101
|
Lin J, Sun AR, Li J, Yuan T, Cheng W, Ke L, Chen J, Sun W, Mi S, Zhang P. A Three-Dimensional Co-Culture Model for Rheumatoid Arthritis Pannus Tissue. Front Bioeng Biotechnol 2021; 9:764212. [PMID: 34869276 PMCID: PMC8638776 DOI: 10.3389/fbioe.2021.764212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) co-culture models have closer physiological cell composition and behavior than traditional 2D culture. They exhibit pharmacological effects like in vivo responses, and therefore serve as a high-throughput drug screening model to evaluate drug efficacy and safety in vitro. In this study, we created a 3D co-culture environment to mimic pathological characteristics of rheumatoid arthritis (RA) pannus tissue. 3D scaffold was constructed by bioprinting technology with synovial fibroblasts (MH7A), vascular endothelial cells (EA.hy 926) and gelatin/alginate hydrogels. Cell viability was observed during 7-day culture and the proliferation rate of co-culture cells showed a stable increase stage. Cell-cell interactions were evaluated in the 3D printed scaffold and we found that spheroid size increased with time. TNF-α stimulated MH7A and EA.hy 926 in 3D pannus model showed higher vascular endothelial growth factor (VEGF) and angiopoietin (ANG) protein expression over time. For drug validation, methotrexate (MTX) was used to examine inhibition effects of angiogenesis in 3D pannus co-culture model. In conclusion, this 3D co-culture pannus model with biological characteristics may help the development of anti-RA drug research.
Collapse
Affiliation(s)
- Jietao Lin
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Tianying Yuan
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Jianhai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Shengli Mi
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China
| |
Collapse
|
102
|
Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS. Emerging Technologies in Multi-Material Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104730. [PMID: 34596923 PMCID: PMC8971140 DOI: 10.1002/adma.202104730] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Indexed: 05/09/2023]
Abstract
Bioprinting, within the emerging field of biofabrication, aims at the fabrication of functional biomimetic constructs. Different 3D bioprinting techniques have been adapted to bioprint cell-laden bioinks. However, single-material bioprinting techniques oftentimes fail to reproduce the complex compositions and diversity of native tissues. Multi-material bioprinting as an emerging approach enables the fabrication of heterogeneous multi-cellular constructs that replicate their host microenvironments better than single-material approaches. Here, bioprinting modalities are reviewed, their being adapted to multi-material bioprinting is discussed, and their advantages and challenges, encompassing both custom-designed and commercially available technologies are analyzed. A perspective of how multi-material bioprinting opens up new opportunities for tissue engineering, tissue model engineering, therapeutics development, and personalized medicine is offered.
Collapse
Affiliation(s)
- Hossein Ravanbakhsh
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Vahid Karamzadeh
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3A0G1, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3A0G1, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
103
|
Akter F, Araf Y, Naser IB, Promon SK. Prospect of 3D bioprinting over cardiac cell therapy and conventional tissue engineering in the treatment of COVID-19 patients with myocardial injury. Regen Ther 2021; 18:447-456. [PMID: 34608441 PMCID: PMC8481096 DOI: 10.1016/j.reth.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Due to multiple mutations of SARS-CoV-2, the mystery of defeating the virus is still unknown. Cardiovascular complications are one of the most concerning effects of COVID-19 recently, originating from direct and indirect mechanisms. These complications are associated with long-term Cardio-vascular diseases and can induce sudden cardiac death in both infected and recovered COVID-19 patients. The purpose of this research is to do a competitive analysis between conventional techniques with the upgraded alternative 3D bioprinting to replace the damaged portion of the myocardium. Additionally, this study focuses on the potential of 3D bioprinting to be a novel alternative. Finally, current challenges and future perspective of 3D bioprinting technique is briefly discussed.
Collapse
Affiliation(s)
- Fariya Akter
- Biotechnology Program, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Iftekhar Bin Naser
- Biotechnology Program, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Salman Khan Promon
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Bashundhara, Dhaka, Bangladesh
| |
Collapse
|
104
|
The Effect of Agarose on 3D Bioprinting. Polymers (Basel) 2021; 13:polym13224028. [PMID: 34833327 PMCID: PMC8620953 DOI: 10.3390/polym13224028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/05/2023] Open
Abstract
In three-dimensional (3D) bioprinting, the accuracy, stability, and mechanical properties of the formed structure are very important to the overall composition and internal structure of the complex organ. In traditional 3D bioprinting, low-temperature gelatinization of gelatin is often used to construct complex tissues and organs. However, the hydrosol relies too much on the concentration of gelatin and has limited formation accuracy and stability. In this study, we take advantage of the physical crosslinking of agarose at 35–40 °C to replace the single pregelatinization effect of gelatin in 3D bioprinting, and printing composite gelatin/alginate/agarose hydrogels at two temperatures, i.e., 10 °C and 24 °C, respectively. After in-depth research, we find that the structures manufactured by the pregelatinization method of agarose are significantly more accurate, more stable, and harder than those pregelatined by gelatin. We believe that this research holds the potential to be widely used in the future organ manufacturing fields with high structural accuracy and stability.
Collapse
|
105
|
Zennifer A, Manivannan S, Sethuraman S, Kumbar SG, Sundaramurthi D. 3D bioprinting and photocrosslinking: emerging strategies & future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112576. [DOI: 10.1016/j.msec.2021.112576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
|
106
|
Zhuang P, Chiang YH, Fernanda MS, He M. Using Spheroids as Building Blocks Towards 3D Bioprinting of Tumor Microenvironment. Int J Bioprint 2021; 7:444. [PMID: 34805601 PMCID: PMC8600307 DOI: 10.18063/ijb.v7i4.444] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer still ranks as a leading cause of mortality worldwide. Although considerable efforts have been dedicated to anticancer therapeutics, progress is still slow, partially due to the absence of robust prediction models. Multicellular tumor spheroids, as a major three-dimensional (3D) culture model exhibiting features of avascular tumors, gained great popularity in pathophysiological studies and high throughput drug screening. However, limited control over cellular and structural organization is still the key challenge in achieving in vivo like tissue microenvironment. 3D bioprinting has made great strides toward tissue/organ mimicry, due to its outstanding spatial control through combining both cells and materials, scalability, and reproducibility. Prospectively, harnessing the power from both 3D bioprinting and multicellular spheroids would likely generate more faithful tumor models and advance our understanding on the mechanism of tumor progression. In this review, the emerging concept on using spheroids as a building block in 3D bioprinting for tumor modeling is illustrated. We begin by describing the context of the tumor microenvironment, followed by an introduction of various methodologies for tumor spheroid formation, with their specific merits and drawbacks. Thereafter, we present an overview of existing 3D printed tumor models using spheroids as a focus. We provide a compilation of the contemporary literature sources and summarize the overall advancements in technology and possibilities of using spheroids as building blocks in 3D printed tissue modeling, with a particular emphasis on tumor models. Future outlooks about the wonderous advancements of integrated 3D spheroidal printing conclude this review.
Collapse
Affiliation(s)
- Pei Zhuang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | - Yi-Hua Chiang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | | | - Mei He
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
107
|
Fu Z, Angeline V, Sun W. Evaluation of Printing Parameters on 3D Extrusion Printing of Pluronic Hydrogels and Machine Learning Guided Parameter Recommendation. Int J Bioprint 2021; 7:434. [PMID: 34805600 PMCID: PMC8600308 DOI: 10.18063/ijb.v7i4.434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
Bioprinting is an emerging technology for the construction of complex three-dimensional (3D) constructs used in various biomedical applications. One of the challenges in this field is the delicate manipulation of material properties and various disparate printing parameters to create structures with high fidelity. Understanding the effects of certain parameters and identifying optimal parameters for creating highly accurate structures are therefore a worthwhile subject to investigate. The objective of this study is to investigate high-impact print parameters on the printing printability and develop a preliminary machine learning model to optimize printing parameters. The results of this study will lead to an exploration of machine learning applications in bioprinting and to an improved understanding between 3D printing parameters and structural printability. Reported results include the effects of rheological property, nozzle gauge, nozzle temperature, path height, and ink composition on the printability of Pluronic F127. The developed Support Vector Machine model generated a process map to assist the selection of optimal printing parameters to yield high quality prints with high probability (>75%). Future work with more generalized machine learning models in bioprinting is also discussed in this article. The finding of this study provides a simple tool to improve printability of extrusion-based bioprinting with minimum experimentations.
Collapse
Affiliation(s)
- Zhouquan Fu
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Vincent Angeline
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Wei Sun
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
108
|
Morand du Puch CB, Vanderstraete M, Giraud S, Lautrette C, Christou N, Mathonnet M. Benefits of functional assays in personalized cancer medicine: more than just a proof-of-concept. Am J Cancer Res 2021; 11:9538-9556. [PMID: 34646385 PMCID: PMC8490527 DOI: 10.7150/thno.55954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
As complex and heterogeneous diseases, cancers require a more tailored therapeutic management than most pathologies. Recent advances in anticancer drug development, including the immuno-oncology revolution, have been too often plagued by unsatisfying patient response rates and survivals. In reaction to this, cancer care has fully transitioned to the “personalized medicine” concept. Numerous tools are now available tools to better adapt treatments to the profile of each patient. They encompass a large array of diagnostic assays, based on biomarkers relevant to targetable molecular pathways. As a subfamily of such so-called companion diagnostics, chemosensitivity and resistance assays represent an attractive, yet insufficiently understood, approach to individualize treatments. They rely on the assessment of a composite biomarker, the ex vivo functional response of cancer cells to drugs, to predict a patient's outcome. Systemic treatments, such as chemotherapies, as well as targeted treatments, whose efficacy cannot be fully predicted yet by other diagnostic tests, may be assessed through these means. The results can provide helpful information to assist clinicians in their decision-making process. We explore here the most advanced functional assays across oncology indications, with an emphasis on tests already displaying a convincing clinical demonstration. We then recapitulate the main technical obstacles faced by researchers and clinicians to produce more accurate, and thus more predictive, models and the recent advances that have been developed to circumvent them. Finally, we summarize the regulatory and quality frameworks surrounding functional assays to ensure their safe and performant clinical implementation. Functional assays are valuable in vitro diagnostic tools that already stand beyond the “proof-of-concept” stage. Clinical studies show they have a major role to play by themselves but also in conjunction with molecular diagnostics. They now need a final lift to fully integrate the common armament used against cancers, and thus make their way into the clinical routine.
Collapse
|
109
|
Di Piazza E, Pandolfi E, Cacciotti I, Del Fattore A, Tozzi AE, Secinaro A, Borro L. Bioprinting Technology in Skin, Heart, Pancreas and Cartilage Tissues: Progress and Challenges in Clinical Practice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010806. [PMID: 34682564 PMCID: PMC8535210 DOI: 10.3390/ijerph182010806] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Bioprinting is an emerging additive manufacturing technique which shows an outstanding potential for shaping customized functional substitutes for tissue engineering. Its introduction into the clinical space in order to replace injured organs could ideally overcome the limitations faced with allografts. Presently, even though there have been years of prolific research in the field, there is a wide gap to bridge in order to bring bioprinting from "bench to bedside". This is due to the fact that bioprinted designs have not yet reached the complexity required for clinical use, nor have clear GMP (good manufacturing practices) rules or precise regulatory guidelines been established. This review provides an overview of some of the most recent and remarkable achievements for skin, heart, pancreas and cartilage bioprinting breakthroughs while highlighting the critical shortcomings for each tissue type which is keeping this technique from becoming widespread reality.
Collapse
Affiliation(s)
- Eleonora Di Piazza
- Multifactorial and Complex Disease Research Area, Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (E.D.P.); (A.E.T.)
| | - Elisabetta Pandolfi
- Multifactorial and Complex Disease Research Area, Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (E.D.P.); (A.E.T.)
- Correspondence:
| | - Ilaria Cacciotti
- Engineering Department, Niccolò Cusano University of Rome, INSTM RU, 00166 Rome, Italy;
| | - Andrea Del Fattore
- Genetics and Rare Diseases Research Area, Bone Physiopathology Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Alberto Eugenio Tozzi
- Multifactorial and Complex Disease Research Area, Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (E.D.P.); (A.E.T.)
| | - Aurelio Secinaro
- Clinical Management and Technological Innovations Area, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.S.); (L.B.)
| | - Luca Borro
- Clinical Management and Technological Innovations Area, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.S.); (L.B.)
| |
Collapse
|
110
|
Novel 3D µtissues Mimicking the Fibrotic Stroma in Pancreatic Cancer to Study Cellular Interactions and Stroma-Modulating Therapeutics. Cancers (Basel) 2021; 13:cancers13195006. [PMID: 34638490 PMCID: PMC8508009 DOI: 10.3390/cancers13195006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent and aggressive type of pancreatic cancer with a low 5-year survival rate of only 8%. The cellular arrangement plays a crucial role in PDAC, which is characterized by a highly fibrotic environment around the tumor cells, preventing treatments from reaching their target. For the development of novel drug candidates, it is crucial to mimic this cellular arrangement in a laboratory environment. We successfully developed a reproducible three-dimensional cell culture model that demonstrates the PDAC characteristic arrangement and showed a PDAC relevant gene profile when comparing with the genetic profile of PDAC patients. We finally demonstrated the use of the model for the evaluation of novel anti-fibrotic therapy against PDAC by studying drug-induced reduction of fibrosis in PDAC enabling nanoparticles to penetrate and reach the tumor cells. This model is useful for the evaluation of novel treatments against PDAC in a biologically relevant manner. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor type with low patient survival due to the low efficacy of current treatment options. Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) create a dense fibrotic environment around the tumor cells, preventing therapies from reaching their target. Novel 3D in vitro models are needed that mimic this fibrotic barrier for the development of therapies in a biologically relevant environment. Here, novel PDAC microtissues (µtissues) consisting of pancreatic cancer cell core surrounded by a CAF-laden collagen gel are presented, that is based on the cells own contractility to form a hard-to-penetrate barrier. The contraction of CAFs is demonstrated facilitating the embedding of tumor cells in the center of the µtissue as observed in patients. The µtissues displayed a PDAC-relevant gene expression by comparing their gene profile with transcriptomic patient data. Furthermore, the CAF-dependent proliferation of cancer cells is presented, as well as the suitability of the µtissues to serve as a platform for the screening of CAF-modulating therapies in combination with other (nano)therapies. It is envisioned that these PDAC µtissues can serve as a high-throughput platform for studying cellular interactions in PDAC and for evaluating different treatment strategies in the future.
Collapse
|
111
|
Tomov ML, Perez L, Ning L, Chen H, Jing B, Mingee A, Ibrahim S, Theus AS, Kabboul G, Do K, Bhamidipati SR, Fischbach J, McCoy K, Zambrano BA, Zhang J, Avazmohammadi R, Mantalaris A, Lindsey BD, Frakes D, Dasi LP, Serpooshan V, Bauser-Heaton H. A 3D Bioprinted In Vitro Model of Pulmonary Artery Atresia to Evaluate Endothelial Cell Response to Microenvironment. Adv Healthc Mater 2021; 10:e2100968. [PMID: 34369107 PMCID: PMC8823098 DOI: 10.1002/adhm.202100968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/24/2021] [Indexed: 12/20/2022]
Abstract
Vascular atresia are often treated via transcatheter recanalization or surgical vascular anastomosis due to congenital malformations or coronary occlusions. The cellular response to vascular anastomosis or recanalization is, however, largely unknown and current techniques rely on restoration rather than optimization of flow into the atretic arteries. An improved understanding of cellular response post anastomosis may result in reduced restenosis. Here, an in vitro platform is used to model anastomosis in pulmonary arteries (PAs) and for procedural planning to reduce vascular restenosis. Bifurcated PAs are bioprinted within 3D hydrogel constructs to simulate a reestablished intervascular connection. The PA models are seeded with human endothelial cells and perfused at physiological flow rate to form endothelium. Particle image velocimetry and computational fluid dynamics modeling show close agreement in quantifying flow velocity and wall shear stress within the bioprinted arteries. These data are used to identify regions with greatest levels of shear stress alterations, prone to stenosis. Vascular geometry and flow hemodynamics significantly affect endothelial cell viability, proliferation, alignment, microcapillary formation, and metabolic bioprofiles. These integrated in vitro-in silico methods establish a unique platform to study complex cardiovascular diseases and can lead to direct clinical improvements in surgical planning for diseases of disturbed flow.
Collapse
Affiliation(s)
- Martin L Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Lilanni Perez
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Huang Chen
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Bowen Jing
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Andrew Mingee
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Sahar Ibrahim
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Andrea S Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Gabriella Kabboul
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Katherine Do
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sai Raviteja Bhamidipati
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jordan Fischbach
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Kevin McCoy
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Byron A Zambrano
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, G094J, USA
| | - Reza Avazmohammadi
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Athanasios Mantalaris
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Brooks D Lindsey
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
- School of Electrical and Computer Engineering, Atlanta, GA, 30322, USA
| | - David Frakes
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
- School of Electrical and Computer Engineering, Atlanta, GA, 30322, USA
| | - Lakshmi Prasad Dasi
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Holly Bauser-Heaton
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
- Sibley Heart Center at Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| |
Collapse
|
112
|
Tirumala MG, Anchi P, Raja S, Rachamalla M, Godugu C. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards In Vitro Models and Adverse Outcome Pathways. Front Pharmacol 2021; 12:612659. [PMID: 34566630 PMCID: PMC8458898 DOI: 10.3389/fphar.2021.612659] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Nanotoxicology is an emerging field employed in the assessment of unintentional hazardous effects produced by nanoparticles (NPs) impacting human health and the environment. The nanotoxicity affects the range between induction of cellular stress and cytotoxicity. The reasons so far reported for these toxicological effects are due to their variable sizes with high surface areas, shape, charge, and physicochemical properties, which upon interaction with the biological components may influence their functioning and result in adverse outcomes (AO). Thus, understanding the risk produced by these materials now is an important safety concern for the development of nanotechnology and nanomedicine. Since the time nanotoxicology has evolved, the methods employed have been majorly relied on in vitro cell-based evaluations, while these simple methods may not predict the complexity involved in preclinical and clinical conditions concerning pharmacokinetics, organ toxicity, and toxicities evidenced through multiple cellular levels. The safety profiles of nanoscale nanomaterials and nanoformulations in the delivery of drugs and therapeutic applications are of considerable concern. In addition, the safety assessment for new nanomedicine formulas lacks regulatory standards. Though the in vivo studies are greatly needed, the end parameters used for risk assessment are not predicting the possible toxic effects produced by various nanoformulations. On the other side, due to increased restrictions on animal usage and demand for the need for high-throughput assays, there is a need for developing and exploring novel methods to evaluate NPs safety concerns. The progress made in molecular biology and the availability of several modern techniques may offer novel and innovative methods to evaluate the toxicological behavior of different NPs by using single cells, cell population, and whole organisms. This review highlights the recent novel methods developed for the evaluation of the safety impacts of NPs and attempts to solve the problems that come with risk assessment. The relevance of investigating adverse outcome pathways (AOPs) in nanotoxicology has been stressed in particular.
Collapse
Affiliation(s)
- Mounika Gayathri Tirumala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Susmitha Raja
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
113
|
Xu Q. Human Three-Dimensional Hepatic Models: Cell Type Variety and Corresponding Applications. Front Bioeng Biotechnol 2021; 9:730008. [PMID: 34631680 PMCID: PMC8497968 DOI: 10.3389/fbioe.2021.730008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Owing to retained hepatic phenotypes and functions, human three-dimensional (3D) hepatic models established with diverse hepatic cell types are thought to recoup the gaps in drug development and disease modeling limited by a conventional two-dimensional (2D) cell culture system and species-specific variability in drug metabolizing enzymes and transporters. Primary human hepatocytes, human hepatic cancer cell lines, and human stem cell-derived hepatocyte-like cells are three main hepatic cell types used in current models and exhibit divergent hepatic phenotypes. Primary human hepatocytes derived from healthy hepatic parenchyma resemble in vivo-like genetic and metabolic profiling. Human hepatic cancer cell lines are unlimitedly reproducible and tumorigenic. Stem cell-derived hepatocyte-like cells derived from patients are promising to retain the donor's genetic background. It has been suggested in some studies that unique properties of cell types endue them with benefits in different research fields of in vitro 3D modeling paradigm. For instance, the primary human hepatocyte was thought to be the gold standard for hepatotoxicity study, and stem cell-derived hepatocyte-like cells have taken a main role in personalized medicine and regenerative medicine. However, the comprehensive review focuses on the hepatic cell type variety, and corresponding applications in 3D models are sparse. Therefore, this review summarizes the characteristics of different cell types and discusses opportunities of different cell types in drug development, liver disease modeling, and liver transplantation.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Chinese Medicine, and Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
114
|
Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021; 132:52-82. [PMID: 33716174 PMCID: PMC8433272 DOI: 10.1016/j.actbio.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
There is often a tradeoff between in vitro disease modeling platforms that capture pathophysiologic complexity and those that are amenable to high-throughput fabrication and analysis. However, this divide is closing through the application of a handful of fabrication approaches-parallel fabrication, automation, and flow-driven assembly-to design sophisticated cellular and biomaterial systems. The purpose of this review is to highlight methods for the fabrication of high-throughput biomaterial-based platforms and showcase examples that demonstrate their utility over a range of throughput and complexity. We conclude with a discussion of future considerations for the continued development of higher-throughput in vitro platforms that capture the appropriate level of biological complexity for the desired application. STATEMENT OF SIGNIFICANCE: There is a pressing need for new biomedical tools to study and understand disease. These platforms should mimic the complex properties of the body while also permitting investigation of many combinations of cells, extracellular cues, and/or therapeutics in high-throughput. This review summarizes emerging strategies to fabricate biomimetic disease models that bridge the gap between complex tissue-mimicking microenvironments and high-throughput screens for personalized medicine.
Collapse
Affiliation(s)
- Mackenzie L Grubb
- Department of Biomedical Engineering, University of Virginia, Unites States
| | - Steven R Caliari
- Department of Biomedical Engineering, University of Virginia, Unites States; Department of Chemical Engineering, University of Virginia, Unites States.
| |
Collapse
|
115
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
116
|
Ravanbakhsh H, Bao G, Luo Z, Mongeau LG, Zhang YS. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. ACS Biomater Sci Eng 2021; 7:4009-4026. [PMID: 34510905 DOI: 10.1021/acsbiomaterials.0c01158] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extrusion-based three-dimensional (3D) printing is an emerging technology for the fabrication of complex structures with various biological and biomedical applications. The method is based on the layer-by-layer construction of the product using a printable ink. The material used as the ink should possess proper rheological properties and desirable performances. Composite materials, which are extensively used in 3D printing applications, can improve the printability and offer superior performances for the printed constructs. Herein, we review composite inks with a focus on composite hydrogels. The properties of different additives including fibers and nanoparticles are discussed. The performances of various composite inks in biological and biomedical systems are delineated through analyzing the synergistic effects between the composite ink components. Different applications, including tissue engineering, tissue model engineering, soft robotics, and four-dimensional printing, are selected to demonstrate how 3D-printable composite inks are exploited to achieve various desired functionality. This review finally presents an outlook of future perspectives on the design of composite inks.
Collapse
Affiliation(s)
- Hossein Ravanbakhsh
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States.,Department of Mechanical Engineering, McGill University, Montreal, QC H3A0C3, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A0C3, Canada
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States.,Department of Orthopedics, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Luc G Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A0C3, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
117
|
Yaqub N, Wayne G, Birchall M, Song W. Recent advances in human respiratory epithelium models for drug discovery. Biotechnol Adv 2021; 54:107832. [PMID: 34481894 DOI: 10.1016/j.biotechadv.2021.107832] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
The respiratory epithelium is intimately associated with the pathophysiologies of highly infectious viral contagions and chronic illnesses such as chronic obstructive pulmonary disorder, presently the third leading cause of death worldwide with a projected economic burden of £1.7 trillion by 2030. Preclinical studies of respiratory physiology have almost exclusively utilised non-humanised animal models, alongside reductionistic cell line-based models, and primary epithelial cell models cultured at an air-liquid interface (ALI). Despite their utility, these model systems have been limited by their poor correlation to the human condition. This has undermined the ability to identify novel therapeutics, evidenced by a 15% chance of success for medicinal respiratory compounds entering clinical trials in 2018. Consequently, preclinical studies require new translational efficacy models to address the problem of respiratory drug attrition. This review describes the utility of the current in vivo (rodent), ex vivo (isolated perfused lungs and precision cut lung slices), two-dimensional in vitro cell-line (A549, BEAS-2B, Calu-3) and three-dimensional in vitro ALI (gold-standard and co-culture) and organoid respiratory epithelium models. The limitations to the application of these model systems in drug discovery research are discussed, in addition to perspectives of the future innovations required to facilitate the next generation of human-relevant respiratory models.
Collapse
Affiliation(s)
- Naheem Yaqub
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | - Gareth Wayne
- Novel Human Genetics, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Martin Birchall
- The Ear Institute, Faculty of Brain Sciences, University College London, London WC1X 8EE, UK.
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| |
Collapse
|
118
|
Li W, Wang M, Mille LS, Antonio Robledo J, Huerta V, Uribe T, Cheng F, Li H, Gong J, Ching T, Murphy CA, Lesha A, Hassan S, Woodfield T, Lim KS, Shrike Zhang Y. A Smartphone-Enabled Portable Digital Light Processing 3D Printer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102153. [PMID: 34278618 PMCID: PMC8416928 DOI: 10.1002/adma.202102153] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Indexed: 05/30/2023]
Abstract
3D printing has emerged as an enabling approach in a variety of different fields. However, the bulk volume of printing systems limits the expansion of their applications. In this study, a portable 3D Digital Light Processing (DLP) printer is built based on a smartphone-powered projector and a custom-written smartphone-operated app. Constructs with detailed surface architectures, porous features, or hollow structures, as well as sophisticated tissue analogs, are successfully printed using this platform, by utilizing commercial resins as well as a range of hydrogel-based inks, including poly(ethylene glycol)-diacrylate, gelatin methacryloyl, or allylated gelatin. Moreover, due to the portability of the unique DLP printer, medical implants can be fabricated for point-of-care usage, and cell-laden tissues can be produced in situ, achieving a new milestone for mobile-health technologies. Additionally, the all-in-one printing system described herein enables the integration of the 3D scanning smartphone app to obtain object-derived 3D digital models for subsequent printing. Along with further developments, this portable, modular, and easy-to-use smartphone-enabled DLP printer is anticipated to secure exciting opportunities for applications in resource-limited and point-of-care settings not only in biomedicine but also for home and educational purposes.
Collapse
Affiliation(s)
- Wanlu Li
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Mian Wang
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Luis Santiago Mille
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Juan Antonio Robledo
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Valentín Huerta
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Tlalli Uribe
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Feng Cheng
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Hongbin Li
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jiaxing Gong
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Terry Ching
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Caroline A. Murphy
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedics Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Ami Lesha
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Shabir Hassan
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedics Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedics Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Yu Shrike Zhang
- Division of Engineering Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
119
|
Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D Printing of Pharmaceutical Application: Drug Screening and Drug Delivery. Pharmaceutics 2021; 13:1373. [PMID: 34575448 PMCID: PMC8465948 DOI: 10.3390/pharmaceutics13091373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022] Open
Abstract
Advances in three-dimensional (3D) printing techniques and the development of tailored biomaterials have facilitated the precise fabrication of biological components and complex 3D geometrics over the past few decades. Moreover, the notable growth of 3D printing has facilitated pharmaceutical applications, enabling the development of customized drug screening and drug delivery systems for individual patients, breaking away from conventional approaches that primarily rely on transgenic animal experiments and mass production. This review provides an extensive overview of 3D printing research applied to drug screening and drug delivery systems that represent pharmaceutical applications. We classify several elements required by each application for advanced pharmaceutical techniques and briefly describe state-of-the-art 3D printing technology consisting of cells, bioinks, and printing strategies that satisfy requirements. Furthermore, we discuss the limitations of traditional approaches by providing concrete examples of drug screening (organoid, organ-on-a-chip, and tissue/organ equivalent) and drug delivery systems (oral/vaginal/rectal and transdermal/surgical drug delivery), followed by the introduction of recent pharmaceutical investigations using 3D printing-based strategies to overcome these challenges.
Collapse
Affiliation(s)
- Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China;
| | - Minjun Ahn
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Won-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Kyungbuk, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| |
Collapse
|
120
|
Zhong Z, Balayan A, Tian J, Xiang Y, Hwang HH, Wu X, Deng X, Schimelman J, Sun Y, Ma C, Santos AD, You S, Tang M, Yao E, Shi X, Steinmetz NF, Deng SX, Chen S. Bioprinting of dual ECM scaffolds encapsulating limbal stem/progenitor cells in active and quiescent statuses. Biofabrication 2021; 13:10.1088/1758-5090/ac1992. [PMID: 34330126 PMCID: PMC8716326 DOI: 10.1088/1758-5090/ac1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/30/2021] [Indexed: 01/06/2023]
Abstract
Limbal stem cell deficiency and corneal disorders are among the top global threats for human vision. Emerging therapies that integrate stem cell transplantation with engineered hydrogel scaffolds for biological and mechanical support are becoming a rising trend in the field. However, methods for high-throughput fabrication of hydrogel scaffolds, as well as knowledge of the interaction between limbal stem/progenitor cells (LSCs) and the surrounding extracellular matrix (ECM) are still much needed. Here, we employed digital light processing (DLP)-based bioprinting to fabricate hydrogel scaffolds encapsulating primary LSCs and studied the ECM-dependent LSC phenotypes. The DLP-based bioprinting with gelatin methacrylate (GelMA) or hyaluronic acid glycidyl methacrylate (HAGM) generated microscale hydrogel scaffolds that could support the viability of the encapsulated primary rabbit LSCs (rbLSCs) in culture. Immunocytochemistry and transcriptional analysis showed that the encapsulated rbLSCs remained active in GelMA-based scaffolds while exhibited quiescence in the HAGM-based scaffolds. The primary human LSCs encapsulated within bioprinted scaffolds showed consistent ECM-dependent active/quiescent statuses. Based on these results, we have developed a novel bioprinted dual ECM 'Yin-Yang' model encapsulating LSCs to support both active and quiescent statues. Our findings provide valuable insights towards stem cell therapies and regenerative medicine for corneal reconstruction.
Collapse
Affiliation(s)
- Zheng Zhong
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Alis Balayan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jing Tian
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Henry H. Hwang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaokang Wu
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaoqian Deng
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yazhi Sun
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Chao Ma
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aurelie D. Santos
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaoao Shi
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sophie X. Deng
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
121
|
Tan B, Kuang S, Li X, Cheng X, Duan W, Zhang J, Liu W, Fan Y. Stereotactic technology for 3D bioprinting: from the perspective of robot mechanism. Biofabrication 2021; 13. [PMID: 34315135 DOI: 10.1088/1758-5090/ac1846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Three-dimensional (3D) bioprinting has been widely applied in the field of biomedical engineering because of its rapidly individualized fabrication and precisely geometric designability. The emerging demand for bioprinted tissues/organs with bio-inspired anisotropic property is stimulating new bioprinting strategies. Stereotactic bioprinting is regarded as a preferable strategy for this purpose, which can perform bioprinting at the target position from any desired orientation in 3D space. In this work, based on the motion characteristics analysis of the stacked bioprinting technologies, mechanism configurations and path planning methods for robotic stereotactic bioprinting were investigated and a prototype system based on the double parallelogram mechanism was introduced in detail. Moreover, the influence of the time dimension on stereotactic bioprinting was discussed. Finally, technical challenges and future trends of stereotactic bioprinting within the field of biomedical engineering were summarized.
Collapse
Affiliation(s)
- Baosen Tan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Shaolong Kuang
- Robotics and Micro-Systems Center, Soochow University, Suzhou 215021, People's Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Xiao Cheng
- Applied Technology College of Soochow University, Suzhou 215325, People's Republic of China
| | - Wei Duan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Jinming Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Wenyong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| |
Collapse
|
122
|
3D Printing and Bioprinting to Model Bone Cancer: The Role of Materials and Nanoscale Cues in Directing Cell Behavior. Cancers (Basel) 2021; 13:cancers13164065. [PMID: 34439218 PMCID: PMC8391202 DOI: 10.3390/cancers13164065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone cancer, both primary and metastatic, is characterized by a low survival rate. Currently, available models lack in mimicking the complexity of bone, of cancer, and of their microenvironment, leading to poor predictivity. Three-dimensional technologies can help address this need, by developing predictive models that can recapitulate the conditions for cancer development and progression. Among the existing tools to obtain suitable 3D models of bone cancer, 3D printing and bioprinting appear very promising, as they enable combining cells, biomolecules, and biomaterials into organized and complex structures that can reproduce the main characteristic of bone. The challenge is to recapitulate a bone-like microenvironment for analysis of stromal-cancer cell interactions and biological mechanics leading to tumor progression. In this review, existing approaches to obtain in vitro 3D-printed and -bioprinted bone models are discussed, with a focus on the role of biomaterials selection in determining the behavior of the models and its degree of customization. To obtain a reliable 3D bone model, the evaluation of different polymeric matrices and the inclusion of ceramic fillers is of paramount importance, as they help reproduce the behavior of both normal and cancer cells in the bone microenvironment. Open challenges and future perspectives are discussed to solve existing shortcomings and to pave the way for potential development strategies.
Collapse
|
123
|
Li R, Ting YH, Youssef SH, Song Y, Garg S. Three-Dimensional Printing for Cancer Applications: Research Landscape and Technologies. Pharmaceuticals (Basel) 2021; 14:ph14080787. [PMID: 34451884 PMCID: PMC8401566 DOI: 10.3390/ph14080787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
As a variety of novel technologies, 3D printing has been considerably applied in the field of health care, including cancer treatment. With its fast prototyping nature, 3D printing could transform basic oncology discoveries to clinical use quickly, speed up and even revolutionise the whole drug discovery and development process. This literature review provides insight into the up-to-date applications of 3D printing on cancer research and treatment, from fundamental research and drug discovery to drug development and clinical applications. These include 3D printing of anticancer pharmaceutics, 3D-bioprinted cancer cell models and customised nonbiological medical devices. Finally, the challenges of 3D printing for cancer applications are elaborated, and the future of 3D-printed medical applications is envisioned.
Collapse
|
124
|
3D printing technologies for in vitro vaccine testing platforms and vaccine delivery systems against infectious diseases. Essays Biochem 2021; 65:519-531. [PMID: 34342360 DOI: 10.1042/ebc20200105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Recent advances in 3D printing (3DP) and tissue engineering approaches enable the potential application of these technologies to vaccine research. Reconstituting the native tissue or cellular microenvironment will be vital for successful evaluation of pathogenicity of viral infection and screening of potential vaccines. Therefore, establishing a reliable in vitro model to study the vaccine efficiency or delivery of viral disease is important. Here, this review summarizes two major ways that tissue engineering and 3DP strategies could contribute to vaccine research: (1) 3D human tissue models to study the response to virus can be served as a testbed for new potential therapeutics. Using 3D tissue platform attempts to explore alternative options to pre-clinical animal research for evaluating vaccine candidates. (2) 3DP technologies can be applied to improve the vaccination strategies which could replace existing vaccine delivery. Controlled antigen release using carriers that are generated with biodegradable biomaterials can further enhance the efficient development of immunity as well as combination of multiple-dose vaccines into a single injection. This mini review discusses the up-to-date report of current 3D tissue/organ models for potential vaccine potency and known bioengineered vaccine delivery systems.
Collapse
|
125
|
Pozzi S, Scomparin A, Israeli Dangoor S, Rodriguez Ajamil D, Ofek P, Neufeld L, Krivitsky A, Vaskovich-Koubi D, Kleiner R, Dey P, Koshrovski-Michael S, Reisman N, Satchi-Fainaro R. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development? Adv Drug Deliv Rev 2021; 175:113760. [PMID: 33838208 DOI: 10.1016/j.addr.2021.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
The complexity and diversity of the biochemical processes that occur during tumorigenesis and metastasis are frequently over-simplified in the traditional in vitro cell cultures. Two-dimensional cultures limit researchers' experimental observations and frequently give rise to misleading and contradictory results. Therefore, in order to overcome the limitations of in vitro studies and bridge the translational gap to in vivo applications, 3D models of cancer were developed in the last decades. The three dimensions of the tumor, including its cellular and extracellular microenvironment, are recreated by combining co-cultures of cancer and stromal cells in 3D hydrogel-based growth factors-inclusive scaffolds. More complex 3D cultures, containing functional blood vasculature, can integrate in the system external stimuli (e.g. oxygen and nutrient deprivation, cytokines, growth factors) along with drugs, or other therapeutic compounds. In this scenario, cell signaling pathways, metastatic cascade steps, cell differentiation and self-renewal, tumor-microenvironment interactions, and precision and personalized medicine, are among the wide range of biological applications that can be studied. Here, we discuss a broad variety of strategies exploited by scientists to create in vitro 3D cancer models that resemble as much as possible the biology and patho-physiology of in vivo tumors and predict faithfully the treatment outcome.
Collapse
Affiliation(s)
- Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Sahar Israeli Dangoor
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Rodriguez Ajamil
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lena Neufeld
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniella Vaskovich-Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pradip Dey
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noa Reisman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
126
|
Ray SK, Mukherjee S. Imitating Hypoxia and Tumor Microenvironment with Immune Evasion by Employing Three Dimensional in vitro Cellular Models: Impressive Tool in Drug Discovery. Recent Pat Anticancer Drug Discov 2021; 17:80-91. [PMID: 34323197 DOI: 10.2174/1574892816666210728115605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
The heterogeneous tumor microenvironment is exceptionally perplexing and not wholly comprehended. Different multifaceted alignments lead to the generation of oxygen destitute situations within the tumor niche that modulate numerous intrinsic tumor microenvironments. Disentangling these communications is vital for scheming practical therapeutic approaches that can successfully decrease tumor allied chemotherapy resistance by utilizing the innate capability of the immune system. Several research groups have concerned with a protruding role for oxygen metabolism along with hypoxia in the immunity of healthy tissue. Hypoxia in addition to hypoxia-inducible factors (HIFs) in the tumor microenvironment plays an important part in tumor progression and endurance. Although numerous hypoxia-focused therapies have shown promising outcomes both in vitro and in vivo these outcomes have not effectively translated into clinical preliminaries. Distinctive cell culture techniques have utilized as an in vitro model for tumor niche along with tumor microenvironment and proficient in more precisely recreating tumor genomic profiles as well as envisaging therapeutic response. To study the dynamics of tumor immune evasion, three-dimensional (3D) cell cultures are more physiologically important to the hypoxic tumor microenvironment. Recent research has revealed new information and insights into our fundamental understanding of immune systems, as well as novel results that have been established as potential therapeutic targets. There are a lot of patented 3D cell culture techniques which will be highlighted in this review. At present notable 3D cell culture procedures in the hypoxic tumor microenvironment, discourse open doors to accommodate both drug repurposing, advancement, and divulgence of new medications and will deliberate the 3D cell culture methods into standard prescription disclosure especially in the field of cancer biology which will be discussing here.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences. Indira Gandhi Technological and Medical Sciences University, Ziro, Arunachal Pradesh-791120, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
127
|
Jung O, Song MJ, Ferrer M. Operationalizing the Use of Biofabricated Tissue Models as Preclinical Screening Platforms for Drug Discovery and Development. SLAS DISCOVERY 2021; 26:1164-1176. [PMID: 34269079 DOI: 10.1177/24725552211030903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A wide range of complex in vitro models (CIVMs) are being developed for scientific research and preclinical drug efficacy and safety testing. The hope is that these CIVMs will mimic human physiology and pathology and predict clinical responses more accurately than the current cellular models. The integration of these CIVMs into the drug discovery and development pipeline requires rigorous scientific validation, including cellular, morphological, and functional characterization; benchmarking of clinical biomarkers; and operationalization as robust and reproducible screening platforms. It will be critical to establish the degree of physiological complexity that is needed in each CIVM to accurately reproduce native-like homeostasis and disease phenotypes, as well as clinical pharmacological responses. Choosing which CIVM to use at each stage of the drug discovery and development pipeline will be driven by a fit-for-purpose approach, based on the specific disease pathomechanism to model and screening throughput needed. Among the different CIVMs, biofabricated tissue equivalents are emerging as robust and versatile cellular assay platforms. Biofabrication technologies, including bioprinting approaches with hydrogels and biomaterials, have enabled the production of tissues with a range of physiological complexity and controlled spatial arrangements in multiwell plate platforms, which make them amenable for medium-throughput screening. However, operationalization of such 3D biofabricated models using existing automation screening platforms comes with a unique set of challenges. These challenges will be discussed in this perspective, including examples and thoughts coming from a laboratory dedicated to designing and developing assays for automated screening.
Collapse
Affiliation(s)
- Olive Jung
- 3D Tissue Bioprinting Laboratory (3DTBL), Division of Pre-clinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, USA.,Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Min Jae Song
- 3D Tissue Bioprinting Laboratory (3DTBL), Division of Pre-clinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory (3DTBL), Division of Pre-clinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, USA
| |
Collapse
|
128
|
Wang L, Zhou MB, Zhang H. The Emerging Role of Topical Ocular Drugs to Target the Posterior Eye. Ophthalmol Ther 2021; 10:465-494. [PMID: 34218424 PMCID: PMC8319259 DOI: 10.1007/s40123-021-00365-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of chronic fundus diseases is increasing with the aging of the general population. The treatment of these intraocular diseases relies on invasive drug delivery because of the globular structure and multiple barriers of the eye. Frequent intraocular injections bring heavy burdens to the medical care system and patients. The use of topical drugs to treat retinal diseases has always been an attractive solution. The fast development of new materials and technologies brings the possibility to develop innovative topical formulations. This article reviews anatomical and physiological barriers of the eye which affect the bioavailability of topical drugs. In addition, we summarize innovative topical formulations which enhance the permeability of drugs through the ocular surface and/or extend the drug retention time in the eye. This article also reviews the differences of eyes between different laboratory animals to address the translational challenges of preclinical models. The fast development of in vitro eye models may provide more tools to increase the clinical translationality of topical formulations for intraocular diseases. Clinical successes of topical formulations rely on continuous and collaborative efforts between different disciplines.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hui Zhang
- Yuanpu Eye Biopharmaceutical Co. Ltd., Chengdu, China.
- , No. 14 Jiuxing Avenue, Gaoxin District, Chengdu, China.
| |
Collapse
|
129
|
Huang Y, Wu W, Liu H, Chen Y, Li B, Gou Z, Li X, Gou M. 3D printing of functional nerve guide conduits. BURNS & TRAUMA 2021; 9:tkab011. [PMID: 34212061 PMCID: PMC8240533 DOI: 10.1093/burnst/tkab011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nerve guide conduits (NGCs), as alternatives to nerve autografts and allografts, have been widely explored as an advanced tool for the treatment of peripheral nerve injury. However, the repairing efficiency of NGCs still needs significant improvements. Functional NGCs that provide a more favorable microenvironment for promoting axonal elongation and myelination are of great importance. In recent years, 3D printing technologies have been widely applied in the fabrication of customized and complex constructs, exhibiting great potential for tissue engineering applications, especially for the construction of functional NGCs. In this review, we introduce the 3D printing technologies for manufacturing functional NGCs, including inkjet printing, extrusion printing, stereolithography-based printing and indirect printing. Further, we summarize the current methods and strategies for constructing functional NGCs, such as designing special conduit architectures, using appropriate materials and co-printing with different biological cues. Finally, the challenges and prospects for construction of functional NGCs are also presented.
Collapse
Affiliation(s)
- Yulan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
130
|
Cortesi M, Samoré A, Lovecchio J, Ramilli R, Tartagni M, Giordano E, Crescentini M. Development of an electrical impedance tomography set-up for the quantification of mineralization in biopolymer scaffolds. Physiol Meas 2021; 42. [PMID: 34190050 DOI: 10.1088/1361-6579/ac023b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/17/2021] [Indexed: 11/11/2022]
Abstract
Objective. 3D cell cultures are becoming a fundamental resource forin-vitrostudies, as they mimic more closelyin-vivobehavior. The analysis of these constructs, however, generally rely on destructive techniques, that prevent the monitoring over time of the same construct, thus increasing the results variability and the resources needed for each experiment.Approach. In this work, we focus on mineralization, a crucial process during maturation of artificial bone models, and propose electrical impedance tomography (EIT) as an alternative non-destructive approach. In particular, we discuss the development of an integrated hardware/software system capable of acquiring experimental data from 3D scaffolds and reconstructing the corresponding conductivity maps. We also show how the same software can test how the measurement is affected by biological features such as scaffold shrinking during the culture.Main results. An initial validation, comprising the acquisition of both a non-conductive phantom and alginate/gelatin scaffolds with known calcium content will be presented, together with thein-silicostudy of a cell-induced mineralization process. This analysis will allow for an initial verification of the systems functionality while limiting the effects of biological variability due to cell number and activity.Significance. Our results show the potential of EIT for the non-destructive quantification of matrix mineralization in 3D scaffolds, and open to the possible long term monitoring of this fundamental hallmark of osteogenic differentiation in hybrid tissue engineered constructs.
Collapse
Affiliation(s)
- Marilisa Cortesi
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum-University of Bologna, Ozzano Emilia, Italy
| | - Andrea Samoré
- Department of Mathematics Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Joseph Lovecchio
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Roberta Ramilli
- Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum, University of Bologna, Italy
| | - Marco Tartagni
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Emanuele Giordano
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum-University of Bologna, Ozzano Emilia, Italy.,Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy.,Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum, University of Bologna, Italy
| | - Marco Crescentini
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy.,Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum, University of Bologna, Italy
| |
Collapse
|
131
|
Kronemberger GS, Miranda GASC, Tavares RSN, Montenegro B, Kopke ÚDA, Baptista LS. Recapitulating Tumorigenesis in vitro: Opportunities and Challenges of 3D Bioprinting. Front Bioeng Biotechnol 2021; 9:682498. [PMID: 34239860 PMCID: PMC8258101 DOI: 10.3389/fbioe.2021.682498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered one of the most predominant diseases in the world and one of the principal causes of mortality per year. The cellular and molecular mechanisms involved in the development and establishment of solid tumors can be defined as tumorigenesis. Recent technological advances in the 3D cell culture field have enabled the recapitulation of tumorigenesis in vitro, including the complexity of stromal microenvironment. The establishment of these 3D solid tumor models has a crucial role in personalized medicine and drug discovery. Recently, spheroids and organoids are being largely explored as 3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid tumor can be recreated from cancer cells, cancer stem cells, stromal and immune cell lineages. Organoids must be derived from tumor biopsies, including cancer and cancer stem cells. Both models are considered as a suitable model for drug assessment and high-throughput screening. The main advantages of 3D bioprinting are its ability to engineer complex and controllable 3D tissue models in a higher resolution. Although 3D bioprinting represents a promising technology, main challenges need to be addressed to improve the results in cancer research. The aim of this review is to explore (1) the principal cell components and extracellular matrix composition of solid tumor microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and organoids as 3D culture models; and (3) the opportunities, challenges, and applications of 3D bioprinting in this area.
Collapse
Affiliation(s)
- Gabriela S. Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Guilherme A. S. C. Miranda
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Renata S. N. Tavares
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Bianca Montenegro
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Úrsula de A. Kopke
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Leandra S. Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
132
|
Stefaniak A, Du Preez S, Du Plessis JL. Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:1-50. [PMID: 34139957 PMCID: PMC8678392 DOI: 10.1080/10937404.2021.1936319] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM1 : particulate matter with aerodynamic diameter less than 1 µm; PM2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization.
Collapse
Affiliation(s)
- A.B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - S Du Preez
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa
| | - JL Du Plessis
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa
| |
Collapse
|
133
|
Liverani C, De Vita A, Spadazzi C, Miserocchi G, Cocchi C, Bongiovanni A, De Lucia A, La Manna F, Fabbri F, Tebaldi M, Amadori D, Tasciotti E, Martinelli G, Mercatali L, Ibrahim T. Lineage-specific mechanisms and drivers of breast cancer chemoresistance revealed by 3D biomimetic culture. Mol Oncol 2021; 16:921-939. [PMID: 34109737 PMCID: PMC8847989 DOI: 10.1002/1878-0261.13037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 01/16/2023] Open
Abstract
To improve the success rate of current preclinical drug trials, there is a growing need for more complex and relevant models that can help predict clinical resistance to anticancer agents. Here, we present a three‐dimensional (3D) technology, based on biomimetic collagen scaffolds, that enables the modeling of the tumor hypoxic state and the prediction of in vivo chemotherapy responses in terms of efficacy, molecular alterations, and emergence of resistance mechanisms. The human breast cancer cell lines MDA‐MB‐231 (triple negative) and MCF‐7 (luminal A) were treated with scaling doses of doxorubicin in monolayer cultures, 3D collagen scaffolds, or orthotopically transplanted murine models. Lineage‐specific resistance mechanisms were revealed by the 3D tumor model. Reduced drug uptake, increased drug efflux, and drug lysosomal confinement were observed in triple‐negative MDA‐MB‐231 cells. In luminal A MCF‐7 cells, the selection of a drug‐resistant subline from parental cells with deregulation of p53 pathways occurred. These cells were demonstrated to be insensitive to DNA damage. Transcriptome analysis was carried out to identify differentially expressed genes (DEGs) in treated cells. DEG evaluation in breast cancer patients demonstrated their potential role as predictive biomarkers. High expression of the transporter associated with antigen processing 1 (TAP1) and the tumor protein p53‐inducible protein 3 (TP53I3) was associated with shorter relapse in patients affected by ER+ breast tumor. Likewise, the same clinical outcome was associated with high expression of the lysosomal‐associated membrane protein 1 LAMP1 in triple‐negative breast cancer. Hypoxia inhibition by resveratrol treatment was found to partially re‐sensitize cells to doxorubicin treatment. Our model might improve preclinical in vitro analysis for the translation of anticancer compounds as it provides: (a) more accurate data on drug efficacy and (b) enhanced understanding of resistance mechanisms and molecular drivers.
Collapse
Affiliation(s)
- Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Claudia Cocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna De Lucia
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Federico La Manna
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesco Fabbri
- Bioscience Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Michela Tebaldi
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), TX, USA.,IRCCS San Raffaele Pisana, Rome Sclavo Research Center, Siena, Italy
| | - Giovanni Martinelli
- Scientific Directory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
134
|
|
135
|
Wasson EM, Dubbin K, Moya ML. Go with the flow: modeling unique biological flows in engineered in vitro platforms. LAB ON A CHIP 2021; 21:2095-2120. [PMID: 34008661 DOI: 10.1039/d1lc00014d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Interest in recapitulating in vivo phenomena in vitro using organ-on-a-chip technology has grown rapidly and with it, attention to the types of fluid flow experienced in the body has followed suit. These platforms offer distinct advantages over in vivo models with regards to human relevance, cost, and control of inputs (e.g., controlled manipulation of biomechanical cues from fluid perfusion). Given the critical role biophysical forces play in several tissues and organs, it is therefore imperative that engineered in vitro platforms capture the complex, unique flow profiles experienced in the body that are intimately tied with organ function. In this review, we outline the complex and unique flow regimes experienced by three different organ systems: blood vasculature, lymphatic vasculature, and the intestinal system. We highlight current state-of-the-art platforms that strive to replicate physiological flows within engineered tissues while introducing potential limitations in current approaches.
Collapse
Affiliation(s)
- Elisa M Wasson
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| | - Karen Dubbin
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| | - Monica L Moya
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| |
Collapse
|
136
|
Lang Q, Zhong C, Liang Z, Zhang Y, Wu B, Xu F, Cong L, Wu S, Tian Y. Six application scenarios of artificial intelligence in the precise diagnosis and treatment of liver cancer. Artif Intell Rev 2021. [DOI: 10.1007/s10462-021-10023-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
137
|
Coban MA, Morrison J, Maharjan S, Hernandez Medina DH, Li W, Zhang YS, Freeman WD, Radisky ES, Le Roch KG, Weisend CM, Ebihara H, Caulfield TR. Attacking COVID-19 Progression Using Multi-Drug Therapy for Synergetic Target Engagement. Biomolecules 2021; 11:biom11060787. [PMID: 34071060 PMCID: PMC8224684 DOI: 10.3390/biom11060787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is a devastating respiratory and inflammatory illness caused by a new coronavirus that is rapidly spreading throughout the human population. Over the past 12 months, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, has already infected over 160 million (>20% located in United States) and killed more than 3.3 million people around the world (>20% deaths in USA). As we face one of the most challenging times in our recent history, there is an urgent need to identify drug candidates that can attack SARS-CoV-2 on multiple fronts. We have therefore initiated a computational dynamics drug pipeline using molecular modeling, structure simulation, docking and machine learning models to predict the inhibitory activity of several million compounds against two essential SARS-CoV-2 viral proteins and their host protein interactors-S/Ace2, Tmprss2, Cathepsins L and K, and Mpro-to prevent binding, membrane fusion and replication of the virus, respectively. All together, we generated an ensemble of structural conformations that increase high-quality docking outcomes to screen over >6 million compounds including all FDA-approved drugs, drugs under clinical trial (>3000) and an additional >30 million selected chemotypes from fragment libraries. Our results yielded an initial set of 350 high-value compounds from both new and FDA-approved compounds that can now be tested experimentally in appropriate biological model systems. We anticipate that our results will initiate screening campaigns and accelerate the discovery of COVID-19 treatments.
Collapse
Affiliation(s)
- Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, 900 University, Riverside, CA 92521, USA;
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - David Hyram Hernandez Medina
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - William D. Freeman
- Department of Neurology, Mayo Clinic, 4500 San Pablo South, Jacksonville, FL 32224, USA;
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, 900 University, Riverside, CA 92521, USA;
| | - Carla M. Weisend
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.M.W.); (H.E.)
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.M.W.); (H.E.)
| | - Thomas R. Caulfield
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Quantitative Health Science, Division of Computational Biology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-904-953-6072
| |
Collapse
|
138
|
Belfiore L, Aghaei B, Law AMK, Dobrowolski JC, Raftery LJ, Tjandra AD, Yee C, Piloni A, Volkerling A, Ferris CJ, Engel M. Generation and analysis of 3D cell culture models for drug discovery. Eur J Pharm Sci 2021; 163:105876. [PMID: 33989755 DOI: 10.1016/j.ejps.2021.105876] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Successful preclinical drug testing relies in part on data generated using in vitro cell culture models that recapitulate the structure and function of tumours and other tissues in vivo. The growing evidence that 3D cell models can more accurately predict the efficacy of drug responses compared to traditionally utilised 2D cell culture systems has led to continuous scientific and technological advances that enable better physiologically representative in vitro modelling of in vivo tissues. This review will provide an overview of the utility of current 3D cell models from a drug screening perspective and explore the future of 3D cell models for drug discovery applications.
Collapse
Affiliation(s)
- Lisa Belfiore
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia.
| | - Behnaz Aghaei
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Andrew M K Law
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | | | - Lyndon J Raftery
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Angie D Tjandra
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Christine Yee
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Alberto Piloni
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | | | - Cameron J Ferris
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Martin Engel
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| |
Collapse
|
139
|
Shapira A, Dvir T. 3D Tissue and Organ Printing-Hope and Reality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003751. [PMID: 34026444 PMCID: PMC8132062 DOI: 10.1002/advs.202003751] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/13/2020] [Indexed: 05/02/2023]
Abstract
Three-dimensional (3D) bioprinting is an emerging, groundbreaking strategy in tissue engineering, allowing the fabrication of living constructs with an unprecedented degree of complexity and accuracy. While this technique greatly facilitates the structuring of native tissue-like architectures, many challenges still remain to be faced. In this review, the fruits of recent research that demonstrate how advanced bioprinting technologies, together with inspiring creativity, can be used to address these challenges are presented and discussed. Next, the future of the field is discussed, in terms of expected developments, as well as possible directions toward the realization of the vision of fully functional, engineered tissues, and organs. Last, a few hypothetical scenarios for the role 3D bioprinting may play in future tissue engineering are depicted, with an emphasis on its impact on tomorrow's regenerative medicine.
Collapse
Affiliation(s)
- Assaf Shapira
- Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Tal Dvir
- Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
- Department of Materials Science and EngineeringFaculty of EngineeringTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv6997801Israel
- Sagol Center for Regenerative BiotechnologyTel Aviv UniversityTel Aviv6997801Israel
| |
Collapse
|
140
|
Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, Zhuang D, Jiang H, Chen X, He Y, Huang S, Zhu P. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioact Mater 2021; 6:1388-1401. [PMID: 33210031 PMCID: PMC7658327 DOI: 10.1016/j.bioactmat.2020.10.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease is still one of the leading causes of death in the world, and heart transplantation is the current major treatment for end-stage cardiovascular diseases. However, because of the shortage of heart donors, new sources of cardiac regenerative medicine are greatly needed. The prominent development of tissue engineering using bioactive materials has creatively laid a direct promising foundation. Whereas, how to precisely pattern a cardiac structure with complete biological function still requires technological breakthroughs. Recently, the emerging three-dimensional (3D) bioprinting technology for tissue engineering has shown great advantages in generating micro-scale cardiac tissues, which has established its impressive potential as a novel foundation for cardiovascular regeneration. Whether 3D bioprinted hearts can replace traditional heart transplantation as a novel strategy for treating cardiovascular diseases in the future is a frontier issue. In this review article, we emphasize the current knowledge and future perspectives regarding available bioinks, bioprinting strategies and the latest outcome progress in cardiac 3D bioprinting to move this promising medical approach towards potential clinical implementation.
Collapse
Affiliation(s)
- Nanbo Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Xing Ye
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Mingyi Zhao
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Peng Wu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guihuan Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Donglin Zhuang
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Haodong Jiang
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaowei Chen
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Yinru He
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Ping Zhu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
141
|
Li X, Zhang P, Li Q, Wang H, Yang C. Direct-ink-write printing of hydrogels using dilute inks. iScience 2021; 24:102319. [PMID: 33870134 PMCID: PMC8042399 DOI: 10.1016/j.isci.2021.102319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/06/2021] [Accepted: 03/14/2021] [Indexed: 01/19/2023] Open
Abstract
Direct-ink-write (DIW) printing has been used in myriad applications. Existing DIW printing relies on inks of specific rheology to compromise with printing process, imposing restrictions on the choice of printable materials. Reported ink viscosity ranges from 10-1 to 103 Pa·s. Here we report a method to enable DIW printing that is compatible with dilute ink (10-3 Pa·s) by manipulating the interactions between ink and substrate. By exemplifying hydrogel printing, we build a printing system and show that dilute ink of appropriate surface energy, once extruded, can spontaneously wet and reside within the region of higher surface energy on a substrate of lower surface energy, while resisting gravity and maintaining shape before solidification. We demonstrate the diversity for printing various materials on various substrates and three deployments immediately enabled by the proposed method. The method expands the range of printable materials for DIW printing and the toolbox for additive manufacturing.
Collapse
Affiliation(s)
- Xiaotian Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ping Zhang
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiru Wang
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Canhui Yang
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
142
|
Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication 2021; 13. [PMID: 33662949 DOI: 10.1088/1758-5090/abec2c] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has attracted wide research interest in biomedical engineering and clinical applications. This technology allows for unparalleled architecture control, adaptability and repeatability that can overcome the limits of conventional biofabrication techniques. Along with the emergence of a variety of 3D bioprinting methods, bioinks have also come a long way. From their first developments to support bioprinting requirements, they are now engineered to specific injury sites requirements to mimic native tissue characteristics and to support biofunctionality. Current strategies involve the use of bioinks loaded with cells and biomolecules of interest, without altering their functions, to deliverin situthe elements required to enhance healing/regeneration. The current research and trends in bioink development for 3D bioprinting purposes is overviewed herein.
Collapse
Affiliation(s)
- Guy Decante
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João B Costa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
143
|
Quinn CH, Beierle AM, Beierle EA. Artificial Tumor Microenvironments in Neuroblastoma. Cancers (Basel) 2021; 13:cancers13071629. [PMID: 33915765 PMCID: PMC8037559 DOI: 10.3390/cancers13071629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Children with high-risk neuroblastoma have limited therapeutic options poor survival rates. The neuroblastoma tumor microenvironment contributes the lack of response to many interventions so innovative methods are needed to study the effects of the tumor microenvironment on new therapies. In this manuscript, we review the current literature related to the components of the tumor microenvironment and to the use of three-dimensional printing as modality to study cancer. This review highlights the potential for using three-dimensional printing to create an artificial tumor microenvironment in the presence of neuroblastoma to provide improved preclinical testing of novel therapies. Abstract In the quest to advance neuroblastoma therapeutics, there is a need to have a deeper understanding of the tumor microenvironment (TME). From extracellular matrix proteins to tumor associated macrophages, the TME is a robust and diverse network functioning in symbiosis with the solid tumor. Herein, we review the major components of the TME including the extracellular matrix, cytokines, immune cells, and vasculature that support a more aggressive neuroblastoma phenotype and encumber current therapeutic interventions. Contemporary treatments for neuroblastoma are the result of traditional two-dimensional culture studies and in vivo models that have been translated to clinical trials. These pre-clinical studies are costly, time consuming, and neglect the study of cofounding factors such as the contributions of the TME. Three-dimensional (3D) bioprinting has become a novel approach to studying adult cancers and is just now incorporating portions of the TME and advancing to study pediatric solid. We review the methods of 3D bioprinting, how researchers have included TME pieces into the prints, and highlight present studies using neuroblastoma. Ultimately, incorporating the elements of the TME that affect neuroblastoma responses to therapy will improve the development of innovative and novel treatments. The use of 3D bioprinting to achieve this aim will prove useful in developing optimal therapies for children with neuroblastoma.
Collapse
Affiliation(s)
- Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Andee M. Beierle
- Division of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
- Correspondence:
| |
Collapse
|
144
|
Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release 2021; 333:448-486. [PMID: 33811983 DOI: 10.1016/j.jconrel.2021.03.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Tendon injuries are a global health problem that affects millions of people annually. The properties of tendons make their natural rehabilitation a very complex and long-lasting process. Thanks to the development of the fields of biomaterials, bioengineering and cell biology, a new discipline has emerged, tissue engineering. Within this discipline, diverse approaches have been proposed. The obtained results turn out to be promising, as increasingly more complex and natural tendon-like structures are obtained. In this review, the nature of the tendon and the conventional treatments that have been applied so far are underlined. Then, a comparison between the different tendon tissue engineering approaches that have been proposed to date is made, focusing on each of the elements necessary to obtain the structures that allow adequate regeneration of the tendon: growth factors, cells, scaffolds and techniques for scaffold development. The analysis of all these aspects allows understanding, in a global way, the effect that each element used in the regeneration of the tendon has and, thus, clarify the possible future approaches by making new combinations of materials, designs, cells and bioactive molecules to achieve a personalized regeneration of a functional tendon.
Collapse
Affiliation(s)
- Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| |
Collapse
|
145
|
Agarwal T, Banerjee D, Konwarh R, Esworthy T, Kumari J, Onesto V, Das P, Lee BH, Wagener FADTG, Makvandi P, Mattoli V, Ghosh SK, Maiti TK, Zhang LG, Ozbolat IT. Recent advances in bioprinting technologies for engineering hepatic tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112013. [PMID: 33812632 DOI: 10.1016/j.msec.2021.112013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
In the sphere of liver tissue engineering (LTE), 3D bioprinting has emerged as an effective technology to mimic the complex in vivo hepatic microenvironment, enabling the development of functional 3D constructs with potential application in the healthcare and diagnostic sector. This review gears off with a note on the liver's microscopic 3D architecture and pathologies linked to liver injury. The write-up is then directed towards unmasking recent advancements and prospects of bioprinting for recapitulating 3D hepatic structure and function. The article further introduces available stem cell opportunities and different strategies for their directed differentiation towards various hepatic stem cell types, including hepatocytes, hepatic sinusoidal endothelial cells, stellate cells, and Kupffer cells. Another thrust of the article is on understanding the dynamic interplay of different hepatic cells with various microenvironmental cues, which is crucial for controlling differentiation, maturation, and maintenance of functional hepatic cell phenotype. On a concluding note, various critical issues and future research direction towards clinical translation of bioprinted hepatic constructs are discussed.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Dishary Banerjee
- Department of Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Rocktotpal Konwarh
- Division of Nanobiomaterials and Nanomedicine, Uniglobe Scientific Pvt. Ltd., 7/9, Kishan Garh, Vasant Kunj, New Delhi-110070, India
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jyoti Kumari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, via Monteroni, Lecce 73100, Italy
| | - Prativa Das
- NTU-Northwestern Institute of Nanomedicine (IGS-NNIN), Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| | - Bae Hoon Lee
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Frank A D T G Wagener
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Ibrahim T Ozbolat
- Department of Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA; Materials Research Institute, Penn State University, University Park, PA 16802, USA; Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
146
|
Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen DX. Printability in extrusion bioprinting. Biofabrication 2021; 13. [PMID: 33601340 DOI: 10.1088/1758-5090/abe7ab] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Extrusion bioprinting has been widely used to extrude continuous filaments of bioink (or the mixture of biomaterial and living cells), layer-by-layer, to build three-dimensional (3D) constructs for biomedical applications. In extrusion bioprinting, printability is an important parameter used to measure the difference between the designed construct and the one actually printed. This difference could be caused by the extrudability of printed bioink and/or the structural formability and stability of printed constructs. Although studies have reported in characterizing printability based on the bioink properties and printing process, the concept of printability is often confusingly and, sometimes, conflictingly used in the literature. The objective of this perspective is to define the printability for extrusion bioprinting in terms of extrudability, filament fidelity, and structural integrity, as well as to review the effect of bioink properties, bioprinting process, and construct design on the printability. Challenges related to the printability of extrusion bioprinting are also discussed, along with recommendations for improvements.
Collapse
Affiliation(s)
- Zhouquan Fu
- Mechanical Engineering and Mechanics, Drexel University, 3141 chestnut street, Philadelphia, Philadelphia, Pennsylvania, 19104-2816, UNITED STATES
| | - Saman Naghieh
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada, Saskatoon, Saskatchewan, S7N 5A9, CANADA
| | - Cancan Xu
- SunP Biotech LLC, 5 Allison Dr, Cherry Hill, New Jersey, 08003, UNITED STATES
| | - Chengjin Wang
- Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing, 100084, CHINA
| | - Wei Sun
- Mech Engineering, Drexel University, 3141 chestnut street, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - Daniel Xiongbiao Chen
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Saskatoon, Saskatchewan, S7N 5A9, CANADA
| |
Collapse
|
147
|
Paran Y, Liron Y, Batsir S, Mabjeesh N, Geiger B, Kam Z. Multi-parametric characterization of drug effects on cells. F1000Res 2021; 9. [PMID: 33363713 PMCID: PMC7737707 DOI: 10.12688/f1000research.26254.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
We present here a novel multi-parametric approach for the characterization of multiple cellular features, using images acquired by high-throughput and high-definition light microscopy. We specifically used this approach for deep and unbiased analysis of the effects of a drug library on five cultured cell lines. The presented method enables the acquisition and analysis of millions of images, of treated and control cells, followed by an automated identification of drugs inducing strong responses, evaluating the median effect concentrations and those cellular properties that are most highly affected by the drug. The tools described here provide standardized quantification of multiple attributes for systems level dissection of complex functions in normal and diseased cells, using multiple perturbations. Such analysis of cells, derived from pathological samples, may help in the diagnosis and follow-up of treatment in patients.
Collapse
Affiliation(s)
- Yael Paran
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel.,IDEA Biomedical Ltd., Rehovot, 76705, Israel
| | - Yuvalal Liron
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Sarit Batsir
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nicola Mabjeesh
- Department of Urology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Zvi Kam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
148
|
Blanco‐Fernandez B, Gaspar VM, Engel E, Mano JF. Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003129. [PMID: 33643799 PMCID: PMC7887602 DOI: 10.1002/advs.202003129] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Indexed: 05/14/2023]
Abstract
The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.
Collapse
Affiliation(s)
- Barbara Blanco‐Fernandez
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
| | - Vítor M. Gaspar
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
- Materials Science and Metallurgical EngineeringPolytechnical University of Catalonia (UPC)Eduard Maristany 16Barcelona08019Spain
- CIBER en BioingenieríaBiomateriales y NanomedicinaCIBER‐BBNMadrid28029Spain
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
149
|
Tang M, Rich JN, Chen S. Biomaterials and 3D Bioprinting Strategies to Model Glioblastoma and the Blood-Brain Barrier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004776. [PMID: 33326131 PMCID: PMC7854518 DOI: 10.1002/adma.202004776] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/06/2020] [Indexed: 05/13/2023]
Abstract
Glioblastoma (GBM) is the most prevalent and lethal adult primary central nervous system cancer. An immunosuppresive and highly heterogeneous tumor microenvironment, restricted delivery of chemotherapy or immunotherapy through the blood-brain barrier (BBB), together with the brain's unique biochemical and anatomical features result in its universal recurrence and poor prognosis. As conventional models fail to predict therapeutic efficacy in GBM, in vitro 3D models of GBM and BBB leveraging patient- or healthy-individual-derived cells and biomaterials through 3D bioprinting technologies potentially mimic essential physiological and pathological features of GBM and BBB. 3D-bioprinted constructs enable investigation of cellular and cell-extracellular matrix interactions in a species-matched, high-throughput, and reproducible manner, serving as screening or drug delivery platforms. Here, an overview of current 3D-bioprinted GBM and BBB models is provided, elaborating on the microenvironmental compositions of GBM and BBB, relevant biomaterials to mimic the native tissues, and bioprinting strategies to implement the model fabrication. Collectively, 3D-bioprinted GBM and BBB models are promising systems and biomimetic alternatives to traditional models for more reliable mechanistic studies and preclinical drug screenings that may eventually accelerate the drug development process for GBM.
Collapse
Affiliation(s)
- Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jeremy N. Rich
- Division of Regenerative Medicine, Department of Medicine, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, Materials Science and Engineering Program, Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
150
|
Gebeyehu A, Surapaneni SK, Huang J, Mondal A, Wang VZ, Haruna NF, Bagde A, Arthur P, Kutlehria S, Patel N, Rishi AK, Singh M. Polysaccharide hydrogel based 3D printed tumor models for chemotherapeutic drug screening. Sci Rep 2021; 11:372. [PMID: 33431915 PMCID: PMC7801509 DOI: 10.1038/s41598-020-79325-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
A series of stable and ready-to-use bioinks have been developed based on the xeno-free and tunable hydrogel (VitroGel) system. Cell laden scaffold fabrication with optimized polysaccharide-based inks demonstrated that Ink H4 and RGD modified Ink H4-RGD had excellent rheological properties. Both bioinks were printable with 25-40 kPa extrusion pressure, showed 90% cell viability, shear-thinning and rapid shear recovery properties making them feasible for extrusion bioprinting without UV curing or temperature adjustment. Ink H4-RGD showed printability between 20 and 37 °C and the scaffolds remained stable for 15 days at temperature of 37 °C. 3D printed non-small-cell lung cancer (NSCLC) patient derived xenograft cells (PDCs) showed rapid spheroid growth of size around 500 µm in diameter and tumor microenvironment formation within 7 days. IC50 values demonstrated higher resistance of 3D spheroids to docetaxel (DTX), doxorubicin (DOX) and erlotinib compared to 2D monolayers of NSCLC-PDX, wild type triple negative breast cancer (MDA-MB-231 WT) and lung adenocarcinoma (HCC-827) cells. Results of flow property, shape fidelity, scaffold stability and biocompatibility of H4-RGD suggest that this hydrogel could be considered for 3D cell bioprinting and also for in-vitro tumor microenvironment development for high throughput screening of various anti-cancer drugs.
Collapse
Affiliation(s)
- Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - John Huang
- TheWell Bioscience, North Brunswick, New Jersey, 08902, USA
| | - Arindam Mondal
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | | | | | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Shallu Kutlehria
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Nil Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, MI, 48201, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|