101
|
Zhang L, Li K, Xiao W, Zheng L, Xiao Y, Fan H, Zhang X. Preparation of collagen–chondroitin sulfate–hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.11.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
102
|
Roberts SJ, Tomlins PE, Faruqui N, Robinson JAJ. Diffusion of biologically relevant molecules through gel-like tissue scaffolds. Biotechnol Prog 2011; 27:251-61. [DOI: 10.1002/btpr.512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Indexed: 11/11/2022]
|
103
|
Li C, Tian H, Rong N, Liu K, Liu F, Zhu Y, Qiao R, Jiang Y. Chitosan Grafted with Macrocyclic Polyamines on C-2 and C-6 Positions as Nonviral Gene Vectors: Preparation, Characterization, and In Vitro Transfection Studies. Biomacromolecules 2011; 12:298-305. [DOI: 10.1021/bm100819z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao Li
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing 100029, China, State Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hua Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing 100029, China, State Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Na Rong
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing 100029, China, State Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kun Liu
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing 100029, China, State Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Feng Liu
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing 100029, China, State Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanjie Zhu
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing 100029, China, State Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing 100029, China, State Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing 100029, China, State Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
104
|
Chitosan-Based Biomaterials for Tissue Repair and Regeneration. ADVANCES IN POLYMER SCIENCE 2011. [DOI: 10.1007/12_2011_118] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
105
|
Yang L, Pan F, Zhao X, Yaseen M, Padia F, Coffey P, Freund A, Yang L, Liu T, Ma X, Lu JR. Thermoresponsive copolymer nanofilms for controlling cell adhesion, growth, and detachment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17304-17314. [PMID: 20964301 DOI: 10.1021/la102411u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study reports the development and use of a novel thermoresponsive polymeric nanofilm for controlling cell adhesion and growth at 37 °C, and then cell detachment for cell recovery by subsequent temperature drop to the ambient temperature, without enzymatic cleavage or mechanical scraping. A copolymer, poly(N-isopropylacrylamide-co-hydroxypropyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) (abbreviated PNIPAAm copolymer), was synthesized by free radical polymerization. The thermoresponses of the copolymer in aqueous solution were demonstrated by dynamic light scattering (DLS) through detecting the sensitive changes of copolymer aggregation against temperature. The DLS measurements revealed the lower critical solution temperature (LCST) at approximately 30 °C. The PNIPAAm film stability and robustness was provided through silyl cross-linking within the film and with the hydroxyl groups on the substrate surface. Film thickness, stability, and reversibility with respect to temperature switches were examined by spectroscopic ellipsometry (SE), atomic force microscopy (AFM), and contact angle measurements. The results confirmed the high extent of thermosensitivity and structural restoration based on the alterations of film thickness and surface wettability. The effective control of adhesion, growth, and detachment of HeLa and HEK293 cells demonstrated the physical controllability and cellular compatibility of the copolymer nanofilms. These PNIPAAm copolymer nanofilms could open up a convenient interfacial mediation for cell film production and cell expansion by nonenzymatic and nonmechanical cell recovery.
Collapse
Affiliation(s)
- Lei Yang
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Fu RH, Wang YC, Liu SP, Huang CM, Kang YH, Tsai CH, Shyu WC, Lin SZ. Differentiation of stem cells: strategies for modifying surface biomaterials. Cell Transplant 2010; 20:37-47. [PMID: 21054953 DOI: 10.3727/096368910x532756] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stem cells are a natural choice for cellular therapy because of their potential to differentiate into a variety of lineages, their capacity for self-renewal in the repair of damaged organs and tissues in vivo, and their ability to generate tissue constructs in vitro. Determining how to efficiently drive stem cell differentiation to a lineage of choice is critical for the success of cellular therapeutics. Many factors are involved in this process, the extracellular microenvironment playing a significant role in controlling cellular behavior. In recent years, researchers have focused on identifying a variety of biomaterials to provide a microenvironment that is conducive to stem cell growth and differentiation and that ultimately mimics the in vivo situation. Appropriate biomaterials support the cellular attachment, proliferation, and lineage-specific differentiation of stem cells. Tissue engineering approaches have been used to incorporate growth factors and morphogenetic factors-factors known to induce lineage commitment of stem cells-into cultures with scaffolding materials, including synthetic and naturally derived biomaterials. This review focuses on various strategies that have been used in stem cell expansion and examines modifications of natural and synthetic materials, as well as various culture conditions, for the maintenance and lineage-specific differentiation of embryonic and adult stem cells.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Ji QX, Deng J, Xing XM, Yuan CQ, Yu XB, Xu QC, Yue J. Biocompatibility of a chitosan-based injectable thermosensitive hydrogel and its effects on dog periodontal tissue regeneration. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.06.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
108
|
Don TM, Chou SC, Cheng LP, Tai HY. Cellular compatibility of copolymer hydrogels based on site-selectively-modified chitosan with poly(N-isopropyl acrylamide). J Appl Polym Sci 2010. [DOI: 10.1002/app.32806] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
109
|
Song K, Qiao M, Liu T, Jiang B, Macedo HM, Ma X, Cui Z. Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2835-2842. [PMID: 20640914 DOI: 10.1007/s10856-010-4131-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 07/08/2010] [Indexed: 05/29/2023]
Abstract
This paper introduces a novel type of injectable temperature-sensitive chitosan/glycerophosphate/collagen (C/GP/Co) hydrogel that possesses great biocompatibility for the culture of adipose tissue-derived stem cells. The C/GP/Co hydrogel is prepared by mixing 2.2% (v/v) chitosan with 50% (w/w) β-glycerophosphate at different proportions and afterwards adding 2 mg/ml of collagen. The gelation time of the prepared solution at 37°C was found to be of around 12 min. The inner structure of the hydrogel presented a porous spongy structure, as observed by scanning electron microscopy. Moreover, the osmolality of the medium in contact with the hydrogel was in the range of 310-330 mmol kg(-1). These analyses have shown that the C/GP/Co hydrogels are structurally feasible for cell culture, while their biocompatibility was further examined. Human adipose tissue-derived stem cells (ADSCs) were seeded into the developed C/GP and C/GP/Co hydrogels (The ratios of C/GP and C/GP/Co were 5:1 and 5:1:6, respectively), and the cellular growth was periodically observed under an inverted microscope. The proliferation of ADSCs was detected using cck-8 kits, while cell apoptosis was determined by a Live/Dead Viability/Cytotoxicity kit. After 7 days of culture, cells within the C/GP/Co hydrogels displayed a typical adherent cell morphology and good proliferation with very high cellular viability. It was thus demonstrated that the novel C/GP/Co hydrogel herein described possess excellent cellular compatibility, representing a new alternative as a scaffold for tissue engineering, with the added advantage of being a gel at the body's temperature that turns liquid at room temperature.
Collapse
Affiliation(s)
- Kedong Song
- Dalian R&D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| | | | | | | | | | | | | |
Collapse
|
110
|
He XL, Nie PP, Sun YK, Wang Y, Dong YY, Chen L. Immobilization of galactose ligands on thermoresponsive culture surface and its influence on cell adhesion/detachment. J Colloid Interface Sci 2010; 350:471-9. [DOI: 10.1016/j.jcis.2010.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 12/01/2022]
|
111
|
Ahmed TAE, Hincke MT. Strategies for articular cartilage lesion repair and functional restoration. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:305-29. [PMID: 20025455 DOI: 10.1089/ten.teb.2009.0590] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Injury of articular cartilage due to trauma or pathological conditions is the major cause of disability worldwide, especially in North America. The increasing number of patients suffering from joint-related conditions leads to a concomitant increase in the economic burden. In this review article, we focus on strategies to repair and replace knee joint cartilage, since knee-associated disabilities are more prevalent than any other joint. Because of inadequacies associated with widely used approaches, the orthopedic community has an increasing tendency to develop biological strategies, which include transplantation of autologous (i.e., mosaicplasty) or allogeneic osteochondral grafts, autologous chondrocytes (autologous chondrocyte transplantation), or tissue-engineered cartilage substitutes. Tissue-engineered cartilage constructs represent a highly promising treatment option for knee injury as they mimic the biomechanical environment of the native cartilage and have superior integration capabilities. Currently, a wide range of tissue-engineering-based strategies are established and investigated clinically as an alternative to the routinely used techniques (i.e., knee replacement and autologous chondrocyte transplantation). Tissue-engineering-based strategies include implantation of autologous chondrocytes in combination with collagen I, collagen I/III (matrix-induced autologous chondrocyte implantation), HYAFF 11 (Hyalograft C), and fibrin glue (Tissucol) or implantation of minced cartilage in combination with copolymers of polyglycolic acid along with polycaprolactone (cartilage autograft implantation system), and fibrin glue (DeNovo NT graft). Tissue-engineered cartilage replacements show better clinical outcomes in the short term, and with advances that have been made in orthopedics they can be introduced arthroscopically in a minimally invasive fashion. Thus, the future is bright for this innovative approach to restore function.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
112
|
Straley KS, Foo CWP, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 2010; 27:1-19. [PMID: 19698073 DOI: 10.1089/neu.2009.0948] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The highly debilitating nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials that can stimulate cellular regeneration and functional recovery. Many experts agree that the greatest hope for treatment of spinal cord injuries will involve a combinatorial approach that integrates biomaterial scaffolds, cell transplantation, and molecule delivery. This manuscript presents a comprehensive review of biomaterial-scaffold design strategies currently being applied to the development of nerve guidance channels and hydrogels that more effectively stimulate spinal cord tissue regeneration. To enhance the regenerative capacity of these two scaffold types, researchers are focusing on optimizing the mechanical properties, cell-adhesivity, biodegradability, electrical activity, and topography of synthetic and natural materials, and are developing mechanisms to use these scaffolds to deliver cells and biomolecules. Developing scaffolds that address several of these key design parameters will lead to more successful therapies for the regeneration of spinal cord tissue.
Collapse
Affiliation(s)
- Karin S Straley
- Chemical Engineering Department, Stanford University, Stanford, California 4305-4045, USA
| | | | | |
Collapse
|
113
|
Park JS, Woo DG, Yang HN, Lim HJ, Park KM, Na K, Park KH. Chondrogenesis of human mesenchymal stem cells encapsulated in a hydrogel construct: neocartilage formation in animal models as both mice and rabbits. J Biomed Mater Res A 2010; 92:988-96. [PMID: 19296541 DOI: 10.1002/jbm.a.32341] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, in vivo studies, both nude mouse and rabbit cartilage defect, were tested for chondrogenesis using stem cells (SCs) using growth factor. Specifically, human mesenchymal stem cells (hMSCs) were embedded in a hydrogel scaffold, which was coencapsulated with transforming growth factor-beta3 (TGF-beta3). The specific extracellular matrices (ECMs) released from hMSCs transplanted into the animal were assessed via glycosaminoglycan (GAG)/DNA content, RT-PCR, real time-QPCR, immunohistochemical (IHC), and Safranin-O staining and were observed up to 7 weeks after injection. By detection of ECMs the GAG content per cell remained constant for all formulations, indicating that the dramatic increase in cell number for samples with TGF-beta3 was accompanied by the maintenance of the cell phenotypes. The histological and IHC staining of the newly repaired tissues observed after treatment with TGF-beta3 mixed with hMSCs evidenced hyaline cartilage-like characteristics. Moreover, the results observed with the animal model (rabbit) treated with hMSCs embedded in the growth factor-containing hydrogel indicate that the implantation of mixed cells with TGF-beta3 may constitute a clinically efficient method for the regeneration of hyaline articular cartilage.
Collapse
Affiliation(s)
- Ji Sun Park
- College of Medicine, Pochon CHA University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Hydrogels have many different applications in the field of regenerative medicine. Biodegradable, injectable hydrogels could be utilized as delivery systems, cell carriers, and scaffolds for tissue engineering. Injectable hydrogels are an appealing scaffold because they are structurally similar to the extracellular matrix of many tissues, can often be processed under relatively mild conditions, and may be delivered in a minimally invasive manner. This review will discuss recent advances in the field of injectable hydrogels, including both synthetic and native polymeric materials, which can be potentially used in cartilage and soft tissue engineering applications.
Collapse
|
115
|
Ke Z, Dai B, Li L, Yan G, Zhou D. Thermoresponsive surface prepared by atom transfer radical polymerization directly from poly(vinylidene fluoride) for control of cell adhesion and detachment. J Appl Polym Sci 2010. [DOI: 10.1002/app.30996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
116
|
Santos JR, Alves NM, Mano JF. New Thermo-responsive Hydrogels Based on Poly (N-isopropylacrylamide)/ Hyaluronic Acid Semi-interpenetrated Polymer Networks: Swelling Properties and Drug Release Studies. J BIOACT COMPAT POL 2010. [DOI: 10.1177/0883911509357863] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New pH and temperature sensitive semi-interpenetrated polymer networks (semi-IPNs) were developed by combining cross-linked PNIPAAm with hyaluronic acid (HA). At pH 7.4, the PNIPAAm/HA semi-IPN hydrogels had significantly greater and faster swelling at 25°C and a more complete deswelling at 37°C than PNIPAAm hydrogels. The temperature-dependent reversibility behavior was analyzed for biomaterial applications. Gentamicin was incorporated as a model drug, and the release profile from the hydrogels was followed under physiological conditions. The presence of HA, even in small quantities, allowed a more complete release of the gentamicin from the hydrogel. The PNIPAAm/HA semi-IPN hydrogels respond to both changes in temperature and pH making it suitable as a delivery system for therapeutics.
Collapse
Affiliation(s)
- João R. Santos
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics AvePark, Zona Industrial da Gandra, S. Cláudio do Barco 4806-909 Caldas das Taipas - Guimarães, Portugal, IBB - Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Guimarães, Portugal
| | - Natália M. Alves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics AvePark, Zona Industrial da Gandra, S. Cláudio do Barco 4806-909 Caldas das Taipas - Guimarães, Portugal, IBB - Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Guimarães, Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics AvePark, Zona Industrial da Gandra, S. Cláudio do Barco 4806-909 Caldas das Taipas - Guimarães, Portugal, IBB - Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Guimarães, Portugal,
| |
Collapse
|
117
|
Lu B, Wu DQ, Zheng H, Quan CY, Zhang XZ, Zhuo RX. Galactosyl conjugated N-succinyl-chitosan-graft-polyethylenimine for targeting gene transfer. MOLECULAR BIOSYSTEMS 2010; 6:2529-38. [DOI: 10.1039/c0mb00096e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
118
|
HE X, WANG J, XIAO F. SYNTHESIS OF GLYCOSYLATED THERMO-RESPONSIVE HYDROGELS AND THEIR INTERACTIONS WITH HepG2 CELLS. ACTA POLYM SIN 2009. [DOI: 10.3724/sp.j.1105.2009.01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
119
|
Li X, Feng H, Chen WN, Chan V. Hepatitis B virus induced coupling of deadhesion and migration of HepG2 cells on thermo-responsive polymer. Biomaterials 2009; 31:1894-903. [PMID: 19944459 DOI: 10.1016/j.biomaterials.2009.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
The unique physical property of thermo-responsive polymer (TRP) has recently prompted its increasing applications in tissue engineering. On the other hand, TRP has not been exploited for potential applications in quantitative cell screening against external stimulations. In this study, TRP is applied as a model system for elucidating the effect of HBV replication on the biophysical responses of HepG2 cells transfected by wild type HBV genome. Moreover, mutant HBV genome is designed to assess the specific activity of the SH3-binding domain of HBx during HBV replication. The adhesion contact recession and geometry transformation of HepG2 cells transfected with empty vector (pcDNA3.1 cells), wild type HBV (wtHBV cells) and mutant HBV genome (mHBV cells) are probed during the thermal transformation across lower solution critical temperature of TRP. In comparison with pcDNA3.1 cells and mHBV cells, the initial rate of reduction in degree of deformation and average adhesion energy for wtHBV cells is significantly increased. Interestingly, migration speed and persistence time of cells are found to be correlated with the cell deadhesion kinetics. Immuno-fluorescence microscopy demonstrates that HBV replication reduces the actin concentration and focal adhesions at cell periphery during the initial 30 min cell deadhesion. The results strongly suggested that HBV infection triggers the dynamic responses of HepG2 cells through the cytoskeleton remodeling and subsequent mechanochemical transduction. Overall, it is shown that TRP provides a convenient platform for quantifying biological stimulations on adherent cells.
Collapse
Affiliation(s)
- Xi Li
- Center of Biotechnology, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | | | | | | |
Collapse
|
120
|
Felka T, Schäfer R, Schewe B, Benz K, Aicher WK. Hypoxia reduces the inhibitory effect of IL-1beta on chondrogenic differentiation of FCS-free expanded MSC. Osteoarthritis Cartilage 2009; 17:1368-76. [PMID: 19463979 DOI: 10.1016/j.joca.2009.04.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mesenchymal stromal cells (MSC) are a promising tool for tissue engineering of the intervertebral disc (ID). The IDs are characterized by hypoxia and, after degeneration, by an inflammatory environment as well. We therefore investigated the effects of inflammation induced with interleukin (IL)-1beta and of hypoxia (2% O(2)) on the chondrogenic differentiation of MSC. METHODS Bone-marrow-derived MSC (bmMSC) were cultured in a fetal-calf-serum-free medium and characterized according to the minimal criteria for multipotent MSC. Chondrogenic differentiation of MSC was induced following standard protocols, under hypoxic conditions, with or without IL-1beta supplementation. After 28 days of differentiation, micromasses were analyzed by histochemical staining and immunohistochemistry and by determining the mRNA level of chondrogenic marker genes utilizing quantitative RT-PCR. RESULTS Micromasses differentiated under IL-1beta supplementation are smaller and express less extracellular matrix (ECM) protein. Micromasses differentiated under hypoxia appear larger in size, display a denser ECM and express marker genes comparable to controls. The combination of hypoxia and IL-1beta supplementation improved chondrogenesis compared to IL-1beta supplementation alone. Micromasses differentiated under standard conditions served as controls. CONCLUSION Inflammatory processes inhibit the chondrogenic differentiation of MSC. This may lessen the regenerative potential of MSC in situ. Thus, for the cell therapy of IDs using MSC to be effective it will be necessary to manage the inflammatory conditions in situ. In contrast, hypoxic conditions exert beneficial effects on chondrogenesis and phenotype stability of transplanted MSC, and may improve the quality of the generated ECM.
Collapse
Affiliation(s)
- T Felka
- ZMF, Center for Medical Research at UKT, Waldhörnlestrasse 22, 72072 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
121
|
Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 2009; 30:6844-53. [PMID: 19783043 DOI: 10.1016/j.biomaterials.2009.08.058] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 08/28/2009] [Indexed: 12/16/2022]
Abstract
A series of thermosensitive copolymer hydrogels, aminated hyaluronic acid-g-poly(N-isopropylacrylamide) (AHA-g-PNIPAAm), were synthesized by coupling carboxylic end-capped PNIPAAm (PNIPAAm-COOH) to AHA through amide bond linkages. AHA was prepared by grafting adipic dihydrazide to the HA backbone and PNIPAAm-COOH copolymer was synthesized via a facile thermo-radical polymerization technique by polymerization of NIPAAm using 4,4'-azobis(4-cyanovaleric acid) as an initiator, respectively. The structure of AHA and AHA-g-PNIPAAm copolymer was determined by (1)H NMR. Two AHA-g-PNIPAAm copolymers with different weight ratios of PNIPAAm on the applicability of injectable hydrogels were characterized. The lower critical solution temperature (LCST) of AHA-g-PNIPAAm copolymers in PBS were measured as approximately 30 degrees C by rheological analysis, regardless of the grafting degrees. Enzymatic resistance of AHA-g-PNIPAAm hydrogels with 28% and 53% of PNIPAAm in 100U/mL hyaluronidase/PBS at 37 degrees C was 12.3% and 37.6% over 28 days, respectively. Equilibrium swelling ratios of AHA-g-PNIPAAm hydrogels with 28% of PNIPAAm were 21.5, and significantly decreased to 13.3 with 53% of PNIPAAm in PBS at 37 degrees C. Results from SEM observations confirm a porous 3D AHA-g-PNIPAAm hydrogel structure with interconnected pores after freeze-drying and the pore diameter depends on the weight ratios of PNIPAAm. Encapsulation of human adipose-derived stem cells (ASCs) within hydrogels showed the AHA-g-PNIPAAm copolymers were noncytotoxic and preserved the viability of the entrapped cells. A preliminary in vivo study demonstrated the usefulness of the AHA-g-PNIPAAm copolymer as an injectable hydrogel for adipose tissue engineering. This newly described thermoresponsive AHA-g-PNIPAAm copolymer demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Huaping Tan
- Division of Plastic Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
122
|
Preparation, Cytotoxicity and Degradability of Chitosan-Based Thermosensitive Hydrogels as Drug Delivery System. ACTA ACUST UNITED AC 2009. [DOI: 10.4028/www.scientific.net/amr.79-82.1531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new thermosensitive hydrogel had been prepared that could be transformed into gel at 37 °C from chitosan and a mixture of α- and β-glycerophosphate (αβ-GP). The appearance of hydrogel was compact and corrugated. There was little granule in the appearance of gel loaded with adriamycin and the granules might be crystals of the added model drug. In vitro cytotoxicity of the hydrogel was tested by the MTT method using mouse embryonic fibroblasts (MEF). MEF cultured with leachates of CS-αβ-GP were investigated and the relative growth rate (RGR) was calculated and the cytotoxicity was graded by generally accepted standard. The study of in vitro degradation of CS-αβ-GP hydrogels included hydrolysis and degradation by lysozyme. The CS-αβ-GP thermosensitive hydrogel was degradable in vitro and the degradation rate was faster in lysozyme solution than that in the medium of PBS. So the CS-αβ-GP system had good cell biocompatibility and biodegradability which provided possibilities and foundations for the further research.
Collapse
|
123
|
Ji QX, Chen XG, Zhao QS, Liu CS, Cheng XJ, Wang LC. Injectable thermosensitive hydrogel based on chitosan and quaternized chitosan and the biomedical properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1603-1610. [PMID: 19322644 DOI: 10.1007/s10856-009-3729-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 03/03/2009] [Indexed: 05/27/2023]
Abstract
A novel injectable thermosensitive hydrogel (CS-HTCC/alpha beta-GP) was successfully designed and prepared using chitosan (CS), quaternized chitosan (HTCC) and alpha,beta-glycerophosphate (alpha,beta-GP) without any additional chemical stimulus. The gelation point of CS-HTCC/alpha beta-GP can be set at a temperature close to normal body temperature or other temperature above 25 degrees C. The transition process can be controlled by adjusting the weight ratio of CS to HTCC, or different final concentration of alpha,beta-GP. The optimum formulation is (CS + HTCC) (2% w/v), CS/HTCC (5/1 w/w) and alpha,beta-GP 8.33% or 9.09% (w/v), where the sol-gel transition time was 3 min at 37 degrees C. The drug released over 3 h from the CS-HTCC/alpha,beta-GP thermosensitive hydrogel in artificial saliva pH 6.8. In addition, CS-HTCC/alpha,beta-GP thermosensitive hydrogel exhibited stronger antibacterial activity towards two periodontal pathogens (Porphyromonas gingivalis, P.g and Prevotella intermedia, P.i). CS-HTCC/alpha, beta-GP thermosensitive hydrogel was a considerable candidate as a local drug delivery system for periodontal treatment.
Collapse
Affiliation(s)
- Qiu Xia Ji
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong Province, PR China
| | | | | | | | | | | |
Collapse
|
124
|
Lu B, Wang CF, Wu DQ, Li C, Zhang XZ, Zhuo RX. Chitosan based oligoamine polymers: Synthesis, characterization, and gene delivery. J Control Release 2009; 137:54-62. [DOI: 10.1016/j.jconrel.2009.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/28/2009] [Accepted: 03/09/2009] [Indexed: 01/27/2023]
|
125
|
Rubira AF, Muniz EC, Guilherme MR, Paulino AT, Tambourgi EB. Morfologia de hidrogéis-ipn termo-sensíveis e ph-responsivos para aplicação como biomaterial na cultura de células. POLIMEROS 2009. [DOI: 10.1590/s0104-14282009000200006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
No presente trabalho, foram sintetizados hidrogéis com ambas as propriedades, termo-sensíveis e pH-responsivos, pela formação de redes de alginato de cálcio (alginato-Ca) dentro de redes de poli(N-Isopropil Acrilamida) (PNIPAAm), resultando em um sistema IPN (sistema de redes poliméricas interpenetradas). Através das análises por microscopia de varredura eletrônica (MEV) e ensaios de intumescimento foi possível observar que os hidrogéis IPN exibiram forte contração quando aquecidos acima da LCST (temperatura critica inferior de solubilização) da PNIPAAm, ou seja, acima de temperaturas de 30-35 ºC. Observou-se ainda que devido à contração do hidrogel, houve uma diminuição significativa nos tamanhos de poros os quais foram observados pelas micrografias. Observou-se também que no intervalo de pH estudado os hidrogéis de IPN sofreram significativa variação da estrutura com a variação desse parâmetro. Tal efeito foi atribuído à presença de grupos químicos carregados com alginato, os quais possuem carga elétrica negativa. Os resultados indicaram que o hidrogel formado por alginato-Ca e PNIPAAm possuíram características especificas após variação de pH e temperatura, e que tais características são derivadas dos compostos individuais envolvidos na síntese. Nesse caso, as propriedades de alginato-Ca e PNIPAAm livres foram preservadas dentro do hidrogel. Tal hidrogel ficou mais resistente à aplicação de uma tensão de compressão. Como conclusão, observou-se que os hidrogéis apresentaram morfologia característica para variações controladas de pH e temperatura, podendo ser eficientemente aplicados como biomaterial na cultura de células.
Collapse
|
126
|
Tan R, Niu X, Gan S, Feng Q. Preparation and characterization of an injectable composite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1245-1253. [PMID: 19267262 DOI: 10.1007/s10856-009-3692-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 01/06/2009] [Indexed: 05/27/2023]
Abstract
Hydrogels are increasingly used in medicine due to their potential to be delivered into the body in a minimally invasive manner and to be gelated at the site of introduction subsequently. The aim of this study was to develop a novel injectable and in situ-forming gel composite (GC) comprised of calcium alginate hydrogel and nano-hydroxyapatite/collagen (nHAC), assess its rheological, mechanical and in vitro degradable properties, and discuss the gelation mechanism. Injectable property test showed that the injectability of GC was tunable. Rheological results indicated that three phases of pre-gel, sol-gel phase transformation and post-gel could be found in the process of gelation. The compressive elastic modulus (E) and shear modulus (G) are in the range of 17.0-56.0 kPa and 24.7-55.0 kPa, respectively. During the in vitro degradation, the wet weight increased in the first week, then declined in the following 3 weeks, but the dry weight lost continuously during whole study. Meanwhile, the surface changed greatly after 2 weeks, but samples did not break down up to 28 days. These data indicate that GC exhibits controllable initial setting time and final setting time, tunable injectability, which provides a possible injectable material for bone repair and bone tissue engineering.
Collapse
Affiliation(s)
- Rongwei Tan
- Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
127
|
Zhou HY, Chen XG, Kong M, Liu CS. Preparation of chitosan-based thermosensitive hydrogels for drug delivery. J Appl Polym Sci 2009. [DOI: 10.1002/app.29721] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
128
|
Comolli N, Neuhuber B, Fischer I, Lowman A. In vitro analysis of PNIPAAm-PEG, a novel, injectable scaffold for spinal cord repair. Acta Biomater 2009; 5:1046-55. [PMID: 19054721 PMCID: PMC2844850 DOI: 10.1016/j.actbio.2008.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/30/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022]
Abstract
Nervous tissue engineering in combination with other therapeutic strategies is an emerging trend for the treatment of different CNS disorders and injuries. We propose to use poly(N-isopropylacrylamide)-co-poly(ethylene glycol) (PNIPAAm-PEG) as a minimally invasive, injectable scaffold platform for the repair of spinal cord injury (SCI). The scaffold allows cell attachment, and provides mechanical support and a sustained release of neurotrophins. In order to use PNIPAAm-PEG as an injectable scaffold for treatment of SCI, it must maintain its mass and volume over time in physiological conditions. To provide mechanical support at the injury site, it is also critical that the engineered scaffold matches the compressive modulus of the native neuronal tissue. This study focused on studying the ability of the scaffold to release bioactive neurotrophins and matching the material properties to those of the native neuronal tissue. We found that the release of both BDNF and NT-3 was sustained for up to 4 weeks, with a minimal burst exhibited for both neurotrophins. The bioactivity of the released NT-3 and BDNF was confirmed after 4 weeks. In addition, our results show that the PNIPAAm-PEG scaffold can be designed to match the desired mechanical properties of the native neuronal tissue, with a compressive modulus in the 3-5 kPa range. The scaffold was also compatible with bone marrow stromal cells, allowing their survival and attachment for up to 31 days. These results indicate that PNIPAAm-PEG is a promising multifunctional scaffold for the treatment of SCI.
Collapse
Affiliation(s)
- Noelle Comolli
- Department of Chemical & Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
129
|
Muzzarelli RA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.11.002] [Citation(s) in RCA: 632] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
130
|
Chen JP, Cheng TH. Preparation and evaluation of thermo-reversible copolymer hydrogels containing chitosan and hyaluronic acid as injectable cell carriers. POLYMER 2009. [DOI: 10.1016/j.polymer.2008.10.045] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
131
|
Jung GA, Yoon JY, Moon BS, Yang DH, Kim HY, Lee SH, Bryja V, Arenas E, Choi KY. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biol 2008; 9:66. [PMID: 19068119 PMCID: PMC2639384 DOI: 10.1186/1471-2121-9-66] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/09/2008] [Indexed: 11/13/2022] Open
Abstract
Background Valproic acid (VPA), a commonly used mood stabilizer that promotes neuronal differentiation, regulates multiple signaling pathways involving extracellular signal-regulated kinase (ERK) and glycogen synthase kinase3β (GSK3β). However, the mechanism by which VPA promotes differentiation is not understood. Results We report here that 1 mM VPA simultaneously induces differentiation and reduces proliferation of basic fibroblast growth factor (bFGF)-treated embryonic day 14 (E14) rat cerebral cortex neural progenitor cells (NPCs). The effects of VPA on the regulation of differentiation and inhibition of proliferation occur via the ERK-p21Cip/WAF1 pathway. These effects, however, are not mediated by the pathway involving the epidermal growth factor receptor (EGFR) but via the pathway which stabilizes Ras through β-catenin signaling. Stimulation of differentiation and inhibition of proliferation in NPCs by VPA occur independently and the β-catenin-Ras-ERK-p21Cip/WAF1 pathway is involved in both processes. The independent regulation of differentiation and proliferation in NPCs by VPA was also demonstrated in vivo in the cerebral cortex of developing rat embryos. Conclusion We propose that this mechanism of VPA action may contribute to an explanation of its anti-tumor and neuroprotective effects, as well as elucidate its role in the independent regulation of differentiation and inhibition of proliferation in the cerebral cortex of developing rat embryos.
Collapse
Affiliation(s)
- Gyung-Ah Jung
- Department of Biotechnology, Yonsei University, Seoul, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Alves N, Mano J. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 2008; 43:401-14. [DOI: 10.1016/j.ijbiomac.2008.09.007] [Citation(s) in RCA: 458] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/05/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
|
133
|
Lu B, Xu XD, Zhang XZ, Cheng SX, Zhuo RX. Low Molecular Weight Polyethylenimine Grafted N-Maleated Chitosan for Gene Delivery: Properties and In Vitro Transfection Studies. Biomacromolecules 2008; 9:2594-600. [DOI: 10.1021/bm8004676] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Lu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiao-Ding Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
134
|
Park KH, Na K. Effect of growth factors on chondrogenic differentiation of rabbit mesenchymal cells embedded in injectable hydrogels. J Biosci Bioeng 2008; 106:74-9. [DOI: 10.1263/jbb.106.74] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 04/16/2008] [Indexed: 11/17/2022]
|
135
|
Zhou HY, Chen XG, Kong M, Liu CS, Cha DS, Kennedy JF. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2007.11.026] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
136
|
Song M, Guo D, Pan C, Jiang H, Chen C, Zhang R, Gu Z, Wang X. The application of poly(N-isopropylacrylamide)-co-polystyrene nanofibers as an additive agent to facilitate the cellular uptake of an anticancer drug. NANOTECHNOLOGY 2008; 19:165102. [PMID: 21825633 DOI: 10.1088/0957-4484/19/16/165102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this paper, we have fabricated poly(N-isopropylacrylamide)-co-polystyrene (PNIPAM-co-PS) nanofibers by electrospinning and explored the possibility to utilize the PNIPAM-co-PS nanofibers to enhance the permeation and uptake of the anticancer drug daunorubicin in drug-sensitive and drug-resistant leukemia K562 cells. Our MTT assay and electrochemical studies demonstrate that PNIPAM-co-PS nanofibers could play an important role in facilitating the cell track and drug delivery to the cancer cells. Meanwhile, the observations of atomic force microscopy (AFM) and confocal fluorescence microscopy indicate that the relevant interaction of the PNIPAM-co-PS nanofibers with bioactive molecules on the membrane of leukemia cell lines could affect the intracellular drug uptake positively and lead to the efficient accumulation of daunorubicin in drug-sensitive and drug-resistant cancer cells.
Collapse
Affiliation(s)
- Min Song
- State Key Lab of Bioelectronics, Chien-Shiung Wu Laboratory, Southeast University, Nanjing 210096, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Guan J, Hong Y, Ma Z, Wagner WR. Protein-reactive, thermoresponsive copolymers with high flexibility and biodegradability. Biomacromolecules 2008; 9:1283-92. [PMID: 18324775 PMCID: PMC2860788 DOI: 10.1021/bm701265j] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A family of injectable, biodegradable, and thermosensitive copolymers based on N-isopropylacrylamide, acrylic acid, N-acryloxysuccinimide, and a macromer polylactide-hydroxyethyl methacrylate were synthesized by free radical polymerization. Copolymers were injectable at or below room temperature and formed robust hydrogels at 37 degrees C. The effects of monomer ratio, polylactide length, and AAc content on the chemical and physical properties of the hydrogel were investigated. Copolymers exhibited lower critical solution temperatures (LCSTs) from 18 to 26 degrees C. After complete hydrolysis, hydrogels were soluble in phosphate buffered saline at 37 degrees C with LCSTs above 40.8 degrees C. Incorporation of type I collagen at varying mass fractions by covalent reaction with the copolymer backbone slightly increased LCSTs. Water content was 32-80% without collagen and increased to 230% with collagen at 37 degrees C. Hydrogels were highly flexible and relatively strong at 37 degrees C, with tensile strengths from 0.3 to 1.1 MPa and elongations at break from 344 to 1841% depending on NIPAAm/HEMAPLA ratio, AAc content, and polylactide length. Increasing the collagen content decreased both elongation at break and tensile strength. Hydrogel weight loss at 37 degrees C was 85-96% over 21 days and varied with polylactide content. Hydrogel weight loss at 37 degrees C was 85-96% over 21 days and varied with polylactide content. Degradation products were shown to be noncytotoxic. Cell adhesion on the hydrogels was 30% of that for tissue culture polystyrene but increased to statistically approximate this control surface after collagen incorporation. These newly described thermoresponsive copolymers demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Jianjun Guan
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania, 15219
| | - Yi Hong
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania, 15219
| | - Zuwei Ma
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania, 15219
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania, 15219
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
138
|
Yun K, Moon HT. Inducing Chondrogenic Differentiation in Injectable Hydrogels Embedded with Rabbit Chondrocytes and Growth Factor for Neocartilage Formation. J Biosci Bioeng 2008; 105:122-6. [DOI: 10.1263/jbb.105.122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 11/11/2007] [Indexed: 11/17/2022]
|
139
|
Huang X, Zhang Y, Donahue HJ, Lowe TL. Porous thermoresponsive-co-biodegradable hydrogels as tissue-engineering scaffolds for 3-dimensional in vitro culture of chondrocytes. ACTA ACUST UNITED AC 2008; 13:2645-52. [PMID: 17683245 DOI: 10.1089/ten.2007.0084] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new porous, thermoresponsive, partially biodegradable, chemically crosslinked hydrogel system was developed, characterized, and tested as a cartilage tissue-engineering scaffold for in vitro chondrocyte culture over a 4-week period. The hydrogel system was composed of poly(N-isopropylacrylamide), poly(D,L-lactic acid), and dextran segments. Pores in the hydrogels were generated using a salt leaching technique. The hydrogels showed thermoresponsive properties, with a lower critical solution temperature at approximately 32 degrees C. They continuously swelled at physiological temperature in phosphate buffered saline (pH 7.4) for at least 1 month. Chondrocytes isolated from embryonic chick sterna were seeded into the hydrogel scaffolds at room temperature and cultured at 37 degrees C for 4 weeks. Real-time reverse-transcriptase polymerase chain reaction quantification was conducted every week to study messenger ribonucleic acid levels of 3 chondrocyte phenotypic markers: type II collagen, type X collagen, and Indian hedgehog. Results suggested that chondrocytes maintained their phenotype during the 4-week in vitro culture and could mimic in vivo development. Chondrocytes were non-enzymatically harvested from the hydrogel scaffold at the end of the fourth week by simply lowering the temperature from 37 degrees C to room temperature. The harvested chondrocytes kept a round morphology, confirming the maintenance of the chondrocyte phenotype in the hydrogel scaffolds.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Surgery, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
140
|
Mano J, Silva G, Azevedo H, Malafaya P, Sousa R, Silva S, Boesel L, Oliveira J, Santos T, Marques A, Neves N, Reis R. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 2008; 4:999-1030. [PMID: 17412675 PMCID: PMC2396201 DOI: 10.1098/rsif.2007.0220] [Citation(s) in RCA: 647] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The fields of tissue engineering and regenerative medicine aim at promoting the regeneration of tissues or replacing failing or malfunctioning organs, by means of combining a scaffold/support material, adequate cells and bioactive molecules. Different materials have been proposed to be used as both three-dimensional porous scaffolds and hydrogel matrices for distinct tissue engineering strategies. Among them, polymers of natural origin are one of the most attractive options, mainly due to their similarities with the extracellular matrix (ECM), chemical versatility as well as typically good biological performance. In this review, the most studied and promising and recently proposed naturally derived polymers that have been suggested for tissue engineering applications are described. Different classes of such type of polymers and their blends with synthetic polymers are analysed, with special focus on polysaccharides and proteins, the systems that are more inspired by the ECM. The adaptation of conventional methods or non-conventional processing techniques for processing scaffolds from natural origin based polymers is reviewed. The use of particles, membranes and injectable systems from such kind of materials is also overviewed, especially what concerns the present status of the research that should lead towards their final application. Finally, the biological performance of tissue engineering constructs based on natural-based polymers is discussed, using several examples for different clinically relevant applications.
Collapse
Affiliation(s)
- J.F Mano
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - G.A Silva
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - H.S Azevedo
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - P.B Malafaya
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - R.A Sousa
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - S.S Silva
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - L.F Boesel
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - J.M Oliveira
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - T.C Santos
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - A.P Marques
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - N.M Neves
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - R.L Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
- Author for correspondence ()
| |
Collapse
|
141
|
Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 2008; 60:215-28. [PMID: 17997187 DOI: 10.1016/j.addr.2007.08.037] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/11/2007] [Indexed: 12/13/2022]
Abstract
The promise of cellular therapy lies in the repair of damaged organs and tissues in vivo as well as generating tissue constructs in vitro for subsequent transplantation. Unfortunately, the lack of available donor cell sources limits its ultimate clinical applicability. Stem cells are a natural choice for cell therapy due to their pluripotent nature and self-renewal capacity. Creating reserves of undifferentiated stem cells and subsequently driving their differentiation to a lineage of choice in an efficient and scalable manner is critical for the ultimate clinical success of cellular therapeutics. In recent years, a variety of biomaterials have been incorporated in stem cell cultures, primarily to provide a conducive microenvironment for their growth and differentiation and to ultimately mimic the stem cell niche. In this review, we examine applications of natural and synthetic materials, their modifications as well as various culture conditions for maintenance and lineage-specific differentiation of embryonic and adult stem cells.
Collapse
Affiliation(s)
- Eileen Dawson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
142
|
Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. POLYM INT 2008. [DOI: 10.1002/pi.2378] [Citation(s) in RCA: 672] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
143
|
Jones DS, Lorimer CP, McCoy CP, Gorman SP. Characterization of the physicochemical, antimicrobial, and drug release properties of thermoresponsive hydrogel copolymers designed for medical device applications. J Biomed Mater Res B Appl Biomater 2008; 85:417-26. [DOI: 10.1002/jbm.b.30960] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
144
|
Hoemann CD, Chenite A, Sun J, Hurtig M, Serreqi A, Lu Z, Rossomacha E, Buschmann MD. Cytocompatible gel formation of chitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose is due to the presence of glyoxal. J Biomed Mater Res A 2007; 83:521-9. [PMID: 17503494 DOI: 10.1002/jbm.a.31365] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To deliver and retain viable repair cells in a surgically prepared cartilage lesion, we previously developed an adhesive in situ-gelling cell carrier by suspending cells in a solution of hydroxyethyl cellulose (HEC), which was then mixed with chitosan-glycerol phosphate to form a chitosan-GP/HEC gel. The purpose of this study was to elucidate the mechanism of gelation to maximally control gel time and viability of encapsulated cells. We analyzed the role of osmolality, pH, gelation temperature, gel shrinkage, and HEC. A chitosan-GP solution at pH 6.8 with cytocompatible osmotic pressure (419 mOsm/kg) was achieved by lowering disodium GP concentration from 370 to 135 mM. This solution was still thermogelling but only at 73 degrees C. We next discovered that glyoxal, a common additive in ether cellulose manufacturing, was responsible for chitosan gelation. Monolayer cells survived and proliferated in up to 1 mM of glyoxal, however only a very narrow range of glyoxal concentration in chitosan-GP/HEC, 0.1-0.15 mM, permitted gel formation, cell survival, and cell proliferation. Chitosan gels containing HEC required slightly less glyoxal to solidify. Chitosan-GP/HEC loaded with viable chondrocytes formed an adhesive seal with ex vivo mosaic arthroplasty defects from sheep knee joints. In mosaic arthroplasty defects of live sheep, bleeding occurred beneath part of the hydrogel carrier, and the gel was cleared after 1 month in vivo. These data indicate that chitosan-GP/HEC is suitable as an adhesive and injectable delivery vehicle for clinical orthopedic applications involving single use treatments that guide acute cartilage repair processes.
Collapse
Affiliation(s)
- C D Hoemann
- Department of Chemical Engineering, Ecole Polytechnique, PO Box 6079, Station Centre-Ville, Montreal, Quebec, Canada H3C 3A7.
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Wu W, Chen F, Liu Y, Ma Q, Mao T. Autologous Injectable Tissue-Engineered Cartilage by Using Platelet-Rich Plasma: Experimental Study in a Rabbit Model. J Oral Maxillofac Surg 2007; 65:1951-7. [PMID: 17884521 DOI: 10.1016/j.joms.2006.11.044] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/19/2006] [Accepted: 11/15/2006] [Indexed: 11/16/2022]
Abstract
PURPOSE Platelet-rich plasma (PRP) has been widely applied to promote tissue healing and used as a novel injectable scaffold in bone tissue engineering. However, there is no report about its feasibility to support chondrogenesis. This study aimed to investigate the feasibility of a PRP carrier to deliver chondrocytes and regenerate cartilage tissues in a rabbit model via injection. MATERIALS AND METHODS Eight New Zealand rabbits were divided into a chondrocytes/PRP group (n = 4) and a PRP-alone group (n = 4). Chondrocytes harvested from the auricular root of New Zealand rabbits were cultured and harvested. The chondrocytes were then mixed with PRP solution to generate chondrocytes/PRP composites with final cellular density of 5.0 x 10(7)/mL. Bovine thrombin was used as a cross-linking agent to gel chondrocytes/PRP composites, then, the composites were injected subcutaneously into the dorsal tissue of cell donor animals. As controls, PRP alone was injected into another 4 rabbits. At the second month after injection, rabbits were prepared for magnetic resonance imaging. The samples were then harvested for macroscopical examination, histological analysis, and glycosaminoglycan quantification. RESULTS Two months after injection, the hard knobbles were easily palpated under the dorsal skin of the animals in the chondrocytes/PRP group, and magnetic resonance images showed the presence of cartilage-like tissues. In histological analysis, formation of new cartilage was observed in the chondrocytes/PRP composites. Safranin-O staining and Masson's trichrome staining showed proteoglycan and collagen were produced in matrices. In contrast, no tissue formed in the PRP-alone group. CONCLUSIONS This study suggests the feasibility of using PRP as injectable scaffold seeded with chondrocytes to regenerate cartilage and showed the potential of using this method for the reconstruction of cartilage defects.
Collapse
Affiliation(s)
- Wei Wu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | |
Collapse
|
146
|
Therapeutic applications of mesenchymal stromal cells. Semin Cell Dev Biol 2007; 18:846-58. [PMID: 18024097 DOI: 10.1016/j.semcdb.2007.09.012] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 09/14/2007] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSC) are multipotent cells that can be derived from many different organs and tissues. They have been demonstrated to play a role in tissue repair and regeneration in both preclinical and clinical studies. They also have remarkable immunosuppressive properties. We describe their application in settings that include the cardiovascular, central nervous, gastrointestinal, renal, orthopaedic and haematopoietic systems. Manufacturing of MSC for clinical trials is also discussed. Since tissue matching between MSC donor and recipient does not appear to be required, MSC may be the first cell type able to be used as an "off-the-shelf" therapeutic product.
Collapse
|
147
|
Liu W, Huang Y, Liu H, Hu Y. Composite structure of temperature sensitive chitosan microgel and anomalous behavior in alcohol solutions. J Colloid Interface Sci 2007; 313:117-21. [PMID: 17512941 DOI: 10.1016/j.jcis.2007.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 03/14/2007] [Accepted: 04/06/2007] [Indexed: 11/16/2022]
Abstract
Poly(N-isopropylacrylamide)/chitosan (PNIPAM/CS) core-shell microgel was synthesized by graft copolymerization. The microstructure of copolymers was characterized by FT-IR spectrum and (1)H-nuclear magnetic resonance ((1)H NMR). Transmission electron microscope (TEM) and dynamic light scattering (DLS) measurements display that the microgel has high monodispersity and with a core-shell structure. For swelling the microgel in various alcohol solutions, the particles first shrink; then flocculation occurs resulted from weak aggregation of particles with the increase of alcohol concentration. The investigation of the size of microgels as a function of temperature shows that the thermo-sensitive property is markedly exhibited when the alcohol concentration is low, and vanishes when the alcohol concentration exceeds some value where the microgels have the lowest size.
Collapse
Affiliation(s)
- Weijun Liu
- State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | |
Collapse
|
148
|
Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2007; 68:34-45. [PMID: 17881200 PMCID: PMC3163097 DOI: 10.1016/j.ejpb.2007.02.025] [Citation(s) in RCA: 793] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/16/2007] [Accepted: 02/16/2007] [Indexed: 11/17/2022]
Abstract
Environmentally responsive hydrogels have the ability to turn from solution to gel when a specific stimulus is applied. Thermoresponsive hydrogels utilize temperature change as the trigger that determines their gelling behavior without any additional external factor. These hydrogels have been interesting for biomedical uses as they can swell in situ under physiological conditions and provide the advantage of convenient administration. The scope of this paper is to review the aqueous polymer solutions that exhibit transition to gel upon temperature change. Typically, aqueous solutions of hydrogels used in biomedical applications are liquid at ambient temperature and gel at physiological temperature. The review focuses mainly on hydrogels based on natural polymers, N-isopropylacrylamide polymers, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymers as well as poly(ethylene glycol)-biodegradable polyester copolymers.
Collapse
Affiliation(s)
| | - Antonios G. Mikos
- Corresponding author. Department of Bioengineering, Rice University, PO Box 1892, MS-142, Houston, TX 77251-1892, USA, Tel.: +1 713 348 5355; fax: +1 713 348 4244. (A.G. Mikos)
| |
Collapse
|
149
|
Kim TH, Jiang HL, Jere D, Park IK, Cho MH, Nah JW, Choi YJ, Akaike T, Cho CS. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 2007. [DOI: 10.1016/j.progpolymsci.2007.05.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
150
|
|