flat surface, it increased for the next three days by 24% in cells on fibers. On the fourth day, large actin/myosin fibers formed in cells on fibrillar surfaces only and coincided with a change from the standard migration mechanism involving extension of lamellipodia, and retraction of the rear, to one involving strong contractions oriented along the fibers and centered about the nucleus.
Collapse
|
148
|
Placek LM, Keenan TJ, Laffir F, Coughlan A, Wren AW. Characterization of Y2O3 and CeO2 doped SiO2-SrO-Na2O glasses. BIOMEDICAL GLASSES 2015. [DOI: 10.1515/bglass-2015-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe structural effects of yttrium (Y) and cerium (Ce) are investigated when substituted for sodium (Na) in a 0.52SiO2–0.24SrO–(0.24−x)Na2O–xMO (where x = 0.08; MO = Y2O3 and CeO2) glass series. Network connectivity (NC) was calculated assuming both Y and Ce can act as a network modifier (NC = 2.2) or as a network former (NC up to 2.9). Thermal analysis showed an increase in glass transition temperature (Tg) with increasing Y and Ce content, Y causing the greater increase from the control (Con) at 493∘C to 8 mol% Y (HY) at 660∘C. Vickers hardness (HV) was not significantly different between glasses. 29Si Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR) did not show peak shift with addition of Y, however Ce produced peak broadening and a negative shift in ppm. The addition of 4 mol% Ce in the YCe and LCe glasses shifted the peak from Con at −81.3 ppm to −82.8 ppm and −82.7 ppm respectively; while the HCe glass produced a much broader peak and a shift to −84.8 ppm. High resolution X-ray Photoelectron Spectroscopy for the O 1s spectral line showed the ratio of bridging (BO) to non-bridging oxygens (NBO), BO:NBO,was altered,where Con had a ratio of 0.7, HY decreased to 0.4 and HCe to 0.5.
Collapse
|
149
|
Bean AC, Tuan RS. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. ACTA ACUST UNITED AC 2015; 10:015018. [PMID: 25634427 DOI: 10.1088/1748-6041/10/1/015018] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chondrogenic differentiation of mesenchymal stem cells is strongly influenced by the surrounding chemical and structural milieu. Since the majority of the native cartilage extracellular matrix is composed of nanofibrous collagen fibrils, much of recent cartilage tissue engineering research has focused on developing and utilizing scaffolds with similar nanoscale architecture. However, current literature lacks consensus regarding the ideal fiber diameter, with differences in culture conditions making it difficult to compare between studies. Here, we aimed to develop a more thorough understanding of how cell-cell and cell-biomaterial interactions drive in vitro chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells (MSCs). Electrospun poly(ε-caprolactone) microfibers (4.3 ± 0.8 µm diameter, 90 μm(2) pore size) and nanofibers (440 ± 20 nm diameter, 1.2 μm(2) pore size) were seeded with MSCs at initial densities ranging from 1 × 10(5) to 4 × 10(6) cells cm(-3)-scaffold and cultured under transforming growth factor-β (TGF-β) induced chondrogenic conditions for 3 or 6 weeks. Chondrogenic gene expression, cellular proliferation, as well as sulfated glycosaminoglycan and collagen production were enhanced on microfiber in comparison to nanofiber scaffolds, with high initial seeding densities being required for significant chondrogenic differentiation and extracellular matrix deposition. Both cell-cell and cell-material interactions appear to play important roles in chondrogenic differentiation of MSCs in vitro and consideration of several variables simultaneously is essential for understanding cell behavior in order to develop an optimal tissue engineering strategy.
Collapse
Affiliation(s)
- Allison C Bean
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221 Pittsburgh, PA 15219 USA
| | | |
Collapse
|
150
|
Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures. Sci Rep 2015; 5:7847. [PMID: 25597401 PMCID: PMC4297955 DOI: 10.1038/srep07847] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/16/2014] [Indexed: 01/14/2023] Open
Abstract
Following central nervous system (CNS) injury, activated astrocytes form glial scars, which inhibit axonal regeneration, leading to long-term functional deficits. Engineered nanoscale scaffolds guide cell growth and enhance regeneration within models of spinal cord injury. However, the effects of micro-/nanosize scaffolds on astrocyte function are not well characterized. In this study, a high throughput (HTP) microscale platform was developed to study astrocyte cell behavior on micropatterned surfaces containing 1 μm spacing grooves with a depth of 250 or 500 nm. Significant changes in cell and nuclear elongation and alignment on patterned surfaces were observed, compared to on flat surfaces. The cytoskeleton components (particularly actin filaments and focal adhesions) and nucleus-centrosome axis were aligned along the grooved direction as well. More interestingly, astrocytes on micropatterned surfaces showed enhanced mitochondrial activity with lysosomes localized at the lamellipodia of the cells, accompanied by enhanced adenosine triphosphate (ATP) release and calcium activities. These data indicate that the lysosome-mediated ATP exocytosis and calcium signaling may play an important role in astrocytic responses to substrate topology. These new findings have furthered our understanding of the biomechanical regulation of astrocyte cell–substrate interactions, and may benefit the optimization of scaffold design for CNS healing.
Collapse
|