101
|
Larrañeta E, Domínguez-Robles J, Margariti A, Basit AW, Goyanes Á. 3D printing for the development of implantable devices for cardiovascular disease treatment. Ther Deliv 2022; 13:359-362. [PMID: 36000225 DOI: 10.4155/tde-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
| | - Álvaro Goyanes
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia & Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
102
|
Moroni S, Khorshid S, Aluigi A, Tiboni M, Casettari L. Poly(3-hydroxybutyrate): a potential biodegradable excipient for direct 3D printing of pharmaceuticals. Int J Pharm 2022; 623:121960. [PMID: 35753539 DOI: 10.1016/j.ijpharm.2022.121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
During the past decades, 3D printing has revolutionised different areas of research. Despite the considerable progress achieved in 3D printing of pharmaceuticals, the limited choice of suitable materials remains a challenge to overcome. The growing search for sustainable excipients has led to an increasing interest in biopolymers. Poly(3-hydroxybutyrate) (PHB) is a biocompatible and biodegradable biopolymer obtained from bacteria that could be efficiently employed in the pharmaceutical field. Here we aimed to demonstrate its potential application as a thermoplastic material for personalised medicine through 3D printing. More specifically, we processed PHB by using direct powder extrusion, a one-step additive manufacturing technique. To assess and denote the feasibility and versatility of the process, a 3D square model was manufactured in different dimensions (side x height: 12x2 mm; 18x2 mm; 24x2 mm) and loaded with increasing percentages of a model drug (up to 30% w/w). The manufacturing process was influenced by the drug content, and indeed, an increase in the amount of the drug determined a reduction in the printing temperature, without affecting the other parameters (such as the layer height). The composition of the model squares was investigated using Fourier-transform infrared spectroscopy, the resulting spectra confirmed that the starting materials were successfully incorporated into the final formulations. The thermal behaviour of the printed systems was characterized by differential scanning calorimetry, and thermal gravimetric analysis. Moreover, the sustained drug release profile of the formulations was performed over 21 days and showed to be dependent on the dimensions of the printed object and on the amount of loaded drug. Indeed, the formulation with 30% w/w in the dimension 24x2 mm released the highest amount of drug. Hence, the results suggested that PHB and direct powder extrusion technique could be promising tools for the manufacturing of prolonged release and personalised drug delivery forms.
Collapse
Affiliation(s)
- Sofia Moroni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Shiva Khorshid
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| |
Collapse
|
103
|
González K, Larraza I, Berra G, Eceiza A, Gabilondo N. 3D printing of customized all-starch tablets with combined release kinetics. Int J Pharm 2022; 622:121872. [DOI: 10.1016/j.ijpharm.2022.121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
104
|
Pose-Boirazian T, Martínez-Costas J, Eibes G. 3D Printing: An Emerging Technology for Biocatalyst Immobilization. Macromol Biosci 2022; 22:e2200110. [PMID: 35579179 DOI: 10.1002/mabi.202200110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Employment of enzymes as biocatalysts offers immense benefits across diverse sectors in the context of green chemistry, biodegradability, and sustainability. When compared to free enzymes in solution, enzyme immobilization proposes an effective means of improving functional efficiency and operational stability. The advance of printable and functional materials utilized in additive manufacturing, coupled with the capability to produce bespoke geometries, has sparked great interest towards the 3D printing of immobilized enzymes. Printable biocatalysts represent a new generation of enzyme immobilization in a more customizable and adaptable manner, unleashing their potential functionalities for countless applications in industrial biotechnology. This review provides an overview of enzyme immobilization techniques and 3D printing technologies, followed by illustrations of the latest 3D printed enzyme-immobilized industrial and clinical applications. The unique advantages of harnessing 3D printing as an enzyme immobilization technique will be presented, alongside a discussion on its potential limitations. Finally, the future perspectives of integrating 3D printing with enzyme immobilization will be considered, highlighting the endless possibilities that are achievable in both research and industry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Jose Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Gemma Eibes
- CRETUS, Dept. of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
105
|
The precision and accuracy of 3D printing of tablets by fused deposition modelling. J Pharm Sci 2022; 111:2814-2826. [DOI: 10.1016/j.xphs.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022]
|
106
|
Cereal-based 3D printed dosage forms for drug administration during breakfast in pediatric patients within a hospital setting. J Pharm Sci 2022; 111:2562-2570. [DOI: 10.1016/j.xphs.2022.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
|
107
|
Chao M, Genina N, Beer N, Kälvemark Sporrong S. Data-enriched edible pharmaceuticals (DEEPs): Patients' preferences, perceptions, and acceptability of new dosage forms and their digital aspects – An interview study. EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2022; 6:100141. [PMID: 35909714 PMCID: PMC9335929 DOI: 10.1016/j.rcsop.2022.100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/05/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Meie Chao
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Netta Beer
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sofia Kälvemark Sporrong
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department of Pharmacy, Uppsala University, Box 580, 751 23 Uppsala, Sweden
- Corresponding author at: Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
108
|
The Advent of a New Era in Digital Healthcare: A Role for 3D Printing Technologies in Drug Manufacturing? Pharmaceutics 2022; 14:pharmaceutics14030609. [PMID: 35335984 PMCID: PMC8952205 DOI: 10.3390/pharmaceutics14030609] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
The technological revolution has physically affected all manufacturing domains, at the gateway of the fourth industrial revolution. Three-dimensional (3D) printing has already shown its potential in this new reality, exhibiting remarkable applications in the production of drug delivery systems. As part of this concept, personalization of the dosage form by means of individualized drug dose or improved formulation functionalities has concentrated global research efforts. Beyond the manufacturing level, significant parameters must be considered to promote the real-time manufacturing of pharmaceutical products in distributed areas. The majority of current research activities is focused on formulating 3D-printed drug delivery systems while showcasing different scenarios of installing 3D printers in patients' houses, hospitals, and community pharmacies, as well as in pharmaceutical industries. Such research presents an array of parameters that must be considered to integrate 3D printing in a future healthcare system, with special focus on regulatory issues, drug shortages, quality assurance of the product, and acceptability of these scenarios by healthcare professionals and public parties. The objective of this review is to critically present the spectrum of possible scenarios of 3D printing implementation in future healthcare and to discuss the inevitable issues that must be addressed.
Collapse
|
109
|
Prediction of Solid-State Form of SLS 3D Printed Medicines Using NIR and Raman Spectroscopy. Pharmaceutics 2022; 14:pharmaceutics14030589. [PMID: 35335965 PMCID: PMC8949593 DOI: 10.3390/pharmaceutics14030589] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/25/2023] Open
Abstract
Selective laser sintering (SLS) 3D printing is capable of revolutionising pharmaceutical manufacturing, by producing amorphous solid dispersions in a one-step manufacturing process. Here, 3D-printed formulations loaded with a model BCS class II drug (20% w/w itraconazole) and three grades of hydroxypropyl cellulose (HPC) polymer (-SSL, -SL and -L) were produced using SLS 3D printing. Interestingly, the polymers with higher molecular weights (HPC-L and -SL) were found to undergo a uniform sintering process, attributed to the better powder flow characteristics, compared with the lower molecular weight grade (HPC-SSL). XRPD analyses found that the SLS 3D printing process resulted in amorphous conversion of itraconazole for all three polymers, with HPC-SSL retaining a small amount of crystallinity on the drug product surface. The use of process analytical technologies (PAT), including near infrared (NIR) and Raman spectroscopy, was evaluated, to predict the amorphous content, qualitatively and quantitatively, within itraconazole-loaded formulations. Calibration models were developed using partial least squares (PLS) regression, which successfully predicted amorphous content across the range of 0–20% w/w. The models demonstrated excellent linearity (R2 = 0.998 and 0.998) and accuracy (RMSEP = 1.04% and 0.63%) for NIR and Raman spectroscopy models, respectively. Overall, this article demonstrates the feasibility of SLS 3D printing to produce solid dispersions containing a BCS II drug, and the potential for NIR and Raman spectroscopy to quantify amorphous content as a non-destructive quality control measure at the point-of-care.
Collapse
|
110
|
Oladeji S, Mohylyuk Conceptualisation V, Andrews GP. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: the enhancement of printability using plasticised HPMCAS. Int J Pharm 2022; 616:121553. [PMID: 35131354 DOI: 10.1016/j.ijpharm.2022.121553] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
3D printing (3DP) by fused deposition modelling (FDM) is one of the most extensively developed methods in additive manufacturing. Optimizing printability by improving feedability, nozzle extrusion, and layer deposition is crucial for manufacturing solid oral dosage forms with desirable properties. This work aimed to use HPMCAS (AffinisolTM HPMCAS 716) to prepare filaments for FDM-3DP using hot-melt extrusion (HME). It explored and demonstrated the effect of HME-filament composition and fabrication on printability by evaluating thermal, mechanical, and thermo-rheological properties. It also showed that the HME-Polymer filament composition used in FDM-3DP manufacture of oral solid dosage forms provides a tailored drug release profile. HME (HAAKE MiniLab) and FDM-3DP (MakerBot) were used to prepare HME-filaments and printed objects, respectively. Two diverse ways of improving the mechanical properties of HME-filaments were deduced by changing the formulation to enable feeding through the roller gears of the printer nozzle. These include plasticizing the polymer and adding an insoluble structuring agent (talc) into the formulation. Experimental feedability was predicted using texture analysis results was a function of PEG concentration, and glass-transition temperature (Tg) values of HME-filaments. The effect of high HME screw speed (100 rpm) resulted in inhomogeneity of HME-filament, which resulted in inconsistency of the printer nozzle extrudate and printed layers. The variability of the glass-transition temperature (Tg) of the HME-filament supported by scanning electron microscopy (SEM) images of nozzle extrudates and the lateral wall of the printed tablet helped explain this result. The melt viscosity of HPMCAS formulations was investigated using a capillary rheometer. The high viscosity of unplasticized HPMCAS was concluded to be an additional restriction for nozzle extrusion. The plasticization of HPMCAS and the addition of talc into the formulation were shown to improve thickness consistency of printed layers (using homogeneous HME-filaments). A good correlation (R2=0.9546) between the solidification threshold (low-frequency oscillation test determined by parallel-plate rheometer) and Tg of HME-filaments was also established. Drug-loaded and placebo HPMCAS-based formulations were shown to be successfully printed, with the former providing tailored drug release profiles based on variation of internal geometry (infill).
Collapse
Affiliation(s)
- Simisola Oladeji
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Valentyn Mohylyuk Conceptualisation
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University - Queen's University Belfast joint College (CQC)/ Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Gavin P Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University - Queen's University Belfast joint College (CQC)/ Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
111
|
Johannesson J, Hansson P, Bergström CAS, Paulsson M. Manipulations and age-appropriateness of oral medications in pediatric oncology patients in Sweden: Need for personalized dosage forms. Biomed Pharmacother 2022; 146:112576. [PMID: 35062056 DOI: 10.1016/j.biopha.2021.112576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Due to the lack of age-appropriate formulations for children, healthcare professionals and caregivers frequently manipulate dosage forms to facilitate oral administration and obtain the required dose. In this study, we investigated drug manipulation and age-appropriateness of oral medications for pediatric oncology patients with the aim of identifying the therapeutic needs for personalized dosage forms. An observational study at a pediatric oncology ward, combined with analysis of the age-appropriateness of the oral medications, was performed. Nurses frequently manipulated solid dosage forms to administer them via enteral feeding tubes. Of the active pharmaceutical ingredients (APIs) assessed for age-appropriateness, 74% (29 of 39) were identified to need personalization, either because of lack of child-friendly dosage form, suitable dosage strength, or both. Most APIs, due to limited solubility, were sensitive to formulation changes, such as drug manipulation. This study demonstrates problems and therapeutic needs regarding oral dosage forms in treatment of children with cancer. Expertise in formulation design, new manufacturing technologies, and patient-centered information are needed to address age-appropriate formulations for children.
Collapse
Affiliation(s)
- Jenny Johannesson
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | - Paula Hansson
- Department of Women's and Children's Health, Uppsala University, Akademiska sjukhuset, SE-751 85 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | - Mattias Paulsson
- Department of Women's and Children's Health, Uppsala University, Akademiska sjukhuset, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
112
|
Bendicho-Lavilla C, Seoane-Viaño I, Otero-Espinar FJ, Luzardo-Álvarez A. Fighting type 2 diabetes: Formulation strategies for peptide-based therapeutics. Acta Pharm Sin B 2022; 12:621-636. [PMID: 35256935 PMCID: PMC8897023 DOI: 10.1016/j.apsb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a major health problem with increasing prevalence at a global level. The discovery of insulin in the early 1900s represented a major breakthrough in diabetes management, with further milestones being subsequently achieved with the identification of glucagon-like peptide-1 (GLP-1) and the introduction of GLP-1 receptor agonists (GLP-1 RAs) in clinical practice. Moreover, the subcutaneous delivery of biotherapeutics is a well-established route of administration generally preferred over the intravenous route due to better patient compliance and prolonged drug absorption. However, current subcutaneous formulations of GLP-1 RAs present pharmacokinetic problems that lead to adverse reactions and treatment discontinuation. In this review, we discuss the current challenges of subcutaneous administration of peptide-based therapeutics and provide an overview of the formulations available for the different routes of administration with improved bioavailability and reduced frequency of administration.
Collapse
Affiliation(s)
- Carlos Bendicho-Lavilla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Asteria Luzardo-Álvarez
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain
| |
Collapse
|
113
|
Zamboulis A, Michailidou G, Koumentakou I, Bikiaris DN. Polysaccharide 3D Printing for Drug Delivery Applications. Pharmaceutics 2022; 14:145. [PMID: 35057041 PMCID: PMC8778081 DOI: 10.3390/pharmaceutics14010145] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
3D printing, or additive manufacturing, has gained considerable interest due to its versatility regarding design as well as in the large choice of materials. It is a powerful tool in the field of personalized pharmaceutical treatment, particularly crucial for pediatric and geriatric patients. Polysaccharides are abundant and inexpensive natural polymers, that are already widely used in the food industry and as excipients in pharmaceutical and cosmetic formulations. Due to their intrinsic properties, such as biocompatibility, biodegradability, non-immunogenicity, etc., polysaccharides are largely investigated as matrices for drug delivery. Although an increasing number of interesting reviews on additive manufacturing and drug delivery are being published, there is a gap concerning the printing of polysaccharides. In this article, we will review recent advances in the 3D printing of polysaccharides focused on drug delivery applications. Among the large family of polysaccharides, the present review will particularly focus on cellulose and cellulose derivatives, chitosan and sodium alginate, printed by fused deposition modeling and extrusion-based printing.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (I.K.)
| | | | | | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (I.K.)
| |
Collapse
|
114
|
Chaurasiya C, Mohd A. 3D printing in capsule. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022. [DOI: 10.4103/jrptps.jrptps_1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
115
|
Čanji-Panić J, Todorović N, Stjepanović A, Lalić-Popović M. The potential of natural products use in fused deposition modeling 3D printing of pharmaceutical dosage forms. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-40155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In recent years, the interest in 3D printing of medicines has increased due to many advantages of this technology, such as flexibility of the dose and dosage form of the printed product. Fused deposition modeling (FDM) is one of the most popular 3D printing technologies in the pharmaceutical field, due to its low cost and simplicity. The subject of this review is the potential use of natural products as biodegradable and biocompatible materials with good safety profiles in FDM 3D printing of pharmaceuticals. Natural products such as alginate, chitosan and starch have already been employed as excipients in FDM 3D printed pharmaceutical dosage forms, while others like shellac and zein show the potential, but haven't yet been part of 3D printed pharmaceutical formulations. These excipients have different roles in the formulation of filaments for FDM 3D printing, for example as fillers, matrix carriers or drug-release modifiers. In addition, the possibility of incorporating active pharmaceutical ingredients of natural origin in filaments for FDM 3D printing was reviewed. High printing temperatures limit the use of natural products in FDM 3D printing. However, adequate selection of thermoplastic material and printing parameters can widen the use of natural products in FDM 3D printing of pharmaceutical dosage forms.
Collapse
|
116
|
Gabriela Crisan A, Iurian S, Porfire A, Maria Rus L, Bogdan C, Casian T, Ciceo Lucacel R, Turza A, Porav S, Tomuta I. QbD guided development of immediate release FDM-3D printed tablets with customizable API doses. Int J Pharm 2021; 613:121411. [PMID: 34954001 DOI: 10.1016/j.ijpharm.2021.121411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022]
Abstract
The objective of this work was to develop a fused deposition modeling (FDM) 3D printed immediate release (IR) tablet with flexibility in adjusting the dose of the active pharmaceutical ingredient (API) by scaling the size of the dosage form and appropriate drug release profile steadiness to the variation of dimensions or thickness of the deposited layers throughout the printing process. Polyvinyl alcohol-based filaments with elevated API content (50% w/w) were prepared by hot melt extrusion (HME), through systematic screening of polymeric formulations with different drug loadings, and their printability was evaluated by means of mechanical characterization. For the tablet fabrication step by 3D printing (3DP), the Quality by Design (QbD) approach was implemented by employing risk management strategies and Design of Experiments (DoE). The effects of the tablet design, tablet size and the layer height settings on the drug release and the API content were investigated. Between the two proposed original tablet architectures, the honeycomb configuration was found to be a suitable candidate for the preparation of IR dosage forms with readily customizable API doses. Also, a predictive model was obtained, which assists the optimization of variables involved in the printing phase and thereby facilitates the tailoring process.
Collapse
Affiliation(s)
- Andrea Gabriela Crisan
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
| | - Lucia Maria Rus
- Department of Drug Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Catalina Bogdan
- Department of Dermopharmacy and Cosmetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania.
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
| | - Raluca Ciceo Lucacel
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Interdisciplinary Research Institute on Bio-Nano-Science, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Alexandru Turza
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania.
| | - Sebastian Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania.
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
| |
Collapse
|
117
|
O’Reilly CS, Elbadawi M, Desai N, Gaisford S, Basit AW, Orlu M. Machine Learning and Machine Vision Accelerate 3D Printed Orodispersible Film Development. Pharmaceutics 2021; 13:2187. [PMID: 34959468 PMCID: PMC8706962 DOI: 10.3390/pharmaceutics13122187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Orodispersible films (ODFs) are an attractive delivery system for a myriad of clinical applications and possess both large economical and clinical rewards. However, the manufacturing of ODFs does not adhere to contemporary paradigms of personalised, on-demand medicine, nor sustainable manufacturing. To address these shortcomings, both three-dimensional (3D) printing and machine learning (ML) were employed to provide on-demand manufacturing and quality control checks of ODFs. Direct ink writing (DIW) was able to fabricate complex ODF shapes, with thicknesses of less than 100 µm. ML algorithms were explored to classify the ODFs according to their active ingredient, by using their near-infrared (NIR) spectrums. A supervised model of linear discriminant analysis was found to provide 100% accuracy in classifying ODFs. A subsequent partial least square algorithm was applied to verify the dose, where a coefficient of determination of 0.96, 0.99 and 0.98 was obtained for ODFs of paracetamol, caffeine, and theophylline, respectively. Therefore, it was concluded that the combination of 3D printing, NIR and ML can result in a rapid production and verification of ODFs. Additionally, a machine vision tool was used to automate the in vitro testing. These collective digital technologies demonstrate the potential to automate the ODF workflow.
Collapse
Affiliation(s)
| | | | | | | | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK (M.E.); (N.D.); (S.G.)
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK (M.E.); (N.D.); (S.G.)
| |
Collapse
|
118
|
He S, Radeke C, Jacobsen J, Lind JU, Mu H. Multi-material 3D printing of programmable and stretchable oromucosal patches for delivery of saquinavir. Int J Pharm 2021; 610:121236. [PMID: 34748810 DOI: 10.1016/j.ijpharm.2021.121236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022]
Abstract
Oromucosal patches for drug delivery allow fast onset of action and ability to circumvent hepatic first pass metabolism of drugs. While conventional fabrication methods such as solvent casting or hot melt extrusion are ideal for scalable production of low-cost delivery patches, these methods chiefly allow for simple, homogenous patch designs. As alternative, a multi-material direct-ink-write 3D printing for rapid fabrication of complex oromucosal patches with unique design features was demonstrated in the present study. Specifically, three print-materials: an acidic saquinavir-loaded hydroxypropyl methylcellulose ink, an alkaline effervescent sodium carbonate-loaded ink, and a methyl cellulose backing material were combined in various designs. The CO2 content and pH of the microenvironment were controlled by adjusting the number of alkaline layers in the patch. Additionally, the rigid and brittle patches were converted to compliant and stretchable patches by implementing mesh-like designs. Our results illustrate how 3D printing can be used for rapid design and fabrication of multifunctional or customized oromucosal patches with tailored dosages and changed drug permeation.
Collapse
Affiliation(s)
- Shaolong He
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Carmen Radeke
- Department of Health Technology, Technical University of Denmark, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Johan Ulrik Lind
- Department of Health Technology, Technical University of Denmark, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
119
|
3D Printing in medicine: Technology overview and drug delivery applications. ANNALS OF 3D PRINTED MEDICINE 2021. [DOI: 10.1016/j.stlm.2021.100037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
120
|
Choudhury D, Sharma PK, Suryanarayana Murty U, Banerjee S. Stereolithography-assisted fabrication of 3D printed polymeric film for topical berberine delivery: in-vitro, ex-vivo and in-vivo investigations. J Pharm Pharmacol 2021; 74:1477-1488. [PMID: 34850065 DOI: 10.1093/jpp/rgab158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES 3D printed polymeric film intended for topical delivery of berberine (BBR) was developed using stereolithography (SLA) to enhance its local concentrations. PEGDMA was utilized as photopolymerizing resin, with PEG 400 as an inert component to facilitate BBR solubilization and permeation. METHODS Three batches of topical films were printed by varying resin and PEG 400 compositions. In-vitro physicochemical characterizations of the 3D printed films were performed using several analytical techniques including ex-vivo drug permeation studies. In-vivo skin irritation studies were also conducted to assess the skin irritation potential. KEY FINDINGS Films were 3D printed according to design specifications with minimal variations. Microscopic analysis confirmed 3D architecture, while thermal and X-ray diffraction studies revealed amorphous BBR entrapment. Drug permeation study showed effective ex-vivo diffusion up to 344.32 ± 61.20 µg/cm2 after 24.0 h possessing a higher ratio of PEG 400. In-vivo skin irritation studies have suggested the non-irritant nature of printed films. CONCLUSIONS Results indicated the suitability of SLA 3D printing for topical application in the treatment of skin diseases. The presence of PEG 400 in the printed 3D films facilitated BBR diffusion, resulting in an improved flux in ex-vivo model and non-irritant properties in vivo.
Collapse
Affiliation(s)
- Dinesh Choudhury
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | - Peeyush Kumar Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| |
Collapse
|
121
|
Xu X, Seijo-Rabina A, Awad A, Rial C, Gaisford S, Basit AW, Goyanes A. Smartphone-enabled 3D printing of medicines. Int J Pharm 2021; 609:121199. [PMID: 34673166 DOI: 10.1016/j.ijpharm.2021.121199] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
3D printing is a manufacturing technique that is transforming numerous industrial sectors, particularly where it is key tool in the development and fabrication of medicinees that are personalised to the individual needs of patients. Most 3D printers are relatively large, require trained operators and must be located in a pharmaceutical setting to manufacture dosage forms. In order to realise fully the potential of point-of-care manufacturing of medicines, portable printers that are easy to operate are required. Here, we report the development of a 3D printer that operates using a mobile smartphone. The printer, operating on stereolithographic principles, uses the light from the smartphone's screen to photopolymerise liquid resins and create solid structures. The shape of the printed dosage form is determined using a custom app on the smartphone. Warfarin-loaded Printlets (3D printed tablets) of various sizes and patient-centred shapes (caplet, triangle, diamond, square, pentagon, torus, and gyroid lattices) were successfully printed to a high resolution and with excellent dimensional precision using different photosensitive resins. The drug was present in an amorphous form, and the Printlets displayed sustained release characterises. The promising proof-of-concept results support the future potential of this compact, user-friendly and interconnected smartphone-based system for point-of-care manufacturing of personalised medications.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alejandro Seijo-Rabina
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Carlos Rial
- FabRx Ltd., 7B North Lane, Canterbury CT2 7EB, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 7B North Lane, Canterbury CT2 7EB, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 7B North Lane, Canterbury CT2 7EB, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FabRx Ltd., 7B North Lane, Canterbury CT2 7EB, UK.
| |
Collapse
|
122
|
Chao M, Öblom H, Cornett C, Bøtker J, Rantanen J, Sporrong SK, Genina N. Data-Enriched Edible Pharmaceuticals (DEEP) with Bespoke Design, Dose and Drug Release. Pharmaceutics 2021; 13:1866. [PMID: 34834281 PMCID: PMC8623420 DOI: 10.3390/pharmaceutics13111866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/29/2023] Open
Abstract
Data-enriched edible pharmaceuticals (DEEP) is an approach to obtain personalized medicine, in terms of flexible and precise drug doses, while at the same time containing data, embedded in quick response (QR) codes at a single dosage unit level. The aim of this study was to fabricate DEEP with a patient-tailored dose, modify drug release and design to meet patients' preferences. It also aimed to investigate physical stability in terms of the readability of QR code patterns of DEEP during storage. Cannabinoids, namely, cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), were used as the model active pharmaceutical ingredients (APIs). Three different substrates and two colorants for the ink were tested for their suitability to fabricate DEEP by desktop inkjet printing. Flexible doses and customizable designs of DEEP were obtained by manipulating the digital design of the QR code, particularly, by exploring different pattern types, embedded images and the physical size of the QR code pattern. Modification of the release of both APIs from DEEP was achieved by applying a hydroxypropyl cellulose (HPC) polymer coating. The appearance and readability of uncoated and polymer-coated DEEP did not change on storage in cold and dry conditions; however, the HPC polymer layer was insufficient in preserving the readability of the QR code pattern in the extreme storage condition (40 °C and 75% relative humidity). To sum up, the DEEP concept provides opportunities for the personalization of medicines, considering also patients' preferences.
Collapse
Affiliation(s)
- Meie Chao
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (M.C.); (H.Ö.); (C.C.); (J.B.); (J.R.); (S.K.S.)
| | - Heidi Öblom
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (M.C.); (H.Ö.); (C.C.); (J.B.); (J.R.); (S.K.S.)
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, 20520 Åbo, Finland
| | - Claus Cornett
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (M.C.); (H.Ö.); (C.C.); (J.B.); (J.R.); (S.K.S.)
| | - Johan Bøtker
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (M.C.); (H.Ö.); (C.C.); (J.B.); (J.R.); (S.K.S.)
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (M.C.); (H.Ö.); (C.C.); (J.B.); (J.R.); (S.K.S.)
| | - Sofia Kälvemark Sporrong
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (M.C.); (H.Ö.); (C.C.); (J.B.); (J.R.); (S.K.S.)
- Department of Pharmacy, Uppsala University, P.O. Box 580, 751 23 Uppsala, Sweden
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (M.C.); (H.Ö.); (C.C.); (J.B.); (J.R.); (S.K.S.)
| |
Collapse
|
123
|
Awad A, Trenfield SJ, Pollard TD, Ong JJ, Elbadawi M, McCoubrey LE, Goyanes A, Gaisford S, Basit AW. Connected healthcare: Improving patient care using digital health technologies. Adv Drug Deliv Rev 2021; 178:113958. [PMID: 34478781 DOI: 10.1016/j.addr.2021.113958] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/12/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022]
Abstract
Now more than ever, traditional healthcare models are being overhauled with digital technologies of Healthcare 4.0 increasingly adopted. Worldwide, digital devices are improving every stage of the patient care pathway. For one, sensors are being used to monitor patient metrics 24/7, permitting swift diagnosis and interventions. At the treatment stage, 3D printers are under investigation for the concept of personalised medicine by allowing patients access to on-demand, customisable therapeutics. Robots are also being explored for treatment, by empowering precision surgery, rehabilitation, or targeted drug delivery. Within medical logistics, drones are being leveraged to deliver critical treatments to remote areas, collect samples, and even provide emergency aid. To enable seamless integration within healthcare, the Internet of Things technology is being exploited to form closed-loop systems that remotely communicate with one another. This review outlines the most promising healthcare technologies and devices, their strengths, drawbacks, and opportunities for clinical adoption.
Collapse
Affiliation(s)
- Atheer Awad
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sarah J Trenfield
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Thomas D Pollard
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Moe Elbadawi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Laura E McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alvaro Goyanes
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK.
| |
Collapse
|
124
|
Rantanen J, Fatouros DG. Preface: Additive manufacturing in pharmaceutical product design. Adv Drug Deliv Rev 2021; 178:113991. [PMID: 34582829 DOI: 10.1016/j.addr.2021.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
125
|
Eleftheriadis GK, Genina N, Boetker J, Rantanen J. Modular design principle based on compartmental drug delivery systems. Adv Drug Deliv Rev 2021; 178:113921. [PMID: 34390776 DOI: 10.1016/j.addr.2021.113921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
The current manufacturing solutions for oral solid dosage forms are fundamentally based on technologies from the 19th century. This approach is well suited for mass production of one-size-fits-all products; however, it does not allow for a straight-forward personalization and mass customization of the pharmaceutical end-product. In order to provide better therapies to the patients, a need for innovative manufacturing concepts and product design principles has been rising. Additive manufacturing opens up a possibility for compartmentalization of drug products, including design of spatially separated multidrug and functional excipient compartments. This compartmentalized solution can be further expanded to modular design thinking. Modular design is referring to combination of building blocks containing a given amount of drug compound(s) and related functional excipients into a larger final product. Implementation of modular design principles is paving the way for implementing the emerging personalization potential within health sciences by designing compartmental and reactive product structures that can be manufactured based on the individual needs of each patient. This review will introduce the existing compartmentalized product design principles and discuss the integration of these into edible electronics allowing for innovative control of drug release.
Collapse
Affiliation(s)
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johan Boetker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
126
|
Deshmane S, Kendre P, Mahajan H, Jain S. Stereolithography 3D printing technology in pharmaceuticals: a review. Drug Dev Ind Pharm 2021; 47:1362-1372. [PMID: 34663145 DOI: 10.1080/03639045.2021.1994990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three-dimensional printing (3DP) technology is an innovative tool used in manufacturing medical devices, producing alloys, replacing biological tissues, producing customized dosage forms and so on. Stereolithography (SLA), a 3D printing technique, is very rapid and highly accurate and produces finished products of uniform quality. 3D formulations have been optimized with a perfect tool of artificial intelligence learning techniques. Complex designs/shapes can be fabricated through SLA using the photopolymerization principle. Different 3DP technologies are introduced and the most promising of these, SLA, and its commercial applications, are focused on. The high speed and effectiveness of SLA are highlighted. The working principle of SLA, the materials used and applications of the technique in a wide range of different sectors are highlighted in this review. An innovative idea of 3D printing customized pharmaceutical dosage forms is also presented. SLA compromises several advantages over other methods, such as cost effectiveness, controlled integrity of materials and greater speed. The development of SLA has allowed the development of printed pharmaceutical devices. Considering the present trends, it is expected that SLA will be used along with conventional methods of manufacturing of 3D model. This 3D printing technology may be utilized as a novel tool for delivering drugs on demand. This review will be useful for researchers working on 3D printing technologies.
Collapse
Affiliation(s)
- Subhash Deshmane
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Malvihir, India
| | - Prakash Kendre
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Malvihir, India
| | - Hitendra Mahajan
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Shirish Jain
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Malvihir, India
| |
Collapse
|
127
|
Debnath SK, Debnath M, Srivastava R, Omri A. Intervention of 3D printing in health care: transformation for sustainable development. Expert Opin Drug Deliv 2021; 18:1659-1672. [PMID: 34520310 DOI: 10.1080/17425247.2021.1981287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Three-dimensional (3D) technology is the practice of dropping material layer-by-layer in the construction of the desired object. The application of the 3D printing technique has been observed in miscellaneous domains. Personalized medicine becomes the most demanding trend in the health-care segment. Several advancements have been observed in the progress of 3D printing. However, the availability of finished products in the marketplace is very less. There is an utmost requirement to improve the knowledge and skills in the sustainable development of pharmaceutical and medical products by selecting suitable techniques and materials. AREAS COVERED This article covers the fundamental process of 3D printing, types, pharmaceutical-medical application, benefits, and challenges. EXPERT OPINION This technology is capable of designing the complex geometry of an organ. It is feasible to produce drug products by incorporating multiple drugs in various compartments in such a fashion that these drugs can release from the compartment at a predetermined rate. Additionally, this 3D process has the potential to revolutionize personalized therapy to different age-groups through design flexibility and accurate dosing. In the upcoming years, the potential application of this technology can be seen in a clinical setting where patients will get individualized medicine as per their needs.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Monalisha Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
128
|
Xu X, Awwad S, Diaz-Gomez L, Alvarez-Lorenzo C, Brocchini S, Gaisford S, Goyanes A, Basit AW. 3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13091421. [PMID: 34575497 PMCID: PMC8464872 DOI: 10.3390/pharmaceutics13091421] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Dry eye disease is a common ocular disorder that is characterised by tear deficiency or excessive tear evaporation. Current treatment involves the use of eye drops; however, therapeutic efficacy is limited because of poor ocular bioavailability of topically applied formulations. In this study, digital light processing (DLP) 3D printing was employed to develop dexamethasone-loaded punctal plugs. Punctal plugs with different drug loadings were fabricated using polyethylene glycol diacrylate (PEGDA) and polyethylene glycol 400 (PEG 400) to create a semi-interpenetrating network (semi-IPN). Drug-loaded punctal plugs were characterised in terms of physical characteristics (XRD and DSC), potential drug-photopolymer interactions (FTIR), drug release profile, and cytocompatibility. In vitro release kinetics of the punctal plugs were evaluated using an in-house flow rig model that mimics the subconjunctival space. The results showed sustained release of dexamethasone for up to 7 days from punctal plugs made with 20% w/w PEG 400 and 80% w/w PEGDA, while punctal plugs made with 100% PEGDA exhibited prolonged releases for more than 21 days. Herein, our study demonstrates that DLP 3D printing represents a potential manufacturing platform for fabricating personalised drug-loaded punctal plugs with extended release characteristics for ocular administration.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Sahar Awwad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
| | - Steve Brocchini
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- Correspondence: (A.G.); (A.W.B.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- Correspondence: (A.G.); (A.W.B.)
| |
Collapse
|
129
|
Gaurav, Hasan N, Malik AK, Singh V, Raza K, Ahmad FJ, Kesharwani P, Jain GK. Recent update of 3D printing technology in pharmaceutical formulation development. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2306-2330. [PMID: 34387541 DOI: 10.1080/09205063.2021.1967702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In modern world, Pharma sector observes steep increase in demand of personalized medicine. Various unique ideas and technology were proposed and implemented by different researchers to prepare personalized medicine and devices. 3-dimensional printing (3DP) is one of the revolutionary technologies which can be used to prepare tailored medicine via CAD (Computer Aided Design) software. 3DP allows researchers to manufacture customized dosage form with desired modifications in geometry which would in turn alter dosage behaviour of the product with reduced side effects. Current achievement of 3DP includes personalized and adjustable dosage form, multifunction drug delivery systems, medical devices, phantoms, and implants specific to patient anatomy. Additionally, 3DP is employed for preparing tailored regenerative medicines. This review focuses on 3DP use in pharmaceuticals including drug delivery systems and medical devices with their method of fabrication. Additionally, different clinical trials as well as different patents done till date are cited in the paper. Furthermore, regulatory issues and future perspective related to 3 D printing is also well discussed.
Collapse
Affiliation(s)
- Gaurav
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi, Uttar Pradesh, India
| | - Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi, India
| |
Collapse
|
130
|
Naguib MJ, Hassan YR, Abd-Elsalam WH. 3D printed ocusert laden with ultra-fluidic glycerosomes of ganciclovir for the management of ocular cytomegalovirus retinitis. Int J Pharm 2021; 607:121010. [PMID: 34391852 DOI: 10.1016/j.ijpharm.2021.121010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
Cytomegalovirus (CMV) retinitisis a vision-threatening disease that principally afflicts immunosuppressed patients. For the management of the disease, Ganciclovir (GCV) is usually administered systemically, where patients may suffer severe untoward effects. The ocularly-applied alternatives are either the intravitreal injections, which are frequently administered due to GCV short half-life, or the sustained-release implants, which require surgical removal upon drug depletion. Both therapies are invasive and should be completed by a medical expert. The objective of this research was to formulate a non-invasive alternative represented in GCV loaded ultra-fluidic glycerosomes (UFGs), which are glycerosomes containing sodium taurocholate as an edge activator (EA), then incorporating the optimal UFGs in polylactic acid (PLA)-based 3D printed ocusert to prolong the release of GCV. The experimental design, the statistical analysis, and the optimization were performed via Design-Expert® software. The optimal formulation (UFGs 6; composed of 600 mg Phosphatidylcholine (PC), 20 mg cholesterol, 0.1:1 weight molar ratio of EA: PC and 1 gm glycerol) possessed nanovesicles (441.70 ± 1.13 nm) that entrapped 69.33 ± 0.28 % of GCV, with zeta potential value of -37.00 ± 0.42 mV and deformability index value of 74.68 ± 0.71. The confocal microscopy results showed the supreme penetration power of UFGs through the rabbit's cornea, compared to edge-activated vesicles and conventional glycerosomes from the laden ocusert. Moreover, the topical application of the ocusert laden with the optimal GCV loaded UFGs to the rabbits' eyes evidenced their safety as per the histopathological findings. Furthermore, a pharmacokinetic study in the rabbit's aqueous humor demonstrated the sustained release of GCV from the ocusert laden with the optimal GCV loaded UFGs over 5 days. Inclusively, the ocusert laden with UFGs could be considered as a non-invasive sustaining drug delivery system of GCV for the management of CMV retinitis.
Collapse
Affiliation(s)
- Marianne J Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Youssef R Hassan
- Packaging materials department, National research centre, Cairo, Egypt
| | - Wessam H Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
131
|
Madla CM, Gavins FKH, Merchant HA, Orlu M, Murdan S, Basit AW. Let's talk about sex: Differences in drug therapy in males and females. Adv Drug Deliv Rev 2021; 175:113804. [PMID: 34015416 DOI: 10.1016/j.addr.2021.05.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
Professor Henry Higgins in My Fair Lady said, 'Why can't a woman be more like a man?' Perhaps unintended, such narration extends to the reality of current drug development. A clear sex-gap exists in pharmaceutical research spanning from preclinical studies, clinical trials to post-marketing surveillance with a bias towards males. Consequently, women experience adverse drug reactions from approved drug products more often than men. Distinct differences in pharmaceutical response across drug classes and the lack of understanding of disease pathophysiology also exists between the sexes, often leading to suboptimal drug therapy in women. This review explores the influence of sex as a biological variable in drug delivery, pharmacokinetic response and overall efficacy in the context of pharmaceutical research and practice in the clinic. Prospective recommendations are provided to guide researchers towards the consideration of sex differences in methodologies and analyses. The promotion of disaggregating data according to sex to strengthen scientific rigour, encouraging innovation through the personalisation of medicines and adopting machine learning algorithms is vital for optimised drug development in the sexes and population health equity.
Collapse
Affiliation(s)
- Christine M Madla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Francesca K H Gavins
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Hamid A Merchant
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
132
|
Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev 2021; 175:113805. [PMID: 34019957 DOI: 10.1016/j.addr.2021.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is redefining how we exist in the world. In almost every sector of society, AI is performing tasks with super-human speed and intellect; from the prediction of stock market trends to driverless vehicles, diagnosis of disease, and robotic surgery. Despite this growing success, the pharmaceutical field is yet to truly harness AI. Development and manufacture of medicines remains largely in a 'one size fits all' paradigm, in which mass-produced, identical formulations are expected to meet individual patient needs. Recently, 3D printing (3DP) has illuminated a path for on-demand production of fully customisable medicines. Due to its flexibility, pharmaceutical 3DP presents innumerable options during formulation development that generally require expert navigation. Leveraging AI within pharmaceutical 3DP removes the need for human expertise, as optimal process parameters can be accurately predicted by machine learning. AI can also be incorporated into a pharmaceutical 3DP 'Internet of Things', moving the personalised production of medicines into an intelligent, streamlined, and autonomous pipeline. Supportive infrastructure, such as The Cloud and blockchain, will also play a vital role. Crucially, these technologies will expedite the use of pharmaceutical 3DP in clinical settings and drive the global movement towards personalised medicine and Industry 4.0.
Collapse
|
133
|
Muñiz Castro B, Elbadawi M, Ong JJ, Pollard T, Song Z, Gaisford S, Pérez G, Basit AW, Cabalar P, Goyanes A. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release 2021; 337:530-545. [PMID: 34339755 DOI: 10.1016/j.jconrel.2021.07.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Three-dimensional printing (3DP) is a transformative technology that is advancing pharmaceutical research by producing personalized drug products. However, advances made via 3DP have been slow due to the lengthy trial-and-error approach in optimization. Artificial intelligence (AI) is a technology that could revolutionize pharmaceutical 3DP through analyzing large datasets. Herein, literature-mined data for developing AI machine learning (ML) models was used to predict key aspects of the 3DP formulation pipeline and in vitro dissolution properties. A total of 968 formulations were mined and assessed from 114 articles. The ML techniques explored were able to learn and provide accuracies as high as 93% for values in the filament hot melt extrusion process. In addition, ML algorithms were able to use data from the composition of the formulations with additional input features to predict the drug release of 3D printed medicines. The best prediction was obtained by an artificial neural network that was able to predict drug release times of a formulation with a mean error of ±24.29 min. In addition, the most important variables were revealed, which could be leveraged in formulation development. Thus, it was concluded that ML proved to be a suitable approach to modelling the 3D printing workflow.
Collapse
Affiliation(s)
- Brais Muñiz Castro
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain
| | - Moe Elbadawi
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Thomas Pollard
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Zhe Song
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK
| | - Gilberto Pérez
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK.
| | - Pedro Cabalar
- IRLab, Department of Computer Science, University of A Coruña, Spain
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain.
| |
Collapse
|
134
|
Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations. Pharmaceutics 2021; 13:pharmaceutics13081114. [PMID: 34452075 PMCID: PMC8398999 DOI: 10.3390/pharmaceutics13081114] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/30/2022] Open
Abstract
For the last 40 years, praziquantel has been the standard treatment for schistosomiasis, a neglected parasitic disease affecting more than 250 million people worldwide. However, there is no suitable paediatric formulation on the market, leading to off-label use and the splitting of commercial tablets for adults. In this study, we use a recently available technology, direct powder extrusion (DPE) three-dimensional printing (3DP), to prepare paediatric Printlets™ (3D printed tablets) of amorphous solid dispersions of praziquantel with Kollidon® VA 64 and surfactants (Span™ 20 or Kolliphor® SLS). Printlets were successfully printed from both pellets and powders obtained from extrudates by hot melt extrusion (HME). In vitro dissolution studies showed a greater than four-fold increase in praziquantel release, due to the formation of amorphous solid dispersions. In vitro palatability data indicated that the printlets were in the range of praziquantel tolerability, highlighting the taste masking capabilities of this technology without the need for additional taste masking excipients. This work has demonstrated the possibility of 3D printing tablets using pellets or powder forms obtained by HME, avoiding the use of filaments in fused deposition modelling 3DP. Moreover, the main formulation hurdles of praziquantel, such as low drug solubility, inadequate taste, and high and variable dose requirements, can be overcome using this technology.
Collapse
|
135
|
Disrupting 3D printing of medicines with machine learning. Trends Pharmacol Sci 2021; 42:745-757. [PMID: 34238624 DOI: 10.1016/j.tips.2021.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
3D printing (3DP) is a progressive technology capable of transforming pharmaceutical development. However, despite its promising advantages, its transition into clinical settings remains slow. To make the vital leap to mainstream clinical practice and improve patient care, 3DP must harness modern technologies. Machine learning (ML), an influential branch of artificial intelligence, may be a key partner for 3DP. Together, 3DP and ML can utilise intelligence based on human learning to accelerate drug product development, ensure stringent quality control (QC), and inspire innovative dosage-form design. With ML's capabilities, streamlined 3DP drug delivery could mark the next era of personalised medicine. This review details how ML can be applied to elevate the 3DP of pharmaceuticals and importantly, how it can expedite 3DP's integration into mainstream healthcare.
Collapse
|
136
|
Eduardo DT, Ana SE, José B F. A micro-extrusion 3D printing platform for fabrication of orodispersible printlets for pediatric use. Int J Pharm 2021; 605:120854. [PMID: 34224841 DOI: 10.1016/j.ijpharm.2021.120854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/21/2023]
Abstract
3D printed pharmaceuticals offers the potential to manufacture personalized medicines for patients. Such technology is of particular benefit to pediatric populations from the offer of increased patient compliance and dose flexibility. With a bench-to-patient approach, this study established and optimized the critical parameters of the semi-solid micro-extrusion 3D printing process to guarantee the quality attributes of the final dosage form. Pediatrics orodispersible printlets of hydrochlorothiazide were manufactured through the modification of printing parameters, as well as printing surfaces materials. The printlets were characterized and the dimensions were measured using a digital caliper and computer vision algorithm. This study identified that the printing surface material and the first printing layer are critical parameters for high-resolution printlets. Following the optimization of 3D printing parameters, high quality orodispersible printlets loaded with hydrochlorothiazide - specifically tailored for pediatric patient's dosage forms - were obtained (4.62 mm × 1.90 mm). Mass and content uniformity assays demonstrated that the printlets satisfied the requirements for orodispersible printlets set by the European Pharmacopoeia. As such, in order to transition from laboratory research towards the treatment of patients, distinguishing accurate 3D printing parameters is necessary for the manufacture of medicines with key quality attributes that follow Pharmacopoeia requirements.
Collapse
Affiliation(s)
- Díaz-Torres Eduardo
- Facultad de Farmacia, Universidad de La Laguna, La Laguna 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna 38206, Spain; Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna, 38200 La Laguna (Tenerife), Spain; Programa predoctoral de formación del personal investigador en Canarias, Consejería de Economía, Conocimiento y Empleo, Spain
| | - Santoveña-Estévez Ana
- Facultad de Farmacia, Universidad de La Laguna, La Laguna 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna 38206, Spain.
| | - Fariña José B
- Facultad de Farmacia, Universidad de La Laguna, La Laguna 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna 38206, Spain
| |
Collapse
|
137
|
Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv Drug Deliv Rev 2021; 174:406-424. [PMID: 33951489 DOI: 10.1016/j.addr.2021.04.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Powder bed fusion (PBF) is a 3D printing method that selectively consolidates powders into 3D objects using a power source. PBF has various derivatives; selective laser sintering/melting, direct metal laser sintering, electron beam melting and multi-jet fusion. These technologies provide a multitude of benefits that make them well suited for the fabrication of bespoke drug-laden formulations, devices and implants. This includes their superior printing resolution and speed, and ability to produce objects without the need for secondary supports, enabling them to precisely create complex products. Herein, this review article outlines the unique applications of PBF 3D printing, including the main principles underpinning its technologies and highlighting their novel pharmaceutical and biomedical applications. The challenges and shortcomings are also considered, emphasising on their effects on the 3D printed products, whilst providing a forward-thinking view.
Collapse
|
138
|
|
139
|
Fabrication and Characterization of Fast-Dissolving Films Containing Escitalopram/Quetiapine for the Treatment of Major Depressive Disorder. Pharmaceutics 2021; 13:pharmaceutics13060891. [PMID: 34208460 PMCID: PMC8234593 DOI: 10.3390/pharmaceutics13060891] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MMD) is a leading cause of disability worldwide. Approximately one-third of patients with MDD fail to achieve response or remission leading to treatment-resistant depression (TRD). One of the psychopharmacological strategies to overcome TRD is using a combination of an antipsychotic as an augmenting agent with selective serotonin reuptake inhibitors (SSRIs). Among which, an atypical antipsychotic, quetiapine (QUE), and an SSRI, escitalopram (ESC), were formulated as a fixed-dose combination as a fast-dissolving film by coaxial electrospinning. The resultant fiber’s morphology was studied. SEM images showed that the drug-loaded fibers were smooth, un-beaded, and non-porous with a fiber diameter of 0.9 ± 0.1 µm, while the TEM images illustrated the distinctive layers of the core and shell, confirming the successful preparation of these fibers. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies confirmed that both drugs were amorphously distributed within the drug-loaded fibers. The drug-loaded fibers exhibited a disintegration time of 2 s, which accelerated the release of both drugs (50% after 5 min) making it an attractive formulation for oral mucosal delivery. The ex vivo permeability study demonstrated that QUE was permeated through the buccal membrane, but not ESC that might be hindered by the buccal epithelium and the intercellular lipids. Overall, the developed coaxial fibers could be a potential buccal dosage form that could be attributed to higher acceptability and adherence among vulnerable patients, particularly mentally ill patients.
Collapse
|
140
|
Ong JJ, Pollard TD, Goyanes A, Gaisford S, Elbadawi M, Basit AW. Optical biosensors - Illuminating the path to personalized drug dosing. Biosens Bioelectron 2021; 188:113331. [PMID: 34038838 DOI: 10.1016/j.bios.2021.113331] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Optical biosensors are low-cost, sensitive and portable devices that are poised to revolutionize the medical industry. Healthcare monitoring has already been transformed by such devices, with notable recent applications including heart rate monitoring in smartwatches and COVID-19 lateral flow diagnostic test kits. The commercial success and impact of existing optical sensors has galvanized research in expanding its application in numerous disciplines. Drug detection and monitoring seeks to benefit from the fast-approaching wave of optical biosensors, with diverse applications ranging from illicit drug testing, clinical trials, monitoring in advanced drug delivery systems and personalized drug dosing. The latter has the potential to significantly improve patients' lives by minimizing toxicity and maximizing efficacy. To achieve this, the patient's serum drug levels must be frequently measured. Yet, the current method of obtaining such information, namely therapeutic drug monitoring (TDM), is not routinely practiced as it is invasive, expensive, time-consuming and skilled labor-intensive. Certainly, optical sensors possess the capabilities to challenge this convention. This review explores the current state of optical biosensors in personalized dosing with special emphasis on TDM, and provides an appraisal on recent strategies. The strengths and challenges of optical biosensors are critically evaluated, before concluding with perspectives on the future direction of these sensors.
Collapse
Affiliation(s)
- Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Thomas D Pollard
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782, Spain
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Mohammed Elbadawi
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|