101
|
Zhang N, Wang J, Bing T, Liu X, Shangguan D. Transferrin receptor-mediated internalization and intracellular fate of conjugates of a DNA aptamer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1249-1259. [PMID: 35282414 PMCID: PMC8899136 DOI: 10.1016/j.omtn.2022.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
Aptamers have excellent specificity and affinity in targeting cell surface receptors, showing great potential in targeted delivery of drugs, siRNA, mRNA, and various nanomaterials with therapeutic function. A better insight of the receptor-mediated internalization process of aptameric conjugates could facilitate the design of new targeted drugs. In this paper, human transferrin receptor-targeted DNA aptamer (termed HG1-9)-fluorophore conjugates were synthesized to visualize the internalization, intracellular transport, and nano-environmental pH of aptameric conjugates. Unlike transferrin that showed high recycling rate and short duration time in cells, the synthetic aptameric conjugates continuously accumulated within cells at a relatively slower rate, besides recycling back to cell surface. After long incubation (≥2 h), only very small amounts of HG1-9 conjugates (approximately 5%) entered late endosomes or lysosomes, and more than 90% of internalized HG1-9 was retained in cellular vesicles (pH 6.0–6.8), escaping from degradation. And among the internalized HG1-9 conjugates, approximately 20% was dissociated from transferrin receptor. The lower recycling ratios of HG1-9 conjugates and their dissociation from receptors promote the accurate and efficient release of their loaded drugs. These results suggest that aptamer HG1-9 could be provided as a versatile tool for specific and effective delivery of diverse therapeutic payloads.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junyan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
102
|
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev 2022; 182:114113. [PMID: 35063535 DOI: 10.1016/j.addr.2022.114113] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chemistry, Biochemistry Division, Ordu University, Ordu, Turkey
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
103
|
Ball K, Bruin G, Escandon E, Funk C, Pereira JN, Yang TY, Yu H. Characterizing the pharmacokinetics and biodistribution of therapeutic proteins: an industry white paper. Drug Metab Dispos 2022; 50:858-866. [PMID: 35149542 DOI: 10.1124/dmd.121.000463] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Characterization of the pharmacokinetics (PK) and biodistribution of therapeutic proteins (TPs) is a hot topic within the pharmaceutical industry, particularly with an ever-increasing catalog of novel modality TPs. Here, we review the current practices, and provide a summary of extensive cross-company discussions as well as a survey completed by International Consortium for Innovation and Quality (IQ consortium) members on this theme. A wide variety of in vitro, in vivo and in silico techniques are currently used to assess PK and biodistribution of TPs, and we discuss the relevance of these from an industry perspective, focusing on PK/PD understanding at the preclinical stage of development, and translation to human. We consider that the 'traditional in vivo biodistribution study' is becoming insufficient as a standalone tool, and thorough characterization of the interaction of the TP with its target(s), target biology, and off-target interactions at a microscopic scale are key to understand the overall biodistribution at a full-body scale. Our summary of the current challenges and our recommendations to address these issues could provide insight into the implementation of best practices in this area of drug development, and continued cross-company collaboration will be of tremendous value. Significance Statement The Innovation & Quality Consortium (IQ) Translational and ADME Sciences Leadership Group (TALG) working group for the ADME of therapeutic proteins evaluates the current practices, recent advances, and challenges in characterizing the PK and biodistribution of therapeutic proteins during drug development, and proposes recommendations to address these issues. Incorporating the in vitro, in vivo and in silico approaches discussed herein may provide a pragmatic framework to increase early understanding of PK/PD relationships, and aid translational modelling for first-in-human dose predictions.
Collapse
Affiliation(s)
| | - Gerard Bruin
- Novartis Institutes for Biomedical Research, Switzerland
| | | | - Christoph Funk
- Dept. of Drug Metabolism and Pharmacokinetics, F. Hoffmann-La Roche Ltd., Switzerland
| | | | | | - Hongbin Yu
- Boehringer Ingelheim Pharmaceuticals, Inc, United States
| |
Collapse
|
104
|
Sriwidodo, Umar AK, Wathoni N, Zothantluanga JH, Das S, Luckanagul JA. Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon 2022; 8:e08934. [PMID: 35243059 PMCID: PMC8861389 DOI: 10.1016/j.heliyon.2022.e08934] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes have been used extensively as micro- and nanocarriers for hydrophobic or hydrophilic molecules. However, conventional liposomes are biodegradable and quickly eliminated, making it difficult to be used for delivery in specific routes, such as the oral and systemic routes. One way to overcome this problem is through complexation with polymers, which is referred to as a liposome complex. The use of polymers can increase the stability of liposome with regard to pH, chemicals, enzymes, and the immune system. In some cases, specific polymers can condition the properties of liposomes to be explicitly used in drug delivery, such as targeted delivery and controlled release. These properties are influenced by the type of polymer, crosslinker, interaction, and bond in the complexation process. Therefore, it is crucial to study and review these parameters for the development of more optimal forms and properties of the liposome complex. This article discusses the use of natural and synthetic polymers, ways of interaction between polymers and liposomes (on the surface, incorporation in lamellar chains, and within liposomes), types of bonds, evaluation standards, and their effects on the stability and pharmacokinetic profile of the liposome complex, drugs, and vaccines. This article concludes that both natural and synthetic polymers can be used in modifying the structure and physicochemical properties of liposomes to specify their use in targeted delivery, controlled release, and stabilizing drugs and vaccines.
Collapse
Affiliation(s)
- Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Sanjoy Das
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
105
|
Khazaei Monfared Y, Mahmoudian M, Cecone C, Caldera F, Zakeri-Milani P, Matencio A, Trotta F. Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers (Basel) 2022; 14:polym14030594. [PMID: 35160583 PMCID: PMC8840141 DOI: 10.3390/polym14030594] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
The great variability of cancer types demands novel drugs with broad spectrum, this is the case of Nisin, a polycyclic antibacterial peptide that recently has been considered for prevention of cancer cells growth. As an accepted food additive, this drug would be very useful for intestinal cancers, but the peptide nature would make easier its degradation by digestion procedures. For that reason, the aim of present study to investigate the protective effect of two different β-cyclodextrin-based nanosponges (carbonyl diimidazole and pyromellitic dianhydride) and their anti-cancer enhancement effect of Nisin-Z encapsulated with against colon cancer cells (HT-29). To extend its possible use, a comparison with breast (MCF-7) cancer cell was carried out. The physicochemical properties, loading efficiency, and release kinetics of Nisin complex with nanosponges were studied. Then, tricin-SDS-PAGE electrophoresis was used to understand the effect of NSs on stability of Nisin-Z in the presence of gastric peptidase pepsin. In addition, the cytotoxicity and cell membrane damage of Nisin Z were evaluated by using the MTT and LDH assay, which was complemented via Annexin-V/ Propidium Iodide (PI) by using flowcytometry. CD-NS are able to complex Nisin-Z with an encapsulation efficiency around 90%. A protective effect of Nisin-Z complexed with CD-NSs was observed in presence of pepsin. An increase in the percentage of apoptotic cells was observed when the cancer cells were exposed to Nisin Z complexed with nanosponges. Interestingly, Nisin Z free and loaded on PMDA/CDI-NSs is more selectively toxic towards HT-29 cells than MCF-7 cancer cells. These results indicated that nanosponges might be good candidates to protect peptides and deliver drugs against intestinal cancers.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Mohammad Mahmoudian
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran;
| | - Claudio Cecone
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Fabrizio Caldera
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Centre and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| | - Adrián Matencio
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| | - Francesco Trotta
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| |
Collapse
|
106
|
Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022; 14:622. [PMID: 35158888 PMCID: PMC8833699 DOI: 10.3390/cancers14030622] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the focus of developmental interest. This review discusses the preparation and targeting techniques as well as the properties of several liposome-, micelle-, solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems. Approaches for targeted drug delivery and systems for drug release under a range of stimuli are also discussed.
Collapse
Affiliation(s)
- Valery V. Veselov
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - Alexander E. Nosyrev
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - László Jicsinszky
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Renad N. Alyautdin
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia
| |
Collapse
|
107
|
Active targeting via ligand-anchored pH-responsive strontium nanoparticles for efficient nucleic acid delivery into breast cancer cells. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00559-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Purpose
Gene therapy is a promising and novel therapeutic strategy for many mutated gene-associated diseases, including breast cancer. However, it poses significant biological drawbacks such as rapid clearance from the circulatory system and low cellular uptake of the exogenously delivered functional nucleic acids. The development of efficient and biocompatible carriers for genetic materials has been extensively explored in the literature, and the functionalization of nanoparticles (NPs) with cancer cell-recognizing ligands has become an attractive approach to promote tumor targetability and efficient cellular internalization via endocytosis.
Methods
This study introduced self-assembling targeting ligands, including transferrin and fibronectin with the ability to electrostatically interact with strontium nanoparticles (SNPs), and then analyzed their influence on size and zeta potential of the resultant hybrid SNPs, cellular uptake and expression efficiency of transgene-loaded hybrid NPs.
Results
Smaller ligand-coated SNPs (LCSNPs) remarkably increased gene transfection activity in both MCF-7 and 4T1 cells as well as nucleic acid localization into tumor tissues with improved tumor regression activity in a 4T1-tumor xenograft mouse model.
Conclusion
LCSNPs-mediated delivery of p53 gene and MAPK siRNA provided a proof-of-concept for the functionalized nanocarrier formulation in order to inhibit breast cancer cell growth.
Collapse
|
108
|
Mapanao AK, Sarogni P, Santi M, Menicagli M, Gonnelli A, Zamborlin A, Ermini ML, Voliani V. Pro-apoptotic and size-reducing effects of protein corona-modulating nano-architectures enclosing platinum prodrug in in vivo oral carcinoma. Biomater Sci 2022; 10:6135-6145. [DOI: 10.1039/d2bm00994c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective and localized delivery of active agents to neoplasms is crucial to enhance the chemotherapeutic efficacy while reducing the associated side effects. The encapsulation of chemotherapeutics in nanoparticles decorated...
Collapse
|
109
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
110
|
Zhang X, Ma Y, Wan J, Yuan J, Wang D, Wang W, Sun X, Meng Q. Biomimetic Nanomaterials Triggered Ferroptosis for Cancer Theranostics. Front Chem 2021; 9:768248. [PMID: 34869212 PMCID: PMC8635197 DOI: 10.3389/fchem.2021.768248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis, as a recently discovered non-apoptotic programmed cell death with an iron-dependent form, has attracted great attention in the field of cancer nanomedicine. However, many ferroptosis-related nano-inducers encountered unexpected limitations such as immune exposure, low circulation time, and ineffective tumor targeting. Biomimetic nanomaterials possess some unique physicochemical properties which can achieve immune escape and effective tumor targeting. Especially, certain components of biomimetic nanomaterials can further enhance ferroptosis. Therefore, this review will provide a comprehensive overview on recent developments of biomimetic nanomaterials in ferroptosis-related cancer nanomedicine. First, the definition and character of ferroptosis and its current applications associated with chemotherapy, radiotherapy, and immunotherapy for enhancing cancer theranostics were briefly discussed. Subsequently, the advantages and limitations of some representative biomimetic nanomedicines, including biomembranes, proteins, amino acids, polyunsaturated fatty acids, and biomineralization-based ferroptosis nano-inducers, were further spotlighted. This review would therefore help the spectrum of advanced and novice researchers who are interested in this area to quickly zoom in the essential information and glean some provoking ideas to advance this subfield in cancer nanomedicine.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jipeng Wan
- School of Chemistry and Pharmaceutical Engineering, Institute of Optical Functional Materials for Biomedical Imaging, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jia Yuan
- School of Chemistry and Pharmaceutical Engineering, Institute of Optical Functional Materials for Biomedical Imaging, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Diqing Wang
- School of Chemistry and Pharmaceutical Engineering, Institute of Optical Functional Materials for Biomedical Imaging, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Weiyi Wang
- School of Chemistry and Pharmaceutical Engineering, Institute of Optical Functional Materials for Biomedical Imaging, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Institute of Optical Functional Materials for Biomedical Imaging, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
111
|
Biotin-tagged cis-dichlorido-oxidovanadium(IV) complex for DNA crosslinking and photo-induced apoptotic cytotoxicity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
112
|
Dual Targeting of Cancer Cells and MMPs with Self-Assembly Hybrid Nanoparticles for Combination Therapy in Combating Cancer. Pharmaceutics 2021; 13:pharmaceutics13121990. [PMID: 34959271 PMCID: PMC8707712 DOI: 10.3390/pharmaceutics13121990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023] Open
Abstract
The co-delivery of chemotherapeutic agents and immune modulators to their targets remains to be a great challenge for nanocarriers. Here, we developed a hybrid thermosensitive nanoparticle (TMNP) which could co-deliver paclitaxel-loaded transferrin (PTX@TF) and marimastat-loaded thermosensitive liposomes (MMST/LTSLs) for the dual targeting of cancer cells and the microenvironment. TMNPs could rapidly release the two payloads triggered by the hyperthermia treatment at the site of tumor. The released PTX@TF entered cancer cells via transferrin-receptor-mediated endocytosis and inhibited the survival of tumor cells. MMST was intelligently employed as an immunomodulator to improve immunotherapy by inhibiting matrix metalloproteinases to reduce chemokine degradation and recruit T cells. The TMNPs promoted the tumor infiltration of CD3+ T cells by 2-fold, including memory/effector CD8+ T cells (4.2-fold) and CD4+ (1.7-fold), but not regulatory T cells. Our in vivo anti-tumor experiment suggested that TMNPs possessed the highest tumor growth inhibitory rate (80.86%) compared with the control group. We demonstrated that the nanoplatform could effectively inhibit the growth of tumors and enhance T cell recruitment through the co-delivery of paclitaxel and marimastat, which could be a promising strategy for the combination of chemotherapy and immunotherapy for cancer treatment.
Collapse
|
113
|
Jiang M, Hu R, Yu R, Tang Y, Li J. A narrative review of mechanisms of ferroptosis in cancer: new challenges and opportunities. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1599. [PMID: 34790805 PMCID: PMC8576726 DOI: 10.21037/atm-21-4863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022]
Abstract
Objective This article reviews the specific mechanism of ferroptosis in cancer and introduces in detail the opportunities and challenges of ferroptosis-based cancer therapy, aiming to provide a new research direction for tumor therapy. Background Ferroptosis is a newly discovered programmed non-apoptotic form of cell death. Involving changes in metabolic processes and the accumulation of peroxidation caused by factors such as drugs or genes which destruct the cell membrane structure, this kind of cell death has been linked with the pathological process of diseases such as tumors, neurological diseases, ischemia-reperfusion injury, kidney injury, and hemopathy. This kind of cell death can play a vital role in inhibiting tumorigenesis by eliminating the adaptive characteristics of malignant cells and removing cells that are unable to obtain key nutritional factors or are infected and damaged by environmental changes. The present focus of research on the regulation of ferroptosis-related diseases involves the use of small molecule compounds. Methods We described the mechanism of ferroptosis and its related small molecules compounds, which involved in the regulatory mechanism, and analyzed the role and regulatory mechanism of ferroptosis in different tumors. Conclusions This article reviewed the mechanism of ferroptosis and its role and mechanism in different tumors, and showed it can inhibit the occurrence and development of different tumors and may reduce the adverse effects of current treatment methods.
Collapse
Affiliation(s)
- Mingyan Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ruolan Hu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ruixin Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yiwei Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jinrong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
114
|
Jo JH, Kim SA, Lee JH, Park YR, Kim C, Park SB, Jung DE, Lee HS, Chung MJ, Song SY. GLRX3, a novel cancer stem cell-related secretory biomarker of pancreatic ductal adenocarcinoma. BMC Cancer 2021; 21:1241. [PMID: 34794402 PMCID: PMC8603516 DOI: 10.1186/s12885-021-08898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Cancer stem cells (CSCs) are implicated in carcinogenesis, cancer progression, and recurrence. Several biomarkers have been described for pancreatic ductal adenocarcinoma (PDAC) CSCs; however, their function and mechanism remain unclear. Method In this study, secretome analysis was performed in pancreatic CSC-enriched spheres and control adherent cells for biomarker discovery. Glutaredoxin3 (GLRX3), a novel candidate upregulated in spheres, was evaluated for its function and clinical implication. Results PDAC CSC populations, cell lines, patient tissues, and blood samples demonstrated GLRX3 overexpression. In contrast, GLRX3 silencing decreased the in vitro proliferation, migration, clonogenicity, and sphere formation of cells. GLRX3 knockdown also reduced tumor formation and growth in vivo. GLRX3 was found to regulate Met/PI3K/AKT signaling and stemness-related molecules. ELISA results indicated GLRX3 overexpression in the serum of patients with PDAC compared to that in healthy controls. The sensitivity and specificity of GLRX3 for PDAC diagnosis were 80.0 and 100%, respectively. When GLRX3 and CA19–9 were combined, sensitivity was significantly increased to 98.3% compared to that with GLRX3 or CA19–9 alone. High GLRX3 expression was also associated with poor disease-free survival in patients receiving curative surgery. Conclusion Overall, these results indicate GLRX3 as a novel diagnostic marker and therapeutic target for PDAC targeting CSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08898-y.
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sun A Kim
- Cowell Biodigm Co., Ltd, Seoul, South Korea
| | - Jeong Hoon Lee
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yu Rang Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Chanyang Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Soo Been Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Dawoon E Jung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
115
|
Tang L, He S, Yin Y, Liu H, Hu J, Cheng J, Wang W. Combination of Nanomaterials in Cell-Based Drug Delivery Systems for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13111888. [PMID: 34834304 PMCID: PMC8621332 DOI: 10.3390/pharmaceutics13111888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-based drug delivery systems have shown tremendous advantages in cancer treatment due to their distinctive properties. For instance, delivery of therapeutics using tumor-tropic cells like neutrophils, lymphocytes and mesenchymal stem cells can achieve specific tumor targeting due to the "Trojan Horse" effect. Other circulatory cells like erythrocytes and platelets can greatly improve the circulation time of nanoparticles due to their innate long circulation property. Adipocytes, especially cancer-associated adipocytes, play key roles in tumor development and metabolism, therefore, adipocytes are regarded as promising bio-derived nanoplatforms for anticancer targeted drug delivery. Nanomaterials are important participants in cell-based drug delivery because of their unique physicochemical characteristics. Therefore, the integration of various nanomaterials with different cell types will endow the constructed delivery systems with many attractive properties due to the merits of both. In this review, a number of strategies based on nanomaterial-involved cell-mediated drug delivery systems for cancer treatment will be summarized. This review discusses how nanomaterials can be a benefit to cell-based therapies and how cell-derived carriers overcome the limitations of nanomaterials, which highlights recent advancements and specific biomedical applications based on nanomaterial-mediated, cell-based drug delivery systems.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Jingyi Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (J.C.); (W.W.)
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (J.C.); (W.W.)
| |
Collapse
|
116
|
Benli-Hoppe T, Göl Öztürk Ş, Öztürk Ö, Berger S, Wagner E, Yazdi M. Transferrin Receptor Targeted Polyplexes Completely Comprised of Sequence-Defined Components. Macromol Rapid Commun 2021; 43:e2100602. [PMID: 34713524 DOI: 10.1002/marc.202100602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/20/2021] [Indexed: 11/08/2022]
Abstract
Human transferrin protein (Tf) modified polyplexes have already displayed encouraging potential for receptor-mediated nucleic acid delivery into tumors. The use of a blood-derived targeting protein and polydisperse macromolecular cationic subunits however presents a practical challenge for pharmaceutical grade production. Here, Tf receptor (TfR) targeted small interfering RNA (siRNA) polyplexes are designed that are completely composed of synthetic, monodisperse, and sequence-defined subunits generated by solid-phase supported synthesis. An optimized cationizable lipo-oligoaminoamide (lipo-OAA) is used for siRNA core polyplex formation, and a retro-enantio peptide (reTfR) attached via a monodisperse polyethylene glycol (PEG) spacer via click chemistry is applied for targeting. Improved gene silencing is demonstrated in TfR-expressing KB and DU145 cells. Analogous plasmid DNA (pDNA) polyplexes are successfully used for receptor-mediated gene delivery in TfR-rich K562 cells and Neuro2a cells. Six lipo-OAAs differing in their lipidic domain and redox-sensitive attachment of lipid residues are tested in order to evaluate the impact of core polyplex stability on receptor-dependent gene transfer.
Collapse
Affiliation(s)
- Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Şurhan Göl Öztürk
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Özgür Öztürk
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| |
Collapse
|
117
|
Li S, Pang X, Zhao J, Zhang Q, Shan Y. Evaluating the single-molecule interactions between targeted peptides and the receptors on living cell membrane. NANOSCALE 2021; 13:17318-17324. [PMID: 34642724 DOI: 10.1039/d1nr05547j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As potential ligands, targeted peptides have become an important part in the construction of intelligent drug delivery systems (DDSs). The targeting interaction of peptides with receptors is a key point affecting the efficacy of targeted nano-drugs. Herein, three common peptides (HAIYPRH (T7), YHWYGYTPQNVI (GE11), and RGD) that have been widely used in cancer targeted therapy and tumor diagnostics, targeting the corresponding receptors (transferrin receptor (TfR), epidermal growth factor receptor (EGFR), and ανβ3 integrin receptor), were selected as examples to study the targeting interacton on living cell surface at the single-molecule level by using single-molecule force spectroscopy (SMFS) based on atomic force microscopy (AFM). The dissociation activation energy in the absence of an external force (ΔGβ,0) of T7-TfR, GE11-EGFR, and RGD-ανβ3 integrin is evaluated at single-molecule level. Among these three peptide-receptor pairs, the T7-TfR bond is the most stable with a smaller dissociation kinetic rate constant at zero force (Koff), larger kinetic on-rate constant (Kon), and shorter interaction time (τ). Furthermore, T7 can target TfR even more effectively on A549 cell membrane after treatment with drugs. Our methodology can also be applicable to the study of other ligand targeted DDSs.
Collapse
Affiliation(s)
- Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Xuelei Pang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jing Zhao
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qingrong Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
118
|
Al-Mansoori L, Elsinga P, Goda SK. Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy. Biomed Pharmacother 2021; 144:112260. [PMID: 34607105 DOI: 10.1016/j.biopha.2021.112260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/09/2023] Open
Abstract
Abnormal structural and molecular changes in malignant tissues were thoroughly investigated and utilized to target tumor cells, hence rescuing normal healthy tissues and lowering the unwanted side effects as non-specific cytotoxicity. Various ligands for cancer cell specific markers have been uncovered and inspected for directional delivery of the anti-cancer drug to the tumor site, in addition to diagnostic applications. Over the past few decades research related to the ligand targeted therapy (LTT) increased tremendously aiming to treat various pathologies, mainly cancers with well exclusive markers. Malignant tumors are known to induce elevated levels of a variety of proteins and peptides known as cancer "markers" as certain antigens (e.g., Prostate specific membrane antigen "PSMA", carcinoembryonic antigen "CEA"), receptors (folate receptor, somatostatin receptor), integrins (Integrin αvβ3) and cluster of differentiation molecules (CD13). The choice of an appropriate marker to be targeted and the design of effective ligand-drug conjugate all has to be carefully selected to generate the required therapeutic effect. Moreover, since some tumors express aberrantly high levels of more than one marker, some approaches investigated targeting cancer cells with more than one ligand (dual or multi targeting). We aim in this review to report an update on the cancer-specific receptors and the vehicles to deliver cytotoxic drugs, including recent advancements on nano delivery systems and their implementation in targeted cancer therapy. We will discuss the advantages and limitations facing this approach and possible solutions to mitigate these obstacles. To achieve the said aim a literature search in electronic data bases (PubMed and others) using keywords "Cancer specific receptors, cancer specific antibody, tumor specific peptide carriers, cancer overexpressed proteins, gold nanotechnology and gold nanoparticles in cancer treatment" was carried out.
Collapse
Affiliation(s)
- Layla Al-Mansoori
- Qatar University, Biomedical Research Centre, Qatar University, Doha 2713, Qatar.
| | - Philip Elsinga
- University of Groningen, University Medical Center Groningen (UMCG), Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sayed K Goda
- Cairo University, Faculty of Science, Giza, Egypt; University of Derby, College of Science and Engineering, Derby, UK.
| |
Collapse
|
119
|
Veroniaina H, Wu Z, Qi X. Innate tumor-targeted nanozyme overcoming tumor hypoxia for cancer theranostic use. J Adv Res 2021; 33:201-213. [PMID: 34603790 PMCID: PMC8463960 DOI: 10.1016/j.jare.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction Hypoxic tumor microenvironment (TME) is the major contributor to cancer metastasis, resistance to chemotherapy, and recurrence of tumors. So far, no approved treatment has been available to overcome tumor hypoxia. Objectives The present study aimed to relieve tumor hypoxia via a nanozyme theranostic nanomaterial as well as providing magnetic resonance imaging (MRI)-guided therapy. Methods Manganese dioxide (MnO2) was used for its intrinsic enzymatic activity co-loaded with the anti-cancer drug Doxorubicin (Dox) within the recombinant heavy-chain apoferritin cavity to form MnO2-Dox@HFn. Following the synthesis of the nanomaterial, different characterizations were performed as well as its nanozyme-like ability. This nanoplatform recognizes tumor cells through the transferrin receptors 1 (TfR1) which are highly expressed on the surface of most cancer cells. The cellular uptake was confirmed by flow cytometry and fluorescence spectroscopy. In vitro and in vivo studies have been investigated to evaluate the hypoxia regulation, MRI ability and anti-tumor activity of MnO2-Dox@HFn. Results Being a TME-responsive nanomaterial, MnO2-Dox@HFn exerted both peroxidase and catalase activity that mainly produce massive oxygen and Mn2+ ions. Respectively, these products relieve the unfavorable tumor hypoxia and also exhibit T1-weighted MRI with a high longitudinal relaxivity of 33.40 mM. s−1. The utility of MnO2-Dox@HFn was broadened with their efficient anti-cancer activity proved both in vitro and in vivo. Conclusions MnO2-Dox@HFn successfully overcome tumor hypoxia with double potentials enzymatic ability and diagnostic capacity. This investigation could ignite the future application for cancer theranostic nanozyme therapy.
Collapse
Affiliation(s)
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
120
|
Elias MG, Mehanna S, Elias E, Khnayzer RS, Daher CF. A photoactivatable chemotherapeutic Ru(II) complex bearing bathocuproine ligand efficiently induces cell death in human malignant melanoma cells through a multi-mechanistic pathway. Chem Biol Interact 2021; 348:109644. [PMID: 34508709 DOI: 10.1016/j.cbi.2021.109644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/03/2021] [Accepted: 09/06/2021] [Indexed: 11/15/2022]
Abstract
Photoactivated chemotherapy (PACT) is an emerging strategy for targeted cancer therapy. Strained Ru complexes with pseudo-octahedral geometry may undergo photo-induced ligand dissociation, forming aquated photoproducts that are significantly more cytotoxic compared to the precursor complex. The complexes investigated were the strained complex [Ru(bpy)2BC]Cl2 (where bpy = 2,2'-bipyridine and BC = bathocuproine) and its unstrained control [Ru(bpy)2phen]Cl2 (where phen = 1,10-phenanthroline). The uptake of [Ru(bpy)2BC]Cl2, assessed by ICP/MS, started immediately post-incubation and plateaued after 24 h. Active transport was found as the main mode of intracellular transport. Cell viability assays on A375 cells indicated a mean phototoxicity index of 340-fold, and the effect was shown to be primarily mediated by the aquated photoproducts rather than the dissociating ligands. A significant increase in ROS production and DNA damage was also observed. Flow cytometry confirmed the induction of early apoptosis at 48 h that proceeds to late apoptosis/necrosis by 72 h post-treatment. Western blot analysis of pro- and anti-apoptotic proteins revealed that apoptosis was mediated through an interplay between the intrinsic and extrinsic pathways, as well as autophagy and via inhibition of the MAPK and PI3K pathways. In conclusion, this study demonstrates that [Ru(bpy)2BC]Cl2 is a multi-mechanistic PACT drug which exhibits promising anticancer potential.
Collapse
Affiliation(s)
- Maria George Elias
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Stephanie Mehanna
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Elias Elias
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, Beirut, 1102-2801, Lebanon
| | - Costantine F Daher
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
121
|
Zhang L, Zhang J, Jin Y, Yao G, Zhao H, Qiao P, Wu S. Nrf2 Is a Potential Modulator for Orchestrating Iron Homeostasis and Redox Balance in Cancer Cells. Front Cell Dev Biol 2021; 9:728172. [PMID: 34589492 PMCID: PMC8473703 DOI: 10.3389/fcell.2021.728172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential trace mineral element in almost all living cells and organisms. However, cellular iron metabolism pathways are disturbed in most cancer cell types. Cancer cells have a high demand of iron. To maintain rapid growth and proliferation, cancer cells absorb large amounts of iron by altering expression of iron metabolism related proteins. However, iron can catalyze the production of reactive oxygen species (ROS) through Fenton reaction. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important player in the resistance to oxidative damage by inducing the transcription of antioxidant genes. Aberrant activation of Nrf2 is observed in most cancer cell types. It has been revealed that the over-activation of Nrf2 promotes cell proliferation, suppresses cell apoptosis, enhances the self-renewal capability of cancer stem cells, and even increases the chemoresistance and radioresistance of cancer cells. Recently, several genes involving cellular iron homeostasis are identified under the control of Nrf2. Since cancer cells require amounts of iron and Nrf2 plays pivotal roles in oxidative defense and iron metabolism, it is highly probable that Nrf2 is a potential modulator orchestrating iron homeostasis and redox balance in cancer cells. In this hypothesis, we summarize the recent findings of the role of iron and Nrf2 in cancer cells and demonstrate how Nrf2 balances the oxidative stress induced by iron through regulating antioxidant enzymes and iron metabolism. This hypothesis provides new insights into the role of Nrf2 in cancer progression. Since ferroptosis is dependent on lipid peroxide and iron accumulation, Nrf2 inhibition may dramatically increase sensitivity to ferroptosis. The combination of Nrf2 inhibitors with ferroptosis inducers may exert greater efficacy on cancer therapy.
Collapse
Affiliation(s)
- Lingyan Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanqing Jin
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
122
|
Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021; 296:102509. [PMID: 34455211 DOI: 10.1016/j.cis.2021.102509] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/24/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022]
Abstract
One of the challenges in cancer chemotherapy is the low target to non-target ratio of therapeutic agents which incur severe adverse effect on the healthy tissues. In this regard, nanomaterials have tremendous potential for impacting cancer therapy by altering the toxicity profile of the drug. Some of the striking advantages provided by the nanocarriers mediated targeted drug delivery are relatively high build-up of drug concentration at the tumor site, improved drug content in the formulation and enhanced colloidal stability. Further, nanocarriers with tumor-specific moieties can be targeted to the cancer cell through cell surface receptors, tumor antigens and tumor vasculatures with high affinity and accuracy. Moreover, it overcomes the bottleneck of aimless drug biodistribution, undesired toxicity and heavy dosage of administration. This review discusses the recent developments in active targeting of nanomaterials for anticancer drug delivery through cancer cell surface targeting, organelle specific targeting and tumor microenvironment targeting strategies. Special emphasis has been given towards cancer cell surface and organelle specific targeting as delivery of anticancer drugs through these routes have made paradigm change in cancer management. Further, the current challenges and future prospects of nanocarriers mediated active drug targeting are also demonstrated.
Collapse
|
123
|
Liu X, Dong S, Dong M, Li Y, Sun Z, Zhang X, Wang Y, Teng L, Wang D. Transferrin-conjugated liposomes loaded with carnosic acid inhibit liver cancer growth by inducing mitochondria-mediated apoptosis. Int J Pharm 2021; 607:121034. [PMID: 34425193 DOI: 10.1016/j.ijpharm.2021.121034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Our previous studies have proven that carnosic acid (CA) induces apoptosis of liver cancer cells. However, the poor chemical properties of CA limit its in vivo anti-cancer effects. In this study, CA was loaded into liposomes (LP-CA), and LP-CA was further conjugated with transferrin (Tf-LP-CA) to overcome the shortcomings of poor solubility and absorption at the lesion site. In HepG2 and SMMC-7721 cells, compared with CA and LP-CA, more Tf-LP-CA was absorbed by liver cancer cells, which induced higher levels of apoptosis and reduced the mitochondrial membrane potential more effectively. In HepG2- and SMMC-7721-xenotransplanted mice, Tf-LP-CA inhibited tumor growth with no cytotoxicity to the liver, spleen, or kidney. Furthermore, compared with CA and LP-CA, Tf-LP-CA targeted the tumor site more effectively, enhanced the expressions of cleaved poly(ADP-ribose) polymerase, and Caspase-3 and -9, and regulated the expression levels of B-cell lymphoma 2 (Bcl2) family members in the tumor tissues. Tf-LP-CA was taken up by tumor cells and targeted at tumor tissues, ensuring the precise delivery of CA, which further promoted mitochondria-mediated intrinsic apoptosis in the liver cancer cells. These results provide evidence for the clinical application of the Tf-LP-based CA drug delivery system for liver cancer.
Collapse
Affiliation(s)
- Xin Liu
- Shcool of Life Sciences, Jilin University, Changchun 130012, China.
| | - Shiyan Dong
- Shcool of Life Sciences, Jilin University, Changchun 130012, China.
| | - Mingyuan Dong
- Shcool of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- Shcool of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhen Sun
- Shcool of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xinrui Zhang
- Shcool of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yingwu Wang
- Shcool of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lesheng Teng
- Shcool of Life Sciences, Jilin University, Changchun 130012, China.
| | - Di Wang
- Shcool of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
124
|
Yang A, Sun Z, Liu R, Liu X, Zhang Y, Zhou Y, Qiu Y, Zhang X. Transferrin-Conjugated Erianin-Loaded Liposomes Suppress the Growth of Liver Cancer by Modulating Oxidative Stress. Front Oncol 2021; 11:727605. [PMID: 34513705 PMCID: PMC8427311 DOI: 10.3389/fonc.2021.727605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Liver cancer is one of the most malignant human cancers, with few treatments and a poor prognosis. Erianin (ERN) is a natural compound with multiple pharmacological activities that has been reported to have numerous excellent effects against liver cancer in experimental systems. However, its application in vivo has been limited due to its poor aqueous solubility and numerous off-target effects. This study aimed to improve the therapeutic efficacy of ERN by developing novel ERN-loaded tumor-targeting nanoparticles. Results In this study, ERN was loaded into liposomes by ethanol injection (LP-ERN), and the resulting LP-ERN nanoparticles were treated with transferrin to form Tf-LP-ERN to improve the solubility and enhance the tumor-targeting of ERN. LP-ERN and Tf-LP-ERN nanoparticles had smooth surfaces and a uniform particle size, with particle diameters of 62.60 nm and 88.63 nm, respectively. In HepG2 and SMMC-7721 cells, Tf-LP-ERN induced apoptosis, decreased mitochondrial membrane potentials and increased ERN uptake more effectively than free ERN and LP-ERN. In xenotransplanted mice, Tf-LP-ERN inhibited tumor growth, but had a minimal effect on body weight and organ morphology. In addition, Tf-LP-ERN nanoparticles targeted tumors more effectively than free ERN and LP-ERN nanoparticles, and in tumor tissues Tf-LP-ERN nanoparticles promoted the cleavage PARP-1, caspase-3 and caspase-9, increased the expression levels of Bax, Bad, PUMA, and reduced the expression level of Bcl-2. Moreover, in the spleen of heterotopic tumor model BALB/c mice, ERN, LP-ERN and Tf-LP-ERN nanoparticles increased the expression levels of Nrf2, HO-1, SOD-1 and SOD-2, but reduced the expression levels of P-IKKα+β and P-NF-κB, with Tf-LP-ERN nanoparticles being most effective in this regard. Tf-LP-ERN nanoparticles also regulated the expression levels of TNF-α, IL-10 and CCL11 in serum. Conclusion Tf-LP-ERN nanoparticles exhibited excellent anti-liver cancer activity in vivo and in vitro by inducing cellular apoptosis, exhibiting immunoregulatory actions, and targeting tumor tissues, and did so more effectively than free ERN and LP-ERN nanoparticles. These results suggest that the clinical utility of a Tf-conjugated LP ERN-delivery system for the treatment of liver cancer warrants exploration.
Collapse
Affiliation(s)
- Anhui Yang
- School of Life Sciences, Jilin University, Changchun, China
| | - Zhen Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Rui Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Yue Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun, China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xinrui Zhang
- School of Life Sciences, Jilin University, Changchun, China.,Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
125
|
Gaurav I, Wang X, Thakur A, Iyaswamy A, Thakur S, Chen X, Kumar G, Li M, Yang Z. Peptide-Conjugated Nano Delivery Systems for Therapy and Diagnosis of Cancer. Pharmaceutics 2021; 13:1433. [PMID: 34575511 PMCID: PMC8471603 DOI: 10.3390/pharmaceutics13091433] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Peptides are strings of approximately 2-50 amino acids, which have gained huge attention for theranostic applications in cancer research due to their various advantages including better biosafety, customizability, convenient process of synthesis, targeting ability via recognizing biological receptors on cancer cells, and better ability to penetrate cell membranes. The conjugation of peptides to the various nano delivery systems (NDS) has been found to provide an added benefit toward targeted delivery for cancer therapy. Moreover, the simultaneous delivery of peptide-conjugated NDS and nano probes has shown potential for the diagnosis of the malignant progression of cancer. In this review, various barriers hindering the targeting capacity of NDS are addressed, and various approaches for conjugating peptides and NDS have been discussed. Moreover, major peptide-based functionalized NDS targeting cancer-specific receptors have been considered, including the conjugation of peptides with extracellular vesicles, which are biological nanovesicles with promising ability for therapy and the diagnosis of cancer.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Xuehan Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong, China;
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India;
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Gaurav Kumar
- School of Basic and Applied Science, Galgotias University, Greater Noida 203201, India;
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
126
|
Yang A, Sun Z, Liu R, Liu X, Zhang Y, Zhou Y, Qiu Y, Zhang X. Transferrin-Conjugated Erianin-Loaded Liposomes Suppress the Growth of Liver Cancer by Modulating Oxidative Stress. Front Oncol 2021. [DOI: 10.3389/fonc.2021.727605
expr 862146617 + 836050171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
BackgroundLiver cancer is one of the most malignant human cancers, with few treatments and a poor prognosis. Erianin (ERN) is a natural compound with multiple pharmacological activities that has been reported to have numerous excellent effects against liver cancer in experimental systems. However, its application in vivo has been limited due to its poor aqueous solubility and numerous off-target effects. This study aimed to improve the therapeutic efficacy of ERN by developing novel ERN-loaded tumor-targeting nanoparticles.ResultsIn this study, ERN was loaded into liposomes by ethanol injection (LP-ERN), and the resulting LP-ERN nanoparticles were treated with transferrin to form Tf-LP-ERN to improve the solubility and enhance the tumor-targeting of ERN. LP-ERN and Tf-LP-ERN nanoparticles had smooth surfaces and a uniform particle size, with particle diameters of 62.60 nm and 88.63 nm, respectively. In HepG2 and SMMC-7721 cells, Tf-LP-ERN induced apoptosis, decreased mitochondrial membrane potentials and increased ERN uptake more effectively than free ERN and LP-ERN. In xenotransplanted mice, Tf-LP-ERN inhibited tumor growth, but had a minimal effect on body weight and organ morphology. In addition, Tf-LP-ERN nanoparticles targeted tumors more effectively than free ERN and LP-ERN nanoparticles, and in tumor tissues Tf-LP-ERN nanoparticles promoted the cleavage PARP-1, caspase-3 and caspase-9, increased the expression levels of Bax, Bad, PUMA, and reduced the expression level of Bcl-2. Moreover, in the spleen of heterotopic tumor model BALB/c mice, ERN, LP-ERN and Tf-LP-ERN nanoparticles increased the expression levels of Nrf2, HO-1, SOD-1 and SOD-2, but reduced the expression levels of P-IKKα+β and P-NF-κB, with Tf-LP-ERN nanoparticles being most effective in this regard. Tf-LP-ERN nanoparticles also regulated the expression levels of TNF-α, IL-10 and CCL11 in serum.ConclusionTf-LP-ERN nanoparticles exhibited excellent anti-liver cancer activity in vivo and in vitro by inducing cellular apoptosis, exhibiting immunoregulatory actions, and targeting tumor tissues, and did so more effectively than free ERN and LP-ERN nanoparticles. These results suggest that the clinical utility of a Tf-conjugated LP ERN-delivery system for the treatment of liver cancer warrants exploration.
Collapse
|
127
|
A DNA Aptameric Ligand of Human Transferrin Receptor Generated by Cell-SELEX. Int J Mol Sci 2021; 22:ijms22168923. [PMID: 34445629 PMCID: PMC8396340 DOI: 10.3390/ijms22168923] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
General cancer-targeted ligands that can deliver drugs to cells have been given considerable attention. In this paper, a high-affinity DNA aptamer (HG1) generally binding to human tumor cells was evolved by cell-SELEX, and was further optimized to have 35 deoxynucleotides (HG1-9). Aptamer HG1-9 could be taken up by live cells, and its target protein on a cell was identified to be human transferrin receptor (TfR). As a man-made ligand of TfR, aptamer HG1-9 was demonstrated to bind at the same site of human TfR as transferrin with comparable binding affinity, and was proved to cross the epithelium barrier through transferrin receptor-mediated transcytosis. These results suggest that aptamer HG1-9 holds potential as a promising ligand to develop general cancer-targeted diagnostics and therapeutics.
Collapse
|
128
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
129
|
Yamaguchi S, Takamori S, Yamamoto K, Ishiwatari A, Minamihata K, Yamada E, Okamoto A, Nagamune T. Sterically Bulky Caging of Transferrin for Photoactivatable Intracellular Delivery. Bioconjug Chem 2021; 32:1535-1540. [PMID: 34328322 DOI: 10.1021/acs.bioconjchem.1c00159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photoactivatable ligand proteins are potentially useful for light-induced intracellular delivery of therapeutic and diagnostic cargos through receptor-mediated cellular uptake. Here, we report the simple and effective caging of transferrin (Tf), a representative ligand protein with cellular uptake ability, which has been used in the delivery of various cargos. Tf was modified with several biotin molecules through a photocleavable linker, and then the biotinylated Tf (bTf) was conjugated with the biotin-binding protein, streptavidin (SA), to provide steric hindrance to block the interaction with the Tf receptor. Without exposure to light, the cellular uptake of the bTf-SA complex was effectively inhibited. In response to light exposure, the complex was degraded with the release of Tf, leading to cellular uptake of Tf. Similarly, the cellular uptake of Tf-doxorubicin (Dox) conjugates could be suppressed by caging with biotinylation and SA binding, and the intracellular delivery of Dox could be triggered in a light-dependent manner. The intracellularly accumulated Dox decreased the cell viability to 25% because of the cell growth inhibitory effect of Dox. These results provided proof of principle that the caged Tf can be employed as a photoactivatable molecular device for the intracellular delivery of cargos.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Satoshi Takamori
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuho Yamamoto
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akira Ishiwatari
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Eriko Yamada
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Akimitsu Okamoto
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.,Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
130
|
Morales M, Xue X. Targeting iron metabolism in cancer therapy. Am J Cancer Res 2021; 11:8412-8429. [PMID: 34373750 PMCID: PMC8344014 DOI: 10.7150/thno.59092] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Iron is a critical component of many cellular functions including DNA replication and repair, and it is essential for cell vitality. As an essential element, iron is critical for maintaining human health. However, excess iron can be highly toxic, resulting in oxidative DNA damage. Many studies have observed significant associations between iron and cancer, and the association appears to be more than just coincidental. The chief characteristic of cancers, hyper-proliferation, makes them even more dependent on iron than normal cells. Cancer therapeutics are becoming as diverse as the disease itself. Targeting iron metabolism in cancer cells is an emerging, formidable field of therapeutics. It is a strategy that is highly diverse with regard to specific targets and the various ways to reach them. This review will discuss the importance of iron metabolism in cancer and highlight the ways in which it is being explored as the medicine of tomorrow.
Collapse
|
131
|
Interaction between DNA, Albumin and Apo-Transferrin and Iridium(III) Complexes with Phosphines Derived from Fluoroquinolones as a Potent Anticancer Drug. Pharmaceuticals (Basel) 2021; 14:ph14070685. [PMID: 34358111 PMCID: PMC8308524 DOI: 10.3390/ph14070685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
A group of cytotoxic half-sandwich iridium(III) complexes with aminomethyl(diphenyl)phosphine derived from fluoroquinolone antibiotics exhibit the ability to (i) accumulate in the nucleus, (ii) induce apoptosis, (iii) activate caspase-3/7 activity, (iv) induce the changes in cell cycle leading to G2/M phase arrest, and (v) radicals generation. Herein, to elucidate the cytotoxic effects, we investigated the interaction of these complexes with DNA and serum proteins by gel electrophoresis, fluorescence spectroscopy, circular dichroism, and molecular docking studies. DNA binding experiments established that the complexes interact with DNA by moderate intercalation and predominance of minor groove binding without the capability to cause a double-strand cleavage. The molecular docking study confirmed two binding modes: minor groove binding and threading intercalation with the fluoroquinolone part of the molecule involved in pi stacking interactions and the Ir(III)-containing region positioned within the major or minor groove. Fluorescence spectroscopic data (HSA and apo-Tf titration), together with molecular docking, provided evidence that Ir(III) complexes can bind to the proteins in order to be transferred. All the compounds considered herein were found to bind to the tryptophan residues of HSA within site I (subdomain II A). Furthermore, Ir(III) complexes were found to dock within the apo-Tf binding site, including nearby tyrosine residues.
Collapse
|
132
|
Xie J, Wang Y, Choi W, Jangili P, Ge Y, Xu Y, Kang J, Liu L, Zhang B, Xie Z, He J, Xie N, Nie G, Zhang H, Kim JS. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021; 50:9152-9201. [PMID: 34223847 DOI: 10.1039/d0cs01370f] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) has been extensively investigated for decades for tumor treatment because of its non-invasiveness, spatiotemporal selectivity, lower side-effects, and immune activation ability. It can be a promising treatment modality in several medical fields, including oncology, immunology, urology, dermatology, ophthalmology, cardiology, pneumology, and dentistry. Nevertheless, the clinical application of PDT is largely restricted by the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death, tumor resistance to the therapy, and the severe pain induced by the therapy. Recently, various photosensitizer formulations and therapy strategies have been developed to overcome these barriers. Significantly, the introduction of nanomaterials in PDT, as carriers or photosensitizers, may overcome the drawbacks of traditional photosensitizers. Based on this, nanocomposites excited by various light sources are applied in the PDT of deep-seated tumors. Modulation of cell death pathways with co-delivered reagents promotes PDT induced tumor cell death. Relief of tumor resistance to PDT with combined therapy strategies further promotes tumor inhibition. Also, the optimization of photosensitizer formulations and therapy procedures reduces pain in PDT. Here, a systematic summary of recent advances in the fabrication of photosensitizers and the design of therapy strategies to overcome barriers in PDT is presented. Several aspects important for the clinical application of PDT in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Jianlei Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Chadar R, Kesharwani P. Nanotechnology-based siRNA delivery strategies for treatment of triple negative breast cancer. Int J Pharm 2021; 605:120835. [PMID: 34197908 DOI: 10.1016/j.ijpharm.2021.120835] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer characterized by absence of estrogen (ER) receptor, progesterone (PR) receptor, and human epidermal growth factor-2 (HER-2) receptor. TNBC is an aggressive disease that develops early Chemoresistance. The major pitfall associated is its poor prognosis, low overall survival, high relapse, and mortality as compared to other types of breast cancer. Chemotherapy could be helpful but do not contribute to an increase in survival of patient. To overcome such obstacles, in our article we explored advanced therapy using genes and nanocarrier along with its conjugation to achieve high therapeutic profile with reduced side effect. siRNAs are one of the class of RNA associated with gene silencing. They also regulate the expression of certain proteins that are involved in development of tumor cells. But they are highly unstable. So, for efficient delivery of siRNA, very intelligent, efficient delivery systems are required. Several nanotechnologies based non-viral vectors such as liposome, micelles, nanoparticles, dendrimers, exosomes, nanorods and nanobubbles etc. offers enormous unique properties such as nanometric size range, targeting potential with the capability to link with several targeting moieties for the gene delivery. These non-viral vectors are much safer, effective and efficient system for the delivery of genes along with chemotherapeutics. This review provides an overview of TNBC, conventional and advanced treatment approach of TNBC along with understanding of current status of several nanocarriers used for the delivery of siRNA for the treatment of TNBC.
Collapse
Affiliation(s)
- Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
134
|
AlSawaftah N, Pitt WG, Husseini GA. Dual-Targeting and Stimuli-Triggered Liposomal Drug Delivery in Cancer Treatment. ACS Pharmacol Transl Sci 2021; 4:1028-1049. [PMID: 34151199 PMCID: PMC8205246 DOI: 10.1021/acsptsci.1c00066] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/31/2022]
Abstract
The delivery of chemotherapeutics to solid tumors using smart drug delivery systems (SDDSs) takes advantage of the unique physiology of tumors (i.e., disordered structure, leaky vasculature, abnormal extracellular matrix (ECM), and limited lymphatic drainage) to deliver anticancer drugs with reduced systemic side effects. Liposomes are the most promising of such SDDSs and have been well investigated for cancer therapy. To improve the specificity, bioavailability, and anticancer efficacy of liposomes at the diseased sites, other strategies such as targeting ligands and stimulus-sensitive liposomes have been developed. This review highlights relevant surface functionalization techniques and stimuli-mediated drug release for enhanced delivery of anticancer agents at tumor sites, with a special focus on dual functionalization and design of multistimuli responsive liposomes.
Collapse
Affiliation(s)
- Nour AlSawaftah
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, UAE
| | - William G. Pitt
- Chemical
Engineering Department, Brigham Young University, Provo, Utah 84602, United States
| | - Ghaleb A. Husseini
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, UAE
| |
Collapse
|
135
|
Bahrami S, Kazemi B, Zali H, Black PC, Basiri A, Bandehpour M, Hedayati M, Sahebkar A. Discovering Therapeutic Protein Targets for Bladder Cancer Using Proteomic Data Analysis. Curr Mol Pharmacol 2021; 13:150-172. [PMID: 31622214 DOI: 10.2174/1874467212666191016124935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bladder cancer accounts for almost 54% of urinary system cancer and is the second most frequent cause of death in genitourinary malignancies after prostate cancer. About 70% of bladder tumors are non-muscle-invasive, and the rest are muscle-invasive. Recurrence of the tumor is the common feature of bladder cancer. Chemotherapy is a conventional treatment for MIBC, but it cannot improve the survival rate of these patients sufficiently. Therefore, researchers must develop new therapies. Antibody-based therapy is one of the most important strategies for the treatment of solid tumors. Selecting a suitable target is the most critical step for this strategy. OBJECTIVE The aim of this study is to detect therapeutic cell surface antigen targets in bladder cancer using data obtained by proteomic studies. METHODS Isobaric tag for relative and absolute quantitation (iTRAQ) analysis had identified 131 overexpressed proteins in baldder cancer tissue and reverse-phase proteomic array (RPPA) analysis had been done for 343 tumor tissues and 208 antibodies. All identified proteins from two studies (131+208 proteins) were collected and duplicates were removed (331 unique proteins). Gene ontology study was performed using gene ontology (GO) and protein analysis through evolutionary relationships (PANTHER) databases. The Human Protein Atlas database was used to search the protein class and subcellular location of membrane proteins obtained from the PANTHER analysis. RESULTS Membrane proteins that could be suitable therapeutic targets for bladder cancer were selected. These included: Epidermal growth factor receptor (EGFR), Her2, Kinase insert domain receptor (KDR), Heat shock protein 60 (HSP60), HSP90, Transferrin receptor (TFRC), Activin A Receptor Like Type 1 (ACVRL1), and cadherin 2 (CDH2). Monoclonal antibodies against these proteins or their inhibitors were used for the treatment of different cancers in preclinical and clinical trials. CONCLUSION These monoclonal antibodies and inhibitor molecules and also their combination can be used for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Samira Bahrami
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Medical Nanotechnology and Tissue Engineering Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peter C Black
- Vancouver Prostate Center, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Abbas Basiri
- Department of Urology, Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
136
|
Panikar SS, Banu N, Haramati J, Del Toro-Arreola S, Riera Leal A, Salas P. Nanobodies as efficient drug-carriers: Progress and trends in chemotherapy. J Control Release 2021; 334:389-412. [PMID: 33964364 DOI: 10.1016/j.jconrel.2021.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/24/2023]
Abstract
Nanobodies (Nb) have a promising future as a part of next generation chemodrug delivery systems. Nb, or VHH, are small (15 kDa) monomeric antibody fragments consisting of the antigen binding region of heavy chain antibodies. Heavy chain antibodies are naturally produced by camelids, however the structure of their VHH regions can be readily reproduced in industrial expression systems, such as bacteria or yeast. Due to their small size, high solubility, remarkable stability, manipulatable characteristics, excellent in vivo tissue penetration, conjugation advantages, and ease of production, Nb have many advantages when compared against their antibody precursors. In this review, we discuss the generation and selection of Nbs via phage display libraries for easy screening, and the conjugation techniques involved in creating target-specific nanocarriers. Furthermore, we provide a comprehensive overview of recent developments and perspectives in the field of Nb drug conjugates (NDCs) and Nb-based drug vehicles (NDv) with respect to antitumor therapeutics.
Collapse
Affiliation(s)
- Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autonoma de México (UNAM), Apartado Postal 1-1010, Queretaro, Queretaro 76000, Mexico.
| | - Nehla Banu
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Annie Riera Leal
- UC Davis Institute for Regenerative Cures, Department of Dermatology, University of California, Davis, 2921 Stockton Blvd, Rm 1630, Sacramento, CA 95817, USA
| | - Pedro Salas
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autonoma de México (UNAM), Apartado Postal 1-1010, Queretaro, Queretaro 76000, Mexico
| |
Collapse
|
137
|
Lazić D, Scheurer A, Ćoćić D, Milovanović J, Arsenijević A, Stojanović B, Arsenijević N, Milovanović M, Rilak Simović A. A new bis-pyrazolylpyridine ruthenium(III) complex as a potential anticancer drug: in vitro and in vivo activity in murine colon cancer. Dalton Trans 2021; 50:7686-7704. [PMID: 33982702 DOI: 10.1039/d1dt00185j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We synthesized and characterized the ruthenium(iii) pincer-type complex [RuCl3(H2Lt-Bu] (H2Lt-Bu = 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine, 1) by elemental analysis, IR and UV-Vis spectroscopy, and the mass spectrometry (MS) method ESI Q-TOF. For comparison reasons, we also studied ruthenium(iii) terpyridine complexes of the general formula [Ru(N-N-N)Cl3], where N-N-N = 4'-chloro-terpyridine (Cl-tpy; 2) or 4'-chlorophenyl-terpyridine (Cl-Ph-tpy; 3). A kinetic study of the substitution reactions of 1-3 with biomolecules showed that the rate constants depend on the properties of the spectator ligand and the nature of the entering nucleophile. The DNA/HSA binding study showed that in comparison to complex 1 (bis-pyrazolylpyridine), the other two (2 and 3) terpyridine complexes had a slightly better binding affinity to calf thymus DNA (CT DNA), while in the case of human serum albumin (HSA), complex 1 exhibited the strongest quenching ability. We demonstrated that 1 possesses significant in vitro cytotoxic activity against mouse colon carcinoma CT26 cells and in vivo antitumor activity in murine heterotopic colon carcinoma. Complex 1 induced G0/G1 cell cycle arrest and apoptotic death in CT26 cells. Additionally, 1 showed antiproliferative activity, as evaluated by the detection of the expression levels of the Ki67 protein. Furthermore, the in vivo results showed that 1 reduced primary tumour growth and the number and growth of lung and liver metastases, significantly prolonging the treated mice's survival rate. This study highlighted that 1 does not show hepato- and nephrotoxicity. Our data demonstrated the considerable antitumor activity of the ruthenium(iii) pincer complex against CT26 tumour cells and implicated further investigations of its role as a potential chemotherapeutic agent for colon carcinoma.
Collapse
Affiliation(s)
- Dejan Lazić
- Department of Surgery, Faculty of Medical Sciences, University of Kraujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Andreas Scheurer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Dušan Ćoćić
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia
| | - Jelena Milovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia. and Department of Histology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| | - Bojana Stojanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia. and Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nebojša Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| | - Marija Milovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| | - Ana Rilak Simović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
| |
Collapse
|
138
|
McQuaid C, Halsey A, Dubois M, Romero I, Male D. Comparison of polypeptides that bind the transferrin receptor for targeting gold nanocarriers. PLoS One 2021; 16:e0252341. [PMID: 34086733 PMCID: PMC8177412 DOI: 10.1371/journal.pone.0252341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
The ability to target therapeutic agents to specific tissues is an important element in the development of new disease treatments. The transferrin receptor (TfR) is one potential target for drug delivery, as it expressed on many dividing cells and on brain endothelium, the key cellular component of the blood-brain barrier. The aim of this study was to compare a set of new and previously-described polypeptides for their ability to bind to brain endothelium, and investigate their potential for targeting therapeutic agents to the CNS. Six polypeptides were ranked for their rate of endocytosis by the human brain endothelial cell line hCMEC/D3 and the murine line bEnd.3. One linear polypeptide and two cyclic polypeptides showed high rates of uptake. These peptides were investigated to determine whether serum components, including transferrin itself affected uptake by the endothelium. One of the cyclic peptides was strongly inhibited by transferrin and the other cyclic peptide weakly inhibited. As proof of principle the linear peptide was attached to 2nm glucose coated gold-nanoparticles, and the rate of uptake of the nanoparticles measured in a hydrogel model of the blood-brain barrier. Attachment of the TfR-targeting polypeptide significantly increased the rates of endocytosis by brain endothelium and increased movement of nanoparticles across the cells.
Collapse
Affiliation(s)
- Conor McQuaid
- Department of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Andrea Halsey
- Department of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Maëva Dubois
- Department of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Ignacio Romero
- Department of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - David Male
- Department of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
- * E-mail:
| |
Collapse
|
139
|
AlSawaftah NM, Awad NS, Paul V, Kawak PS, Al-Sayah MH, Husseini GA. Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells. Sci Rep 2021; 11:11589. [PMID: 34078930 PMCID: PMC8172941 DOI: 10.1038/s41598-021-90349-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/22/2021] [Indexed: 01/23/2023] Open
Abstract
Targeted liposomes are designed to target specific receptors overexpressed on the surfaces of cancer cells. This technique ensures site-specific drug delivery to reduce undesirable side effects while enhancing the efficiency of the encapsulated therapeutics. Upon reaching the tumor site, these liposomes can be triggered to release their content in a controlled manner using ultrasound (US). In this study, drug release from pegylated calcein-loaded liposomes modified with transferrin (Tf) and triggered with US was evaluated. Low-frequency ultrasound at 20-kHz using three different power densities (6.2 mW/cm2, 9 mW/cm2 and 10 mW/cm2) was found to increase calcein release. In addition, transferrin-conjugated pegylated liposomes (Tf-PEG liposomes) were found to be more sonosensitive compared to the non-targeted (control) liposomes. Calcein uptake by HeLa cells was found to be significantly higher with the Tf-PEG liposomes compared to the non-targeted control liposomes. This uptake was further enhanced following the exposure to low-frequency ultrasound (at 35 kHz). These findings show that targeted liposomes triggered with US have promising potential as a safe and effective drug delivery platform.
Collapse
Affiliation(s)
- Nour M AlSawaftah
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Nahid S Awad
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Vinod Paul
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Paul S Kawak
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Mohammad H Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Ghaleb A Husseini
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE.
| |
Collapse
|
140
|
Lossow K, Schwarz M, Kipp AP. Are trace element concentrations suitable biomarkers for the diagnosis of cancer? Redox Biol 2021; 42:101900. [PMID: 33642247 PMCID: PMC8113050 DOI: 10.1016/j.redox.2021.101900] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Despite advances in cancer research, cancer is still one of the leading causes of death worldwide. An early diagnosis substantially increases the survival rate and treatment success. Thus, it is important to establish biomarkers which could reliably identify cancer patients. As cancer is associated with changes in the systemic trace element status and distribution, serum concentrations of selenium, iron, copper, and zinc could contribute to an early diagnosis. To test this hypothesis, case control studies measuring trace elements in cancer patients vs. matched controls were selected and discussed focusing on lung, prostate, breast, and colorectal cancer. Overall, cancer patients had elevated serum copper and diminished zinc levels, while selenium and iron did not show consistent changes for all four cancer types. Within the tumor tissue, mainly copper and selenium are accumulating. Whether these concentrations also predict the survival probability of cancer patients needs to be further investigated.
Collapse
Affiliation(s)
- Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Anna P Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany.
| |
Collapse
|
141
|
Liu J, Chen H, Liu Y, Shen Y, Meng F, Kaniskan HΫ, Jin J, Wei W. Cancer Selective Target Degradation by Folate-Caged PROTACs. J Am Chem Soc 2021; 143:7380-7387. [PMID: 33970635 PMCID: PMC8219215 DOI: 10.1021/jacs.1c00451] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PROTACs (proteolysis targeting chimeras) are an emerging class of promising therapeutic modalities that degrade intracellular protein targets by hijacking the cellular ubiquitin-proteasome system. However, potential toxicity of PROTACs in normal cells due to the off-tissue on-target degradation effect limits their clinical applications. Precise control of a PROTAC's on-target degradation activity in a tissue-selective manner could minimize potential toxicity/side-effects. To this end, we developed a cancer cell selective delivery strategy for PROTACs by conjugating a folate group to a ligand of the VHL E3 ubiquitin ligase, to achieve targeted degradation of proteins of interest (POIs) in cancer cells versus noncancerous normal cells. We show that our folate-PROTACs, including BRD PROTAC (folate-ARV-771), MEK PROTAC (folate-MS432), and ALK PROTAC (folate-MS99), are capable of degrading BRDs, MEKs, and ALK, respectively, in a folate receptor-dependent manner in cancer cells. This design provides a generalizable platform for PROTACs to achieve selective degradation of POIs in cancer cells.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, United States
| | - Yi Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, United States
| | - Fanye Meng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, United States
| | - H. ϋmit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
142
|
Alhalmi A, Beg S, Kohli K, Waris M, Singh T. Nanotechnology Based Approach for Hepatocellular Carcinoma Targeting. Curr Drug Targets 2021; 22:779-792. [PMID: 33302831 DOI: 10.2174/1389450121999201209194524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the primary liver cancer that has shown a high incidence and mortality rate worldwide among several types of cancers. A large variety of chemotherapeutic agents employed for the treatment have a limited success rate owing to their limited site-specific drug targeting ability. Thus, there is a demand to develop novel approaches for the treatment of HCC. With advancements in nanotechnology-based drug delivery approaches, the challenges of conventional chemotherapy have been continuously decreasing. Nanomedicines constituted of lipidic and polymeric composites provide a better platform for delivering and opening new pathways for HCC treatment. A score of nanocarriers such as surface-engineered liposomes, nanoparticles, nanotubes, micelles, quantum dots, etc., has been investigated in the treatment of HCC. These nanocarriers are considered to be highly effective clinically for delivering chemotherapeutic drugs with high site-specificity ability and therapeutic efficiency. The present review highlights the current focus on the application of nanocarrier systems using various ligand-based receptor-specific targeting strategies for the treatment and management of HCC. Moreover, the article has also included information on the current clinically approved drug therapy for hepatocellular carcinoma treatment and updates of regulatory requirements for approval of such nanomedicines.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Waris
- Department of Botany, Thakur Prasad Singh College, Patna, Magadh University, Bodh Gaya, India
| | - Tanuja Singh
- University Department of Botany, Patliputra University, Patna, Bihar, India
| |
Collapse
|
143
|
O-GlcNAcylation enhances sensitivity to RSL3-induced ferroptosis via the YAP/TFRC pathway in liver cancer. Cell Death Discov 2021; 7:83. [PMID: 33863873 PMCID: PMC8052337 DOI: 10.1038/s41420-021-00468-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 01/06/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by iron-dependent accumulation of lipid hydroperoxides to lethal levels. YAP has been reported to play a pivotal role in controlling ferroptotic death, and the expression of YAP is enhanced and stabilized by O-GlcNAcylation. However, whether O-GlcNAcylation can increase the sensitivity of hepatocellular carcinoma (HCC) cells to ferroptosis remains unknown. In the present study, we found that O-GlcNAcylation increased the sensitivity of HCC cells to ferroptosis via YAP. Moreover, YAP increased the iron concentration in HCC cells through transcriptional elevation of TFRC via its O-GlcNAcylation. With YAP knockdown or YAP-T241 mutation, the increased sensitivity to ferroptosis induced by O-GlcNAcylation was abolished. In addition, the xenograft assay confirmed that O-GlcNAcylation increased ferroptosis sensitivity via TFRC in vivo. In summary, we are the first to find that O-GlcNAcylation can increase ferroptosis sensitivity in HCC cells via YAP/TFRC. Our work will provide a new basis for clinical therapeutic strategies for HCC patients.
Collapse
|
144
|
Iron at the Interface of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22084097. [PMID: 33921027 PMCID: PMC8071427 DOI: 10.3390/ijms22084097] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer incidence and mortality are rapidly growing, with liver cancer being the sixth most diagnosed cancer worldwide and the third leading cause of cancer death in 2020. A number of risk factors have been identified that trigger the progression to hepatocellular carcinoma. In this review, we focus on iron as a potential risk factor for liver carcinogenesis. Molecules involved in the regulation of iron metabolism are often upregulated in cancer cells, in order to provide a supply of this essential trace element for all stages of tumor development, survival, proliferation, and metastasis. Thus, cellular and systemic iron levels must be tightly regulated to prevent or delay liver cancer progression. Disorders associated with dysregulated iron metabolism are characterized with increased susceptibility to hepatocellular carcinoma. This review discusses the association of iron with metabolic disorders such as hereditary hemochromatosis, non-alcoholic fatty liver disease, obesity, and type 2 diabetes, in the background of hepatocellular carcinoma.
Collapse
|
145
|
Veroniaina H, Pan X, Wu Z, Qi X. Apoferritin: a potential nanocarrier for cancer imaging and drug delivery. Expert Rev Anticancer Ther 2021; 21:901-913. [PMID: 33844625 DOI: 10.1080/14737140.2021.1910027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: As a protein-based biomaterial for potential cancer targeting delivery, apoferritin has recently attracted interest.Areas covered: In this review, we discuss the development of this cage-like protein as an endogenous nanocarrier that can hold molecules in its cavity. We present the specific characterizations and formulations of apoferritin nanocarriers, and outline the recent progress of the protein as an appropriate tumor-delivery vehicle in different therapeutic strategies to treat solid tumors. Finally, we propose how the application for cancer drug repurposing delivery within apoferritin could expand cancer treatment in the future.Expert opinion: Being a ubiquitous iron storage protein that exists in many living organisms, apoferritin is promising as a cancer tumor-targeting nanocarrier. By exploiting its versatility, apoferritin could be used for cancer repurposed drug delivery and could reduce the high cost of new drug discovery development and shorten the formulation process.
Collapse
Affiliation(s)
| | - Xiuhua Pan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
146
|
Sakpakdeejaroen I, Somani S, Laskar P, Mullin M, Dufès C. Regression of Melanoma Following Intravenous Injection of Plumbagin Entrapped in Transferrin-Conjugated, Lipid-Polymer Hybrid Nanoparticles. Int J Nanomedicine 2021; 16:2615-2631. [PMID: 33854311 PMCID: PMC8039437 DOI: 10.2147/ijn.s293480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Plumbagin, a naphthoquinone extracted from the officinal leadwort presenting promising anti-cancer properties, has its therapeutic potential limited by its inability to reach tumors in a specific way at a therapeutic concentration following systemic injection. The purpose of this study is to assess whether a novel tumor-targeted, lipid-polymer hybrid nanoparticle formulation of plumbagin would suppress the growth of B16-F10 melanoma in vitro and in vivo. METHODS Novel lipid-polymer hybrid nanoparticles entrapping plumbagin and conjugated with transferrin, whose receptors are present in abundance on many cancer cells, have been developed. Their cellular uptake, anti-proliferative and apoptosis efficacy were assessed on various cancer cell lines in vitro. Their therapeutic efficacy was evaluated in vivo after tail vein injection to mice bearing B16-F10 melanoma tumors. RESULTS The transferrin-bearing lipid-polymer hybrid nanoparticles loaded with plumbagin resulted in the disappearance of 40% of B16-F10 tumors and regression of 10% of the tumors following intravenous administration. They were well tolerated by the mice. CONCLUSION These therapeutic effects, therefore, make transferrin-bearing lipid-polymer hybrid nanoparticles entrapping plumbagin a highly promising anti-cancer nanomedicine.
Collapse
Affiliation(s)
- Intouch Sakpakdeejaroen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Margaret Mullin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| |
Collapse
|
147
|
Yin M, Liu Y, Chen Y. Iron metabolism: an emerging therapeutic target underlying the anti-cancer effect of quercetin. Free Radic Res 2021; 55:296-303. [PMID: 33818251 DOI: 10.1080/10715762.2021.1898604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Iron, an essential micronutrient for all kinds of cells, is essential for the balance of body internal environment. Notably, cancer cells exhibit a strong dependence on iron and require a large amount of iron for proliferation. A growing number of studies suggested that iron metabolism imbalance and subsequent excess iron accumulation are closely related to the occurrence and progression of cancer. Precisely, excess iron promotes the development of cancer due to the pro-oxidative nature of iron and its damaging effects on DNA. Simultaneously, tumor cells acquire large amounts of iron to maintain rapid growth and proliferation. Therefore, targeting iron metabolism may provide a new way for the treatment of cancer. Quercetin, a natural flavonoid, has long been regarded as potential drug for cancer treatments owing to its anti-inflammatory, antioxidant and anti-tumor effects. It is proven that quercetin possesses a high iron-chelating capacity, depriving cancer cells of iron or altering iron metabolism. Herein, we conduct a review on the mechanisms of iron imbalance in tumors and the role of quercetin in iron chelation, which will provide insight into the potential for quercetin as an anti-cancer drug.
Collapse
Affiliation(s)
- Mingming Yin
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| | - Yongping Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| | - Yi Chen
- School of Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| |
Collapse
|
148
|
Onco-Receptors Targeting in Lung Cancer via Application of Surface-Modified and Hybrid Nanoparticles: A Cross-Disciplinary Review. Processes (Basel) 2021. [DOI: 10.3390/pr9040621] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is among the most prevalent and leading causes of death worldwide. The major reason for high mortality is the late diagnosis of the disease, and in most cases, lung cancer is diagnosed at fourth stage in which the cancer has metastasized to almost all vital organs. The other reason for higher mortality is the uptake of the chemotherapeutic agents by the healthy cells, which in turn increases the chances of cytotoxicity to the healthy body cells. The complex pathophysiology of lung cancer provides various pathways to target the cancerous cells. In this regard, upregulated onco-receptors on the cell surface of tumor including epidermal growth factor receptor (EGFR), integrins, transferrin receptor (TFR), folate receptor (FR), cluster of differentiation 44 (CD44) receptor, etc. could be exploited for the inhibition of pathways and tumor-specific drug targeting. Further, cancer borne immunological targets like T-lymphocytes, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and dendritic cells could serve as a target site to modulate tumor activity through targeting various surface-expressed receptors or interfering with immune cell-specific pathways. Hence, novel approaches are required for both the diagnosis and treatment of lung cancers. In this context, several researchers have employed various targeted delivery approaches to overcome the problems allied with the conventional diagnosis of and therapy methods used against lung cancer. Nanoparticles are cell nonspecific in biological systems, and may cause unwanted deleterious effects in the body. Therefore, nanodrug delivery systems (NDDSs) need further advancement to overcome the problem of toxicity in the treatment of lung cancer. Moreover, the route of nanomedicines’ delivery to lungs plays a vital role in localizing the drug concentration to target the lung cancer. Surface-modified nanoparticles and hybrid nanoparticles have a wide range of applications in the field of theranostics. This cross-disciplinary review summarizes the current knowledge of the pathways implicated in the different classes of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. Furthermore, it focuses specifically on the significance and emerging role of surface functionalized and hybrid nanomaterials as drug delivery systems through citing recent examples targeted at lung cancer treatment.
Collapse
|
149
|
Doxorubicin delivery to breast cancer cells with transferrin-targeted carbon quantum dots: An in vitro and in silico study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
150
|
Xu R, Yang J, Qian Y, Deng H, Wang Z, Ma S, Wei Y, Yang N, Shen Q. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF. NANOSCALE HORIZONS 2021; 6:348-356. [PMID: 33687417 DOI: 10.1039/d0nh00674b] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-apoptotic cell death such as ferroptosis and pyroptosis has shed new light on cancer treatment, whereas combinational therapy using both these mechanisms has not yet been fully explored. Herein, a dual-inductive nano-system to realize ferroptosis/pyroptosis mediated anti-cancer effects is presented. The nanodrug (Tf-LipoMof@PL) is constructed with a piperlongumine (PL) loaded metal-organic framework (MOF) coated with transferrin decorated pH sensitive lipid layer. Intracellular iron was enriched with an iron-containing MOF, whose endocytosis can be further facilitated by transferrin decorated on the lipid layer, which provides a prerequisite for the occurrence of ferroptosis and pyroptosis. Piperlongumine as the ferroptosis inducer can strengthen the ferroptotic cell death, and provide H2O2 for the dual induction system to increase ROS generation through Fenton reaction. On the basis of validation of both ferroptosis and pyroptosis, the dual-inductive nanodrug demonstrated ideal anticancer effects in the xenograft mice model, which proved that the ferroptosis/pyroptosis dual-inductive nanoplatform could be an effective and promising anticancer modality.
Collapse
Affiliation(s)
- Rui Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | | | | | | | | | | | | | | | |
Collapse
|