101
|
Zheng L, Fleith M, Giuffrida F, O'Neill BV, Schneider N. Dietary Polar Lipids and Cognitive Development: A Narrative Review. Adv Nutr 2019; 10:1163-1176. [PMID: 31147721 PMCID: PMC6855982 DOI: 10.1093/advances/nmz051] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polar lipids are amphiphilic lipids with a hydrophilic head and a hydrophobic tail. Polar lipids mainly include phospholipids and sphingolipids. They are structural components of neural tissues, with the peak rate of accretion overlapping with neurodevelopmental milestones. The critical role of polar lipids in cognitive development is thought to be mediated through the regulation of signal transduction, myelination, and synaptic plasticity. Animal products (egg, meat, and dairy) are the major dietary sources of polar lipids for children and adults, whereas human milk and infant formula provide polar lipids to infants. Due to the differences observed in both concentration and proportion of polar lipids in human milk, the estimated daily intake in infants encompasses a wide range. In addition, health authorities define neither intake recommendations nor guidelines for polar lipid intake. However, adequate intake is defined for 2 nutrients that are elements of these polar lipids, namely choline and DHA. To date, limited studies exist on the brain bioavailability of dietary polar lipids via either placental transfer or the blood-brain barrier. Nevertheless, due to their role in pre- and postnatal development of the brain, there is a growing interest for the use of gangliosides, which are sphingolipids, as a dietary supplement for pregnant/lactating mothers or infants. In line with this, supplementing gangliosides and phospholipids in wild-type animals and healthy infants does suggest some positive effects on cognitive performance. Whether there is indeed added benefit of supplementing polar lipids in pregnant/lactating mothers or infants requires more clinical research. In this article, we report findings of a review of the state-of-the-art evidence on polar lipid supplementation and cognitive development. Dietary sources, recommended intake, and brain bioavailability of polar lipids are also discussed.
Collapse
Affiliation(s)
- Lu Zheng
- Nestec Ltd., Nestlé Research, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
102
|
Tachida Y, Kumagai K, Sakai S, Ando S, Yamaji T, Hanada K. Chlamydia trachomatis-infected human cells convert ceramide to sphingomyelin without sphingomyelin synthases 1 and 2. FEBS Lett 2019; 594:519-529. [PMID: 31596951 DOI: 10.1002/1873-3468.13632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
The obligate intracellular bacterium Chlamydia trachomatis proliferates in the membranous compartment inclusion formed in host cells. The host ceramide transport protein CERT delivers ceramide from the endoplasmic reticulum to the Golgi complex for the synthesis of sphingomyelin (SM). Chlamydia trachomatis has been suggested to employ CERT to produce SM in the inclusion by host SM synthases (SMSs). Here, we found that C. trachomatis proliferates and produces infective progeny even in SMS1 and SMS2 double-knockout HeLa cells, but not in the SMS1/SMS2/CERT triple-knockout cells. Interestingly, infected cells convert ceramide to SM without host SMSs. These results suggest that C. trachomatis-infected cells can convert ceramide to SM without host SMSs after CERT-mediated transfer of ceramide to the inclusions.
Collapse
Affiliation(s)
- Yuriko Tachida
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Keigo Kumagai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Shuji Ando
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| |
Collapse
|
103
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
104
|
Halper-Stromberg E, Gillenwater L, Cruickshank-Quinn C, O'Neal WK, Reisdorph N, Petrache I, Zhuang Y, Labaki WW, Curtis JL, Wells J, Rennard S, Pratte KA, Woodruff P, Stringer KA, Kechris K, Bowler RP. Bronchoalveolar Lavage Fluid from COPD Patients Reveals More Compounds Associated with Disease than Matched Plasma. Metabolites 2019; 9:metabo9080157. [PMID: 31349744 PMCID: PMC6724137 DOI: 10.3390/metabo9080157] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
Smoking causes chronic obstructive pulmonary disease (COPD). Though recent studies identified a COPD metabolomic signature in blood, no large studies examine the metabolome in bronchoalveolar lavage (BAL) fluid, a more direct representation of lung cell metabolism. We performed untargeted liquid chromatography-mass spectrometry (LC-MS) on BAL and matched plasma from 115 subjects from the SPIROMICS cohort. Regression was performed with COPD phenotypes as the outcome and metabolites as the predictor, adjusted for clinical covariates and false discovery rate. Weighted gene co-expression network analysis (WGCNA) grouped metabolites into modules which were then associated with phenotypes. K-means clustering grouped similar subjects. We detected 7939 and 10,561 compounds in BAL and paired plasma samples, respectively. FEV1/FVC (Forced Expiratory Volume in One Second/Forced Vital Capacity) ratio, emphysema, FEV1 % predicted, and COPD exacerbations associated with 1230, 792, eight, and one BAL compounds, respectively. Only two plasma compounds associated with a COPD phenotype (emphysema). Three BAL co-expression modules associated with FEV1/FVC and emphysema. K-means BAL metabolomic signature clustering identified two groups, one with more airway obstruction (34% of subjects, median FEV1/FVC 0.67), one with less (66% of subjects, median FEV1/FVC 0.77; p < 2 × 10-4). Associations between metabolites and COPD phenotypes are more robustly represented in BAL compared to plasma.
Collapse
Affiliation(s)
- Eitan Halper-Stromberg
- School of Medicine, University of Colorado, Aurora, CO 80045, USA
- Pathology Department, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Lucas Gillenwater
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | - Wanda Kay O'Neal
- Department of Marsico, Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Irina Petrache
- School of Medicine, University of Colorado, Aurora, CO 80045, USA
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Yonghua Zhuang
- Department of Biostatistics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Wells
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Stephen Rennard
- BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0XR, UK
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68588, USA
| | | | - Prescott Woodruff
- Department of Medicine, UCSF Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA 94143, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katerina Kechris
- Department of Biostatistics, Colorado School of Public Health, Aurora, CO 80045, USA.
| | - Russell P Bowler
- School of Medicine, University of Colorado, Aurora, CO 80045, USA.
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
105
|
Zhang C, Wang K, Yang L, Liu R, Chu Y, Qin X, Yang P, Yu H. Lipid metabolism in inflammation-related diseases. Analyst 2019; 143:4526-4536. [PMID: 30128447 DOI: 10.1039/c8an01046c] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There are thousands of lipid species existing in cells, which belong to eight different categories. Lipids are the essential building blocks of cells. Recent studies have started to unveil the important functions of lipids in regulating cell metabolism. However, we are still at a very early stage in fully understanding the physiological and pathological functions of lipids. The application of lipidomics for studying lipid metabolism can provide a direct readout of the cellular status and broadens our understanding of the mechanisms that underpin metabolic disease states. This review provides an introduction to lipid metabolism and its role in modulating homeostasis and immunity. We also describe representative applications of lipidomics for studying lipid metabolism in inflammation-related diseases.
Collapse
Affiliation(s)
- Cuiping Zhang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Snider JM, Luberto C, Hannun YA. Approaches for probing and evaluating mammalian sphingolipid metabolism. Anal Biochem 2019; 575:70-86. [PMID: 30917945 DOI: 10.1016/j.ab.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
Abstract
Sphingolipid metabolism plays a critical role in regulating processes that control cellular fate. This dynamic pathway can generate and degrade the central players: ceramide, sphingosine and sphingosine-1-phosphate in almost any membrane in the cell, adding an unexpected level of complexity in deciphering signaling events. While in vitro assays have been developed for most enzymes in SL metabolism, these assays are setup for optimal activity conditions and can fail to take into account regulatory components such as compartmentalization, substrate limitations, and binding partners that can affect cellular enzymatic activity. Therefore, many in-cell assays have been developed to derive results that are authentic to the cellular situation which may give context to alteration in SL mass. This review will discuss approaches for utilizing probes for mammalian in-cell assays to interrogate most enzymatic steps central to SL metabolism. The use of inhibitors in conjunction with these probes can verify the specificity of cellular assays as well as provide valuable insight into flux in the SL network. The use of inhibitors specific to each of the central sphingolipid enzymes are also discussed to assist researchers in further interrogation of these pathways.
Collapse
Affiliation(s)
- Justin M Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Departments of Biochemistry, Pathology and Pharmacology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
107
|
Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin Sci (Lond) 2019; 133:763-776. [PMID: 30890654 PMCID: PMC6422862 DOI: 10.1042/cs20180911] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Sphingolipids, such as sphingomyelins, ceramides, glycosphingolipids, and sphingosine-1-phosphates (S1P) are a large group of structurally and functionally diverse molecules. Some specific species are found associated with atherogenesis and provide novel therapeutic targets. Herein, we briefly review how sphingolipids are implicated in the progression of atherosclerosis and related diseases, and then we discuss the potential therapy options by targetting several key enzymes in sphingolipid metabolism.
Collapse
|
108
|
Zheng K, Chen Z, Feng H, Chen Y, Zhang C, Yu J, Luo Y, Zhao L, Jiang X, Shi F. Sphingomyelin synthase 2 promotes an aggressive breast cancer phenotype by disrupting the homoeostasis of ceramide and sphingomyelin. Cell Death Dis 2019; 10:157. [PMID: 30770781 PMCID: PMC6377618 DOI: 10.1038/s41419-019-1303-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022]
Abstract
Breast cancer is the most common type of carcinoma in women worldwide, but the mechanisms underlying tumour development and progression remain unclear. Sphingomyelin synthase 2 (SGMS2) is a crucial regulator involved in ceramide (Cer) and sphingomyelin (SM) homoeostasis that is mostly studied for its role in lipid metabolism. Our primary study indicated that high SGMS2 expression is associated with breast cancer metastasis. Gain- and loss-of-function assays in vitro and in vivo revealed that SGMS2 promotes cancer cell proliferation by suppressing apoptosis through a Cer-associated pathway and promotes cancer cell invasiveness by enhancing epithelial-to-mesenchymal transition (EMT) initiation through the TGF-β/Smad signalling pathway. Further study determined that SGMS2 activated the TGF-β/Smad signalling pathway primarily by increasing TGF-β1 secretion, which was likely associated with aberrant expression of SM. Thus, our findings indicate that SGMS2-mediated activation of the TGF-β/Smad signalling pathway is important in breast cancer progression, which provides new insight into the mechanisms underlying breast cancer metastasis and suggests a possible anticancer therapy for breast cancer.
Collapse
Affiliation(s)
- Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zetao Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haizhan Feng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Zhang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfeng Luo
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiancheng Jiang
- Department of Cell biology, Downstate Medical Centre, State University of New York, New York, NY USA
| | - Fujun Shi
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
109
|
Liu S, Hou H, Zhang P, Wu Y, He X, Li H, Yan N. Sphingomyelin synthase 1 regulates the epithelial‑to‑mesenchymal transition mediated by the TGF‑β/Smad pathway in MDA‑MB‑231 cells. Mol Med Rep 2018; 19:1159-1167. [PMID: 30535436 PMCID: PMC6323219 DOI: 10.3892/mmr.2018.9722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common cancer in women and a leading cause of cancer‑associated mortalities in the world. Epithelial‑to‑mesenchymal transition (EMT) serves an important role in the process of metastasis and invasive ability in cancer cells, and transforming growth factor β1 (TGF‑β1) have been investigated for promoting EMT. However, in the present study, the role of the sphingomyelin synthase 1 (SMS1) in TGF‑β1‑induced EMT development was investigated. Firstly, bioinformatics analysis demonstrated that the overexpression of SMS1 negatively regulated the TGFβ receptor I (TβRI) level of expression. Subsequently, the expression of SMS1 was decreased, whereas, SMS2 had no significant difference when MDA‑MB‑231 cells were treated by TGF‑β1 for 72 h. Furthermore, the present study constructed an overexpression cells model of SMS1 and these cells were treated by TGF‑β1. These results demonstrated that overexpression of SMS1 inhibited TGF‑β1‑induced EMT and the migration and invasion of MDA‑MB‑231 cells, increasing the expression of E‑cadherin while decreasing the expression of vimentin. Furthermore, the present study further confirmed that SMS1 overexpression could decrease TβRI expression levels and blocked smad family member 2 phosphorylation. Overall, the present results suggested that SMS1 could inhibit EMT and the migration and invasion of MDA‑MB‑231 cells via TGF‑β/Smad signaling pathway.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huan Hou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Panpan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifan Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua Li
- Department of Biochemistry and Molecular Biology, Centre of Experimental Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
110
|
Lu S, Lu R, Song H, Wu J, Liu X, Zhou X, Yang J, Zhang H, Tang C, Guo H, Hu J, Mao G, Lin H, Su Z, Zheng H. Metabolomic study of natrin-induced apoptosis in SMMC-7721 hepatocellular carcinoma cells by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Int J Biol Macromol 2018; 124:1264-1273. [PMID: 30508545 DOI: 10.1016/j.ijbiomac.2018.11.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/02/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022]
Abstract
Natrin, a new member of the cysteine-rich secretory protein (CRISP) family purified from the snake venom of Naja naja atra, has been demonstrated to have anticancer activity. However, the underlying molecular mechanisms need further elucidation. In this study, MTT was used to evaluate cell viability. Apoptotic cells were analyzed by employing a transmission electron microscope (TEM). Metabolomic study of the metabolic perturbations caused by natrin-induced apoptosis in differentiated SMMC-7721 cells was performed for the first time by using integrative ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). To investigate the possible mechanism in the mitochondrial pathway of natrin-induced apoptosis, we measured apoptosis-related mRNA changes using real-time fluorescent quantitative PCR (FQ-PCR). Cell proliferation was significantly inhibited after treatment with natrin in a dose-dependent manner. Principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) clearly demonstrated that metabolic profiles were affected by natrin. The results of multivariate statistical analysis showed that a total of 13 metabolites were characterized as potential biomarkers highly implicated in natrin-induced apoptosis, which corresponded to fluctuations of five pathways, including sphingolipid metabolism, fatty acid biosynthesis, fatty acid metabolism, glycerophospholipid metabolism and glycosphingolipid biosynthesis. Furthermore, natrin-induced apoptosis showed an increase in the Bax/Bcl-2 ratio in the mitochondrial pathway compared with controls. This study illustrated that rapid and holistic cell metabolomics combining molecular biological approaches might be a powerful tool for evaluating the underlying mechanisms of natrin-induced apoptosis, which would help to deepen specific insights into the anti-hepatoma mechanisms of natrin and facilitate the clinical application of natrin in the future.
Collapse
Affiliation(s)
- Shiyin Lu
- Pharmaceutical College, Guangxi Medical University, Nanning, China; Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Rigang Lu
- Guangxi Institute For Food and Drug Control, Nanning, China
| | - Hui Song
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xuwen Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xiaoling Zhou
- Department of Gastroenterology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Jianqing Yang
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Hongye Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Chaoling Tang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jian Hu
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Guifu Mao
- Department of Pharmacy, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Hanmei Lin
- Gynaecology, The First Affiliated Hospital, Guangxi Traditional Chinese Medicine University, Nanning, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| | - Hua Zheng
- Medical Scientific Research Center, Guangxi Medical University, Nanning, China.
| |
Collapse
|
111
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
112
|
Lee SH, Hong SH, Tang CH, Ling YS, Chen KH, Liang HJ, Lin CY. Mass spectrometry-based lipidomics to explore the biochemical effects of naphthalene toxicity or tolerance in a mouse model. PLoS One 2018; 13:e0204829. [PMID: 30273358 PMCID: PMC6166967 DOI: 10.1371/journal.pone.0204829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/14/2018] [Indexed: 12/04/2022] Open
Abstract
Naphthalene causes mouse airway epithelial injury. However, repeated exposures of naphthalene result in mouse airway tolerance. Previous results showed that toxicity or tolerance was correlated with changes of phosphorylcholine-containing lipids. In this study, a mass spectrometry-based lipidomic approach was applied to examine the effects of naphthalene-induced injury or tolerance in the male ICR mice. The injury model was vehicle x 7 plus 300 mg/kg naphthalene while the tolerant one was 200 mg/kg daily x 7 followed by 300 mg/kg naphthalene on day 8. The lung, liver, kidney, and serum samples were collected for profiles of phosphorylcholine-containing lipids including phosphatidylcholines (PCs) and sphingomyelins (SMs). A partial least-square-discriminate analysis model showed different lung phosphorylcholine-containing lipid profiles from the injured, tolerant, and control groups. Perturbation of diacyl-PCs and plasmenylcholines may be associated with enhanced membrane flexibility and anti-oxidative mechanisms in the lungs of tolerant mice. Additionally, alterations of lyso-PCs and SMs may be responsible for pulmonary dysfunction and inflammation in the lungs of injured mice. Moreover, serum PC(16:0/18:1) has potential to reflect naphthalene-induced airway injuries. Few phosphorylcholine-containing lipid alterations were found in the mouse livers and kidneys across different treatments. This study revealed the changes in lipid profiles associated with the perturbations caused by naphthalene tolerance and toxicity; examination of lipids in serum may assist biomarker development with the potential for application in the human population.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Si-Han Hong
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Yee Soon Ling
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ke-Han Chen
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
113
|
Lin G, Lee PT, Chen K, Mao D, Tan KL, Zuo Z, Lin WW, Wang L, Bellen HJ. Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain. Cell Metab 2018; 28:605-618.e6. [PMID: 29909971 DOI: 10.1016/j.cmet.2018.05.019] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/23/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022]
Abstract
Mutations in PLA2G6 (PARK14) cause neurodegenerative disorders in humans, including autosomal recessive neuroaxonal dystrophy and early-onset parkinsonism. We show that loss of iPLA2-VIA, the fly homolog of PLA2G6, reduces lifespan, impairs synaptic transmission, and causes neurodegeneration. Phospholipases typically hydrolyze glycerol phospholipids, but loss of iPLA2-VIA does not affect the phospholipid composition of brain tissue but rather causes an elevation in ceramides. Reducing ceramides with drugs, including myriocin or desipramine, alleviates lysosomal stress and suppresses neurodegeneration. iPLA2-VIA binds the retromer subunits Vps35 and Vps26 and enhances retromer function to promote protein and lipid recycling. Loss of iPLA2-VIA impairs retromer function, leading to a progressive increase in ceramide. This induces a positive feedback loop that affects membrane fluidity and impairs retromer function and neuronal function. Similar defects are observed upon loss of vps26 or vps35 or overexpression of α-synuclein, indicating that these defects may be common in Parkinson disease.
Collapse
Affiliation(s)
- Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Dongxue Mao
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kai Li Tan
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Liping Wang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
114
|
Kinoshita M, Suzuki KG, Murata M, Matsumori N. Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins. Chem Phys Lipids 2018; 215:84-95. [DOI: 10.1016/j.chemphyslip.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/13/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023]
|
115
|
D'Angelo G, Moorthi S, Luberto C. Role and Function of Sphingomyelin Biosynthesis in the Development of Cancer. Adv Cancer Res 2018; 140:61-96. [PMID: 30060817 DOI: 10.1016/bs.acr.2018.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sphingomyelin (SM) biosynthesis represents a complex, finely regulated process, mostly occurring in vertebrates. It is intimately linked to lipid transport and it is ultimately carried out by two enzymes, SM synthase 1 and 2, selectively localized in the Golgi and plasma membrane. In the course of the SM biosynthetic reaction, various lipids are metabolized. Because these lipids have both structural and signaling functions, the SM biosynthetic process has the potential to affect diverse important cellular processes (such as cell proliferation, cell survival, and migration). Thus defects in SM biosynthesis might directly or indirectly impact the normal physiology of the cell and eventually of the organism. In this chapter, we will focus on evidence supporting a role for SM biosynthesis in specific cellular functions and how its dysregulation can affect neoplastic transformation.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | - Sitapriya Moorthi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
116
|
Xu C, Zhou D, Luo Y, Guo S, Wang T, Liu J, Liu Y, Li Z. Tissue and serum lipidome shows altered lipid composition with diagnostic potential in mycosis fungoides. Oncotarget 2018. [PMID: 28624795 PMCID: PMC5564624 DOI: 10.18632/oncotarget.18228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mycosis fungoides (MF) is the most common type of cutaneous T cell lymphoma. In this study, we used matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) to perform lipidomic profiling of 5 MF tissue samples and 44 serum samples (22 from MF patients and 22 from control subjects). Multivariate statistical analysis of the mass spectral data showed that MF tissues had altered levels of seven lipids and MF sera had altered levels of twelve. Among these, six phosphotidylcholines, PC (34:2), PC (34:1), PC (36:3), PC (36:2), PC (32:0), and PC (38:4) and one sphingomyelin, SM (16:0) were altered in both MF tissues and sera. PC (34:2), PC (34:1), PC (36:3), and PC (36:2) levels were increased in both tissues and sera from MF patients, whereas SM (16:0), PC (32:0), and PC (38:4) levels were increased in MF sera but were decreased in MF tissues. We have thus identified multiple lipids that are altered in MF tissues and sera. This suggests serological and tissue lipidomic profiling could be an effective approach to screening for diagnostic biomarkers of MF.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dan Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yixin Luo
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shuai Guo
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
117
|
Lee SH, Tang CH, Lin WY, Chen KH, Liang HJ, Cheng TJ, Lin CY. LC-MS-based lipidomics to examine acute rat pulmonary responses after nano- and fine-sized ZnO particle inhalation exposure. Nanotoxicology 2018; 12:439-452. [DOI: 10.1080/17435390.2018.1458918] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ke-Han Chen
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
118
|
A novel role of the antitumor agent tricyclodecan-9-yl-xanthogenate as an open channel blocker of KCNQ1/KCNE1. Eur J Pharmacol 2018; 824:99-107. [DOI: 10.1016/j.ejphar.2018.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/26/2022]
|
119
|
Kuhn M, Sühs KW, Akmatov MK, Klawonn F, Wang J, Skripuletz T, Kaever V, Stangel M, Pessler F. Mass-spectrometric profiling of cerebrospinal fluid reveals metabolite biomarkers for CNS involvement in varicella zoster virus reactivation. J Neuroinflammation 2018; 15:20. [PMID: 29343258 PMCID: PMC5773076 DOI: 10.1186/s12974-017-1041-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
Background Varicella zoster virus (VZV) reactivation spans the spectrum from uncomplicated segmental herpes zoster to life-threatening disseminated CNS infection. Moreover, in the absence of a small animal model for this human pathogen, studies of pathogenesis at the organismal level depend on analysis of human biosamples. Changes in cerebrospinal fluid (CSF) metabolites may reflect critical aspects of host responses and end-organ damage in neuroinfection and neuroinflammation. We therefore applied a targeted metabolomics screen of CSF to three clinically distinct forms of VZV reactivation and infectious and non-infectious disease controls in order to identify biomarkers for CNS involvement in VZV reactivation. Methods Metabolite profiles were determined by targeted liquid chromatography-mass spectrometry in CSF from patients with segmental zoster (shingles, n = 14), facial nerve zoster (n = 16), VZV meningitis/encephalitis (n = 15), enteroviral meningitis (n = 10), idiopathic Bell’s palsy (n = 11), and normal pressure hydrocephalus (n = 15). Results Concentrations of 88 metabolites passing quality assessment clearly separated the three VZV reactivation forms from each other and from the non-infected samples. Internal cross-validation identified four metabolites (SM C16:1, glycine, lysoPC a C26:1, PC ae C34:0) that were particularly associated with VZV meningoencephalitis. SM(OH) C14:1 accurately distinguished facial nerve zoster from Bell’s palsy. Random forest construction revealed even more accurate classifiers (signatures comprising 2–4 metabolites) for most comparisons. Some of the most accurate biomarkers correlated only weakly with CSF leukocyte count, indicating that they do not merely reflect recruitment of inflammatory cells but, rather, specific pathophysiological mechanisms. Across all samples, only the sum of hexoses and the amino acids arginine, serine, and tryptophan correlated negatively with leukocyte count. Increased expression of the metabolites associated with VZV meningoencephalitis could be linked to processes relating to neuroinflammation/immune activation, neuronal signaling, and cell stress, turnover, and death (e.g., autophagy and apoptosis), suggesting that these metabolites might sense processes relating to end-organ damage. Conclusions The results provide proof-of-concept for the value of CSF metabolites as (1) disease-associated signatures suggesting pathophysiological mechanisms, (2) degree and nature of neuroinflammation, and (3) biomarkers for diagnosis and risk stratification of VZV reactivation and, likely, neuroinfections due to other pathogens. Trial registration Not applicable (non-interventional study). Electronic supplementary material The online version of this article (10.1186/s12974-017-1041-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maike Kuhn
- TWINCORE Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.,Helmholtz-Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.,Centre for Individualized Infection Medicine, Feodor-Lynen-Str. 15, 30625, Hannover, Germany
| | - Kurt-Wolfram Sühs
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Manas K Akmatov
- TWINCORE Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.,Helmholtz-Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.,Centre for Individualized Infection Medicine, Feodor-Lynen-Str. 15, 30625, Hannover, Germany
| | - Frank Klawonn
- Helmholtz-Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.,Ostfalia University, Salzdahlumer Str. 46/48, 38302, Wolfenbüttel, Germany
| | - Junxi Wang
- Helmholtz-Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Thomas Skripuletz
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Martin Stangel
- Centre for Individualized Infection Medicine, Feodor-Lynen-Str. 15, 30625, Hannover, Germany. .,Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.
| | - Frank Pessler
- TWINCORE Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany. .,Helmholtz-Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany. .,Centre for Individualized Infection Medicine, Feodor-Lynen-Str. 15, 30625, Hannover, Germany.
| |
Collapse
|
120
|
Carlsson ER, Grundtvig JLG, Madsbad S, Fenger M. Changes in Serum Sphingomyelin After Roux-en-Y Gastric Bypass Surgery Are Related to Diabetes Status. Front Endocrinol (Lausanne) 2018; 9:172. [PMID: 29922223 PMCID: PMC5996901 DOI: 10.3389/fendo.2018.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Metabolic surgery is superior to lifestyle intervention in reducing weight and lowering glycemia and recently suggested as treatment for type 2 diabetes mellitus. Especially Roux-en-Y gastric bypass (RYGB) has been focus for much research, but still the mechanisms of action are only partly elucidated. We suggest that several mechanisms might be mediated by sphingolipids like sphingomyelin. We measured serum sphingomyelin before and up to 2 years after RYGB surgery in 220 patients, divided before surgery in one non-diabetic subgroup and two diabetic subgroups, one of which contained patients obtaining remission of type 2 diabetes after RYGB, while patients in the other still had diabetes after RYGB. Pre- and postoperative sphingomyelin levels were compared within and between groups. Sphingomyelin levels were lower in diabetic patients than in non-diabetic patients before surgery. Following RYGB, mean sphingomyelin concentration fell significantly in the non-diabetic subgroup and the preoperative difference between patients with and without diabetes disappeared. Changes in diabetic subgroups were not significant. Relative to bodyweight, an increase in sphingomyelin was seen in all subgroups, irrespective of diabetes status. We conclude that RYGB has a strong influence on sphingomyelin metabolism, as seen reflected in changed serum levels. Most significantly, no differences between the two diabetic subgroups were detected after surgery, which might suggest that patients in both groups still are in a "diabetic state" using the non-diabetic subgroup as a reference.
Collapse
Affiliation(s)
- Elin Rebecka Carlsson
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mogens Fenger
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
121
|
Chen Y, Cao Y. The sphingomyelin synthase family: proteins, diseases, and inhibitors. Biol Chem 2017; 398:1319-1325. [PMID: 28742512 DOI: 10.1515/hsz-2017-0148] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022]
Abstract
Sphingomyelin (SM) is among the most important biomolecules in eukaryotes and acts as both constructive components and signal carrier in physiological processes. SM is catalyzed by a membrane protein family, sphingomyelin synthases (SMSs), consisting of three members, SMS1, SMS2 and SMSr. SMSs modulate sphingomyelin and other sphingolipids levels, thereby regulating membrane mobility, ceramide-dependent apoptosis and DAG-dependent signaling pathways. SMSs was found associated with various diseases. Downregulation of SMS2 activity results in protective effects against obesity, atherosclerosis and diabetes and makes SMS2 inhibitors potential medicines. Structural guided specific drug design could be the next breakthrough, discriminating SMS2 from other homologs.
Collapse
|
122
|
Dodge JC. Lipid Involvement in Neurodegenerative Diseases of the Motor System: Insights from Lysosomal Storage Diseases. Front Mol Neurosci 2017; 10:356. [PMID: 29163032 PMCID: PMC5675881 DOI: 10.3389/fnmol.2017.00356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare inherited metabolic diseases that are frequently triggered by the accumulation of lipids inside organelles of the endosomal-autophagic-lysosomal system (EALS). There is now a growing realization that disrupted lysosomal homeostasis (i.e., lysosomal cacostasis) also contributes to more common neurodegenerative disorders such as Parkinson disease (PD). Lipid deposition within the EALS may also participate in the pathogenesis of some additional neurodegenerative diseases of the motor system. Here, I will highlight the lipid abnormalities and clinical manifestations that are common to LSDs and several diseases of the motor system, including amyotrophic lateral sclerosis (ALS), atypical forms of spinal muscular atrophy, Charcot-Marie-Tooth disease (CMT), hereditary spastic paraplegia (HSP), multiple system atrophy (MSA), PD and spinocerebellar ataxia (SCA). Elucidating the underlying basis of intracellular lipid mislocalization as well as its consequences in each of these disorders will likely provide innovative targets for therapeutic research.
Collapse
Affiliation(s)
- James C Dodge
- Neuroscience Therapeutic Area, Sanofi, Framingham, MA, United States
| |
Collapse
|
123
|
Luo S, Pan Z, Liu S, Yuan S, Yan N. Sphingomyelin synthase 2 overexpression promotes cisplatin-induced apoptosis of HepG2 cells. Oncol Lett 2017; 15:483-488. [PMID: 29375716 DOI: 10.3892/ol.2017.7309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/15/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatoblastoma (HB) is the most type of common pediatric liver cancer. The primary chemotherapy drug for HB is cisplatin (DDP). However, patients readily develop intrinsic and acquired resistance, and severe side effects to treatment. Sphingomyelin synthase 2 (SMS2) is a key enzyme involved in the generation of sphingomyelin (SM), which is able to regulate cell proliferation, apoptosis and differentiation. The death receptors (DRs) have important functions in DDP-induced apoptosis. However, whether SMS2 is able to modulate cell apoptosis through the DR signaling pathway remains unknown. To investigate this question, SMS2 was overexpressed in HepG2 cells and treated with 3.5 mg/l cisplatin in the present study. After 24 h, the expression of SMS2, avian myelocytomatosis viral oncogene homolog (c-Myc), DR4, DR5 and caspase-3 was analyzed. Furthermore, cell viability was quantified, and apoptosis was assessed by western blot and flow cytometry analysis as well as Cell Counting kit-8. The results of the present study revealed that overexpression of SMS2 was able to increase the expression of c-Myc, cleaved caspase-3, DR4 and DR5 compared with the control group (P<0.05, n=3), and increase the levels of apoptosis in the SMS2 + DDP group, compared with the control (P<0.001, n=3). These results indicate that overexpression of SMS2 is able to improve sensitivity of HepG2 cells to DDP by increasing the expression of c-Myc, DR4 and DR5 in HepG2 cells. This increased sensitivity may decrease intrinsic and acquired resistance of chemotherapy in HB, and reduce the associated severe side effects in pediatric patients.
Collapse
Affiliation(s)
- Si Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shuang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shujing Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
124
|
Barbacci DC, Roux A, Muller L, Jackson SN, Post J, Baldwin K, Hoffer B, Balaban CD, Schultz JA, Gouty S, Cox BM, Woods AS. Mass Spectrometric Imaging of Ceramide Biomarkers Tracks Therapeutic Response in Traumatic Brain Injury. ACS Chem Neurosci 2017; 8:2266-2274. [PMID: 28745861 DOI: 10.1021/acschemneuro.7b00189] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious public health problem and the leading cause of death in children and young adults. It also contributes to a substantial number of cases of permanent disability. As lipids make up over 50% of the brain mass and play a key role in both membrane structure and cell signaling, their profile is of particular interest. In this study, we show that advanced mass spectrometry imaging (MSI) has sufficient technical accuracy and reproducibility to demonstrate the anatomical distribution of 50 μm diameter microdomains that show changes in brain ceramide levels in a rat model of controlled cortical impact (CCI) 3 days post injury with and without treatment. Adult male Sprague-Dawley rats received one strike and were euthanized 3 days post trauma. Brain MS images showed increase in ceramides in CCI animals compared to control as well as significant reduction in ceramides in CCI treated animals, demonstrating therapeutic effect of a peptide agonist. The data also suggests the presence of diffuse changes outside of the injured area. These results shed light on the extent of biochemical and structural changes in the brain after traumatic brain injury and could help to evaluate the efficacy of treatments.
Collapse
Affiliation(s)
| | - Aurelie Roux
- Structural
Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, Maryland 21224, United States
| | - Ludovic Muller
- Structural
Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, Maryland 21224, United States
| | - Shelley N. Jackson
- Structural
Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, Maryland 21224, United States
| | - Jeremy Post
- Structural
Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, Maryland 21224, United States
| | - Kathrine Baldwin
- Structural
Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, Maryland 21224, United States
| | - Barry Hoffer
- University Hospitals of Cleveland, Cleveland, Ohio 44106, United States
| | - Carey D. Balaban
- Departments of Otolaryngology, Neurobiology, Communication Sciences & Disorders, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | | | - Shawn Gouty
- Center
for Neuroscience and Regenerative Medicine, Department of Pharmacology, Uniformed Services University, Bethesda, Maryland 20814, United States
| | - Brian M. Cox
- Center
for Neuroscience and Regenerative Medicine, Department of Pharmacology, Uniformed Services University, Bethesda, Maryland 20814, United States
| | - Amina S. Woods
- Structural
Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, Maryland 21224, United States
| |
Collapse
|
125
|
Jang WJ, Choi B, Song SH, Lee N, Kim DJ, Lee S, Jeong CH. Multi-omics analysis reveals that ornithine decarboxylase contributes to erlotinib resistance in pancreatic cancer cells. Oncotarget 2017; 8:92727-92742. [PMID: 29190951 PMCID: PMC5696217 DOI: 10.18632/oncotarget.21572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/04/2017] [Indexed: 12/30/2022] Open
Abstract
Molecular and metabolic alterations in cancer cells are one of the leading causes of acquired resistance to chemotherapeutics. In this study, we explored an experimental strategy to identify which of these alterations can induce erlotinib resistance in human pancreatic cancer. Using genetically matched erlotinib-sensitive (BxPC-3) and erlotinib-resistant (BxPC-3ER) pancreatic cancer cells, we conducted a multi-omics analysis of metabolomes and transcriptomes in these cells. Untargeted and targeted metabolomic analyses revealed significant changes in metabolic pathways involved in the regulation of polyamines, amino acids, and fatty acids. Further transcriptomic analysis identified that ornithine decarboxylase (ODC) and its major metabolite, putrescine, contribute to the acquisition of erlotinib resistance in BxPC-3ER cells. Notably, either pharmacological or genetic blockage of ODC was able to restore erlotinib sensitivity, and this could be rescued by treatment with exogenous putrescine in erlotinib-resistant BxPC-3ER cells. Moreover, using a panel of cancer cells we demonstrated that ODC expression levels in cancer cells are inversely correlated with sensitivity to chemotherapeutics. Taken together, our findings will begin to uncover mechanisms of acquired drug resistance and ultimately help to identify potential therapeutic markers in cancer.
Collapse
Affiliation(s)
- Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Boyeon Choi
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Naeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Dong-Joon Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
126
|
Yokota M, Masaki H, Okano Y, Tokudome Y. Effect of glycation focusing on the process of epidermal lipid synthesis in a reconstructed skin model and membrane fluidity of stratum corneum lipids. DERMATO-ENDOCRINOLOGY 2017; 9:e1338992. [PMID: 29484088 PMCID: PMC5821160 DOI: 10.1080/19381980.2017.1338992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022]
Abstract
We previously reported that epidermal glycation causes an increase in saturated fatty acid (FA) content in a differentiated reconstructed skin model and HaCaT cells. However, the relationship between ceramides (CERs) and glycation and their effects on stratum corneum (SC) barrier function was not elucidated. In this study, we investigated the effect of glycation on lipid content in 6-day-old cultured reconstructed skin. We used the EPISKIN RHE 6D model and induced glycation using glyoxal. In addition to transepidermal water loss, content of CERs, cholesterol and FA in the reconstructed epidermal model were analyzed by high performance thin layer chromatography. Expression of genes related to ceramide metabolism was determined by real time RT-PCR. Membrane fluidity of stratum corneum lipid liposomes (SCLL) that mimic glycated epidermis was analyzed using an electron spin resonance technique. It was found that FA was significantly increased by glycation. CER[NS], [AP], and cholesterol were decreased in glycated epidermis. Expression of ceramide synthase 3 (CERS3) was significantly decreased while fatty acid elongase 3 was increased by glyoxal in a dose dependent manner. Membrane fluidity of SCLL mimicking the lipid composition of glycated epidermis was increased compared with controls. Therefore, disruption of CER and FA content in glycated epidermis may be regulated via CERS3 expression and contribute to abnormal membrane fluidity.
Collapse
Affiliation(s)
- Mami Yokota
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Yuri Okano
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Yoshihiro Tokudome
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| |
Collapse
|
127
|
Kim HY, Lee H, Kim SH, Jin H, Bae J, Choi HK. Discovery of potential biomarkers in human melanoma cells with different metastatic potential by metabolic and lipidomic profiling. Sci Rep 2017; 7:8864. [PMID: 28821754 PMCID: PMC5562697 DOI: 10.1038/s41598-017-08433-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant melanoma, characterized by its ability to metastasize to other organs, is responsible for 90% of skin cancer mortality. To investigate alterations in the cellular metabolome and lipidome related to melanoma metastasis, gas chromatography-mass spectrometry (GC-MS) and direct infusion-mass spectrometry (DI-MS)-based metabolic and lipidomic profiling were performed on extracts of normal human melanocyte (HEMn-LP), low metastatic melanoma (A375, G361), and highly metastatic melanoma (A2058, SK-MEL-28) cell lines. In this study, metabolomic analysis identified aminomalonic acid as a novel potential biomarker to discriminate between different stages of melanoma metastasis. Uptake and release of major metabolites as hallmarks of cancer were also measured between high and low metastatic melanoma cells. Lipid analysis showed a progressive increase in phosphatidylinositol (PI) species with saturated and monounsaturated fatty acyl chains, including 16:0/18:0, 16:0/18:1, 18:0/18:0, and 18:0/18:1, with increasing metastatic potential of melanoma cells, defining these lipids as possible biomarkers. In addition, a partial-least-squares projection to latent structure regression (PLSR) model for the prediction of metastatic properties of melanoma was established, and central metabolic and lipidomic pathways involved in the increased motility and metastatic potential of melanoma cells were identified as therapeutic targets. These results could be used to diagnose and control of melanoma metastasis.
Collapse
Affiliation(s)
- Hye-Youn Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hwanhui Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - So-Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hanyong Jin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeehyeon Bae
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
128
|
Schmidt JA, Fensom GK, Rinaldi S, Scalbert A, Appleby PN, Achaintre D, Gicquiau A, Gunter MJ, Ferrari P, Kaaks R, Kühn T, Floegel A, Boeing H, Trichopoulou A, Lagiou P, Anifantis E, Agnoli C, Palli D, Trevisan M, Tumino R, Bueno-de-Mesquita HB, Agudo A, Larrañaga N, Redondo-Sánchez D, Barricarte A, Huerta JM, Quirós JR, Wareham N, Khaw KT, Perez-Cornago A, Johansson M, Cross AJ, Tsilidis KK, Riboli E, Key TJ, Travis RC. Pre-diagnostic metabolite concentrations and prostate cancer risk in 1077 cases and 1077 matched controls in the European Prospective Investigation into Cancer and Nutrition. BMC Med 2017; 15:122. [PMID: 28676103 PMCID: PMC5497352 DOI: 10.1186/s12916-017-0885-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/26/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Little is known about how pre-diagnostic metabolites in blood relate to risk of prostate cancer. We aimed to investigate the prospective association between plasma metabolite concentrations and risk of prostate cancer overall, and by time to diagnosis and tumour characteristics, and risk of death from prostate cancer. METHODS In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition, pre-diagnostic plasma concentrations of 122 metabolites (including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose and sphingolipids) were measured using targeted mass spectrometry (AbsoluteIDQ p180 Kit) and compared between 1077 prostate cancer cases and 1077 matched controls. Risk of prostate cancer associated with metabolite concentrations was estimated by multi-variable conditional logistic regression, and multiple testing was accounted for by using a false discovery rate controlling procedure. RESULTS Seven metabolite concentrations, i.e. acylcarnitine C18:1, amino acids citrulline and trans-4-hydroxyproline, glycerophospholipids PC aa C28:1, PC ae C30:0 and PC ae C30:2, and sphingolipid SM (OH) C14:1, were associated with prostate cancer (p < 0.05), but none of the associations were statistically significant after controlling for multiple testing. Citrulline was associated with a decreased risk of prostate cancer (odds ratio (OR1SD) = 0.73; 95% confidence interval (CI) 0.62-0.86; p trend = 0.0002) in the first 5 years of follow-up after taking multiple testing into account, but not after longer follow-up; results for other metabolites did not vary by time to diagnosis. After controlling for multiple testing, 12 glycerophospholipids were inversely associated with advanced stage disease, with risk reduction up to 46% per standard deviation increase in concentration (OR1SD = 0.54; 95% CI 0.40-0.72; p trend = 0.00004 for PC aa C40:3). Death from prostate cancer was associated with higher concentrations of acylcarnitine C3, amino acids methionine and trans-4-hydroxyproline, biogenic amine ADMA, hexose and sphingolipid SM (OH) C14:1 and lower concentration of glycerophospholipid PC aa C42:4. CONCLUSIONS Several metabolites, i.e. C18:1, citrulline, trans-4-hydroxyproline, three glycerophospholipids and SM (OH) C14:1, might be related to prostate cancer. Analyses by time to diagnosis indicated that citrulline may be a marker of subclinical prostate cancer, while other metabolites might be related to aetiology. Several glycerophospholipids were inversely related to advanced stage disease. More prospective data are needed to confirm these associations.
Collapse
Affiliation(s)
- Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF UK
| | - Georgina K. Fensom
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF UK
| | - Sabina Rinaldi
- International Agency for Research on Cancer, 69372 Lyon, CEDEX 08 France
| | - Augustin Scalbert
- International Agency for Research on Cancer, 69372 Lyon, CEDEX 08 France
| | - Paul N. Appleby
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF UK
| | - David Achaintre
- International Agency for Research on Cancer, 69372 Lyon, CEDEX 08 France
| | - Audrey Gicquiau
- International Agency for Research on Cancer, 69372 Lyon, CEDEX 08 France
| | - Marc J. Gunter
- International Agency for Research on Cancer, 69372 Lyon, CEDEX 08 France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG UK
| | - Pietro Ferrari
- International Agency for Research on Cancer, 69372 Lyon, CEDEX 08 France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Foundation under Public Law, DE-69120 Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Foundation under Public Law, DE-69120 Heidelberg, Germany
| | - Anna Floegel
- Department of Epidemiology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, DE-14558 Nuthetal, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, DE-14558 Nuthetal, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, GR-11527 Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, GR-11527 Athens, Greece
| | - Pagona Lagiou
- Hellenic Health Foundation, GR-11527 Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, GR-11527 Athens, Greece
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 02115 Boston, Massachusetts USA
| | | | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133 Milano, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute – ISPO, 50134 Florence, Italy
| | - Morena Trevisan
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- CPO-Piemonte, 10126 Turin, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, “Civic-M.P.Arezzo” Hospital, ASP 97100 Ragusa, Italy
| | - H. Bas Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG UK
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, 08908 L’Hospitalet de Llobregat Barcelona, Spain
| | - Nerea Larrañaga
- Public Health Division of Gipuzkoa, Regional Government of the Basque Country, 20014 Donostia-San Sebastián, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Daniel Redondo-Sánchez
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, 18012 Granada, Spain
| | - Aurelio Barricarte
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, 31003 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA) Pamplona, Pamplona, Spain
| | - José Maria Huerta
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, 30003 Murcia, Spain
| | | | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, CB2 0SR Cambridge, UK
| | - Kay-Tee Khaw
- School of Clinical Medicine, University of Cambridge, CB2 2QQ Cambridge, UK
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF UK
| | - Mattias Johansson
- International Agency for Research on Cancer, 69372 Lyon, CEDEX 08 France
| | - Amanda J. Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG UK
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG UK
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG UK
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF UK
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF UK
| |
Collapse
|
129
|
Xia Y, Jang HS, Shen Z, Bothun GD, Li Y, Nieh MP. Effects of Membrane Defects and Polymer Hydrophobicity on Networking Kinetics of Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5745-5751. [PMID: 28510460 DOI: 10.1021/acs.langmuir.7b00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The kinetics of clustering unilamellar vesicles induced by inverse Pluronics [poly(propylene oxide)m-poly(ethylene oxide)n-poly(propylene oxide)m, POm-EOn-POm] was investigated via experiments and molecular dynamic simulations. Two important factors for controlling the networking kinetics are the membrane defects, presumably located at the interfacial region between two lipid domains induced by acyl chain mismatch, and the polymer hydrophobicity. As expected, the clustering rate increases significantly with increasing bilayer defects on the membrane where the insertion of PPO is likely to take place because of the reduced energy barrier for the insertion of PO. The hydrophobic interaction between the PO blocks and membranes with the defects region dictates the "anchoring" kinetics, which is controlled by the association-dissociation of PO with the lipid membrane. As a result, the dependence of clustering rate on polymer concentration is strongly influenced by the hydrophobicity of the PO blocks. Nevertheless, longer PO blocks show stronger association with the membrane, resulting in faster consumption of the "active" sites made of these defect regions (causing mostly "invalid" insertions) with increasing polymer concentration, hence inhibiting the formation of large networking clusters, while shorter PO blocks undergo more frequent association with/dissociation from the defects, allowing continuous formation of larger clusters with increasing polymer concentration. This study provides important insights into how the organization and dynamics of a biomembrane influence its interaction with foreign amphiphilic molecules.
Collapse
Affiliation(s)
| | - Hyun-Sook Jang
- Center for Soft and Living Matter (CSLM), Institute for Basic Science (IBS) , Ulju-gun, Ulsan 689-798, Republic of Korea
| | | | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | | | | |
Collapse
|
130
|
Wang J, Pendurthi UR, Rao LVM. Sphingomyelin encrypts tissue factor: ATP-induced activation of A-SMase leads to tissue factor decryption and microvesicle shedding. Blood Adv 2017; 1:849-862. [PMID: 28758160 PMCID: PMC5531194 DOI: 10.1182/bloodadvances.2016003947] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/09/2017] [Indexed: 11/20/2022] Open
Abstract
A majority of tissue factor (TF) on cell surfaces exists in an encrypted state with minimal to no procoagulant activity. At present, it is unclear whether limited availability of phosphatidylserine (PS) and/or a specific membrane lipid in the outer leaflet of the plasma membrane contributes to TF encryption. Sphingomyelin (SM) is a major phospholipid in the outer leaflet, and SM metabolism is shown to be altered in many disease settings that cause thrombotic disorders. The present study is carried out to investigate the effect of SM metabolism on TF activity and TF+ microvesicles (MVs) release. In vitro studies using TF reconstituted into liposomes containing varying molar ratios of SM showed that a high molar ratio of SM in the proteoliposomes inhibits TF coagulant activity. Treatment of macrophages with sphingomyelinase (SMase) that hydrolyzes SM in the outer leaflet results in increased TF activity at the cell surface and TF+ MVs release without increasing PS externalization. Adenosine triphosphate (ATP) stimulation of macrophages that activates TF and induces MV shedding also leads to translocation of acid-sphingomyelinase (A-SMase) to the plasma membrane. ATP stimulation increases the hydrolysis of SM in the outer leaflet. Inhibition of A-SMase expression or activity not only attenuates ATP-induced SM hydrolysis, but also inhibits ATP-induced TF decryption and TF+ MVs release. Overall, our novel findings show that SM plays a role in maintaining TF in an encrypted state in resting cells and hydrolysis of SM following cell injury removes the inhibitory effect of SM on TF activity, thus leading to TF decryption.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
131
|
Ohnishi T, Hashizume C, Taniguchi M, Furumoto H, Han J, Gao R, Kinami S, Kosaka T, Okazaki T. Sphingomyelin synthase 2 deficiency inhibits the induction of murine colitis-associated colon cancer. FASEB J 2017; 31:3816-3830. [PMID: 28522594 DOI: 10.1096/fj.201601225rr] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/24/2017] [Indexed: 12/13/2022]
Abstract
Sphingomyelin synthase 2 (SMS2) is the synthetic enzyme of sphingomyelin (SM), which regulates membrane fluidity and microdomain structure. SMS2 plays a role in LPS-induced lung injury and inflammation; however, its role in inflammation-mediated tumorigenesis is unclear. We investigated the effect of SMS2 deficiency on dextran sodium sulfate (DSS)-induced murine colitis and found inhibition of DSS-induced inflammation in SMS2-deficient (SMS2-/-) mice. DSS treatment induced a significant increase in ceramide levels, with a decrease of SM levels in SMS2-/- colon tissue, and demonstrated attenuation of the elevation of both inflammation-related gene expression and proinflammatory cytokines and chemokines, leukocyte infiltration, and MAPK and signal transducer and activator of transcription 3 activation. After undergoing transplantation of wild-type bone marrow, SMS2-/- mice also exhibited inhibition of DSS-induced inflammation in the colon, which suggested that SMS2 deficiency in bone marrow-derived immune cells was not involved in the inhibition of colitis. Finally, in an azoxymethane/DSS-induced cancer model, SMS2 deficiency significantly decreased tumor incidence in the colon. Our results demonstrate that SMS2 deficiency inhibits DSS-induced colitis and subsequent colitis-associated colon cancer via inhibition of colon epithelial cell-mediated inflammation; therefore, inhibition of SMS2 may be a potential therapeutic target for human colitis and colorectal cancer.-Ohnishi, T., Hashizume, C., Taniguchi, M., Furumoto, H., Han, J., Gao, R., Kinami, S., Kosaka, T., Okazaki, T. Sphingomyelin synthase 2 deficiency inhibits the induction of murine colitis-associated colon cancer.
Collapse
Affiliation(s)
- Toshio Ohnishi
- Division of General and Digestive Surgery, Department of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Chieko Hashizume
- Division of Hematology/Immunology, Department of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Hidehiro Furumoto
- Division of Hematology/Immunology, Department of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Jia Han
- Division of Medical Oncology, Department of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Rongfen Gao
- Division of Hematology/Immunology, Department of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Shinichi Kinami
- Division of General and Digestive Surgery, Department of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Takeo Kosaka
- Division of General and Digestive Surgery, Department of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Toshiro Okazaki
- Division of Hematology/Immunology, Department of Medicine, Kanazawa Medical University, Uchinada, Japan; .,Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
132
|
Piotto S, Sessa L, Iannelli P, Concilio S. Computational study on human sphingomyelin synthase 1 (hSMS1). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1517-1525. [PMID: 28411172 DOI: 10.1016/j.bbamem.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/23/2017] [Accepted: 04/09/2017] [Indexed: 01/28/2023]
Abstract
Human sphingomyelin synthase 1 (hSMS1) is the last enzyme for sphingomyelin (SM) biosynthesis. It has been discovered that in different human tumor tissues the SM levels are lower compared to normal tissues and the activation of hSMS1, to restore the normal levels of SM, inhibits cell cycle proliferation of cancer cells. Since the importance of SM and other lipid metabolism genes in the malignant transformation, we decided to explore the hSMS1 mechanism of action. Enzymes capable to regulate the formation of lipids are therefore of paramount importance. Here we present a computational study on sphingomyelin synthases hSMS1. The full structure of the enzyme was obtained by means of homology and ab initio techniques. Further molecular dynamics and docking studies permitted to identify putative binding sites and to identify the key residues for binding. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Pio Iannelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Simona Concilio
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
133
|
Rodriguez-Cuenca S, Pellegrinelli V, Campbell M, Oresic M, Vidal-Puig A. Sphingolipids and glycerophospholipids - The "ying and yang" of lipotoxicity in metabolic diseases. Prog Lipid Res 2017; 66:14-29. [PMID: 28104532 DOI: 10.1016/j.plipres.2017.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/30/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
Abstract
Sphingolipids in general and ceramides in particular, contribute to pathophysiological mechanisms by modifying signalling and metabolic pathways. Here, we present the available evidence for a bidirectional homeostatic crosstalk between sphingolipids and glycerophospholipids, whose dysregulation contributes to lipotoxicity induced metabolic stress. The initial evidence for this crosstalk originates from simulated models designed to investigate the biophysical properties of sphingolipids in plasma membrane representations. In this review, we reinterpret some of the original findings and conceptualise them as a sort of "ying/yang" interaction model of opposed/complementary forces, which is consistent with the current knowledge of lipid homeostasis and pathophysiology. We also propose that the dysregulation of the balance between sphingolipids and glycerophospholipids results in a lipotoxic insult relevant in the pathophysiology of common metabolic diseases, typically characterised by their increased ceramide/sphingosine pools.
Collapse
Affiliation(s)
- S Rodriguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK.
| | - V Pellegrinelli
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK
| | - M Campbell
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK
| | - M Oresic
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI -20520 Turku, Finland
| | - A Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, UK.
| |
Collapse
|
134
|
Zhang H, Zheng H, Zhao G, Tang C, Lu S, Cheng B, Wu F, Wei J, Liang Y, Ruan J, Song H, Su Z. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. MOLECULAR BIOSYSTEMS 2016; 12:902-13. [PMID: 26775910 DOI: 10.1039/c5mb00642b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucocorticoids (GCs) have been proved to be an important pathogenic factor of some neuropsychiatric disorders. Usually, a classical injury model based on corticosterone-induced cytotoxicity of differentiated rat pheochromocytoma (PC12) cells was used to stimulate the state of GC damage of hippocampal neurons and investigate its potential mechanisms involved. However, up to now, the mechanism of corticosterone-induced cytotoxicity in PC12 cells was still looking forward to further elucidation. In this work, the metabolomic study of the biochemical changes caused by corticosterone-induced cytotoxicity in differentiated PC12 cells with different corticosterone concentrations was performed for the first time, using the ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). Partial least squares-discriminate analysis (PLS-DA) indicated that metabolic profiles of different corticosterone treatment groups deviated from the control group. A total of fifteen metabolites were characterized as potential biomarkers involved in corticosterone-induced cytotoxicity, which were corresponding to the dysfunctions of five pathways including glycerophospholipid metabolism, sphingolipid metabolism, oxidation of fatty acids, glycerolipid metabolism and sterol lipid metabolism. This study indicated that the rapid and holistic cell metabolomics approach might be a powerful tool to further study the pathogenesis mechanism of corticosterone-induced cytotoxicity in PC12 cells.
Collapse
Affiliation(s)
- Hongye Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Hua Zheng
- Medical Scientific Research Center, Guangxi Medical University, Nanning 530021, China
| | - Gan Zhao
- Department of Pharmacy, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Chaoling Tang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Shiyin Lu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Bang Cheng
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Fang Wu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Junxiang Ruan
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Hui Song
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
135
|
Sphingomyelin generated by sphingomyelin synthase 1 is involved in attachment and infection with Japanese encephalitis virus. Sci Rep 2016; 6:37829. [PMID: 27892528 PMCID: PMC5124946 DOI: 10.1038/srep37829] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne RNA virus which infects target cells via the envelope protein JEV-E. However, its cellular targets are largely unknown. To investigate the role of sphingomyelin (SM) in JEV infection, we utilized SM-deficient immortalized mouse embryonic fibroblasts (tMEF) established from SM synthase 1 (SMS1)/SMS2 double knockout mice. SMS deficiency significantly reduced both intracellular and extracellular JEV levels at 48 h after infection. Furthermore, after 15 min treatment with JEV, the early steps of JEV infection such as attachment and cell entry were also diminished in SMS-deficient tMEFs. The inhibition of JEV attachment and infection were recovered by overexpression of SMS1 but not SMS2, suggesting SMS1 contributes to SM production for JEV attachment and infection. Finally, intraperitoneal injection of JEV into SMS1-deficient mice showed an obvious decrease of JEV infection and its associated pathologies, such as meningitis, lymphocyte infiltration, and elevation of interleukin 6, compared with wild type mice. These results suggest that SMS1-generated SM on the plasma membrane is related in JEV attachment and subsequent infection, and may be a target for inhibition of JEV infection.
Collapse
|
136
|
Rhodes CJ, Ghataorhe P, Wharton J, Rue-Albrecht KC, Hadinnapola C, Watson G, Bleda M, Haimel M, Coghlan G, Corris PA, Howard LS, Kiely DG, Peacock AJ, Pepke-Zaba J, Toshner MR, Wort SJ, Gibbs JSR, Lawrie A, Gräf S, Morrell NW, Wilkins MR. Plasma Metabolomics Implicates Modified Transfer RNAs and Altered Bioenergetics in the Outcomes of Pulmonary Arterial Hypertension. Circulation 2016; 135:460-475. [PMID: 27881557 PMCID: PMC5287439 DOI: 10.1161/circulationaha.116.024602] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/09/2016] [Indexed: 11/27/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Pulmonary arterial hypertension (PAH) is a heterogeneous disorder with high mortality. Methods: We conducted a comprehensive study of plasma metabolites using ultraperformance liquid chromatography mass spectrometry to identify patients at high risk of early death, to identify patients who respond well to treatment, and to provide novel molecular insights into disease pathogenesis. Results: Fifty-three circulating metabolites distinguished well-phenotyped patients with idiopathic or heritable PAH (n=365) from healthy control subjects (n=121) after correction for multiple testing (P<7.3e-5) and confounding factors, including drug therapy, and renal and hepatic impairment. A subset of 20 of 53 metabolites also discriminated patients with PAH from disease control subjects (symptomatic patients without pulmonary hypertension, n=139). Sixty-two metabolites were prognostic in PAH, with 36 of 62 independent of established prognostic markers. Increased levels of tRNA-specific modified nucleosides (N2,N2-dimethylguanosine, N1-methylinosine), tricarboxylic acid cycle intermediates (malate, fumarate), glutamate, fatty acid acylcarnitines, tryptophan, and polyamine metabolites and decreased levels of steroids, sphingomyelins, and phosphatidylcholines distinguished patients from control subjects. The largest differences correlated with increased risk of death, and correction of several metabolites over time was associated with a better outcome. Patients who responded to calcium channel blocker therapy had metabolic profiles similar to those of healthy control subjects. Conclusions: Metabolic profiles in PAH are strongly related to survival and should be considered part of the deep phenotypic characterization of this disease. Our results support the investigation of targeted therapeutic strategies that seek to address the alterations in translational regulation and energy metabolism that characterize these patients.
Collapse
Affiliation(s)
- Christopher J Rhodes
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Pavandeep Ghataorhe
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - John Wharton
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Kevin C Rue-Albrecht
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Charaka Hadinnapola
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Geoffrey Watson
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Marta Bleda
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Matthias Haimel
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Gerry Coghlan
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Paul A Corris
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Luke S Howard
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - David G Kiely
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Andrew J Peacock
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Joanna Pepke-Zaba
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Mark R Toshner
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - S John Wort
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - J Simon R Gibbs
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Allan Lawrie
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Stefan Gräf
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Nicholas W Morrell
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Martin R Wilkins
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.).
| |
Collapse
|
137
|
Abstract
Many thousands of lipid species exist and their metabolism is interwoven via numerous pathways and networks. These networks can also change in response to cellular environment alterations, such as exercise or development of a disease. Measuring such alterations and understanding the pathways involved is crucial to fully understand cellular metabolism. Such demands have catalysed the emergence of lipidomics, which enables the large-scale study of lipids using the principles of analytical chemistry. Mass spectrometry, largely due to its analytical power and rapid development of new instruments and techniques, has been widely used in lipidomics and greatly accelerated advances in the field. This Review provides an introduction to lipidomics and describes some common, but important, cellular metabolic networks that can aid our understanding of metabolic pathways. Some representative applications of lipidomics for studying lipid metabolism and metabolic diseases are highlighted, as well as future applications for the use of lipidomics in studying metabolic pathways.
Collapse
Affiliation(s)
- Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, Florida 32827, USA and College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
138
|
Zhao F, Wan Y, Zhao H, Hu W, Mu D, Webster TF, Hu J. Levels of Blood Organophosphorus Flame Retardants and Association with Changes in Human Sphingolipid Homeostasis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8896-8903. [PMID: 27434659 DOI: 10.1021/acs.est.6b02474] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While a recent toxicological study has shown that organophosphorus flame retardants (OPFRs) may disrupt sphingolipid homeostasis, epidemiologic evidence is currently lacking. In this study, a total of 257 participants were recruited from Shenzhen, China. Eleven OPFRs were for the first time simultaneously determined in the human blood samples by ultraperformance liquid chromatography and tandem mass spectrometry. Six OPFRs, tributyl phosphate (TNBP), 2-ethylhexyl diphenyl phosphate (EHDPP), tris(2-chloroisopropyl) phosphate (TCIPP), tris(2-butoxyethyl) phosphate (TBOEP), triethyl phosphate (TEP), and TPHP, were detectable in at least 90% of participants, with median concentrations of 37.8, 1.22, 0.71, 0.54, 0.49, and 0.43 ng/mL, respectively. Sphingomyelin (SM) levels in the highest quartile of EHDPP, TPHP, TNBP, TBOEP, TEP, and TCIPP were 45.3% [95% confidence interval; 38.1%, 53.0%], 51.9% (45.5%, 58.6%), 153.6% (145.1%, 162.3%), 20.6% (14.5%, 27.0%), 59.0% (52.1%, 66.2%), and 62.8% (55.2%, 70.6%) higher than those in the lowest quartile, respectively, after adjusting for covariates. Sphingosine 1-phosphate (S1P) levels in the highest quartile of EHDPP, TPHP, and TNBP were 36% (-39%, -33%), 16% (-19%, -14%), and 36% (-38%, -33%) lower than those in the lowest quartile, respectively. A similar pattern emerged when exposures were modeled continuously. We for the first time found the associations between OPFRs and changes in human sphingolipid homeostasis.
Collapse
Affiliation(s)
- Fanrong Zhao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Haoqi Zhao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Wenxin Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Di Mu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health , Boston, Massachusetts 02118, United States
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
139
|
Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:688-702. [DOI: 10.1016/j.bbalip.2016.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/20/2016] [Accepted: 04/30/2016] [Indexed: 11/22/2022]
|
140
|
Tautenhahn HM, Brückner S, Baumann S, Winkler S, Otto W, von Bergen M, Bartels M, Christ B. Attenuation of Postoperative Acute Liver Failure by Mesenchymal Stem Cell Treatment Due to Metabolic Implications. Ann Surg 2016; 263:546-56. [PMID: 25775061 DOI: 10.1097/sla.0000000000001155] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To prevent posthepatectomy acute liver failure after extended resection by treatment with mesenchymal stem cells (MSCs). BACKGROUND Liver tumors often require extended liver resection, overburdening metabolic and regenerative capacities of the remnant organ. Resulting dysfunction and failure may be improved by the proregenerative characteristics of MSCs. METHODS Extended liver resection was performed in (DPPIV)-deficient F344-Fischer rats. Wild-type animals served as donors of peritoneal adipose-derived MSCs. These were predifferentiated in vitro into hepatocytic cells and delivered to the liver by splenic application. Liver-related blood parameters (international normalized ratio, bilirubin, aspartate aminotransferase, alanine aminotransferase) and liver histology (hematoxylin-eosin, Sudan III) were determined to monitor liver function. Metabolic changes were assessed by metabolomic analyses in the remnant liver and the serum. Liver damage and regeneration were quantified by determination of the apoptotic and proliferation rates. RESULTS MSCs supported survival after partial hepatectomy. They decreased liver-related blood parameters indicative for the improvement of liver function. The extensive lipid accumulation in hepatocytes illustrating the metabolic overload after resection was attenuated. Treatment with MSCs normalized imbalance of amino acids, acylcarnitines, sphingolipids, and glycerophospholipids in the liver and blood. Furthermore, MSCs decreased the apoptotic rate and increased the proliferation rate. The experimental time period (48 hours) was too short to allow for integration of MSCs into the host liver. Thus, the mode of action was probably indirect. CONCLUSIONS MSCs ameliorated hepatic dysfunction and improved liver regeneration after extended resection by paracrine mechanisms. They may represent a new therapeutic option to treat posthepatectomy acute liver failure.
Collapse
Affiliation(s)
- Hans-Michael Tautenhahn
- *Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig AöR, Leipzig, Germany †Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany ‡Department of Metabolomics, Helmholtz Centre for Environmental Research GmbH-UFZ, Leipzig, Germany §Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany ¶Department of Proteomics, Helmholtz Centre for Environmental Research GmbH-UFZ, Leipzig, Germany
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Lazzarini A, Macchiarulo A, Floridi A, Coletti A, Cataldi S, Codini M, Lazzarini R, Bartoccini E, Cascianelli G, Ambesi-Impiombato FS, Beccari T, Curcio F, Albi E. Very-long-chain fatty acid sphingomyelin in nuclear lipid microdomains of hepatocytes and hepatoma cells: can the exchange from C24:0 to C16:0 affect signal proteins and vitamin D receptor? Mol Biol Cell 2016; 26:2418-25. [PMID: 26124436 PMCID: PMC4571297 DOI: 10.1091/mbc.e15-04-0229] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lipid microdomains localized in the inner nuclear membrane are considered platforms for active chromatin anchoring. Stimuli such as surgery, vitamin D, or glucocorticoid drugs influence their gene expression, DNA duplication, and RNA synthesis. In this study, we used ultrafast liquid chromatography-tandem mass spectrometry to identify sphingomyelin (SM) species coupled with immunoblot analysis to comprehensively map differences in nuclear lipid microdomains (NLMs) purified from hepatocytes and hepatoma cells. We showed that NLMs lost saturated very-long-chain fatty acid (FA; C24:0) SM in cancer cells and became enriched in long-chain FA (C16:0) SM. We also found that signaling proteins, such as STAT3, Raf1, and PKCζ, were increased and vitamin D receptor was reduced in cancer cells. Because recent researches showed a shift in sphingolipid composition from C24:0 to C16:0 in relation to cell life, we performed a comparative analysis of properties among C16:0 SM, C24:0 SM, and cholesterol. Our results led us to hypothesize that the enrichment of C16:0 SM could determine enhanced dynamic properties of NLMs in cancer cells with an increased shuttling of protein signaling molecules.
Collapse
Affiliation(s)
- Andrea Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06100 Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy
| | | | - Alice Coletti
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy
| | - Michela Codini
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy
| | - Remo Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06100 Perugia, Italy
| | - Elisa Bartoccini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06100 Perugia, Italy
| | | | | | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy
| | - Francesco Curcio
- Department of Clinical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | - Elisabetta Albi
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06100 Perugia, Italy
| |
Collapse
|
142
|
Miyamoto S, Hsu CC, Hamm G, Darshi M, Diamond-Stanic M, Declèves AE, Slater L, Pennathur S, Stauber J, Dorrestein PC, Sharma K. Mass Spectrometry Imaging Reveals Elevated Glomerular ATP/AMP in Diabetes/obesity and Identifies Sphingomyelin as a Possible Mediator. EBioMedicine 2016; 7:121-34. [PMID: 27322466 PMCID: PMC4909366 DOI: 10.1016/j.ebiom.2016.03.033] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is suppressed in diabetes and may be due to a high ATP/AMP ratio, however the quantitation of nucleotides in vivo has been extremely difficult. Via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to localize renal nucleotides we found that the diabetic kidney had a significant increase in glomerular ATP/AMP ratio. Untargeted MALDI-MSI analysis revealed that a specific sphingomyelin species (SM(d18:1/16:0)) accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with wild-type controls. In vitro studies in mesangial cells revealed that exogenous addition of SM(d18:1/16:0) significantly elevated ATP via increased glucose consumption and lactate production with a consequent reduction of AMPK and PGC1α. Furthermore, inhibition of sphingomyelin synthases reversed these effects. Our findings suggest that AMPK is reduced in the diabetic kidney due to an increase in the ATP/AMP ratio and that SM(d18:1/16:0) could be responsible for the enhanced ATP production via activation of the glycolytic pathway. MALDI-MSI revealed an increase in glomerular ATP/AMP ratio in the diabetic kidney. SM(d18:1/16:0) is increased in the glomeruli of diabetic and high-fat diet-fed mice. SM(d18:1/16:0) stimulated ATP production via enhanced aerobic glycolysis and reduced AMPK activity in mesangial cells. AMPK is known to be suppressed in states of high ATP/AMP ratio but the measurement of nucleotides in vivo has been difficult. Miyamoto et al. utilize matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the distribution of nucleotides and find an increase in glomerular ATP/AMP ratio in the diabetic kidney. Untargeted MALDI-MSI revealed that sphingomyelin(d18:1/16:0) is accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with controls. Sphingomyelin(d18:1/16:0) promotes ATP production in mesangial cells via activation of the glycolytic pathway. The inhibition of sphingomyelin(d18:1/16:0) synthesis may lead to novel therapeutic targets for the treatment of caloric-induced CKD.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Cheng-Chih Hsu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA; Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Gregory Hamm
- ImaBiotech, MS Imaging Department, Lille 59120, France
| | - Manjula Darshi
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA
| | - Maggie Diamond-Stanic
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA
| | - Anne-Emilie Declèves
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA
| | - Larkin Slater
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA
| | | | | | - Pieter C Dorrestein
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kumar Sharma
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA.
| |
Collapse
|
143
|
Sugimoto M, Wakabayashi M, Shimizu Y, Yoshioka T, Higashino K, Numata Y, Okuda T, Zhao S, Sakai S, Igarashi Y, Kuge Y. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice. PLoS One 2016; 11:e0152191. [PMID: 27010944 PMCID: PMC4806983 DOI: 10.1371/journal.pone.0152191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/10/2016] [Indexed: 12/31/2022] Open
Abstract
Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18–C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18–C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys.
Collapse
Affiliation(s)
- Masayuki Sugimoto
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Masato Wakabayashi
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yoichi Shimizu
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
- Laboratory of Bioanalysis and Molecular Imaging, Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Yoshioka
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Tomohiko Okuda
- Drug Discovery Technologies, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Songji Zhao
- Department of Tracer Kinetics & Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shota Sakai
- Department of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Igarashi
- Department of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
144
|
Roux A, Muller L, Jackson SN, Post J, Baldwin K, Hoffer B, Balaban CD, Barbacci D, Schultz JA, Gouty S, Cox BM, Woods AS. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. J Neurosci Methods 2016; 272:19-32. [PMID: 26872743 DOI: 10.1016/j.jneumeth.2016.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/01/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mild traumatic brain injury (TBI) is a common public health issue that may contribute to chronic degenerative disorders. Membrane lipids play a key role in tissue responses to injury, both as cell signals and as components of membrane structure and cell signaling. This study demonstrates the ability of high resolution mass spectrometry imaging (MSI) to assess sequences of responses of lipid species in a rat controlled cortical impact model for concussion. NEW METHOD A matrix of implanted silver nanoparticles was implanted superficially in brain sections for matrix-assisted laser desorption (MALDI) imaging of 50μm diameter microdomains across unfixed cryostat sections of rat brain. Ion-mobility time-of-flight MS was used to analyze and map changes over time in brain lipid composition in a rats after Controlled Cortical Impact (CCI) TBI. RESULTS Brain MS images showed changes in sphingolipids near the CCI site, including increased ceramides and decreased sphingomyelins, accompanied by changes in glycerophospholipids and cholesterol derivatives. The kinetics differed for each lipid class; for example ceramides increased as early as 1 day after the injury whereas other lipids changes occurred between 3 and 7 days post injury. COMPARISON WITH EXISTING METHOD(S) Silver nanoparticles MALDI matrix is a sensitive new tool for revealing previously undetectable cellular injury response and remodeling in neural, glial and vascular structure of the brain. CONCLUSIONS Lipid biochemical and structural changes after TBI could help highlighting molecules that can be used to determine the severity of such injuries as well as to evaluate the efficacy of potential treatments.
Collapse
Affiliation(s)
- Aurelie Roux
- Structural Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, MD 21224, United States
| | - Ludovic Muller
- Structural Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, MD 21224, United States
| | - Shelley N Jackson
- Structural Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, MD 21224, United States
| | - Jeremy Post
- Structural Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, MD 21224, United States
| | - Katherine Baldwin
- Structural Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, MD 21224, United States
| | - Barry Hoffer
- University Hospitals of Cleveland, Cleveland, OH 44106, United States
| | - Carey D Balaban
- Departments of Otolaryngology, Neurobiology, Communication Sciences & Disorders, and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | | | | | - Shawn Gouty
- Center for Neuroscience and Regenerative Medicine, Department of Pharmacology, Uniformed Services University, Bethesda, MD 20814, United States
| | - Brian M Cox
- Center for Neuroscience and Regenerative Medicine, Department of Pharmacology, Uniformed Services University, Bethesda, MD 20814, United States
| | - Amina S Woods
- Structural Biology Unit, Integrative Neuroscience Branch, NIH/NIDA-IRP, Baltimore, MD 21224, United States.
| |
Collapse
|
145
|
Yoshizaki H, Ogiso H, Okazaki T, Kiyokawa E. Comparative lipid analysis in the normal and cancerous organoids of MDCK cells. J Biochem 2016; 159:573-84. [PMID: 26783265 DOI: 10.1093/jb/mvw001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/06/2015] [Indexed: 11/14/2022] Open
Abstract
Epithelial organs are made of a well-polarized monolayer of epithelial cells, and their morphology is maintained strictly for their proper functioning. The roles of lipids are not only to generate the membrane, but also to provide the specific domains for signal transduction, or to transmit signals as second messengers. By using a liquid chromatography-electrospray ionization mass spectrometry (LC-MS)/MS method, we here analyzed sphingolipids in MDCK cysts under various conditions. Our result showed that, compared to the three-dimensional cyst, the two-dimensional MDCK sheet is relatively enriched in sphingolipids. During cystogenesis, the contents of sphingomyelin (SM) and lactocylceramide (LacCer)-but, none those of ceramide, hexocylceramide, or GM3-are altered depending on their acyl chains. While the total SM is decreased more efficiently by SMS-1 knockdown than by SMS-2 knockdown, depletion of SMS-2, but not SMS-1, inhibits cyst growth. Finally upon the switching on of activated K-Ras expression which induces luminal cell filling, ceramide and LacCer are increased. Our parallel examinations of the microarray data for mRNA of sphingolipid metabolic enzymes failed to fully explain the remodelling of the sphingolipids of MDCK cysts. However, these results should be useful to investigate the cell-type- and structure-specific lipid metabolism.
Collapse
Affiliation(s)
| | - Hideo Ogiso
- Department of Hematology/Immunology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Toshiro Okazaki
- Department of Hematology/Immunology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | | |
Collapse
|
146
|
Bienias K, Fiedorowicz A, Sadowska A, Prokopiuk S, Car H. Regulation of sphingomyelin metabolism. Pharmacol Rep 2016; 68:570-81. [PMID: 26940196 DOI: 10.1016/j.pharep.2015.12.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/24/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022]
Abstract
Sphingolipids (SFs) represent a large class of lipids playing diverse functions in a vast number of physiological and pathological processes. Sphingomyelin (SM) is the most abundant SF in the cell, with ubiquitous distribution within mammalian tissues, and particularly high levels in the Central Nervous System (CNS). SM is an essential element of plasma membrane (PM) and its levels are crucial for the cell function. SM content in a cell is strictly regulated by the enzymes of SM metabolic pathways, which activities create a balance between SM synthesis and degradation. The de novo synthesis via SM synthases (SMSs) in the last step of the multi-stage process is the most important pathway of SM formation in a cell. The SM hydrolysis by sphingomyelinases (SMases) increases the concentration of ceramide (Cer), a bioactive molecule, which is involved in cellular proliferation, growth and apoptosis. By controlling the levels of SM and Cer, SMSs and SMases maintain cellular homeostasis. Enzymes of SM cycle exhibit unique properties and diverse tissue distribution. Disturbances in their activities were observed in many CNS pathologies. This review characterizes the physiological roles of SM and enzymes controlling SM levels as well as their involvement in selected pathologies of the Central Nervous System, such as ischemia/hypoxia, Alzheimer disease (AD), Parkinson disease (PD), depression, schizophrenia and Niemann Pick disease (NPD).
Collapse
Affiliation(s)
- Kamil Bienias
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Anna Fiedorowicz
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland; Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Sławomir Prokopiuk
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
147
|
Wcislo G, Szarlej-Wcislo K. Disturbances of Lipid Metabolism in a Cancer Cell and How This Knowledge Increases Its Role in Clinical Oncology. HANDBOOK OF LIPIDS IN HUMAN FUNCTION 2016:761-789. [DOI: 10.1016/b978-1-63067-036-8.00029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
148
|
Tommasino C, Marconi M, Ciarlo L, Matarrese P, Malorni W. Autophagic flux and autophagosome morphogenesis require the participation of sphingolipids. Apoptosis 2015; 20:645-57. [PMID: 25697338 DOI: 10.1007/s10495-015-1102-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis and autophagy are two evolutionary conserved processes that exert a critical role in the maintenance of tissue homeostasis. While apoptosis is a tightly regulated cell program implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in the lysosomal degradation and recycling of proteins and organelles, and is thereby considered an important cytoprotection mechanism. Sphingolipids (SLs), which are ubiquitous membrane lipids in eukaryotes, participate in the generation of various membrane structures, including lipid rafts and caveolae, and contribute to a number of cellular functions such as cell proliferation, apoptosis and, as suggested more recently, autophagy. For instance, SLs are hypothesized to be involved in several intracellular processes, including organelle membrane scrambling, whilst at the plasma membrane lipid rafts, acting as catalytic domains, strongly contribute to the ignition of critical signaling pathways determining cell fate. In particular, by targeting several shared regulators, ceramide, sphingosine-1-phosphate, dihydroceramide, sphingomyelin and gangliosides seem able to differentially regulate the autophagic pathway and/or contribute to the autophagosome formation. This review illustrates recent studies on this matter, particularly lipid rafts, briefly underscoring the possible implication of SLs and their alterations in the autophagy disturbances and in the pathogenesis of some human diseases.
Collapse
Affiliation(s)
- Chiara Tommasino
- Section of Cell Aging and Degeneration, Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
149
|
Al-Mahrouki AA, Wong E, Czarnota GJ. Ultrasound-stimulated microbubble enhancement of radiation treatments: endothelial cell function and mechanism. Oncoscience 2015; 2:944-57. [PMID: 26909363 PMCID: PMC4741402 DOI: 10.18632/oncoscience.277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022] Open
Abstract
Endothelial cell death caused by novel microbubble-enhanced ultrasound cancer therapy leads to secondary tumour cell death. In order to characterize and optimize these treatments, the molecular mechanisms resulting from the interaction with endothelial cells were investigated here. Endothelial cells (HUVEC) were treated with ultrasound-stimulated microbubbles (US/MB), radiation (XRT), or a combination of US/MB+XRT. Effects on cells were evaluated at 0, 3, 6, and 24 hours after treatment. Experiments took place in the presence of modulators of sphingolipid-based signalling including ceramide, fumonisin B1, monensin, and sphingosine-1-phosphate. Experimental outcomes were evaluated using histology, TUNEL, clonogenic survival methods, immuno-fluorescence, electron microscopy, and endothelial cell blood-vessel-like tube forming assays. Fewer cells survived after treatment using US/MB+XRT compared to either the control or XRT. The functional ability to form tubes was only reduced in the US/ MB+XRT condition in the control, the ceramide, and the sphingosine-1-phosphate treated groups. The combined treatment had no effect on tube forming ability in either the fumonisin B1 or in the monensin exposed groups, since both interfere with ceramide production at different cellular sites. In summary, experimental results supported the role of ceramide signalling as a key element in cell death initiation with treatments using US/MB+XRT to target endothelial cells.
Collapse
Affiliation(s)
- Azza A Al-Mahrouki
- Department of Radiation Oncology, and Physical Sciences, Sunnybrook Health Sciences Centre and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Emily Wong
- Department of Radiation Oncology, and Physical Sciences, Sunnybrook Health Sciences Centre and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Gregory J Czarnota
- Department of Radiation Oncology, and Physical Sciences, Sunnybrook Health Sciences Centre and Sunnybrook Research Institute, Toronto, Ontario, Canada; Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
150
|
Sugimoto M, Shimizu Y, Yoshioka T, Wakabayashi M, Tanaka Y, Higashino K, Numata Y, Sakai S, Kihara A, Igarashi Y, Kuge Y. Histological analyses by matrix-assisted laser desorption/ionization-imaging mass spectrometry reveal differential localization of sphingomyelin molecular species regulated by particular ceramide synthase in mouse brains. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1554-65. [DOI: 10.1016/j.bbalip.2015.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/18/2015] [Accepted: 09/16/2015] [Indexed: 11/27/2022]
|