101
|
Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation. Colloids Surf B Biointerfaces 2017; 150:175-182. [DOI: 10.1016/j.colsurfb.2016.11.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022]
|
102
|
Kitsara M, Agbulut O, Kontziampasis D, Chen Y, Menasché P. Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering. Acta Biomater 2017; 48:20-40. [PMID: 27826001 DOI: 10.1016/j.actbio.2016.11.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Cardiac cell therapy holds a real promise for improving heart function and especially of the chronically failing myocardium. Embedding cells into 3D biodegradable scaffolds may better preserve cell survival and enhance cell engraftment after transplantation, consequently improving cardiac cell therapy compared with direct intramyocardial injection of isolated cells. The primary objective of a scaffold used in tissue engineering is the recreation of the natural 3D environment most suitable for an adequate tissue growth. An important aspect of this commitment is to mimic the fibrillar structure of the extracellular matrix, which provides essential guidance for cell organization, survival, and function. Recent advances in nanotechnology have significantly improved our capacities to mimic the extracellular matrix. Among them, electrospinning is well known for being easy to process and cost effective. Consequently, it is becoming increasingly popular for biomedical applications and it is most definitely the cutting edge technique to make scaffolds that mimic the extracellular matrix for industrial applications. Here, the desirable physico-chemical properties of the electrospun scaffolds for cardiac therapy are described, and polymers are categorized to natural and synthetic.Moreover, the methods used for improving functionalities by providing cells with the necessary chemical cues and a more in vivo-like environment are reported.
Collapse
|
103
|
Optimization of Polymer-ECM Composite Scaffolds for Tissue Engineering: Effect of Cells and Culture Conditions on Polymeric Nanofiber Mats. J Funct Biomater 2017; 8:jfb8010001. [PMID: 28085047 PMCID: PMC5371874 DOI: 10.3390/jfb8010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
The design of composite tissue scaffolds containing an extracellular matrix (ECM) and synthetic polymer fibers is a new approach to create bioactive scaffolds that can enhance cell function. Currently, studies investigating the effects of ECM-deposition and decellularization on polymer degradation are still lacking, as are data on optimizing the stability of the ECM-containing composite scaffolds during prolonged cell culture. In this study, we develop fibrous scaffolds using three polymer compositions, representing slow (E0000), medium (E0500), and fast (E1000) degrading materials, to investigate the stability, degradation, and mechanics of the scaffolds during ECM deposition and decellularization, and during the complete cellularization-decell-recell cycle. We report data on percent molecular weight (% Mw) retention of polymeric fiber mats, changes in scaffold stiffness, ECM deposition, and the presence of fibronectin after decellularization. We concluded that the fast degrading E1000 (Mw retention ≤ 50% after 28 days) was not sufficiently stable to allow scaffold handling after 28 days in culture, while the slow degradation of E0000 (Mw retention ≥ 80% in 28 days) did not allow deposited ECM to replace the polymer support. The scaffolds made from medium degrading E0500 (Mw retention about 60% at 28 days) allowed the gradual replacement of the polymer network with cell-derived ECM while maintaining the polymer network support. Thus, polymers with an intermediate rate of degradation, maintaining good scaffold handling properties after 28 days in culture, seem best suited for creating ECM-polymer composite scaffolds.
Collapse
|
104
|
Lin Z, Zhao X, Chen S, Du C. Osteogenic and tenogenic induction of hBMSCs by an integrated nanofibrous scaffold with chemical and structural mimicry of the bone–ligament connection. J Mater Chem B 2017; 5:1015-1027. [DOI: 10.1039/c6tb02156e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel electrospinning nanofiber collecting device was designed and utilized to fabricate an integrated PCL nanofibrous scaffold with a “random–aligned–random” structure.
Collapse
Affiliation(s)
- Zifeng Lin
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Xiujuan Zhao
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Si Chen
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Chang Du
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| |
Collapse
|
105
|
Englund-Johansson U, Netanyah E, Johansson F. Tailor-Made Electrospun Culture Scaffolds Control Human Neural Progenitor Cell Behavior—Studies on Cellular Migration and Phenotypic Differentiation. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbnb.2017.81001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
106
|
Hu T, Li Q, Dong H, Xiao W, Li L, Cao X. Patterning Electrospun Nanofibers via Agarose Hydrogel Stamps to Spatially Coordinate Cell Orientation in Microfluidic Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602610. [PMID: 27792275 DOI: 10.1002/smll.201602610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/29/2016] [Indexed: 06/06/2023]
Abstract
A straightforward, inexpensive, and reliable approach to pattern electrospun nanofibers via solvent-containing agarose hydrogel stamps is reported. Complex hierarchical microstructures can be further constructed via appropriate multistep permutation of microcontact patterning and electrospinning. As a proof-of-concept application, the patterned electrospun nanofibers are employed to spatially coordinate cell orientation in microfluidic devices.
Collapse
Affiliation(s)
- Tao Hu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
| | - Wenwu Xiao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ling Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
107
|
Polloni AE, Veneral JG, Rebelatto EA, de Oliveira D, Oliveira JV, Araújo PH, Sayer C. Enzymatic ring opening polymerization of ω-pentadecalactone using supercritical carbon dioxide. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
108
|
Yi DK, Nanda SS, Kim K, Tamil Selvan S. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J Mater Chem B 2017; 5:9429-9451. [DOI: 10.1039/c7tb02532g] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology advancements for stem cell differentiation, labeling, tracking and therapeutic applications in cardiac repair, bone, and liver regeneration are delineated.
Collapse
Affiliation(s)
- Dong Kee Yi
- Department of Chemistry
- Myongji University
- Yongin 449-728
- South Korea
| | | | - Kwangmeyung Kim
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul
- South Korea
| | | |
Collapse
|
109
|
Agbay A, Edgar JM, Robinson M, Styan T, Wilson K, Schroll J, Ko J, Khadem Mohtaram N, Jun MBG, Willerth SM. Biomaterial Strategies for Delivering Stem Cells as a Treatment for Spinal Cord Injury. Cells Tissues Organs 2016; 202:42-51. [DOI: 10.1159/000446474] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 11/19/2022] Open
Abstract
Ongoing clinical trials are evaluating the use of stem cells as a way to treat traumatic spinal cord injury (SCI). However, the inhibitory environment present in the injured spinal cord makes it challenging to achieve the survival of these cells along with desired differentiation into the appropriate phenotypes necessary to regain function. Transplanting stem cells along with an instructive biomaterial scaffold can increase cell survival and improve differentiation efficiency. This study reviews the literature discussing different types of instructive biomaterial scaffolds developed for transplanting stem cells into the injured spinal cord. We have chosen to focus specifically on biomaterial scaffolds that direct the differentiation of neural stem cells and pluripotent stem cells since they offer the most promise for producing the cell phenotypes that could restore function after SCI. In terms of biomaterial scaffolds, this article reviews the literature associated with using hydrogels made from natural biomaterials and electrospun scaffolds for differentiating stem cells into neural phenotypes. It then presents new data showing how these different types of scaffolds can be combined for neural tissue engineering applications and provides directions for future studies.
Collapse
|
110
|
Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers. Colloids Surf B Biointerfaces 2016; 148:557-565. [PMID: 27690245 DOI: 10.1016/j.colsurfb.2016.09.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/13/2016] [Accepted: 09/23/2016] [Indexed: 01/27/2023]
Abstract
A porous shape memory scaffold with both biomimetic structures and electrical conductivity properties is highly promising for nerve tissue engineering applications. In this study, a new shape memory polyurethane polymer which consists of inorganic polydimethylsiloxane (PDMS) segments with organic poly(ε-caprolactone) (PCL) segments was synthesized. Based on this poly(PCL/PDMS urethane), a series of electrically conductive nanofibers were electrospun by incorporating different amounts of carbon-black. Our results showed that after adding carbon black into nanofibers, the fiber diameters increased from 399±76 to 619±138nm, the crystallinity decreased from 33 to 25% and the resistivity reduced from 3.6 GΩ/mm to 1.8 kΩ/mm. Carbon black did not significantly influence the shape memory properties of the resulting nanofibers, and all the composite nanofibers exhibited decent shape recovery ratios of >90% and shape fixity ratios of >82% even after 5 thermo-mechanical cycles. PC12 cells were cultured on the shape memory nanofibers and the composite scaffolds showed good biocompatibility by promoting cell-cell interactions. Our study demonstrated that the poly(PCL/PDMS urethane)/carbon-black nanofibers with shape memory properties could be potentially used as smart 4-dimensional (4D) scaffolds for nerve tissue regeneration.
Collapse
|
111
|
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| |
Collapse
|
112
|
Biazar E. Application of polymeric nanofibers in medical designs, part II: Neural and cardiovascular tissues. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1180619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
113
|
Cho M, Kim SH, Jin G, Park KI, Jang JH. Salt-Induced Electrospun Patterned Bundled Fibers for Spatially Regulating Cellular Responses. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13320-13331. [PMID: 27167566 DOI: 10.1021/acsami.6b03848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Implementing patterned fibrous matrices can offer a highly valuable platform for spatially orchestrating hierarchical cellular constructs, specifically for neural engineering approaches, in which striated alignment or directional growth of axons are key elements for the functional recovery of damaged nervous systems. Thus, understanding the structural parameters of patterned fibrous matrices that can effectively promote neural growth can provide crucial clues for designing state-of-the-art tissue engineering scaffolds. To this end, salt-induced electrospun patterned fiber bundles (SiEP bundles) comprising longitudinally stacked multiple fibers were fabricated, and their capabilities of spatially stimulating the responses of neural cells, including PC12 cells, human neural stem cells (hNSCs), and dorsal root ganglia (DRG), were assessed by comparing them to conventional fibrous matrices having either randomly oriented fibers or individually aligned fibers. The SiEP bundles possessed remarkably distinctive morphological and topographical characteristics: multicomplexed infrastructures with nano- and microscale fibers, rough surfaces, and soft mechanical properties. Importantly, the SiEP bundles resulted in spatial cellular elongations corresponding to the fiber directions and induced highly robust neurite extensions along the patterned fibers. Furthermore, the residence of hNSCs on the topographically rough grooves of the SiEP bundles boosted neuronal differentiation. These findings can provide crucial insights for designing fibrous platforms that can spatially regulate cellular responses and potentially offer powerful strategies for a neural growth system in which directional cellular responses are critical for the functional recovery of damaged neural tissues.
Collapse
Affiliation(s)
- Mira Cho
- Department of Chemical and Biomolecular Engineering and ‡Department of Pediatrics, College of Medicine, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seung-Hyun Kim
- Department of Chemical and Biomolecular Engineering and ‡Department of Pediatrics, College of Medicine, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Gyuhyung Jin
- Department of Chemical and Biomolecular Engineering and ‡Department of Pediatrics, College of Medicine, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Kook In Park
- Department of Chemical and Biomolecular Engineering and ‡Department of Pediatrics, College of Medicine, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering and ‡Department of Pediatrics, College of Medicine, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
114
|
Zou Y, Qin J, Huang Z, Yin G, Pu X, He D. Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12576-82. [PMID: 27172537 DOI: 10.1021/acsami.6b00957] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Electrically conductive biomaterial scaffolds have great potential in neural tissue regeneration. In this work, an aligned conductive fibrous scaffold was prepared by electrospinning PLLA on rotating collector and chemical oxidation polymerization of pyrrole (PPy) codoped with poly(glutamic acid)/dodecyl benzenesulfonic acid sodium. The characterization results of composition, structure and mechanics of fiber films show that the existence of weak polar van der Waals' force between PPy coating and PLLA fibers. The resistivity of aligned rough PPy-PLLA fiber film (about 800 nm of fiber diameter) at the perpendicular and parallel directions is 0.971 and 0.874 Ω m, respectively. Aligned rough PPy-PLLA fiber film could guide the extension of 68% PC12 neurites along the direction of fiber axis. Under electrostimulation (ES) of 100, 200, and 400 mV/cm, median neurite lengths of differentiated PC12 on aligned fiber-films are 128, 149, and 141 μm, respectively. Furthermore, under ES of 100, 200, and 400 mV/cm, the alignment rate of neurite along the electropotential direction (angle between neurite and electropotential direction ≤10°) on random fibers film are 17, 23, and 28%, respectively, and the alignment rate of neurites along the fiber axis (angle between neurite and fiber axis ≤10°) on aligned fibers film reach to 76, 83, and 79%, respectively, indicating that the combination of ES and rough conducting aligned structure could adjust the alignment of cellular neurites along the direction of the fiber axis or electropotential.
Collapse
Affiliation(s)
- Yuanwen Zou
- College of Materials Science and Engineering, Sichuan University , Chengdu 610065, China
| | - Jiabang Qin
- College of Materials Science and Engineering, Sichuan University , Chengdu 610065, China
| | - Zhongbing Huang
- College of Materials Science and Engineering, Sichuan University , Chengdu 610065, China
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University , Chengdu 610065, China
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University , Chengdu 610065, China
| | - Da He
- College of Materials Science and Engineering, Sichuan University , Chengdu 610065, China
| |
Collapse
|
115
|
Wang W, He J, Feng B, Zhang Z, Zhang W, Zhou G, Cao Y, Fu W, Liu W. Aligned nanofibers direct human dermal fibroblasts to tenogenic phenotype in vitro and enhance tendon regeneration in vivo. Nanomedicine (Lond) 2016; 11:1055-72. [PMID: 27074092 DOI: 10.2217/nnm.16.24] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To explore the effect of aligned nanofibers on inducing tenogenic phenotype of human dermal fibroblasts (hDFs) in vitro and on inducing de novo tendon regeneration in vivo. Materials & methods: Random and aligned nanofibers were electrospun, seeded with hDFs and cultured in vitro, and in vivo implanted without cell seeding to bridge segmental defect of rat Achilles tendon. Results: In vitro, the well-aligned nanofibers could elongate hDFs, induce a tenogenic phenotype and form better organized neotendon respectively compared with random nanofibers. In vivo, the bridged nanofibers of aligned group could better recruit host cells and regenerate Achilles tendon de novo with enhanced tenogenic gene expression. Conclusion: Aligned nanofibers could induce tenogenic phenotype in vitro and regenerate tendon in vivo.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jing He
- Department of Anatomy & Neurobiology, Tongji University School of Medicine, Shanghai, PR China
| | - Bei Feng
- Department of Pediatric Cardiothoracic Surgery, Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao University, Shanghai, PR China
| | - Zhiyong Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Wenjie Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Guangdong Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Yilin Cao
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Wei Fu
- Department of Pediatric Cardiothoracic Surgery, Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao University, Shanghai, PR China
| | - Wei Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| |
Collapse
|
116
|
Zhang YS, Xia Y. Multiple facets for extracellular matrix mimicking in regenerative medicine. Nanomedicine (Lond) 2016; 10:689-92. [PMID: 25816873 DOI: 10.2217/nnm.15.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
117
|
Wang S, Chen X, Luan H, Gao D, Lin S, Cai Z, Liu J, Liu H, Jiang Y. Matrix-assisted laser desorption/ionization mass spectrometry imaging of cell cultures for the lipidomic analysis of potential lipid markers in human breast cancer invasion. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:533-42. [PMID: 26777684 DOI: 10.1002/rcm.7466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/17/2015] [Indexed: 05/15/2023]
Abstract
RATIONALE Breast cancer is the leading cause of cancer death among women worldwide. Identification of lipid targets that play a role in breast cancer invasion may advance our understanding of the rapid progression of cancer and may lead to the development of new biomarkers for the disease. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was applied for the lipidomic profiling of two poorly invasive and two highly invasive breast cancer cell lines to identify the differentially accumulated lipids related to the invasive phenotype. The four cell lines were individually grown on indium tin oxide (ITO)-coated glass slides, analyzed as cell cultures. The raster width and matrix for detection were optimized to improve detection sensitivity. RESULTS Optimized MSI measurements were performed directly on the cell culture with 9-aminoacridine as matrix, resulting in 215 endogenous compounds detected in positive ion mode and 267 endogenous compounds in negative ion mode in all the four cell lines, representing the largest group of analytes that have been analyzed from cells by a single MSI study. In highly invasive cell lines, 31 lipids including phosphatidylglycerol (PG) and phosphatidic acids were found upregulated and eight lipids including sphingomyelin (SM) downregulated in negative ion mode. The products of de novo fatty acid synthesis incorporated into membrane phospholipids, like oleic-acid-containing PG, may be involved in mitochondrial dysfunction and thus affect the invasion of breast cancer cells. The deficiency of SM may be related to the disruption of apoptosis in highly invasive cancer cells. CONCLUSIONS This work uncovered more analytes in cells by MSI than previous reports, providing a better visualization and novel insights to advance our understanding of the relationship between rapid progression of breast cancer and lipid metabolism. The most altered lipids may aid the discovery of diagnostic markers and therapeutic targets of breast cancer.
Collapse
Affiliation(s)
- Shujuan Wang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Xiaowu Chen
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Hemi Luan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Dan Gao
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Shuhai Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hongxia Liu
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yuyang Jiang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Medicine, Tsinghua University, Beijing, 10084, China
| |
Collapse
|
118
|
Cimini A, Ardini M, Gentile R, Giansanti F, Benedetti E, Cristiano L, Fidoamore A, Scotti S, Panella G, Angelucci F, Ippoliti R. A peroxiredoxin-based proteinaceous scaffold for the growth and differentiation of neuronal cells and tumour stem cells in the absence of prodifferentiation agents. J Tissue Eng Regen Med 2016; 11:2462-2470. [PMID: 29737636 DOI: 10.1002/term.2144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/29/2015] [Accepted: 12/22/2015] [Indexed: 01/26/2023]
Abstract
The use of nanoscale materials in the design of scaffolds for CNS tissue is increasing, due to their ability to promote cell adhesion, to mimic an extracellular matrix microenvironment and to interact with neuronal membranes. In this framework, one of the major challenges when using undifferentiated neural cells is how to control the differentiation process. Here we report the characterization of a scaffold based on the self-assembled nanotubes of a mutant of the protein peroxiredoxin (from Schistosoma mansoni or Bos taurus), which allows the growth and differentiation of a model neuronal cell line (SHSY5Y). The results obtained demonstrate that SHSY5Y cells grow without any sign of toxicity and develop a neuronal phenotype, as shown by the expression of neuronal differentiation markers, without the use of any differentiation supplement, even in the presence of serum. The prodifferentiation effect is demonstrated to be dependent on the formation of the protein nanotube, since a wild-type (WT) form of the peroxiredoxin from Schistosoma mansoni does not induce any differentiation. The protein scaffold was also able to induce the spread of glioblastoma cancer stem cells growing in neurospheres and allowing the acquisition of a neuron-like morphology, as well as of immature rat cortical neurons. This protein used here as coating agent may be suggested for the development of scaffolds for tissue regeneration or anti-tumour devices. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Annamaria Cimini
- Department of Life Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Matteo Ardini
- Department of Life Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberta Gentile
- Department of Life Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Giansanti
- Department of Life Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Department of Life Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessia Fidoamore
- Department of Life Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Stefano Scotti
- Department of Life Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gloria Panella
- Department of Life Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Angelucci
- Department of Life Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
119
|
Terraf P, Babaloo H, Kouhsari SM. Directed Differentiation of Dopamine-Secreting Cells from Nurr1/GPX1 Expressing Murine Embryonic Stem Cells Cultured on Matrigel-Coated PCL Scaffolds. Mol Neurobiol 2016; 54:1119-1128. [DOI: 10.1007/s12035-016-9726-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/13/2016] [Indexed: 12/01/2022]
|
120
|
In Vitro Differentiation of Human iPS Cells into Neural like Cells on a Biomimetic Polyurea. Mol Neurobiol 2016; 54:601-607. [DOI: 10.1007/s12035-015-9663-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/17/2015] [Indexed: 12/27/2022]
|
121
|
Rocamonde B, Paradells S, Garcia Esparza MA, Vives MS, Sauro S, Ramos CM, Pradas MM, Soria JM. Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury. Brain Inj 2016; 30:208-16. [PMID: 26745450 DOI: 10.3109/02699052.2015.1091505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PRIMARY OBJECTIVE The aim of this study was to investigate the reparative potential of a polymeric scaffold designed for brain tissue repair in combination with lipoic acid. RESEARCH DESIGN Histological, cytological and structural analysis of a combined treatment after a brain cryo-injury model in rats. METHODS AND PROCEDURES Adult Wistar rats were subjected to cryogenic brain injury. A channelled-porous scaffold of ethyl acrylate and hydroxyethylacrylate, p(EA-co-HEA) was grafted into cerebral penumbra alone or combined with intraperitoneal LA administration. Histological and cytological evaluation was performed after 15 and 60 days and structural magnetic resonance (MRI) assessment was performed at 2 and 6 months after the surgery. MAIN OUTCOMES AND RESULTS The scaffold was suitable for the establishment of different cellular types. The results obtained suggest that this strategy promotes blood vessels formation, decreased microglial response and neuron migration, particularly when LA was administrated. CONCLUSIONS These evidences demonstrated that the combination of a channelled polymer scaffold with LA administration may represent a potential treatment for neural tissue repair after brain injury.
Collapse
Affiliation(s)
- Brenda Rocamonde
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain
| | - Sara Paradells
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain
| | | | - Mavi Sánchez Vives
- b Institut D'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS , Barcelona , Spain
| | - Salvatore Sauro
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain
| | - Cristina Martínez Ramos
- c Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia , Valencia , Spain
| | - Manuel Monleón Pradas
- c Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia , Valencia , Spain
| | - José Miguel Soria
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain.,d Instituto de Ciencias Biomédicas, Universidad CEU-Cardenal Herrera , Moncada , Valencia , Spain
| |
Collapse
|
122
|
Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton's Jelly Mesenchymal Stem Cells. Stem Cells Int 2015; 2016:5309484. [PMID: 26839562 PMCID: PMC4709783 DOI: 10.1155/2016/5309484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35–40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N–H, and C–N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton's jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications.
Collapse
|
123
|
Rivet CJ, Zhou K, Gilbert RJ, Finkelstein DI, Forsythe JS. Cell infiltration into a 3D electrospun fiber and hydrogel hybrid scaffold implanted in the brain. BIOMATTER 2015; 5:e1005527. [PMID: 25996265 PMCID: PMC4581123 DOI: 10.1080/21592535.2015.1005527] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tissue engineering scaffolds are often designed without appropriate consideration for the translational potential of the material. Solid scaffolds implanted into central nervous system (CNS) tissue to promote regeneration may require tissue resection to accommodate implantation. Or alternatively, the solid scaffold may be cut or shaped to better fit an irregular injury geometry, but some features of the augmented scaffold may fail to integreate with surrounding tissue reducing regeneration potential. To create a biomaterial able to completely fill the irregular geometry of CNS injury and yet still provide sufficient cell migratory cues, an injectable, hybrid scaffold was created to present the physical architecture of electrospun fibers in an agarose/methylcellulose hydrogel. When injected into the rat striatum, infiltrating macrophages/microglia and resident astrocytes are able to locate the fibers and utilize their cues for migration into the hybrid matrix. Thus, hydrogels containing electrospun fibers may be an appropriate platform to encourage regeneration of the injured brain.
Collapse
Affiliation(s)
- Christopher J Rivet
- a Center for Biotechnology and Interdisciplinary Studies; Department of Biomedical Engineering ; Rensselaer Polytechnic Institute ; Troy , NY USA
| | | | | | | | | |
Collapse
|
124
|
Yao S, Liu X, He J, Wang X, Wang Y, Cui FZ. Ordered self-assembled monolayers terminated with different chemical functional groups direct neural stem cell linage behaviours. Biomed Mater 2015; 11:014107. [DOI: 10.1088/1748-6041/11/1/014107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
125
|
Chen C, Kong X, Lee IS. Modification of surface/neuron interfaces for neural cell-type specific responses: a review. ACTA ACUST UNITED AC 2015; 11:014108. [PMID: 26694886 DOI: 10.1088/1748-6041/11/1/014108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface/neuron interfaces have played an important role in neural repair including neural prostheses and tissue engineered scaffolds. This comprehensive literature review covers recent studies on the modification of surface/neuron interfaces. These interfaces are identified in cases both where the surfaces of substrates or scaffolds were in direct contact with cells and where the surfaces were modified to facilitate cell adhesion and controlling cell-type specific responses. Different sources of cells for neural repair are described, such as pheochromocytoma neuronal-like cell, neural stem cell (NSC), embryonic stem cell (ESC), mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPS). Commonly modified methods are discussed including patterned surfaces at micro- or nano-scale, surface modification with conducting coatings, and functionalized surfaces with immobilized bioactive molecules. These approaches to control cell-type specific responses have enormous potential implications in neural repair.
Collapse
Affiliation(s)
- Cen Chen
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | |
Collapse
|
126
|
Ranjbar-Mohammadi M, Prabhakaran MP, Bahrami SH, Ramakrishna S. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Carbohydr Polym 2015; 140:104-12. [PMID: 26876833 DOI: 10.1016/j.carbpol.2015.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023]
Abstract
Nanofibrous nerve guides have gained huge interest in supporting the peripheral nerve regeneration due to their abilities to simulate the topography, mechanical, biological and extracellular matrix morphology of native tissue. Gum tragacanth (GT) is a biocompatible mixture of polysaccharides that has been used in biomedical applications. During this study, we fabricated aligned and random nanofibers from poly(l-lactic acid) and gum tragacanth (PLLA/GT) in various ratios (100:0, 75:25, and 50:50) by electrospinning. Scanning electron microscope demonstrated smooth and uniform nanofibers with diameters in the range of 733±65nm and 226±73nm for align PLLA and random PLLA/GT 50:50 nanofibers, respectively. FTIR analysis, contact angle, in vitro biodegradation and tensile measurements were carried out to evaluate the chemical and mechanical properties of the different scaffolds. PLLA/GT 75:25 exhibited the most balanced properties compared to other scaffolds and was used for in vitro culture of nerve cells (PC12) to assess the potential of using these scaffolds as a substrate for nerve regeneration. The cells were found to attach and proliferate on aligned PLLA/GT 75:25 scaffolds, expressing bi-polar neurite extensions and the orientation of nerve cells was along the direction of the fiber alignment. Results of 8 days of in vitro culture of PC12 cells on aligned PLLA/GT 75:25 nanofibers, showed 20% increase in cell proliferation compared to PLLA/GT 75:25 random nanofibers. PLLA/GT 75:25 aligned nanofibers acted as a favorable cue to support neurite outgrowth and nerve cell elongation compared with PLLA nanofibers. Our results showed that aligned PLLA/GT 75:25 nanofibers are promising substrates for application as bioengineered grafts for nerve tissue regeneration.
Collapse
Affiliation(s)
| | - Molamma P Prabhakaran
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore
| |
Collapse
|
127
|
Sciancalepore AG, Moffa M, Carluccio S, Romano L, Netti GS, Prattichizzo C, Pisignano D. Bioactive Nanofiber Matrices Functionalized with Fibronectin-Mimetic Peptides Driving the Alignment and Tubular Commitment of Adult Renal Stem Cells. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anna G. Sciancalepore
- Istituto Nanoscienze-CNR; Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT); Via Arnesano I-73100 Lecce Italy
| | - Maria Moffa
- Istituto Nanoscienze-CNR; Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT); Via Arnesano I-73100 Lecce Italy
| | - Simonetta Carluccio
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali; Università del Salento; Via provinciale per Monteroni I-73100 Lecce Italy
| | - Luigi Romano
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salentoand Istituto Nanoscienze-CNR; Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT); Via Arnesano I-73100 Lecce Italy
| | - Giuseppe S. Netti
- Clinical Pathology Unit; Department of Medical and Surgical Sciences; University of Foggia; Hospital University “Ospedali Riuniti”; viale Luigi Pinto I-71122 Foggia Italy
| | - Clelia Prattichizzo
- Clinical Pathology Unit; Department of Medical and Surgical Sciences; University of Foggia; Hospital University “Ospedali Riuniti”; viale Luigi Pinto I-71122 Foggia Italy
| | - Dario Pisignano
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salentoand Istituto Nanoscienze-CNR; Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT); Via Arnesano I-73100 Lecce Italy
| |
Collapse
|
128
|
Kumar D, Dale TP, Yang Y, Forsyth NR. Self-renewal of human embryonic stem cells on defined synthetic electrospun nanofibers. Biomed Mater 2015; 10:065017. [DOI: 10.1088/1748-6041/10/6/065017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
129
|
Bae WG, Kim J, Choung YH, Chung Y, Suh KY, Pang C, Chung JH, Jeong HE. Bio-inspired configurable multiscale extracellular matrix-like structures for functional alignment and guided orientation of cells. Biomaterials 2015; 69:158-64. [DOI: 10.1016/j.biomaterials.2015.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 11/26/2022]
|
130
|
Peláez RJ, González-Mayorga A, Gutiérrez MC, García-Rama C, Afonso CN, Serrano MC. Tailored Fringed Platforms Produced by Laser Interference for Aligned Neural Cell Growth. Macromol Biosci 2015; 16:255-65. [DOI: 10.1002/mabi.201500253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/06/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Ramón J. Peláez
- Laser Processing Group, Instituto de Óptica, Consejo Superior de Investigaciones Científicas (CSIC); Calle Serrano 121; 28006-Madrid Spain
| | - Ankor González-Mayorga
- Laboratory of Neural Repair and Biomaterials, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha; Finca La Peraleda s/n; 45071-Toledo Spain
| | - María C. Gutiérrez
- Group of Bioinspired Materials, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas; Calle Sor Juana Inés de la Cruz 3; 28049-Madrid Spain
| | - Concepción García-Rama
- Laboratory of Neural Repair and Biomaterials, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha; Finca La Peraleda s/n; 45071-Toledo Spain
| | - Carmen N. Afonso
- Laser Processing Group, Instituto de Óptica, Consejo Superior de Investigaciones Científicas (CSIC); Calle Serrano 121; 28006-Madrid Spain
| | - María C. Serrano
- Laboratory of Neural Repair and Biomaterials, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha; Finca La Peraleda s/n; 45071-Toledo Spain
| |
Collapse
|
131
|
Zhang Y, Gordon A, Qian W, Chen W. Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface. Adv Healthc Mater 2015. [PMID: 26222885 DOI: 10.1002/adhm.201500351] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Andrew Gordon
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| |
Collapse
|
132
|
Cellular Response of Stem Cells on Nanofibrous Scaffold for Ocular Surface Bioengineering. ASAIO J 2015; 61:605-12. [DOI: 10.1097/mat.0000000000000242] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
133
|
Pires LR, Pêgo AP. Bridging the lesion-engineering a permissive substrate for nerve regeneration. Regen Biomater 2015; 2:203-14. [PMID: 26816642 PMCID: PMC4669012 DOI: 10.1093/rb/rbv012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/21/2015] [Accepted: 06/30/2015] [Indexed: 01/30/2023] Open
Abstract
Biomaterial-based strategies to restore connectivity after lesion at the spinal cord are focused on bridging the lesion and providing an favourable substrate and a path for axonal re-growth. Following spinal cord injury (SCI) a hostile environment for neuronal cell growth is established by the activation of multiple inhibitory mechanisms that hamper regeneration to occur. Implantable scaffolds can provide mechanical support and physical guidance for axon re-growth and, at the same time, contribute to alleviate the hostile environment by the in situ delivery of therapeutic molecules and/or relevant cells. Basic research on SCI has been contributing with the description of inhibitory mechanisms for regeneration as well as identifying drugs/molecules that can target inhibition. This knowledge is the background for the development of combined strategies with biomaterials. Additionally, scaffold design is significantly evolving. From the early simple hollow conduits, scaffolds with complex architectures that can modulate cell fate are currently being tested. A number of promising pre-clinical studies combining scaffolds, cells, drugs and/or nucleic acids are reported in the open literature. Overall, it is considered that to address the multi-factorial inhibitory environment of a SCI, a multifaceted therapeutic approach is imperative. The progress in the identification of molecules that target inhibition after SCI and its combination with scaffolds and/or cells are described and discussed in this review.
Collapse
Affiliation(s)
- Liliana R. Pires
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Engenharia—Universidade do Porto (FEUP), Porto, Portugal and
| | - Ana P. Pêgo
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Engenharia—Universidade do Porto (FEUP), Porto, Portugal and
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
134
|
Jiang J, Chen G, Shuler FD, Wang CH, Xie J. Local Sustained Delivery of 25-Hydroxyvitamin D3 for Production of Antimicrobial Peptides. Pharm Res 2015; 32:2851-62. [PMID: 25773720 PMCID: PMC4529368 DOI: 10.1007/s11095-015-1667-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
Abstract
PURPOSE This study seeks to develop fiber membranes for local sustained delivery of 25-hydroxyvitamin D3 to induce the expression and secretion of LL-37 at or near the surgical site, which provides a novel therapeutic approach to minimize the risk of infections. METHODS 25-hydroxyvitamin D3 loaded poly(L-lactide) (PLA) and poly(ε-caprolactone) (PCL) fibers were produced by electrospinning. The morphology of obtained fibers was characterized using atomic force microscope (AFM) and scanning electron microscope (SEM). 25-hydroxyvitamin D3 releasing kinetics were quantified by enzyme-linked immunosorbent assay (ELISA) kit. The expression of cathelicidin (hCAP 18) and LL-37 was analyzed by immunofluorescence staining and ELISA kit. The antibacterial activity test was conducted by incubating pseudomonas aeruginosa in a monocytes' lysis solution. RESULTS AFM images suggest that the surface of PCL fibers is smooth, however, the surface of PLA fibers is relatively rough, in particular, after encapsulation of 25-hydroxyvitamin D3. The duration of 25-hydroxyvitamin D3 release can last more than 4 weeks for all the tested samples. Plasma treatment can promote the release rate of 25-hydroxyvitamin D3. Human keratinocytes and monocytes express significantly higher levels of hCAP18/LL-37 after incubation with plasma treated and 25-hydroxyvitamin D3 loaded PCL fibers than the cells incubated with around ten times amount of free drug. After incubation with this fiber formulation for 5 days LL-37 in the lysis solutions of U937 cells can effectively kill the bacteria. CONCLUSIONS Plasma treated and 25-hydroxyvitamin D3 loaded PCL fibers induce significantly higher levels of antimicrobial peptide production in human keratinocytes and monocytes without producing cytotoxicity.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Surgery and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Guojun Chen
- Bruker Nano Surface Division, Santa Barbara, CA 93117, United States
| | - Franklin D. Shuler
- Department of Orthopaedic Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 United States
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Jingwei Xie
- Department of Surgery and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States,
| |
Collapse
|
135
|
Jiang J, Carlson MA, Teusink MJ, Wang H, MacEwan MR, Xie J. Expanding Two-Dimensional Electrospun Nanofiber Membranes in the Third Dimension By a Modified Gas-Foaming Technique. ACS Biomater Sci Eng 2015; 1:991-1001. [DOI: 10.1021/acsbiomaterials.5b00238] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | | | | | | | - Matthew R. MacEwan
- Department
of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | | |
Collapse
|
136
|
Pires LR, Rocha DN, Ambrosio L, Pêgo AP. The role of the surface on microglia function: implications for central nervous system tissue engineering. J R Soc Interface 2015; 12:rsif.2014.1224. [PMID: 25540243 DOI: 10.1098/rsif.2014.1224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In tissue engineering, it is well accepted that a scaffold surface has a decisive impact on cell behaviour. Here we focused on microglia-the resident immune cells of the central nervous system (CNS)-and on their response to poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) fibrous and flat surfaces obtained by electrospinning and solvent cast, respectively. This study aims to provide cues for the design of instructive surfaces that can contribute to the challenging process of CNS regeneration. Cell morphology was evidently affected by the substrate, mirroring the surface main features. Cells cultured on flat substrates presented a round shape, while cells with elongated processes were observed on the electrospun fibres. A higher concentration of the pro-inflammatory cytokine tumour necrosis factor-α was detected in culture media from microglia on fibres. Still, astrogliosis is not exacerbated when astrocytes are cultured in the presence of microglia-conditioned media obtained from cultures in contact with either substrate. Furthermore, a significant percentage of microglia was found to participate in the process of myelin phagocytosis, with the formation of multinucleated giant cells being observed only on films. Altogether, the results presented suggest that microglia in contact with the tested substrates may contribute to the regeneration process, putting forward P(TMC-CL) substrates as supporting matrices for nerve regeneration.
Collapse
Affiliation(s)
- Liliana R Pires
- INEB-Instituto de Engenharia Biomédica, Porto, Portugal Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Daniela N Rocha
- INEB-Instituto de Engenharia Biomédica, Porto, Portugal Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Luigi Ambrosio
- Department of Chemical Sciences and Materials Technology, National Research Council of Italy, Rome, Italy
| | - Ana Paula Pêgo
- INEB-Instituto de Engenharia Biomédica, Porto, Portugal Faculdade de Engenharia, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
137
|
Kerativitayanan P, Carrow JK, Gaharwar AK. Nanomaterials for Engineering Stem Cell Responses. Adv Healthc Mater 2015; 4:1600-27. [PMID: 26010739 DOI: 10.1002/adhm.201500272] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 12/18/2022]
Abstract
Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications.
Collapse
Affiliation(s)
| | - James K. Carrow
- Department of Biomedical Engineering; Texas A&M University; College Station TX 77843 USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering; Texas A&M University; College Station TX 77843 USA
- Department of Materials Science and Engineering; Texas A&M University; College Station TX 77843 USA
| |
Collapse
|
138
|
Ryan CNM, Fuller KP, Larrañaga A, Biggs M, Bayon Y, Sarasua JR, Pandit A, Zeugolis DI. An academic, clinical and industrial update on electrospun, additive manufactured and imprinted medical devices. Expert Rev Med Devices 2015; 12:601-12. [DOI: 10.1586/17434440.2015.1062364] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
139
|
Baradaran-Rafii A, Biazar E, Heidari-Keshel S. Cellular Response of Limbal Stem Cells on PHBV/Gelatin Nanofibrous Scaffold for Ocular Epithelial Regeneration. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1030658] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
140
|
Mu Y, Wu F, Lu Y, Wei L, Yuan W. Progress of electrospun fibers as nerve conduits for neural tissue repair. Nanomedicine (Lond) 2015; 9:1869-83. [PMID: 25325242 DOI: 10.2217/nnm.14.70] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nerve tissue regeneration approaches have gained much attention in recent years, and nerve conduits (NCs), which facilitate nerve tissue regeneration, have become an attractive alternative to nerve autologous graft. Several methods are proposed to fabricate NCs, including electrospinning, which is a widely used approach for NCs and other tissue scaffolds, and has advantages such as the ability to control the thickness, diameter and porosity of fibers, as well as its simple experimental set up. This article gives an overview of electrospun fibers for nerve conduits utilized in peripheral and central nerve regeneration. Natural and synthetic materials with different mechanical strength, degradation rates and biocompatibility are proposed. Several bioactive proteins that can help the process of nerve regeneration are introduced. Finally, some approaches to control the morphology of electrospun fibers and to deliver bioactive proteins are discussed in detail.
Collapse
Affiliation(s)
- Ying Mu
- School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, PR China
| | | | | | | | | |
Collapse
|
141
|
Low WC, Rujitanaroj PO, Lee DK, Kuang J, Messersmith PB, Chan JKY, Chew SY. Mussel-Inspired Modification of Nanofibers for REST siRNA Delivery: Understanding the Effects of Gene-Silencing and Substrate Topography on Human Mesenchymal Stem Cell Neuronal Commitment. Macromol Biosci 2015; 15:1457-68. [DOI: 10.1002/mabi.201500101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Ching Low
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
| | - Pim-On Rujitanaroj
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
| | - Dong-Keun Lee
- Department of Biomedical Engineering; Northwestern University, Evanston; Illinois 60208, USA
| | - Jinghao Kuang
- Department of Biomedical Engineering; Northwestern University, Evanston; Illinois 60208, USA
| | - Phillip B. Messersmith
- Department of Biomedical Engineering; Northwestern University, Evanston; Illinois 60208, USA
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine; KK Women's and Children's Hospital; 100 Bukit Timah Road Singapore 229899
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
- Lee Kong Chian School of Medicine; Nanyang Technological University; Singapore 308232
| |
Collapse
|
142
|
Gomez JC, Edgar JM, Agbay AM, Bibault E, Montgomery A, Mohtaram NK, Willerth SM. Incorporation of Retinoic Acid Releasing Microspheres into Pluripotent Stem Cell Aggregates for Inducing Neuronal Differentiation. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0401-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
143
|
Sabbatier G, Larrañaga A, Guay-Bégin AA, Fernandez J, Diéval F, Durand B, Sarasua JR, Laroche G. Design, Degradation Mechanism and Long-Term Cytotoxicity of Poly(l-lactide) and Poly(Lactide-co-ϵ-Caprolactone) Terpolymer Film and Air-Spun Nanofiber Scaffold. Macromol Biosci 2015; 15:1392-410. [DOI: 10.1002/mabi.201500130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/14/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Gad Sabbatier
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux; Université Laval; 1065, avenue de la Médecine Québec City Canada G1V 0A6
- Axe Médecine Régénératrice, Centre de recherche du CHU de Québec; Hôpital St François d'Assise; 10, rue de l'Espinay Québec City Canada G1L 3L5
- Laboratoire de Physique et Mécanique Textile, Université de Haute Alsace; École Nationale Supérieure d'Ingénieurs du Sud Alsace; 11 rue Alfred Werner 68093 Mulhouse Cedex France
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, School of Engineering; University of the Basque Country (UPV/EHU); Alameda de Urquijo s/n 48013 Bilbao Spain
| | - Andrée-Anne Guay-Bégin
- Axe Médecine Régénératrice, Centre de recherche du CHU de Québec; Hôpital St François d'Assise; 10, rue de l'Espinay Québec City Canada G1L 3L5
| | - Jorge Fernandez
- Department of Mining-Metallurgy Engineering and Materials Science, School of Engineering; University of the Basque Country (UPV/EHU); Alameda de Urquijo s/n 48013 Bilbao Spain
| | - Florence Diéval
- Laboratoire de Physique et Mécanique Textile, Université de Haute Alsace; École Nationale Supérieure d'Ingénieurs du Sud Alsace; 11 rue Alfred Werner 68093 Mulhouse Cedex France
| | - Bernard Durand
- Laboratoire de Physique et Mécanique Textile, Université de Haute Alsace; École Nationale Supérieure d'Ingénieurs du Sud Alsace; 11 rue Alfred Werner 68093 Mulhouse Cedex France
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, School of Engineering; University of the Basque Country (UPV/EHU); Alameda de Urquijo s/n 48013 Bilbao Spain
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux; Université Laval; 1065, avenue de la Médecine Québec City Canada G1V 0A6
- Axe Médecine Régénératrice, Centre de recherche du CHU de Québec; Hôpital St François d'Assise; 10, rue de l'Espinay Québec City Canada G1L 3L5
| |
Collapse
|
144
|
Bagher Z, Azami M, Ebrahimi-Barough S, Mirzadeh H, Solouk A, Soleimani M, Ai J, Nourani MR, Joghataei MT. Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers. Mol Neurobiol 2015; 53:2397-408. [PMID: 26001761 DOI: 10.1007/s12035-015-9199-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/27/2015] [Indexed: 12/15/2022]
Abstract
Cell transplantation strategies have provided potential therapeutic approaches for treatment of neurodegenerative diseases. Mesenchymal stem cells from Wharton's jelly (WJMSCs) are abundant and available adult stem cells with low immunological incompatibility, which could be considered for cell replacement therapy in the future. However, MSC transplantation without any induction or support material causes poor control of cell viability and differentiation. In this study, we investigated the effect of the nanoscaffolds on WJMSCs differentiation into motor neuronal lineages in the presence of retinoic acid (RA) and sonic hedgehog (Shh). Surface properties of scaffolds have been shown to significantly influence cell behaviors such as adhesion, proliferation, and differentiation. Therefore, polycaprolactone (PCL) nanofibers were constructed via electrospinning, surface modified by plasma treatment, and grafted by collagen. Characterization of the scaffolds by means of ATR-FTIR, contact angel, and Bradford proved grafting of the collagen on the surface of the scaffolds. WJMSCs were seeded on nanofibrous and tissue culture plate (TCP) and viability of WJMSCs were measured by MTT assay and then induced to differentiate into motor neuron-like cells for 15 days. Differentiated cells were evaluated morphologically, and real-time PCR and immunocytochemistry methods were done to evaluate expression of motor neuron-like cell markers in mRNA and protein levels. Our results showed that obtained cells could express motor neuron biomarkers at both RNA and protein levels, but the survival and differentiation of WJMSCs into motor neuron-like cells on the PCL/collagen scaffold were higher than cultured cells in the TCP and PCL groups. Taken together, WJMSCs are an attractive stem cell source for inducing into motor neurons in vitro especially when grown on nanostructural scaffolds and PCL/collagen scaffolds can provide a suitable, three-dimensional situation for neuronal survival and differentiation that suggest their potential application towards nerve regeneration.
Collapse
Affiliation(s)
- Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Injury Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mirzadeh
- Polymer Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Solouk
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mansooreh Soleimani
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Injury Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Nourani
- Tissue Engineering Division, Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
145
|
Tsintou M, Dalamagkas K, Seifalian AM. Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res 2015; 10:726-42. [PMID: 26109946 PMCID: PMC4468763 DOI: 10.4103/1673-5374.156966] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury results in the permanent loss of function, causing enormous personal, social and economic problems. Even though neural regeneration has been proven to be a natural mechanism, central nervous system repair mechanisms are ineffective due to the imbalance of the inhibitory and excitatory factors implicated in neuroregeneration. Therefore, there is growing research interest on discovering a novel therapeutic strategy for effective spinal cord injury repair. To this direction, cell-based delivery strategies, biomolecule delivery strategies as well as scaffold-based therapeutic strategies have been developed with a tendency to seek for the answer to a combinatorial approach of all the above. Here we review the recent advances on regenerative/neural engineering therapies for spinal cord injury, aiming at providing an insight to the most promising repair strategies, in order to facilitate future research conduction.
Collapse
Affiliation(s)
- Magdalini Tsintou
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London, London, UK
| | - Kyriakos Dalamagkas
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London, London, UK
| | - Alexander Marcus Seifalian
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London, London, UK
- Royal Free London NHS Foundation Trust Hospital, London, UK
| |
Collapse
|
146
|
Perikamana SKM, Lee J, Ahmad T, Jeong Y, Kim DG, Kim K, Shin H. Effects of Immobilized BMP-2 and Nanofiber Morphology on In Vitro Osteogenic Differentiation of hMSCs and In Vivo Collagen Assembly of Regenerated Bone. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8798-808. [PMID: 25823598 DOI: 10.1021/acsami.5b01340] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Engineering bone tissue is particularly challenging because of the distinctive structural features of bone within a complex biochemical environment. In the present study, we fabricated poly(L-lactic acid) (PLLA) electrospun nanofibers with random and aligned morphology immobilized with bone morphogenic protein-2 (BMP-2) and investigated how these signals modulate (1) in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs) and (2) in vivo bone growth rate, mechanical properties, and collagen assembly of newly formed bone. The orientation of adherent cells followed the underlying nanofiber morphology; however, nanofiber alignment did not show any difference in alkaline phosphate activity or in calcium mineralization of hMSCs after 14 days of in vitro culture in osteogenic differentiation media. In vivo bone regeneration was significantly higher in the nanofiber implanted groups (approximately 65-79%) as compared to the defect-only group (11.8 ± 0.2%), while no significant difference in bone regeneration was observed between random and aligned groups. However, nanoindentation studies of regenerated bone revealed Young's modulus and contact hardness with anisotropic feature for aligned group as compared to random group. More importantly, structural analysis of collagen at de novo bone showed the ability of nanofiber morphology to guide collagen deposition. SEM and TEM images revealed regular, highly ordered collagen assemblies on aligned nanofibers as compared to random fibers, which showed irregular, randomly organized collagen deposition. Taken together, we conclude that nanofibers in the presence of osteoinductive signals are a potent tool for bone regeneration, and nanofiber alignment can be used for engineering bone tissues with structurally assembled collagen fibers with defined direction.
Collapse
Affiliation(s)
| | | | | | - Yonghoon Jeong
- §Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Do-Gyoon Kim
- §Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kyobum Kim
- ∥Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | | |
Collapse
|
147
|
Baradaran-Rafii A, Biazar E, Heidari-keshel S. Cellular Response of Limbal Stem Cells on Polycaprolactone Nanofibrous Scaffolds for Ocular Epithelial Regeneration. Curr Eye Res 2015; 41:326-33. [DOI: 10.3109/02713683.2015.1019004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
148
|
Khandalavala K, Jiang J, Shuler FD, Xie J. Electrospun nanofiber scaffolds with gradations in fiber organization. J Vis Exp 2015:52626. [PMID: 25938562 PMCID: PMC4541585 DOI: 10.3791/52626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion.
Collapse
Affiliation(s)
- Karl Khandalavala
- Department of Pharmaceutical Sciences, Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center
| | - Jiang Jiang
- Department of Pharmaceutical Sciences, Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center
| | - Franklin D Shuler
- Department of Orthopedic Surgery, Joan C. Edwards School of Medicine, Marshall University
| | - Jingwei Xie
- Department of Pharmaceutical Sciences, Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center;
| |
Collapse
|
149
|
Mashinchian O, Turner LA, Dalby MJ, Laurent S, Shokrgozar MA, Bonakdar S, Imani M, Mahmoudi M. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (Lond) 2015; 10:829-47. [DOI: 10.2217/nnm.14.225] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells are increasingly studied because of their potential to underpin a range of novel therapies, including regenerative strategies, cell type-specific therapy and tissue repair, among others. Bionanomaterials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. New advances in these fields are presented in this review. This work highlights the importance of topography and elasticity of the nano-/micro-environment, or niche, for the initiation and induction of stem cell differentiation and proliferation.
Collapse
Affiliation(s)
- Omid Mashinchian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, PO Box 14177–55469, Tehran, Iran
| | - Lesley-Anne Turner
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Sophie Laurent
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000 Mons, Belgium
- CMMI – Center for Microscopy & Molecular Imaging, Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | | | - Shahin Bonakdar
- National Cell Bank, Pasteur Institute of Iran, PO Box 13169–43551, Tehran, Iran
| | - Mohammad Imani
- Novel Drug Delivery Systems Department, Iran Polymer & Petrochemical Institute (IPPI), PO Box 14965/115, Tehran, Iran
| | - Morteza Mahmoudi
- Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, PO Box 14155–6451, Tehran, Iran
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
| |
Collapse
|
150
|
Xiang L, Chen Y. Stem cell transplantation for treating spinal cord injury: A literature comparison between studies of stem cells obtained from various sources. Neural Regen Res 2015; 7:1256-63. [PMID: 25709624 PMCID: PMC4336961 DOI: 10.3969/j.issn.1673-5374.2012.16.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 04/23/2012] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE: To identify global research trends of stem cell transplantation for treating spinal cord injury using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for stem cell transplantation for treating spinal cord injury from 2002 to 2011 using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on stem cell transplantation for treating spinal cord injury that were published and indexed in the Web of Science; (b) type of articles: original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) year of publication: 2002–2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) a number of corrected papers from the total number of articles. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to country; (3) distribution according to institution; (4) distribution according to journals; (5) distribution according to funding agencies; and (6) top cited articles over the last 10 years. RESULTS: Bone marrow mesenchymal stem cells and embryonic stem cells have been widely used for treating spinal cord injury. In total, 191 studies of bone marrow mesenchymal stem cell transplantation and 236 studies of embryonic stem cell transplantation for treating spinal cord injury appeared in the Web of Science from 2002 to 2011, and almost half of which were derived from American or Japanese authors and institutes. The number of studies of stem cell transplantation for treating spinal cord injury has gradually increased over the past 10 years. Most papers on stem cell transplantation for treating spinal cord injury appeared in journals with a particular focus on stem cell research, such as Stem Cells and Cell Transplantation. Although umbilical cord blood stem cells and adipose-derived stem cells have been studied for treating spinal cord injury, the number of published papers was much smaller, with only 21 and 17 records, respectively, in the Web of Science. CONCLUSION: Based on our analysis of the literature and research trends, we found that stem cells transplantation obtained from various sources have been studied for treating spinal cord injury; however, it is difficult for researchers to reach a consensus on this theme.
Collapse
Affiliation(s)
- Liangbi Xiang
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang 110016, Liaoning Province, China
| | - Yu Chen
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang 110016, Liaoning Province, China
| |
Collapse
|