101
|
Wu T, Yan D, Hou W, Jiang H, Wu M, Wang Y, Chen G, Tang C, Wang Y, Xu H. Biomimetic Red Blood Cell Membrane-Mediated Nanodrugs Loading Ursolic Acid for Targeting NSCLC Therapy. Cancers (Basel) 2022; 14:cancers14184520. [PMID: 36139680 PMCID: PMC9496832 DOI: 10.3390/cancers14184520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Lung cancer is the second most common cancer after breast cancer. Non-small-cell lung cancer, which represents more than 85% of all lung cancer subtypes, is known for its tumor progression and metastasis, resulting in poor clinical outcomes. Conventional therapies for NSCLC, such as surgery, chemotherapy, and radiotherapy, always fail due to therapeutic resistance. In recent years, ursolic acid (UA), a natural pentacyclic triterpenoid compound, has been shown to be a promising antitumor drug by regulating multiple signaling pathways in cancers. Unfortunately, the poor water solubility, low bioavailability, and systemic toxicity of UA limit its clinical application. In this study, a biomimetic red blood cell membrane nanocarrier was developed to deliver UA to targeted tumor sites efficiently, and it inhibited tumor growth by inducing the apoptosis and autophagy of cancer cells both in vitro and in vivo. Abstract As one of the most common cancers worldwide, non-small-cell lung cancer (NSCLC) treatment always fails owing to the tumor microenvironment and resistance. UA, a traditional Chinese medicine, was reported to have antitumor potential in tumor models in vitro and in vivo, but showed impressive results in its potential application for poor water solubility. In this study, a novel biomimetic drug-delivery system based on UA-loaded nanoparticles (UaNPs) with a red blood cell membrane (RBCM) coating was developed. The RBCM-coated UANPs (UMNPs) exhibited improved water solubility, high stability, good biosafety, and efficient tumor accumulation. Importantly, the excellent antitumor efficiency of the UMNPs was confirmed both in vitro and in vivo in cancer models. In addition, we further investigated the antitumor mechanism of UMNPs. The results of Western blotting showed that UMNPs exerted an anticancer effect by inducing the apoptosis and autophagy of NSCLC cells, which makes it superior to free UA. In addition, body weight monitoring, hematoxylin and eosin (HE) analysis, and immunohistochemical (IHC) analysis showed no significant difference between UMNPs and the control group, indicating the safety of UMNPs. Altogether, the preparation of biomimetic UMNPs provides a promising strategy to improve outcomes in NSCLC.
Collapse
Affiliation(s)
- Ting Wu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Nanjing 210009, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Dan Yan
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Wenjun Hou
- Department of Dermatology, Drum Tower Hospital of Medical School, Nanjing University, Nanjing 211116, China
| | - Hui Jiang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Min Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Yanling Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Gang Chen
- Department of Gastrointestinal Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China
| | - Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Yijun Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211116, China
- Correspondence: (Y.W.); (H.X.)
| | - Huae Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Nanjing 210009, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
- Correspondence: (Y.W.); (H.X.)
| |
Collapse
|
102
|
Chen J, Hu N, Mao Y, Hu A, Jiang W, Huang A, Wang Y, Meng P, Hu M, Yang X, Cao Y, Yang F, Cao H. Traditional Chinese medicine prescriptions (XJZ, JSS) ameliorate spleen inflammatory response and antioxidant capacity by synergistically regulating NF-κB and Nrf2 signaling pathways in piglets. Front Vet Sci 2022; 9:993018. [PMID: 36187836 PMCID: PMC9525143 DOI: 10.3389/fvets.2022.993018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Weaning transition generally impairs the immune system, inducing immune disturbance, which may be associated with post-weaning diarrhea and high mortality in piglets. The spleen is a pivotal lymphatic organ that plays a key role in the establishment of the immune system. Traditional Chinese medicine (TCM) prescriptions, XiaoJianZhong (XJZ) and Jiansananli-sepsis (JSS), are widely used prescriptions for treating spleen damage and diarrhea. Here, we hypothesized that XJZ and JSS maintain the spleen physiological function by ameliorating antioxidant capacity and inflammatory response in weaned piglets. In this study, 18 weaned piglets were assigned to the Control, XJZ and JSS groups. By hematoxylin and eosin staining, hematological analysis, flow cytometric analysis, qRT-PCR and western blot, the effects of both TCM prescriptions on the spleen antioxidant defense system and inflammatory pathway were explored. Results showed that both TCM treatment significantly ameliorated the weaning-induced morphological damage in piglets, as evidenced by clearer and more perfect spleen histology, as well as higher relative area of white pulp. Meanwhile, both XJZ and JSS exerted better blood parameters, as supported by the changes of monocyte level and lymphocyte subpopulations CD4+/CD8+ ratio. Furthermore, the levels of inflammatory markers, IL1β, IL6, IL8, and TNF-α in the spleen were markedly decreased after supplemented with both TCM prescriptions. Importantly, the inhibition of nuclear factor-kappaB (NF-κB) and its downstream effector genes (IL6, IL8, and TNF-α) in both XJZ and JSS treatment groups further confirmed alleviation of inflammatory responses in the spleen. In addition, both XJZ and JSS enhanced the antioxidant capacity of the spleen by activating the nuclear factor erythroid 2-related factor 2 (Nrf2)-activated antioxidant defense system. Notably, the results of PCA and network correlation analysis indicated that XJZ and JSS treatment altered the expression profiles of inflammatory and antioxidant-related factors in the spleen of weaned-piglets, which may involve the synergy of NF-κB and Nrf2 signaling pathways. In summary, our study showed that TCM prescriptions, XJZ and JSS could ameliorate inflammatory response and antioxidant capacity in the spleen by synergistically regulating NF-κB and Nrf2 signaling pathways in piglets.
Collapse
Affiliation(s)
- Jian Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Nianqing Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yaqing Mao
- MOA Center for Veterinary Drug Evaluation, China Institute of Veterinary Drug Control, Beijing, China
| | - Aiming Hu
- Jian Animal Husbandry and Veterinary Bureau, Jian, China
| | - Wenjuan Jiang
- Animal Husbandry and Aquatic Products Technology Application Extension Office, Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Aimin Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yun Wang
- Jiangxi Vocational College of Technology, Nanchang, China
| | - Puyan Meng
- Jiangxi Academy of Forestry, Nanchang, China
| | - Mingwen Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaobin Yang
- Jiangxi Zhongchengren Pharmaceutical Co., Ltd., Nanchang, China
| | - Yuandong Cao
- Jiangxi Jiabo Biological Engineering Co., Ltd., Jiujiang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Huabin Cao
| |
Collapse
|
103
|
Huo JL, Fu WJ, Liu ZH, Lu N, Jia XQ, Liu ZS. Research advance of natural products in tumor immunotherapy. Front Immunol 2022; 13:972345. [PMID: 36159787 PMCID: PMC9494295 DOI: 10.3389/fimmu.2022.972345] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer immunotherapy has emerged as a novel anti-tumor treatment. Despite significant breakthroughs, cancer immunotherapy remains focused on several types of tumors that are sensitive to the immune system. Therefore, effective strategies to expand its indications and improve its efficacy become key factors for the further development of cancer immunotherapy. In recent decades, the anticancer activities of natural products are reported to have this effect on cancer immunotherapy. And the mechanism is largely attributed to the remodeling of the tumor immunosuppressive microenvironment. The compelling data highlight that natural products offer an alternative method option to improve immune function in the tumor microenvironment (TME). Currently, more attention is being paid to the discovery of new potential modulators of tumor immunotherapy from natural products. In this review, we describe current advances in employing natural products and natural small-molecule drugs targeting immune cells to avoid tumor immune escape, which may bring some insight for guiding tumor treatment.
Collapse
Affiliation(s)
- Jin-Ling Huo
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Wen-Jia Fu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zheng-Han Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Nan Lu, ; Xiang-Qian Jia, ; Zhang-Suo Liu,
| | - Xiang-Qian Jia
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
- *Correspondence: Nan Lu, ; Xiang-Qian Jia, ; Zhang-Suo Liu,
| | - Zhang-Suo Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Nan Lu, ; Xiang-Qian Jia, ; Zhang-Suo Liu,
| |
Collapse
|
104
|
Zeng Y, Peng X, Wang Y, Hou L, Ma W, Yang P. Therapeutic effect of modified zengye decoction on primary Sjogren’s syndrome and its effect on plasma exosomal proteins. Front Pharmacol 2022; 13:930638. [PMID: 36091838 PMCID: PMC9462528 DOI: 10.3389/fphar.2022.930638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Modified Zengye Decoction (MZD), a traditional Chinese medicine, is an effective treatment for patients with primary Sjögren’s syndrome (pSS). Purpose: To evaluate the efficacy of MZD and investigate its effect on plasma exosomal proteins. Methods: Eighteen pSS patients were treated with MZD for 2 weeks. The therapeutic effect was evaluated by observing the changes in clinical symptoms, laboratory parameters, and plasma cytokines before and after treatment. Then, the differentially expressed proteins (DEPs) in the plasma exosomes before and after treatment were identified via label-free proteomics, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were used to analyze the possible biological functions and signaling pathways involved in the exosomal DEPs. Results: MZD can effectively relieve the clinical symptoms of pSS patients, downregulate the plasma IgG and IgM levels, and inhibit plasma cytokine production. Thirteen DEPs were identified via label-free proteomics in the plasma exosomes before and after MZD treatment, of which 12 were downregulated proteins. GO analysis showed that these downregulated proteins were mainly related to the insulin response involved in dryness symptoms and the Gram-negative bacterial defense response and proteoglycan binding involved in infection. KEGG enrichment analysis showed that these downregulated proteins were primarily associated with the porphyrin metabolism involved in oteoarthrosis and the NF-κB and TLR4 pathways involved in infection. Conclusion: MZD can effectively alleviate SS symptoms, while its mechanism may be associated with the reduced protein expression in insulin response, porphyrin metabolism, and the TLR4/NF-κB pathway.
Collapse
|
105
|
Xie CF, Feng KL, Wang JN, Luo R, Fang CK, Zhang Y, Shen CP, Zhong C. Jianpi Huayu decoction inhibits the epithelial-mesenchymal transition of hepatocellular carcinoma cells by suppressing exosomal miR-23a-3p/Smad signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115360. [PMID: 35568116 DOI: 10.1016/j.jep.2022.115360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Huayu decoction (JHD) is a traditional Chinese medicinal preparation used to treat a variety of malignant tumors including HCC, although the underlying mechanism remains unknown. Exosomes in the tumor microenvironment mediate intercellular signaling among cancer cells, but precise contributions to hepatocellular carcinoma (HCC) progression are still elusive. AIM OF THE STUDY In this work, the main objective was to examine the mechanisms underlying anti-tumor effects of JHD and the potential contributions of exosomal signaling. MATERIALS AND METHODS LC-MS/MS was used for quality control of JDH preparation, while nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and western blotting were used for verification of exosomes. In vitro assays included CCK8, wound healing assay, transwell invasion assay, qRT-PCR and western blotting were performed to investigate the effects of JHD on HCC cells and the molecular mechanism. Furthermore, the effects of JHD on subcutaneous tumor model of nude mice were also determined. RESULTS JHD inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cultured HCC cells. Further, exosomes isolated from EMT-induced HCC cells promoted the migration, invasion and EMT of other cultured HCC cells, while exosomes isolated from EMT-induced HCC cells after JHD treatment had little effect. In addition, JHD reduced the expression of exosomal miR-23a-3p in cultured HCC cells. miR-23a-3p was significantly up-regulated in tumor compared with that in adjacent non-cancerous tissues of patients with HCC. HCC patients with high miR-23a-3p expression had poor overall survival after hepatectomy. Meanwhile, miR-23a-3p enhanced HCC cell proliferation, EMT, and expression of Smad signaling proteins. More importantly, overexpression of miR-23a-3p can reverse the inhibition of EMT and Smad signaling pathway caused by JHD treatment. In vivo assays, treatment with JHD also reduced the growth of HCC-derived tumors in nude mice, reduced the expression of miR-23a-3p in serum exosomes and the level of EMT in tumor cells. CONCLUSIONS the antitumor effects of JHD on HCC are mediated at least in part by inhibition of EMT due to downregulation of exosome-mediated intercellular miR-23a-3p transfer and subsequent blockade of Smad signaling. Disrupting this exosomal miR-23a-3p/Smad signaling pathway may be an effective treatment.
Collapse
Affiliation(s)
- Chun-Feng Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of General Surgery, Liuzhou Traditional Chinese Medical Hospital, 545001, Liuzhou, China
| | - Kun-Liang Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ji-Nan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rui Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chong-Kai Fang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuang-Peng Shen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
106
|
Dai G, Wang D, Ma S, Hong S, Ding K, Tan X, Ju W. ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154149. [PMID: 35567995 DOI: 10.1016/j.phymed.2022.154149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is an important death-related disease in the world and new therapeutic strategies are urgently needed to reduce mortality. Several studies have demonstrated that emodin, the main ingredient of Rheum palmatum, fights cancer but its potential anti-tumor effect on CRC is still unknown. PURPOSE The present study is aimed to explore the potential anti-tumor effects of emodin against CRC and the underlying molecular mechanism. METHODS CRC-related datasets were screened according to filter criteria in the GEO database and TCGA database. By using screened differentially expressed genes, GO, KEGG and survival analysis were carried out. The expressions of ACSL4, VEGFR1, and VEGFR2 were examined by immunohistochemistry and western blot. Then, pcDNA-ACSL4, pcDNA-VEGFR1, and pcDNA-VEGFR2 were used to overexpress ACSL4, VEGFR1, and VEGFR2, while ACSL4 siRNA was used to silence ACSL4 expression in HCT116 cells. CCK-8 assay and transwell migration assay were used to detect the cell proliferation and invasion. A docking simulation assay and an MST assay were performed to explore the potential mode of emodin binding to ACSL4. The HCT116 cells and CRC mouse model were established to investigate the effects of emodin on CRC. RESULTS The ACSL4, VEGFR1, and VEGFR2 expression were upregulated in CRC tissues and ACSL4 was associated with a shorter survival time in CRC patients. ACSL4 downregulation reduced cell proliferation and invasion, while ACSL4 exhibited a positive correlation with the levels of VEGFR1, VEGFR2, and VEGF. In HCT116 cells, emodin reduced cell proliferation and invasion by inhibiting ACSL4, VEGFR1, and VEGFR2 expression and VEGF secretion. Docking simulation and MST assay confirmed that emodin can directly bind to ACSL4 target. Moreover, ACSL4 overexpression abolished the inhibitory effect of emodin on VEGF secretion and VEGFR1 and VEGFR2 expression, but VEGFR1 and VEGFR2 overexpression did not affect the inhibitory effect of emodin on ACSL4 expression and VEGF secretion. Furthermore, emodin reduced the mortality and tumorigenesis of CRC mice and reduced ACSL4, VEGFR1, VEGFR2 expression, and VEGF content. CONCLUSION Our findings indicate that emodin inhibits proliferation and invasion of CRC cells and reduces VEGF secretion and VEGFR1 and VEGFR2 expression by inhibiting ACSL4. This emodin-induced pathway offers insights into the molecular mechanism of its antitumor effect and provides a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Dong Wang
- Department of Acupuncture and Rehabilitation, Jiangsu Second Chinese Medicine Hospital, Nanjing 210017, China
| | - Shitang Ma
- Life and Health College, Anhui Science and Technology University, Fengyang 233100, China
| | - Shengwei Hong
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Kang Ding
- National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Xiying Tan
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
107
|
Ren N, Yu L, Qian L, Ye G, Zhu Z, Yu J, Sun L, Zhang L. Exploring the Pharmacological Mechanism of the Effective Chinese Medicines Against Gynecological Cancer Based on Meta-Analysis Combined With Network Pharmacology Analysis. Front Oncol 2022; 12:817772. [PMID: 35875080 PMCID: PMC9298573 DOI: 10.3389/fonc.2022.817772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/01/2022] [Indexed: 12/09/2022] Open
Abstract
This meta-analysis plus network pharmacology aimed to investigate whether traditional Chinese medicine (TCM) combined with chemotherapy is associated with more beneficial efficacy data in the treatment of gynecological cancer (GC). A total of 11 randomized controlled trials (RCTs) consisting of 863 GC patients were included. Results showed a better ORR (RR: 1.42, 95% CI: 1.18–1.71; I2 = 21.4%; p = 0.282), DCR (RR: 1.13, 95% CI: 1.03–1.25; I2 = 0.0%; p = 0.492), PD (RR: 0.27, 95% CI: 0.11–0.65, p = 0.003; I2 = 0.0%, p = 0.930), and QOL (SMD: 0.85, 95% CI: 0.38–1.33, p = 0.005) and higher proportions of CD3+ T (WMD: 5.65, 95% CI: 4.23–7.08, p = 0.000; I2 = 68.3%, p = 0.004), CD4+ T (WMD: 6.97, 95% CI: 5.35–8.59, p = 0.000; I2 = 83.4%, p = 0.000), and the CD4+/CD8+ T ratio (WMD: 0.32, 95% CI: 0.23–0.42, p = 0.000; I2 = 78.0%, p = 0.000). The number of adverse events (AEs) was significantly lower in the TCM + chemotherapy group. The active components and targets of 19 high-frequency Chinese medicines obtained from the meta-analysis were screened and explored in network pharmacology analysis. Also, a regulatory network of active components and targets, a core network and key genes, a diagram of protein interaction, network topology analysis, and gene body GO function and KEGG pathway enrichment analysis were performed. A total of 120 active components were identified. NPM1 and HSPA8 are the most critical target proteins in the core network of protein interaction. HSP90AA1 is the most important target protein in the TCM group. KEGG enrichment analysis showed that it was highly significant in the lipid and atherosclerotic pathways. Therefore, moderate evidence revealed that TCM plus chemotherapy has obvious advantages over chemotherapy alone in terms of tumor responses, QOL, peripheral blood lymphocyte levels, and fewer AEs in the treatment of GC. The potential important targets and core genes were displayed.
Collapse
Affiliation(s)
- Ning Ren
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lulin Yu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lihui Qian
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gewei Ye
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenzheng Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jieru Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Leyin Zhang, ; Leitao Sun, ; Jieru Yu,
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- *Correspondence: Leyin Zhang, ; Leitao Sun, ; Jieru Yu,
| | - Leyin Zhang
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
- *Correspondence: Leyin Zhang, ; Leitao Sun, ; Jieru Yu,
| |
Collapse
|
108
|
Yang H, Zhang J, Ling J. The Modulatory Effects and Targets Prediction of Herbal Medicines or Phytochemicals on Cancer Immunosurveillance. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1401-1422. [PMID: 35748216 DOI: 10.1142/s0192415x22500604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer is a main life-threatening disease worldwide. Due to the adverse effects of conventional chemotherapies and radiotherapies, immunotherapy has emerged as a potent strategy to treat cancer. In cancer immunotherapy, cancer immune surveillance plays a crucial role in the cancer process, which contains various effector cells from innate and adaptive immunity. This review summarized the functions of innate and adaptive immune cells in cancer immunosurveillance and their main reported targets. Moreover, the potential targets about the modulatory effects of cancer immunosurveillance were predicted using network-based target analysis, with total predicted pathways not only reporting previously reported pathways, but also putative signaling pathways pending for investigation. In addition, the potential use of herbal medicines and their phytochemicals in the modulation of cancer immunosurveillance were also discussed. Taken together, this review paper aims to provide scientific insight into further drug development, particularly herbs, phytochemicals, and TCM formulae, in the modulatory effects of cancer immunosurveillance.
Collapse
Affiliation(s)
- Huihai Yang
- College of Chinese Medicine Material, Jilin Agricultural University, Changchun 136000, P. R. China
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities, Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Jing Zhang
- College of Chinese Medicine Material, Jilin Agricultural University, Changchun 136000, P. R. China
| | - Jiawei Ling
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities, Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
109
|
Guo WH, Zhang K, Yang LH. Potential Mechanisms of Pyrrosiae Folium in Treating Prostate Cancer Based on Network Pharmacology and Molecular Docking. Drug Dev Ind Pharm 2022; 48:189-197. [PMID: 35730236 DOI: 10.1080/03639045.2022.2088785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective The network pharmacology approach and molecular docking were employed to explore the mechanism of Pyrrosiae Folium(PF) against prostate cancer (PCa). Methods The active compounds and their corresponding putative targets of PF were identified by the Traditional Chinese Medicine Systems Pharmacology (TCMSP), the gene names of the targets were obtained from the UniProt database. The collection of genes associated with PCa were obtained from GeneCards and DisGeNET database. We merged the drug targets and disease targets by online software, Draw Venn Diagram. The resulting gene list was imported into R software (v3.6.3) for GO and KEGG function enrichment analysis. The STRING database was utilized for protein-protein interaction (PPI) network construction. The cytoHubba plugin of Cytoscape was used to identify core genes. Further, molecular docking analysis of the hub targets were carried out using AutoDock Vina software (v1.5.6). Results A total of 6 active components were screened by PF, with 167 corresponding putative targets, 1395 related targets for PCa, and 113 targets for drugs and diseases. The "drug-component-disease-target" network was constructed by Cytoscape software and the target genes mainly involved in the complex treating effects associated with response to oxidative stress, cytokine activity, pathways in cancer, prostate cancer pathway and TNF signaling pathway. Core genes in the PPI network were TNF, JUN, IL6, IL1B, CXCL8, RELA, CCL2, TP53, IL10 and FOS. The molecular docking results reveal the better binding affinity of 6 active components to the core targets. Conclusion The results of this study indicated that PF may be have a certain anti-PCa effect by regulating related target genes, affecting Pathways in cancer, TNF signaling pathway, Hepatitis B signaling pathway.
Collapse
Affiliation(s)
- Wen-Hua Guo
- Modern College of Humanities and Science of Shanxi Normal University, Linfen, Shanxi 041004, P.R. China.,School of Life Science, Shanxi Normal University, Linfen, Shanxi 041004, P.R. China
| | - Kun Zhang
- School of Life Science, Shanxi Normal University, Linfen, Shanxi 041004, P.R. China
| | - Lu-Hong Yang
- Modern College of Humanities and Science of Shanxi Normal University, Linfen, Shanxi 041004, P.R. China
| |
Collapse
|
110
|
Zhou J, Wang L, Peng C, Peng F. Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology. Front Pharmacol 2022; 13:886198. [PMID: 35784750 PMCID: PMC9242535 DOI: 10.3389/fphar.2022.886198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor angiogenesis is one of the most important processes of cancer deterioration via nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis has been widely accepted as a cancer intervention approach, which is also synergistically associated with immune therapy. However, drug resistance is the biggest challenge of anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and even combined with immunotherapy. Here, emerging targets and representative candidate molecules from ethnopharmacology (including traditional Chinese medicine, TCM) have been focused, and they have been proved to regulate tumor angiogenesis. Further investigations on derivatives and delivery systems of these molecules will provide a comprehensive landscape in preclinical studies. More importantly, the molecule library of ethnopharmacology meets the viability for targeting angiogenesis and TME simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More research studies concerning the crosstalk between angiogenesis and TME remodeling from the perspective of botanical medicine are awaited.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| |
Collapse
|
111
|
Zhang W, Lin L, Zhang Y, Zhao T, Zhan Y, Wang H, Fang J, Du B. Dioscin potentiates the antitumor effect of suicide gene therapy in melanoma by gap junction intercellular communication-mediated antigen cross-presentation. Biomed Pharmacother 2022; 150:112973. [PMID: 35468581 DOI: 10.1016/j.biopha.2022.112973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Dioscin (Dio), steroid saponin, exists in several medicinal herbs with potent anticancer efficacy. This study aimed to explore the effect of Dio on the immune-related modulation and synergistic therapeutic effects of the herpes simplex virus thymidine kinase/ganciclovir (HSV-Tk/GCV) suicide gene therapy system in murine melanoma, thereby providing a research basis to improve the potential immunomodulatory mechanism underlying combination therapy. Using both in vitro and in vivo experiments, we confirmed the immunocidal effect of Dio-potentiated suicide gene therapy on melanoma. The results showed that Dio upregulated connexin 43 (Cx43) expression and improved gap junction intercellular communication (GJIC) in B16 cells while increasing the cross-presentation of antigens by dendritic cells (DCs), eventually promoting the activation and antitumor immune killing effects of CD8+ T lymphocytes. In contrast, inhibition or blockade of the GJIC function (overexpression of mutant Cx43 tumor cells/Gap26) partially reversed the potentiating effect. The significant synergistic effect of Dio on HSV-Tk/GCV suicide gene therapy was further investigated in a B16 xenograft mouse model. The increased number and activation ratio of CD8+ T lymphocytes and the levels of Gzms-B, IFN-γ, and TNF-α in mice reconfirmed the potential modulatory effects of Dio on the immune system. Taken together, Dio targets Cx43 to enhance GJIC function, improve the antigens cross-presentation of DCs, and activate the antitumor immune effect of CD8+ T lymphocytes, thereby providing insights into the potential immunomodulatory mechanism underlying combination therapy.
Collapse
Affiliation(s)
- Wenbo Zhang
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lingyun Lin
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yujian Zhang
- Panyu Hospital of Chinese Medicine, Guangzhou 511400, China
| | - Tingxiu Zhao
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yujuan Zhan
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huiqi Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junfeng Fang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Biaoyan Du
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
112
|
Yang H, Wang L, Zhang J. Leukocyte modulation by natural products from herbal medicines and potential as cancer immunotherapy. J Leukoc Biol 2022; 112:185-200. [PMID: 35612275 DOI: 10.1002/jlb.3ru0222-087rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer constitutes a kind of life-threatening disease that is prevalent throughout the world. In light of limitations in conventional chemotherapies or radiotherapies, cancer immunotherapy has emerged as a potent strategy in treating cancer. In cancer immunotherapy, preliminary studies have demonstrated that cancer immune surveillance serves a crucial role in tumor initiation, progression, and metastasis. Herbal medicines and natural products, which serve as alternative medicines, are involved in the modulation of tumor immunosurveillance to enhance antitumor activity. Accordingly, this review aimed to summarize the modulation function of herbal medicines and natural products on tumor immunosurveillance while providing scientific insight into further research on its molecular mechanism and potential clinical applications.
Collapse
Affiliation(s)
- Huihai Yang
- Department of Chinese Medicine, College of Chinese Medicine Material, Jilin Agricultural University, Changchun, China.,Department of Chinese medicine, College of Medicine, Changchun Science-Technology University, Changchun, China.,Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Lulu Wang
- Department of Chinese medicine, College of Medicine, Changchun Science-Technology University, Changchun, China
| | - Jing Zhang
- Department of Chinese Medicine, College of Chinese Medicine Material, Jilin Agricultural University, Changchun, China
| |
Collapse
|
113
|
Wei Q, Ren Y, Zheng X, Yang S, Lu T, Ji H, Hua H, Shan K. Ginsenoside Rg3 and sorafenib combination therapy relieves the hepatocellular carcinomaprogression through regulating the HK2-mediated glycolysis and PI3K/Akt signaling pathway. Bioengineered 2022; 13:13919-13928. [PMID: 35719058 PMCID: PMC9275937 DOI: 10.1080/21655979.2022.2074616] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common pathological type of primary hepatic carcinoma. This study investigated the effects of ginsenoside Rg3 (Rg3) and sorafenib (SFN) combination therapy on HCC progression. The HCC-related data were obtained from TCGA database, and the data of HK2 mRNA, clinicopathological features, and survival outcomes were extracted using R Programming 4.0. The human hepatoma cell lines HepG2 and Bel7404 were used. Cell viability was tested using the MTT assay. Glucose consumption and lactate levels of HCC cells were detected using the corresponding kits. Western blotting was used to determine the protein expression of HK2, PI3K, and Akt. HK2 was overexpressed in patients with HCC. Compared with patients with overexpressed HK2, those with low levels of HK2 achieved a longer survival time. In addition, the Rg3 and SFN combination therapy significantly reduced cell viability, glucose consumption, lactate levels, and protein expression of HK2, PI3K, and Akt in HCC cells. Additionally, the Rg3 and SFN combination therapy exhibited a better effect than the single drug group. Inhibition of the PI3K/Akt signaling pathway or exogenous lactate intervention reversed the effects of Rg3 and SFN combination therapy in HCC cells. In conclusion, Rg3 has a synergistic effect on the sensitivity of HepG2 and Bel7404 hepatoma cells to SFN, which is related to HK2-mediated glycolysis and the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qi Wei
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
| | - Yuan Ren
- Department of Oncology, The Second People's Hospital of Kunshan, Suzhou, China
| | - Xia Zheng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Shanghai, China
| | - Sufang Yang
- Department of Oncology, The Second People's Hospital of Kunshan, Suzhou, China
| | - Tingting Lu
- Department of Oncology, The Second People's Hospital of Kunshan, Suzhou, China
| | - Hongyao Ji
- Department of Oncology, The Second People's Hospital of Kunshan, Suzhou, China
| | - Haiqing Hua
- Department of Oncology, NanJing JinLing Hospital, Nanjing, China
| | - Kuizhong Shan
- Department of Oncology, The Second People's Hospital of Kunshan, Suzhou, China
| |
Collapse
|
114
|
Shahrajabian MH, Cheng Q, Sun W. The Organic Life According to Traditional Chinese Medicine with Anticancer Approaches. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1871520622666220425093907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The aim of this review was to summarize the most important traditional medinical
herbs and plants that are being used in different parts of the world with a focus on a green anticancer approach. The most important impacts of medicinal plants on cancer treatments are prevention of cancer occurrence, decreased side effects, ameliorated post-operative complications,
reduced post operative recurrence, reduced tumor growth, maintenance therapy, reduced symptoms and prolonged survival. Alkaloid anti-cancer compounds are pyrrolidine, pyridine, tropane,
piperidine, pyrrolizidine, quinolizidine, indolizidine, isoquinoline, oxazole, isoxazole, quinazoline, quinoline, indole serine, purine, β -phenylethylamine, colchicine, benzylamine, abornin,
pancratistatin and narciclasine. Anticancer phenolic compounds from plants are flavonol, flavones, kaempferol, luteolin, curcumin, apigenin, chalcone, and cafestol. Anticancer terpenoids
compounds from medicinal plants are isoprene, alpha-hederin, galanal A, galanal B, carnosol,
oleanane and xanthorrhizol. The most important chemical structures of anti-cancer drugs derived
from plants are vincristine, vinblastine, vinorelbine, vindesine, vinflunine, paclitaxel, docetaxel,
cabazitaxel, larotaxel, milataxel, ortataxel, tesetaxel, camptothecin, irinotecan, topotecan, etoposide, teniposide, harringtonine and homoharringtonine. Cancer is one of the main and primary
causes of morbidity and mortality all over the world. It is a broad group of various diseases typified by unregulated cell growth. The role of plants, especially traditional herbs as a source of organic medicines has been prevalent in many societies, especially in Eastern medicinal science for
thousands of years. Traditional medicinal herbs and plants which have both antiviral activity and
the ability to promote immunity, would have possible inhibition ability in the initiation and promotion of virus-associated cancers. Medicinal plants should always be considered a great source
of novel chemical constituents with anti-cancer effects.
Collapse
Affiliation(s)
| | - Qi Cheng
- College of Life
Sciences, Hebei Agricultural University, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQiS for
BioAl-Manufacturing, Baoding, Hebei 071000, China
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
115
|
Xu Y, Wang X, Liu L, Wang J, Wu J, Sun C. Role of macrophages in tumor progression and therapy (Review). Int J Oncol 2022; 60:57. [PMID: 35362544 PMCID: PMC8997338 DOI: 10.3892/ijo.2022.5347] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The number and phenotype of macrophages are closely related to tumor growth and prognosis. Macrophages are recruited to (and polarized at) the tumor site thereby promoting tumor growth, stimulating tumor angiogenesis, facilitating tumor cell migration, and creating a favorable environment for subsequent colonization by (and survival of) tumor cells. These phenomena contribute to the formation of an immunosuppressive tumor microenvironment (TME) and therefore speed up tumor cell proliferation and metastasis and reduce the efficacy of antitumor factors and therapies. The ability of macrophages to remodel the TME through interactions with other cells and corresponding changes in their number, activity, and phenotype during conventional therapies, as well as the association between these changes and drug resistance, make tumor-associated macrophages a new target for antitumor therapies. In this review, advantages and limitations of the existing antitumor strategies targeting macrophages in Traditional Chinese and Western medicine were analyzed, starting with the effect of macrophages on tumors and their interactions with other cells and then the role of macrophages in conventional treatments was explored. Possible directions of future developments in this field from an all-around multitarget standpoint were also examined.
Collapse
Affiliation(s)
- Yiwei Xu
- Institute of Integrated Medicine, School of Medicine, Qingdao University, Qingdao, Shandong 266073, P.R. China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
116
|
Li M, Han B, Zhao H, Xu C, Xu D, Sieniawska E, Lin X, Kai G. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153918. [PMID: 35104756 DOI: 10.1016/j.phymed.2021.153918] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND With the rising age of the global population, the incidence rate of cardiovascular and cerebrovascular diseases (CCVDs) is increasing, which causes serious public health burden. The efforts for new therapeutic approaches are still being sought since the treatment effects of existing therapies are not quite satisfactory. Chinese traditional medicine proved to be very efficient in the treatment of CCVDs. Well described and established in Chinese medicine, Astragali Radix, has been commonly administered in the prophylaxis and cure of CCVDs for thousands of years. PURPOSE This review summarized the action mode and mechanisms of Astragali Radix phytochemicals on CCVDs, hoping to provide valuable information for the future application, development and improvement of Astragali Radix as well as CCVDs treatment. METHODS A plenty of literature on biological active ingredients of Astragali Radix used for CCVDs treatment were retrieved from online electronic PubMed and Web of Science databases. RESULTS This review highlighted the effects of five main active components in Astragali Radix including astragaloside Ⅳ, cycloastragenol, astragalus polysaccharide, calycosin-7-O-β-d-glucoside, and calycosin on CCVDs. The mechanisms mainly involved anti-oxidative damage, anti-inflammatory, and antiapoptotic through signaling pathways such as PI3K/Akt, Nrf2/HO-1, and TLR4/NF-κB pathway. In addition, the majority active constituents in AR have no obvious toxic side effects. CONCLUSION The main active components of Astragali Radix, especially AS-IV, have been extensively summarized. It has been proved that Astragali Radix has obvious therapeutic effects on various CCVDs, including myocardial and cerebral ischemia, hypertension, atherosclerosis, cardiac hypertrophy, chronic heart failure. CAG possesses anti-ischemia activity without toxicity, indicating a worthy of further development. However, high-quality clinical and pharmacokinetic studies are required to validate the current studies.
Collapse
Affiliation(s)
- Man Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chongyi Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Daokun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Xianming Lin
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
117
|
Wu Y, You X, Lin Q, Xiong W, Guo Y, Huang Z, Dai X, Chen Z, Mei S, Long Y, Tian X, Zhou Q. Exploring the Pharmacological Mechanisms of Xihuang Pills Against Prostate Cancer via Integrating Network Pharmacology and Experimental Validation In Vitro and In Vivo. Front Pharmacol 2022; 12:791269. [PMID: 35342388 PMCID: PMC8948438 DOI: 10.3389/fphar.2021.791269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Drug resistance is the major cause of increasing mortality in prostate cancer (PCa). Therefore, it an urgent to develop more effective therapeutic agents for PCa treatment. Xihuang pills (XHP) have been recorded as the efficient anti-tumor formula in ancient Chinese medical literature, which has been utilized in several types of cancers nowadays. However, the effect protective role of XHP on the PCa and its underlying mechanisms are still unclear. Methods: The active ingredients of XHP were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and BATMAN-TCM. The potential targets of PCa were acquired from the Gene Cards and OMIM databases. R language and Perl language program were utilized to clarify the interaction between the PCa-related targets and the potential targets of XHP. The potential targets of XHP for prostate cancer were gathered from the Gene ontology and KEGG pathway. Furthermore, cell proliferation assays were verified by PC3 and LNCaP cells. The efficacy and potential mechanism tests were confirmed by the PCa PC3 cells and mice subcutaneous transplantation. The effects of PI3K/Akt/mTOR-related proteins on proliferation, apoptosis, and cell cycle of PCa cells were measured by the Cell Counting Kit-8(CCK8), TUNEL assay, real-time quantitative reverse transcription PCR (QRT-PCR), and Western Blotting, respectively. Results: The active components of four traditional Chinese medicines in XHP were searched on the TCMSP and Batman TCM database. The biological active components of XHP were obtained as OB ≥30% and DL ≥0.18. The analysis of gene ontology and KEGG pathway identified the PI3K/Akt/mTOR signaling pathway as the XHP-associated pathway. Collectively, the results of in vitro and in vivo experiments showed that XHP had the effect of inhibiting on the proliferation of PC3 and LNCaP cells. XHP promoted the apoptosis and restrained the cell cycle and invasion of the PC3 cells and subcutaneous transplantation. Meanwhile, the suppression of XHP on the level of expression of PI3K, Akt, and mTOR-pathway-related pathway proteins has been identified in a dose-dependent manner. Conclusion: PI3K/Akt/mTOR pathway-related pathway proteins were confirmed as the potential XHP-associated targets for PCa. XHP can suppress the proliferation of prostate cancer via inhibitions of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yongrong Wu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xujun You
- Graduate School of Hunan University of Chinese Medicine, Changsha, China.,Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Qunfang Lin
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Xiong
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yinmei Guo
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinjun Dai
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhengjia Chen
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Si Mei
- Department of Physiology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yan Long
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Provincial Key Laboratory of Chinese Medicine Oncology, Changsha, China
| | - Qing Zhou
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
118
|
Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022; 19:337-354. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small-molecular drugs are extensively used in cancer therapy, while they have issues of nonspecific distribution and consequent side effects. Nanomedicines that incorporate chemotherapeutic drugs have been developed to enhance the therapeutic efficacy of these drugs and reduce their side effects. One of the promising strategies is to prepare nanomedicines by harnessing the unique tumor microenvironment (TME). AREAS COVERED The TME contains numerous cell types that specifically express specific antibodies on the surface including tumor vascular endothelial cells, tumor-associated adipocytes, tumor-associated fibroblasts, tumor-associated immune cells and cancer stem cells. The physicochemical environment is characterized with a low pH, hypoxia, and a high redox potential resulting from tumor-specific metabolism. The intelligent nanomedicines can be categorized into two groups: the first group which is rapidly responsive to extracellular chemical/biological factors in the TME and the second one which actively and/or specifically targets cellular components in the TME. EXPERT OPINION In this paper, we review recent progress of nanomedicines by harnessing the TME and illustrate the principles and advantages of different strategies for designing nanomedicines, which are of great significance for exploring novel nanomedicines or translating current nanomedicines into clinical practice. We will discuss the challenges and prospects of preparing nanomedicines to utilize or alter the TME for achieving effective, safe anticancer treatment.
Collapse
Affiliation(s)
- Yinggang Li
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonglan Chen
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyu Duan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Youping Li
- Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
119
|
Dong S, Guo X, Han F, He Z, Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B 2022; 12:1163-1185. [PMID: 35530162 PMCID: PMC9069318 DOI: 10.1016/j.apsb.2021.08.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
Collapse
Key Words
- AKT, alpha-serine/threonine-specific protein kinase
- Adoptive immune-cells transfer immunotherapy
- B2M, beta-2-microglobulin
- BMDCs, bone marrow dendritic cells
- BPS, basil polysaccharide
- BTLA, B- and T-lymphocyte attenuator
- CAFs, cancer-associated fibroblasts
- CCL22, C–C motif chemokine 22
- CIKs, cytokine-induced killer cells
- COX-2, cyclooxygenase-2
- CRC, colorectal cancer
- CTL, cytotoxic T cell
- CTLA-4, cytotoxic T lymphocyte antigen-4
- Cancer immunotherapy
- Cancer vaccines
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- FDA, US Food and Drug Administration
- HCC, hepatocellular carcinoma
- HER-2, human epidermal growth factor receptor-2
- HIF-1α, hypoxia-inducible factor-1α
- HMGB1, high-mobility group box 1
- HSPs, heat shock proteins
- ICD, Immunogenic cell death
- ICTs, immunological checkpoints
- IFN-γ, interferon γ
- IL-10, interleukin-10
- Immuno-check points
- Immunosuppressive microenvironment
- LLC, Lewis lung cancer
- MDSCs, myeloid-derived suppressor cells
- MHC, major histocompatibility complex class
- MITF, melanogenesis associated transcription factor
- MMP-9, matrix metalloprotein-9
- Mcl-1, myeloid leukemia cell differentiation protein 1
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NKTs, natural killer T cells
- NSCLC, non-small cell lung cancer
- Natural products
- OVA, ovalbumin
- PD-1, programmed death-1
- PD-L1, programmed death receptor ligand 1
- PGE-2, prostaglandin E2
- PI3K, phosphoinositide 3-kinase
- ROS, reactive oxygen species
- STAT3, signal transducer and activator of transcription 3
- TAMs, tumor-associated macrophages
- TAP, transporters related with antigen processing
- TGF-β, transforming growth factor-β
- TILs, tumor infiltration lymphocytes
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- TSA, tumor specific antigens
- Teffs, effective T cells
- Th1, T helper type 1
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factor
- mTOR, mechanistic target of rapamycin
Collapse
Affiliation(s)
- Songtao Dong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangnan Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
120
|
Li K, Li XQ, Li GX, Cui LJ, Qin XM, Li ZY, Du YG, Liu YT, Li AP, Zhao XY, Fan XH. Relationship Between the Structure and Immune Activity of Components From the Active Polysaccharides APS-II of Astragali Radix by Enzymolysis of Endo α-1,4-Glucanase. Front Pharmacol 2022; 13:839635. [PMID: 35281923 PMCID: PMC8913491 DOI: 10.3389/fphar.2022.839635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
Astragali Radix polysaccharides (APSs) have a wide range of biological activities. Our preliminary experiment showed that APS-Ⅱ (10 kDa) was the main immunologically active component of APSs. However, the characteristic structure related to activity of APS-Ⅱ needs further verification and clarification. In this study, APS-II was degraded by endo α-1,4-glucosidase. The degraded products with different degrees of polymerization [1–3 (P1), 3–6 (P2), 7–14 (P3), and 10–18 (P4)] were obtained using a polyacrylamide gel chromatography column. The structural features of the different products were characterized by HPGPC, monosaccharide composition, Fourier transform infrared spectrum, GC–MS, nuclear magnetic resonance, and UPLC-ESI-QTOF-MS analysis. Specific immune and non-specific immune cell tests were used to identify the most immunogenic fractions of the products. The backbone of P4 was speculated to be α-D-1,4-linked glucans and rich in C2 (25.34%) and C6 (34.54%) branches. Immune screening experiments indicated that the activity of P4 was better than that of APS-II and the other three components. In this research, the relationship between the structure of APS-Ⅱ and the immune activity from the degradation level of polysaccharides was studied, laying a foundation for the quality control and product development of APSs.
Collapse
Affiliation(s)
- Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
- *Correspondence: Ke Li, ; Yu-guang Du,
| | - Xue-qin Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Guang-xin Li
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Lian-jie Cui
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Zhen-yu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Yu-guang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Ke Li, ; Yu-guang Du,
| | - Yue-tao Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Ai-ping Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Xing-yun Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Xin-hui Fan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| |
Collapse
|
121
|
State of the Art and Future Implications of SH003: Acting as a Therapeutic Anticancer Agent. Cancers (Basel) 2022; 14:cancers14041089. [PMID: 35205836 PMCID: PMC8870567 DOI: 10.3390/cancers14041089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer ranks as the first leading cause of death globally. Despite the various types of cancer treatments, negative aspects of the treatments, such as side effects and drug resistance, have been a continuous dilemma for patients. Thus, natural compounds and herbal medicines have earned profound interest as chemopreventive agents for reducing burden for patients. SH003, a novel herbal medicine containing Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii, showed the potential to act as an anticancer agent in previous research studies. A narrative review was conducted to present the significant highlights of the total 15 SH003 studies from the past nine years. SH003 has shown positive results in both in vivo and vitro studies against various types of cancer cells; furthermore, the first clinical trial was performed to identify the maximum tolerated dose among solid cancer patients. So far, the potential of SH003 as a chemotherapeutic agent has been well-documented in research studies; continuous work on SH003's efficacy and safety is required to facilitate better cancer patient care but is part of the knowledge needed to understand whether SH003 has the potential to become a pharmaceutical.
Collapse
|
122
|
Cui Y, Shan Z, Hou L, Wang Q, Loor JJ, Xu C. Effect of Natural Chinese Herbal Supplements (TCMF4) on Lactation Performance and Serum Biomarkers in Peripartal Dairy Cows. Front Vet Sci 2022; 8:801418. [PMID: 35083308 PMCID: PMC8784967 DOI: 10.3389/fvets.2021.801418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
This study examined the effect of mixed medicinal herbs from China in the ground form on milk yield and various blood metabolites before and after parturition in Holstein cows. Crushed Agastache rugosus, Scutellaria barbata, Pericarpium citri reticulate, and Radix glycyrrhizae were used to develop TCMF4. Thirty-two Chinese Holstein cows were randomly divided into a control group or groups receiving 0.1, 0.3, or 0.5 kg TCMF4/cow/d from −7 through 21 d relative to parturition. Blood samples for serum isolation were collected at −7, −1, 1, 7, 14, and 21 d relative to parturition and used to measure glucose, β-hydroxybutyric acid (BHBA), total protein, albumin, globulin, and alkaline phosphatase. Milk production was recorded daily for the first 21 d postpartum, and composition was analyzed at 7, 14, and 21 d. Data were analyzed using a one-way analysis of variance (ANOVA) for multiple comparisons. The average milk production during the first 21-d postpartum was 28.7 ± 6.9, 27.2 ± 7.1, 31.2 ± 6.8, and 38.5 ± 6.1 kg/d for control group and groups receiving 0.1, 0.3, or 0.5 kg TCMF4. Thus, average daily milk production increased between 9 to 34% by supplementation with TCMF4 compared with the control group. Compared with the control group, in the middle dose group, milk concentrations of lactose and total protein decreased by 21 and 19%, respectively, at d 7 around parturition, while total solids increased by 23% at d 21 in the high-dose group. Furthermore, compared with the control group, serum BHBA decreased by 50 and 20% at d −1 and 21 around parturition in the high-dose group. Overall, TCMF4 supplementation improved dry matter intake (DMI) and milk production of dairy cows during the periparturient period without adverse effects on liver function, and plasma BHBA concentrations of dairy cows tended to decrease when dietary TCMF4 increased, which suggested that TCMF4 might be used as potential additives in dairy cows to improve production performance.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhuorui Shan
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lintong Hou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiuju Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Chuang Xu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Chuang Xu
| |
Collapse
|
123
|
Zhao Y, Wang H, Yin Y, Shi H, Wang D, Shu F, Wang R, Wang L. Anti-melanoma action of small molecular peptides derived from Brucea javanica(L.)Merr. globulin in vitro. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
124
|
Tao X, Zhang X, Feng F. <i>Astragalus </i>polysaccharide suppresses cell proliferation and invasion by up-regulation of miR-195-5p in non-small cell lung cancer. Biol Pharm Bull 2022; 45:553-560. [DOI: 10.1248/bpb.b21-00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xingkui Tao
- School of Biological and Food Engineering, Suzhou University
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University
| | - Fan Feng
- School of Biological and Food Engineering, Suzhou University
| |
Collapse
|
125
|
Guo H, Zheng L, Guo Y, Han L, Yu J, Lai F. Curculigoside Represses the Proliferation and Metastasis of Osteosarcoma via the JAK/STAT and NF-κB Signaling Pathways. Biol Pharm Bull 2022; 45:1466-1475. [PMID: 36184504 DOI: 10.1248/bpb.b22-00311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Curculigoside (Cur) is a natural component from Curculigo orchioides Gaertn, with various bioactivities. The function of Cur in the nervous system and osteoarthritis has been reported. However, its role in osteosarcoma (OS) needs to be investigated. Hence, we focus on probing the impact of Cur on OS. In vitro, cell counting kit 8 (CCK-8), flow cytometry and Transwell assay were used to investigate the effects of Cur on OS cell proliferation, apoptosis, migration and invasion. In vivo, we developed a xenograft model to figure out the effect of Cur on tumor growth in nude mice. Western blotting (WB) was conducted to compare the levels of Cur on apoptosis-related proteins (C-caspase-3, Bax, and Bcl-2), epithelial-mesenchymal transition (EMT)-related proteins (N-cadherin, Snail, and E-cadherin) and the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and nuclear factor-κB (NF-κB) pathways in vitro and in vivo. In-vitro data testified that Cur treatment markedly hampered OS cells' growth, migration and invasion and intensified their apoptosis compared to that of the control group. In vivo, Cur treatment notably hampered the growth of OS tumors in mice. In addition, both in vitro and in vivo experiments demonstrated that the phosphorylation of JAK2, STAT3, and NF-κB were inhibited through Cur treatment. Furthermore, the inhibition of Cur in OS cells was demonstrated by up-regulating the expression of JAK/STAT and NF-κB pathways protein levels. In summary, the data suggest that Cur curbs OS growth by down-regulating the JAK/STAT and NF-κB pathways, which is an underlying therapeutic option for OS treatment.
Collapse
Affiliation(s)
- Huiwen Guo
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine
| | - Lixiang Zheng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine
| | - Yepin Guo
- College of Humanities, Jiangxi University of Chinese Medicine
| | - Lu Han
- College of Humanities, Jiangxi University of Chinese Medicine
| | - Jing Yu
- College of Humanities, Jiangxi University of Chinese Medicine
| | - Fuchong Lai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province
| |
Collapse
|
126
|
Zhao W, Liu J, Li Y, Chen Z, Qi D, Zhang Z. Immune Effect of Active Components of Traditional Chinese Medicine on Triple-Negative Breast Cancer. Front Pharmacol 2021; 12:731741. [PMID: 34925002 PMCID: PMC8678494 DOI: 10.3389/fphar.2021.731741] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancers are heterogeneous, poorly prognostic, and metastatic malignancies that result in a high risk of death for patients. Targeted therapy for triple-negative breast cancer has been extremely challenging due to the lack of expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Clinical treatment regimens for triple-negative breast cancer are often based on paclitaxel and platinum drugs, but drug resistance and side effects from the drugs frequently lead to treatment failure, thus requiring the development of new therapeutic platforms. In recent years, research on traditional Chinese medicine in modulating the immune function of the body has shown that it has the potential to be an effective treatment option against triple-negative breast cancer. Active components of herbal medicines such as alkaloids, flavonoids, polyphenols, saponins, and polysaccharides have been shown to inhibit cancer cell proliferation and metastasis by activating inflammatory immune responses and can modulate tumor-related signaling pathways to further inhibit the invasion of triple-negative breast cancer. This paper reviews the immunomodulatory mechanisms of different herbal active ingredients against triple-negative breast cancer and provides an outlook on the challenges and directions of development for the treatment of triple-negative breast cancer with herbal active ingredients.
Collapse
Affiliation(s)
- Wenjie Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhua Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaqun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zichao Chen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongmei Qi
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
127
|
Huang C, Li ZX, Wu Y, Huang ZY, Hu Y, Gao J. Treatment and bioresources utilization of traditional Chinese medicinal herb residues: Recent technological advances and industrial prospect. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113607. [PMID: 34467864 DOI: 10.1016/j.jenvman.2021.113607] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Traditional Chinese medicine (TCM) has wide application and important functions in curing many diseases, but a great number of herb residues are usually generated after its manufacture and usage. Without proper and timely treatment, these traditional Chinese medicinal herb (TCMH) residues will cause some environmental pollution. In addition to treatment, bioresources utilization of TCMH residues is also important for its great potential as a suitable feedstock for the production of energy, materials, and chemicals. In this situation, advanced and well-designed solid waste management is important to make the TCM industry environmentally friendly and economically attractive. In this review article, the recent progress focusing on various methods for TCMH residues treatment and bioresources utilization are introduced in detail. In particular, the technologies for thermochemical conversion and biochemical conversion of TCMH residues are mainly focused on in order to show how to fulfill effective and efficient bioresources utilization. Besides, some other technologies which are suitable for the treatment and bioresources utilization of TCMH residues are presented as well. Finally, some industrial prospects are given from the economic, operational, and environmental aspects for the further development of treatment and bioresources utilization of TCMH residues. Overall, this work can provide some systematical and comprehensive information for the development of technologies that help sustainably manage the herb residues generated in the TCM industry.
Collapse
Affiliation(s)
- Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China.
| | - Zhi-Xuan Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Yi Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Zhong-Ying Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Jing Gao
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China.
| |
Collapse
|
128
|
Zhang X, Qiu H, Li C, Cai P, Qi F. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Biosci Trends 2021; 15:283-298. [PMID: 34421064 DOI: 10.5582/bst.2021.01318] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traditional Chinese medicine (TCM), especially Chinese herbal medicines and acupuncture, has been traditionally used to treat patients with cancers in China and other East Asian countries. Numerous studies have indicated that TCM not only alleviates the symptoms (e.g., fatigue, chronic pain, anorexia/cachexia, and insomnia) of patients with cancer and improves their quality of life (QOL) but also diminishes adverse reactions and complications caused by chemotherapy, radiotherapy, or targeted-therapy. Therefore, Chinese herbal medicines and acupuncture and other alternative therapies need to be understood by TCM physicians and other health care providers. This review mainly summarizes the experimental results and conclusions from literature published since 2010, and a search of the literature as been performed in the PubMed, MEDLINE, Web of Science, Scopus, Springer, ScienceDirect, and China Hospital Knowledge Database (CHKD) databases. Some Chinese herbal medicines (e.g., Panax ginseng, Panax quinquefolius, Astragali radix, Bu-zhong-yi-qi-tang (TJ-41), Liu-jun-zi-tang (TJ-43), Shi-quan-da-bu-tang (TJ-48), and Ban-xia-xie-xin-tang (TJ-14)) and some acupuncture points (e.g., Zusanli (ST36), Zhongwan (CV12), Neiguan (PC6) and Baihui (GV20)) that are commonly used to treat cancer-related symptoms and/or to reduce the toxicity of chemotherapy, radiotherapy, or targeted-therapy are highlighted and summarized. Through a review of literature, we conclude that TCM can effectively alleviate adverse gastrointestinal reactions (including diarrhea, nausea, and vomiting) to these anti-cancer therapies, decrease the incidence of bone marrow suppression, alleviate cardiotoxicity, and protect against chemotherapy-induced peripheral neuropathy and radiation-induced pneumonitis. Moreover, TCM can alleviate epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-related acneiform eruptions, diarrhea, and other adverse reactions. The hope is that this review can contribute to an understanding of TCM as an adjuvant therapy for cancer and that it can provide useful information for the development of more effective anti-cancer therapies. However, more rigorously designed trials involving cancer treatment must be conducted in the future, including complete quality control and standardized models at the cellular, organic, animal and clinical levels, in order to study TCM in multiple forms and at multiple levels.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Hua Qiu
- Gynecology, Jinan Municipal Hospital of Traditional Chinese Medicine, Ji'nan, China
| | - Chensheng Li
- Gastrointestinal Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Pingping Cai
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Fanghua Qi
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| |
Collapse
|
129
|
Chen F, Li J, Wang H, Ba Q. Anti-Tumor Effects of Chinese Medicine Compounds by Regulating Immune Cells in Microenvironment. Front Oncol 2021; 11:746917. [PMID: 34722304 PMCID: PMC8551633 DOI: 10.3389/fonc.2021.746917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
As the main cause of death in the world, cancer is one of the major health threats for humans. In recent years, traditional Chinese medicine has gained great attention in oncology due to the features of multi-targets, multi-pathways, and slight side effects. Moreover, lots of traditional Chinese medicine can exert immunomodulatory effects in vivo. In the tumor microenvironment, tumor cells, immune cells as well as other stromal cells often coexist. With the development of cancer, tumor cells proliferate uncontrollably, metastasize aggressively, and modulate the proportion and status of immune cells to debilitate the antitumor immunity. Reversal of immunosuppressive tumor microenvironment plays an essential role in cancer prevention and therapy. Immunotherapy has become the most promising strategy for cancer therapy. Chinese medicine compounds can stimulate the activation and function of immune cells, such as promoting the maturation of dendritic cells and inducing the differentiation of myeloid-derived suppressor cells to dendritic cells and macrophages. In the present review, we summarize and discuss the effects of Chinese medicine compounds on immune cells in the tumor microenvironment, including innate immune cells (dendritic cells, natural killer cells, macrophages, and myeloid-derived suppressor cells) and adaptive immune cells (CD4+/CD8+ T lymphocytes and regulatory T cells), and the various immunomodulatory roles of Chinese medicine compounds in cancer therapy such as improving tumor-derived inflammation, enhancing the immunity after surgery or chemotherapy, blocking the immune checkpoints, et al., aiming to provide more thoughts for the anti-tumor mechanisms and applications of Chinese medicine compounds in terms of tumor immunity.
Collapse
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
130
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.
Collapse
|
131
|
She Y, Huang Q, Ye Z, Hu Y, Wu M, Qin K, Wei A, Yang X, Liu Y, Zhang C, Ye Q. The Therapeutic Principle of Combined Strengthening Qi and Eliminating Pathogens in Treating Middle-Advanced Primary Liver Cancer: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:714287. [PMID: 34776950 PMCID: PMC8578139 DOI: 10.3389/fphar.2021.714287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Background: The combination of strengthening Qi and eliminating pathogens is an available therapeutic principle in traditional Chinese medicine (TCM) for primary liver cancer (PLC) at middle-advanced stage. However, there is a lack of reasonable evidence to support the proper application of this therapeutic principle. This meta-analysis aims to evaluate the efficacy and safety of Chinese medicinal formulas (CMFs), including two subgroup analyses of the principle of strengthening Qi and eliminating pathogens. Method: Clinical trials were obtained through searching of EMBASE, Web of Science, PubMed, Cochrane Library, Chinese National Knowledge Infrastructure, Wanfang Database, Chinese Scientific Journal Database, Chinese Biomedical Literature Database, and two clinical trial registries. The randomized controlled trials with the combination of CMFs and transcatheter arterial chemoembolization (TACE) in the experiment group were acceptable, in contrast to the TACE alone in the control group. The statistics analysis was performed on Review Manager 5.4. Results: A total of eligible 24 trials were accessed in this work. Overall, CMFs could improve the survival duration of 6 months, 1 year, and 2 years, Karnofsky Performance Status, tumor objective response rate (ORR), AFP, and symptom. In the subgroup analysis, trials complying with the principle of single strengthening Qi did not show any significant difference in increasing tumor ORR. Meanwhile, the principle of combined strengthening Qi and eliminating pathogens was uncertain in improving symptoms and 1-year and 2-year survival time. In addition, the outcome indexes of ALT and AST were heterogeneous. In last, the total occurrence of adverse events could not be reduced via using CMFs. Patients treated with CMFs exhibited liver injury, fever, and white blood cell decline, with mild events occurring more frequently and severe events occurring less. Conclusion: CMFs are an effective treatment method to cure PLC at the middle-advanced stage. Adopting the principle of single strengthening Qi presents better efficacy in the long term by prolonging the survival duration. Following the principle of combined strengthening Qi and eliminating pathogens could be more beneficial to patients in short term by lessening the tumor size. CMFs have the advantage of reducing certain serious adverse events.
Collapse
Affiliation(s)
- Yingqi She
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinfeng Huang
- Department of Oncology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ailing Wei
- Department of Liver Disease, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Xin Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuyao Liu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cuihan Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
132
|
Wu Q, Li D, Sun T, Liu J, Ou H, Zheng L, Hou X, Li W, Fan F. Bai-He-Gu-Jin-Tang formula suppresses lung cancer via AKT/GSK3β/β-catenin and induces autophagy via the AMPK/mTORC1/ULK1 signaling pathway. J Cancer 2021; 12:6576-6587. [PMID: 34659548 PMCID: PMC8489124 DOI: 10.7150/jca.62779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
Aims: Bai-He-Gu-Jin-Tang (BHGJT) is a classic Chinese formula used to treat lung cancer, while the underlying molecular mechanism remains obscure. The aim of the study was to investigate the molecular mechanism of BHGJT on lung cancer and demonstrate the potential for synergistic treatment combining BHGJT with conventional therapy. Methods: Cell viability assay, colony formation assay and EdU assay were used to determine the in vitro effects of BHGJT, and a subcutaneous xenograft model was used to evaluate the in vivo effect. Cell cycle analysis, apoptosis rate analysis, immunohistochemical and immunofluorescent staining, Western blot assays and network pharmacology-based analysis were used to explore the underlying mechanisms. Results: We found that BHGJT inhibited cell proliferation via a dose-dependent pathway and obviously hindered tumor growth in vivo in lung cancer. Cell cycle arrest and apoptosis were pronouncedly induced by BHGJT via dysregulation of the cell cycle regulators CDK4 and Cyclin D1 and dysregulation of apoptosis-associated proteins, such as cleaved caspase 3/9 and the BCL-2 family. Based on a network pharmacology-based analysis and experimental evidence, we demonstrated that the AKT/GSK3β/β-catenin signaling pathways were responsible for BHGJT-induced apoptosis in lung cancer cells. Additionally, autophagy was induced by BHGJT via the AMPK/mTORC1/ULK1 signaling pathway, and blocking autophagy with either chloroquine or a ULK1 inhibitor increased the killing efficiency of BHGJT in lung cancer cells. Conclusion: Our findings indicate that the BHGJT formula efficiently inhibits lung cancer growth and represents a potential complementary and alternative treatment for lung cancer.
Collapse
Affiliation(s)
- Quhui Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Da Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Taoli Sun
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, P. R. China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Huiping Ou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lei Zheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuyang Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Fuyuan Fan
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
133
|
Guo L, Liang Y, Wang S, Li L, Cai L, Heng Y, Yang J, Jin X, Zhang J, Yuan S, Xu T, Jia L. Jujuboside B Inhibits the Proliferation of Breast Cancer Cell Lines by Inducing Apoptosis and Autophagy. Front Pharmacol 2021; 12:668887. [PMID: 34630073 PMCID: PMC8497973 DOI: 10.3389/fphar.2021.668887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Jujuboside B (JB) is one of the main biologically active ingredients extracted from Zizyphi Spinosi Semen (ZSS), a widely used traditional Chinese medicine for treating insomnia and anxiety. Breast cancer is the most common cancer and the second leading cause of cancer-related death in women worldwide. The purpose of this study was to examine whether JB could prevent breast cancer and its underlying mechanism. First, we reported that JB induced apoptosis and autophagy in MDA-MB-231 and MCF-7 human breast cancer cell lines. Further mechanistic studies have revealed that JB-induced apoptosis was mediated by NOXA in both two cell lines. Moreover, the AMPK signaling pathway plays an important role in JB-induced autophagy in MCF-7. To confirm the anti-breast cancer effect of JB, the interaction of JB-induced apoptosis and autophagy was investigated by both pharmacological and genetic approaches. Results indicated that autophagy played a pro-survival role in attenuating apoptosis. Further in vivo study showed that JB significantly suppressed the growth of MDA-MB-231 and MCF-7 xenografts. In conclusion, our findings indicate that JB exerts its anti-breast cancer effect in association with the induction of apoptosis and autophagy.
Collapse
Affiliation(s)
- Lin Guo
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Heng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junqian Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuying Yuan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijun Jia
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
134
|
Ma LR, Li JX, Tang L, Li RZ, Yang JS, Sun A, Leung ELH, Yan PY. Immune checkpoints and immunotherapy in non-small cell lung cancer: Novel study progression, challenges and solutions. Oncol Lett 2021; 22:787. [PMID: 34594428 PMCID: PMC8456509 DOI: 10.3892/ol.2021.13048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common type of cancer with the highest mortality rate worldwide. Non-small cell lung cancer (NSCLC) accounts for ~85% of the total number of lung cancer cases. In the past two decades, immunotherapy has become a more promising treatment method than traditional treatments (surgery, radiotherapy and chemotherapy). Immunotherapy has been shown to improve the survival rate of patients and to have a superior effect when controlling lung cancer than traditional therapy. However, only a small number of patients can benefit from immunotherapy, and not all patients who qualify experience long-term benefits. In the clinic, the objective response rate of programmed cell death protein 1 treatment without the prior screening of patients is only 15-20%. Immunotherapy is associated with both opportunities and challenges for patients with NSCLC. The current challenges of immunotherapy include the lack of accurate biomarkers, inevitable resistance and insufficient understanding of immune checkpoints. In previous years, several methods for overcoming the challenges posed by immunotherapy have been proposed, but combination therapy is the most suitable choice. A large number of studies have shown that the combination of drugs can significantly improve their efficacy, compared with monotherapy, and that some therapeutic combinations have been approved by the Food and Drug Administration for the treatment of NSCLC. Traditional Chinese medicine (TCM) is a traditional medical practice in China that can play an important role in immunotherapy. Most agents used in TCM originate from plants, and have the advantages of low toxicity and multiple targets. In addition, TCM includes a unique class of drugs that can improve autoimmunity. Therefore, TCM may be a promising treatment method for all types of cancer.
Collapse
Affiliation(s)
- Lin-Rui Ma
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Jia-Xin Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Ling Tang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Run-Ze Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Jia-Shun Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Ao Sun
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Elaine Lai-Han Leung
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China.,Department of Integrated Chinese and Western Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, P.R. China
| | - Pei-Yu Yan
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China
| |
Collapse
|
135
|
He S, Wang S, Liu S, Li Z, Liu X, Wu J. Baicalein Potentiated M1 Macrophage Polarization in Cancer Through Targeting PI3Kγ/ NF-κB Signaling. Front Pharmacol 2021; 12:743837. [PMID: 34512367 PMCID: PMC8423900 DOI: 10.3389/fphar.2021.743837] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 01/16/2023] Open
Abstract
Baicalein is one of the bioactive compounds extracted from Scutellaria baicalensis. Recent studies indicated the antitumor effects of baicalein, however, the underlying mechanisms are needed to be further determined. In this study, we found that baicalein could inhibit the tumor growth in mice models of breast cancer and melanoma and worked as an immunomodulator to promote the infiltration of tumor-associated macrophages (TAMs) and skew the TAMs towards the M1-like phenotype. Baicalein also induced M1-like phenotype polarization in THP-1-derived macrophages. Meanwhile, the expression of pro-inflammatory factors associated with M1 macrophages, including TNF-α, IL-1β, CXCL9 and CXCL10, were increased after baicalein treatment. Mechanistically, the RNA-seq data suggested that baicalein potentiated the M1 macrophage polarization via the NF-κB/TNF-α signaling pathway. ELISA and confocal microscopy assay confirmed that baicalein significantly induced the production of TNF-α and the activation of NF-κB, while TNF-α neutralization inhibited baicalein-induced macrophage polarization toward M1, and NF-κB P65 knock-down suppressed baicalein-induced TNF-α production in THP-1-derived macrophages. Phosphoinositide 3-kinase (PI3k) γ has been reported as a key molecule in macrophage polarization, and inhibition of PI3Kγ activates the NF-κB-related inflammatory signals. Our pharmacological network analysis predicted that PI3Kγ might be one of the major targets of baicalein. The results from the docking program and surface plasmon resonance (SPR) confirmed that baicalein displayed good binding activity to PI3Kγ. We further found that baicalein not only exhibited a direct inhibitory effect on the protein kinase activity of PI3Kγ, but also reduced the mRNA and protein expression of PI3Kγ, indicating that baicalein might be a novel PI3Kγ inhibitor. In summary, baicalein mediated the TAMs skewing to M1-TAMs, and then retarded tumor growth. These effects, at least in part, were linked to the PI3Kγ/NF-κB signaling.
Collapse
Affiliation(s)
- Shan He
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shangshang Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Suqing Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheng Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
136
|
Gao J, Zhang YN, Cui J, Zhang J, Ming Y, Hao Z, Xu H, Cheng N, Zhang D, Jin Y, Lin D, Lin J. A Polysaccharide From the Whole Plant of Plantago asiatica L. Enhances the Antitumor Activity of Dendritic Cell-Based Immunotherapy Against Breast Cancer. Front Pharmacol 2021; 12:678865. [PMID: 34504423 PMCID: PMC8421731 DOI: 10.3389/fphar.2021.678865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) that mediate T-cell immune responses. Breast cancer is one of the most commonly diagnosed diseases and its mortality rate is higher than any other cancer in both humans and canines. Plantain polysaccharide (PLP), extracted from the whole plant of Plantago asiatica L., could promote the maturation of DCs. In this research, we found that PLP could upregulate the maturation of DCs both in vitro and in vivo. PLP-activated DCs could stimulate lymphocytes’ proliferation and differentiate naive T cells into cytotoxic T cells. Tumor antigen-specific lymphocyte responses were enhanced by PLP and CIPp canine breast tumor cells lysate-pulsed DCs, and PLP and CIPp-cell-lysate jointly stimulated DCs cocultured with lymphocytes having the great cytotoxicity on CIPp cells. In the 4T1 murine breast tumor model, PLP could control the size of breast tumors and improve immunity by recruiting DCs, macrophages, and CD4+ and CD8+ T cells in the tumor microenvironment. These results indicated that PLP could achieve immunotherapeutic effects and improve immunity in the breast tumor model.
Collapse
Affiliation(s)
- Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi-Nan Zhang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Toronto, Canada
| | - Jingwen Cui
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiatong Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuexiang Ming
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihui Hao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huihao Xu
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nan Cheng
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
137
|
Yu S, Gao W, Zeng P, Chen C, Liu Z, Zhang Z, Liu J. Exploring the effect of Polyphyllin I on hepatitis B virus-related liver cancer through network pharmacology and in vitro experiments. Comb Chem High Throughput Screen 2021; 25:934-944. [PMID: 34397325 DOI: 10.2174/1386207324666210816141436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE To investigate the effect of Polyphyllin I (PPI) on HBV-related liver cancer through network pharmacology and in vitro experiments, and to explore its mechanism of action. MATERIALS AND METHODS Use bioinformatics software to predict the active ingredient target of PPI and the disease target of liver cancer, and perform active ingredient-disease target analysis. The results of network pharmacology through molecular docking and in vitro experiments can be further verified. The HepG2 receptor cells (HepG2. 2. 15) were transfected with HBV plasmid for observation, with the human liver cancer HepG2 being used as the control. RESULTS Bioinformatics analysis found that PPI had totally 161 protein targets, and the predicted target and liver cancer targets were combined to obtain 13 intersection targets. The results of molecular docking demonstrated that PPI had good affinity with STAT3, PTP1B, IL2, and BCL2L1. The results of the in vitro experiments indicated that the PPI inhibited cell proliferation and metastasis in a concentration-dependent manner (P<0.01). Compared with the vehicle group, the PPI group of 1.5, 3, and 6 μmol/L can promote the apoptosis of liver cancer to different degrees (P<0.01). CONCLUSION The present study revealed the mechanism of PPI against liver cancer through network pharmacology and in vitro experiments. Its mechanism of action is related to the inhibition of PPI on the proliferation of HBV-related liver cancer through promoting the apoptosis of liver cancer cells. Additionally, in vitro experiments have also verified that PPI can promote the apoptosis of HepG2 and HepG2.2.15 cells.
Collapse
Affiliation(s)
- Shuxian Yu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenhui Gao
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Puhua Zeng
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, China
| | - Chenglong Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhuo Liu
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, China
| | - Zhen Zhang
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiyong Liu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
138
|
Qi MM, He PZ, Zhang L, Dong WG. STAT3-mediated activation of mitochondrial pathway contributes to antitumor effect of dihydrotanshinone I in esophageal squamous cell carcinoma cells. World J Gastrointest Oncol 2021; 13:893-914. [PMID: 34457194 PMCID: PMC8371523 DOI: 10.4251/wjgo.v13.i8.893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies with a poor prognosis, and its treatment remains a great challenge. Dihydrotanshinone I (DHTS) has been reported to exert antitumor effect in many cancers. However, the role of DHTS in ESCC remains unclear.
AIM To investigate the antitumor effect of DHTS in ESCC and the underlying mechanisms.
METHODS CCK-8 assay and cell cycle analysis were used to detect proliferation and cell cycle in ESCC cells. Annexin V-PE/7-AAD double staining assay and Hoechst 33258 staining were used to detect apoptosis in ESCC cells. Western blot was used to detect the expression of proteins associated with the mitochondrial pathway. Immunofluorescence was used to detect the expression of phosphorylated STAT3 (pSTAT3) in DHTS-treated ESCC cells. ESCC cells with STAT3 knockdown and overexpression were constructed to verify the role of STAT3 in DHTS induced apoptosis. A xenograft tumor model in nude mice was used to evaluate the antitumor effect of DHTS in vivo.
RESULTS After treatment with DHTS, the proliferation of ESCC cells was inhibited in a dose- and time-dependent manner. Moreover, DHTS induced cell cycle arrest in the G0/1 phase. Annexin V-PE/7-AAD double staining assay and Hoechst 33258 staining revealed that DHTS induced obvious apoptosis in KYSE30 and Eca109 cells. At the molecular level, DHTS treatment reduced the expression of pSTAT3 and anti-apoptotic proteins, while increasing the expression of pro-apoptotic proteins in ESCC cells. STAT3 knockdown in ESCC cells markedly promoted the activation of the mitochondrial pathway while STAT3 overexpression blocked the activation of the mitochondrial pathway. Additionally, DHTS inhibited tumor cell proliferation and induced apoptosis in a xenograft tumor mouse model.
CONCLUSION DHTS exerts antitumor effect in ESCC via STAT3-mediated activation of the mitochondrial pathway. DHTS may be a novel therapeutic agent for ESCC.
Collapse
Affiliation(s)
- Ming-Ming Qi
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
- Central Laboratory of Renmin Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Peng-Zhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
- Central Laboratory of Renmin Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lan Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
- Central Laboratory of Renmin Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei-Guo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
139
|
Deng XX, Jiao YN, Hao HF, Xue D, Bai CC, Han SY. Taraxacum mongolicum extract inhibited malignant phenotype of triple-negative breast cancer cells in tumor-associated macrophages microenvironment through suppressing IL-10 / STAT3 / PD-L1 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:113978. [PMID: 33716082 DOI: 10.1016/j.jep.2021.113978] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Triple-negative breast cancer (TNBC) is the most aggressive and the worst prognosis breast cancer with limited treatment options. Taraxacum mongolicum (also called dandelion) is a traditional Chinese medicine has been used to treat mastitis, breast abscess, and hyperplasia of mammary glands since ancient times. In modern pharmacological research, dandelion has been proven with anti-breast cancer activities. We previously reported that dandelion extract could induce apoptosis in TNBC cells. However, its anti-tumor effects and mechanisms in the tumor microenvironment have not yet been elucidated. AIM OF THE STUDY Tumor-associated macrophages (TAMs) play an important role in regulating the interaction between tumor cells and the immune system. The present study aimed to investigate the effects and mechanisms of dandelion extract on TNBC cells under the microenvironment of TAMs, as well as its influence on the polarization of M2 macrophages. MATERIALS AND METHODS M2 macrophages were induced by phorbol-12-myristate 13-acetate (PMA) and interleukin 4 (IL-4), and verified by flow cytometry, quantitative RT-PCR (qRT-PCR), Western blotting, and ELISA. MDA-MB-231 and MDA-MB-468 TNBC cells were co-cultured with the supernatant of M2 macrophage which providing the TAMs microenvironment. The antitumor activity of dandelion extract in TNBC cells was evaluated by MTT assay. The invasive and migratory capacity of TNBC cells was measured by transwell assays. The expression of protein and gene was assessed by Western blotting and qRT-PCR, respectively. RESULTS TAMs microenvironment promoted the proliferation, migration, and invasion of TNBC cells. However, dandelion extract inhibited the malignant property of MDA-MB-231 and MDA-MB-468 cells induced by TAMs. Both of TAMs and IL-10 caused STAT3 activation and PD-L1 higher expression, the immunosuppressive molecules in TNBC cells, and this effect can be attenuated by IL-10 neutralizing antibody. Dandelion extract exerted inhibition on STAT3 and PD-L1 in TNBC cells under TAMs microenvironment. Furthermore, in M2 macrophages, dandelion extract remarkably promoted the expression of M1-like marker TNF-α, IL-8, and iNOS, but reduced M2-like marker IL-10, CD206, Arginase-1, and TGF-β. CONCLUSION Dandelion extract inhibited the proliferation, migration and invasion of TNBC cells in TAMs microenvironment through suppressing IL-10/STAT3/PD-L1 immunosuppressive signaling pathway. Furthermore, dandelion extract promoted the polarization of macrophages from M2 to M1 phenotype. Thus, our results indicated that dandelion may serve as a promising therapeutic strategy for TNBC by modulating tumor immune microenvironment.
Collapse
Affiliation(s)
- Xin-Xin Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China; Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, 750004, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Dong Xue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China.
| | - Chang-Cai Bai
- Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, 750004, PR China.
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China.
| |
Collapse
|
140
|
Liu J, Liu Z, Wang L, He H, Mu H, Sun W, Zhou Y, Liu Y, Ma W, Zhang W, Fu M, Fan Y, Song X. Bioactivity-guided isolation of immunomodulatory compounds from the fruits of Ligustrum lucidum. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114079. [PMID: 33798661 DOI: 10.1016/j.jep.2021.114079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of Ligustrum lucidum (FLL) W.T. Aiton (Oleaceae) is included in the 2020 "Chinese Pharmacopoeia" and is widely used in traditional Chinese medicine as a tonic. In recent years, FLL has been reported to improve immune function, but the bioactive compounds and mechanisms of FLL remain poorly characterized. AIM OF THE STUDY To identify FFL compounds with strong immune activity and explore their molecular mechanisms. MATERIALS AND METHODS The phagocytic activity of RAW264.7 macrophages and proliferation activity of spleen lymphocytes were used to guide the isolation of bioactive compounds from FLL extracts. Lymphocyte subpopulations, Ca2+ concentrations, and surface molecule expression were analyzed using flow cytometry. Cytokine secretion was examined using ELISA. FITC-OVA uptake was observed using fluorescence microscopy. NF-κB activation was analyzed using western blotting. RESULTS The extraction and isolation produced ten compounds, namely oleuropeinic acid, nuezhenide, isonuezhenide, salidroside, isoligustrosidic acid, ligulucidumosides A, 8(E)-nuezhenide, hydroxytyrosol, oleuropein, and p-hydroxyphenethyl 7-β-D-glucosideelenolic acid ester were isolated and identified from FLL-Bu-30%. Immunoactivity experiments showed that hydroxytyrosol had the strongest macrophage phagocytotic and lymphocyte proliferation-promoting activities. Further studies showed that hydroxytyrosol could significantly enhance lymphocyte subsets CD3+, CD4+/CD8+, and CD3+CD4-CD8-, promote IL-4, IFN-γ, and TNF-α secretion, and increase intracellular Ca2+ concentrations. In addition, the results from RAW264.7 macrophages showed that hydroxytyrosol increased FITC-OVA uptake, induced TNF-α and IL-1β production, upregulated MHC-II, CD80, and CD86 expression, promoted cytoplasmic IκB-α degradation, and increased nuclear NF-κB p65 levels. CONCLUSION Our study provides substantial evidence regarding the mechanism of the immunomodulatory effects of compounds from FLL.
Collapse
Affiliation(s)
- Jia Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Zengyuan Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Lili Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Hao He
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Hailong Mu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wenjing Sun
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yu Zhou
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| |
Collapse
|
141
|
Choi Y, Kwon O, Choi CM, Jeong MK. A Pilot Study of Whether the Cold-Heat Syndrome Type is Associated with Treatment Response and Immune Status in Patients with Non-Small Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9920469. [PMID: 34239594 PMCID: PMC8241512 DOI: 10.1155/2021/9920469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
The cold-heat syndrome type (ZHENG) is one of the essential elements of syndrome differentiation in East Asian Medicine. This pilot study aimed to explore the characteristics of non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs) based on the cold-heat syndrome type. Twenty NSCLC patients treated with ICI monotherapy were included in the study and completed the cold-heat syndrome differentiation questionnaire. Demographic and clinical characteristics of the included patients were obtained through electronic medical records. Additionally, blood samples of 10 patients were analyzed with cytokine level and immune profiling. Patients were divided into two groups of cold type (n = 9) and non-cold type (n = 11), according to the cold symptoms questionnaire's cutoff point. No significant difference between the two groups was observed in clinical response to ICIs (p=0.668). Progression-free survival (PFS) seemed to be longer in patients with non-cold type than cold type (p=0.332). In patients with adenocarcinoma, the non-cold type showed longer PFS than the cold type (p=0.036). Also, there were more patients with PD-L1 negative in the cold type compared to the non-cold type (p=0.050). In immune profiling, the proportion of effector memory CD8 T-cells was higher in patients with cold type than with non-cold type (p=0.015), and the proportion of terminal effector CD8 T-cells was lower in patients with cold type than with non-cold type (p=0.005). This pilot study has shown the potential for differences in prognosis and immune status between patients with cold and non-cold types. Hopefully, it provides essential information and insight into NSCLC patients' characteristics from the perspective of syndrome differentiation. Further large-scale observational studies and intervention studies are required.
Collapse
Affiliation(s)
- Yujin Choi
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Ojin Kwon
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Chang-Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Mi-Kyung Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
142
|
The Research on the Treatment of Metastatic Skin Cutaneous Melanoma by Huanglian Jiedu Decoction Based on the Analysis of Immune Infiltration Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9952060. [PMID: 34239596 PMCID: PMC8241506 DOI: 10.1155/2021/9952060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022]
Abstract
Objective To explore the potential mechanism of Huanglian Jiedu Decoction (HJD) treatment and prevention of metastatic Cutaneous Melanoma (CM) occurrence and metastasis based on network pharmacological methods and immune infiltration analysis. Methods The GEO database was used to obtain metastatic CM disease targets, the TCMSP database and the HERB database were used to obtain HJD action targets, core genes were screened by protein interaction network, and the potential mechanism of HJD in the treatment of metastatic CM was explored by enrichment analysis, prognostic analysis and immune infiltration analysis. Results HJD treatment of metastatic CM involved 60 targets, enrichment analysis showed that HJD treatment of metastatic CM involved Chemokine signaling pathway, NF-kappa B signaling pathway, and Fluid shear stress and atherosclerosis, etc. Prognostic analysis revealed that HJD had a certain ability to improve the prognosis of metastatic CM patients. Immune infiltration analysis showed that HJD could inhibit the immune cell infiltration of metastatic CM patients by acting on related targets. Conclusions Our study identified the potential mechanism of HJD in the treatment of metastatic CM through network pharmacology, and revealed the mechanism of HJD in the prevention of Skin Cutaneous Melanoma metastasis through immune infiltration analysis and prognostic analysis.
Collapse
|
143
|
Qiyusanlong Formula Induces Autophagy in Non-Small-Cell Lung Cancer Cells and Xenografts through the mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5575453. [PMID: 34093717 PMCID: PMC8164545 DOI: 10.1155/2021/5575453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Objective Qiyusanlong (QYSL) formula has been used in the clinic for more than 20 years and has been proved to have pronounced efficacy in the treatment of non-small-cell lung cancer (NSCLC). This work aims to evaluate the molecular mechanism of QYSL formula action on NSCLC, specifically in relation to autophagy induction. Methods In vitro, CCK-8 was used to detect the effect of QYSL serum on cell viability in A549 cells. In vivo, A549 cells were implanted subcutaneously in nude mice to establish a xenograft model. TUNEL staining was used to measure cell apoptosis and TEM to observe the autophagy-related morphological changes in vitro and in vivo. Western blotting, RT-qPCR, and immunofluorescence were used to measure autophagy-related proteins. In addition, rapamycin (an inhibitor of mTOR and inducer of autophagy) and MHY1485 (an activator of mTOR and inhibitor of autophagy) were used to determine whether QYSL-induced autophagy was regulated by the mTOR pathway. Results QYSL serum inhibited the cell viability of A549 cells in a concentration‐dependent manner. In vivo, the QYSL formula inhibited xenograft growth. The QYSL formula promoted apoptosis in A549 cells and induced autophagosome formation in vitro and in vivo. In addition, the QYSL formula downregulated the expression of mTOR and p62, while it upregulated the expression of ATG-7 and Beclin-1 and increased the LC3-II/LC3-I ratio. QYSL serum inhibited p-mTOR in a similar manner to rapamycin while reducing the activating effects of MHY1485 on p-mTOR. Conclusion The QYSL formula has anti-lung cancer effects and promotes autophagy through the mTOR signaling pathway.
Collapse
|
144
|
Jiang L, Zhang G, Li Y, Shi G, Li M. Potential Application of Plant-Based Functional Foods in the Development of Immune Boosters. Front Pharmacol 2021; 12:637782. [PMID: 33959009 PMCID: PMC8096308 DOI: 10.3389/fphar.2021.637782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Immune dysfunction, which is responsible for the development of human diseases including cancer, is caused by a variety of factors. Therefore, regulation of the factors influencing the immune response is a potentially effective strategy to counter diseases. Presently, several immune adjuvants are used in clinical practice to enhance the immune response and host defense ability; however, synthetic drugs can exert negative side effects. Thus, the search for natural products of plant origin as new leads for the development of potent and safe immune boosters is gaining considerable research interest. Plant-based functional foods have been shown to exert several immunomodulatory effects in humans; therefore, the application of new agents to enhance immunological and specific host defenses is a promising approach. In this comprehensive review, we have provided an up-to-date report on the use as well as the known and potential mechanisms of bioactive compounds obtained from plant-based functional foods as natural immune boosters. Plant-based bioactive compounds promote immunity through multiple mechanisms, including influencing the immune organs, cellular immunity, humoral immunity, nonspecific immunity, and immune-related signal transduction pathways. Enhancement of the immune response in a natural manner represents an excellent prospect for disease prevention and treatment and is worthy of further research and development using approaches of modern science and technology.
Collapse
Affiliation(s)
- Linlin Jiang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Guoqing Zhang
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China.,Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Ye Li
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
| | | | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China.,Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China.,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| |
Collapse
|
145
|
Liu J, Wang Y, Qiu Z, Lv G, Huang X, Lin H, Lin Z, Qu P. Impact of TCM on Tumor-Infiltrating Myeloid Precursors in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:635122. [PMID: 33748122 PMCID: PMC7969811 DOI: 10.3389/fcell.2021.635122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) is composed of tumor cells, blood/lymphatic vessels, the tumor stroma, and tumor-infiltrating myeloid precursors (TIMPs) as a sophisticated pathological system to provide the survival environment for tumor cells and facilitate tumor metastasis. In TME, TIMPs, mainly including tumor-associated macrophage (TAM), tumor-associated dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs), play important roles in repressing the antitumor activity of T cell or other immune cells. Therefore, targeting those cells would be one novel efficient method to retard cancer progression. Numerous studies have shown that traditional Chinese medicine (TCM) has made extensive research in tumor immunotherapy. In the review, we demonstrate that Chinese herbal medicine (CHM) and its components induce tumor cell apoptosis, directly inhibiting tumor growth and invasion. Further, we discuss that TCM regulates TME to promote effective antitumor immune response, downregulates the numbers and function of TAMs/MDSCs, and enhances the antigen presentation ability of mature DCs. We also review the therapeutic effects of TCM herbs and their ingredients on TIMPs in TME and systemically analyze the regulatory mechanisms of TCM on those cells to have a deeper understanding of TCM in tumor immunotherapy. Those investigations on TCM may provide novel ideas for cancer treatment.
Collapse
Affiliation(s)
- Jinlong Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuchen Wang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Guangfu Lv
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaowei Huang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - He Lin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Lin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Qu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
146
|
Eo HJ, Shin H, Song JH, Park GH. Immuno-enhancing effects of fruit of Actinidia polygama in macrophages. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1982868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Hyun Ji Eo
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Republic of Korea
| | - Hanna Shin
- Special Forest Resources Division, National Institute of Forest Science, Suwon, Republic of Korea
| | - Jeong Ho Song
- Research planning and coordination Division, National Institute of Forest Science, Seoul, Republic of Korea
| | - Gwang Hun Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Republic of Korea
| |
Collapse
|
147
|
Fu X, Zhang Y, Chang L, Hui D, Jia R, Liu N, Zhang H, Han G, Han Z, Li Y, Liu H, Zhu H, Li Q. The JPJDF has Synergistic Effect with Fluoropyrimidine in the Maintenance Therapy for Metastatic Colorectal Cancer. Recent Pat Anticancer Drug Discov 2020; 15:257-269. [PMID: 32679021 DOI: 10.2174/1574892815666200717141205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
Background:
Maintenance chemotherapeutic regimen with low toxicity is needed for
metastatic colorectal cancer. A recent patent has been issued on the spleen-strengthening and detoxification
prescription (JPJDF), a traditional Chinese herbal medicinal formula with anti-angiogenesis
effect. The clinical effect of JPJDF on the maintenance treatment of advanced colorectal cancer
has not been evaluated.
Objective:
This study aims to evaluate the effectiveness and safety of JPJDF in combination with
fluoropyrimidine compared to fluoropyrimidine alone as maintenance therapy for metastatic colorectal
cancer.
Methods:
We applied a prospective, randomized, double-blinded, single center clinical study design.
A total of 137 patients with advanced colorectal cancer were recruited. Patients received either
Fluoropyrimidine (Flu-treated group, n = 68), or Fluoropyrimidine plus JPJDF (Flu-F-treated
group, n = 69) as maintenance treatment after 6-cycle of FOLFOX4 or FOLFORI induction treatment.
The primary endpoints were Progression-Free Survival (PFS) and Overall Survival (OS).
The secondary endpoints were safety, Performance Status (PS) score and other symptoms.
Results:
The endpoint of disease progression was observed in 91.7% of patients. The PFS was 5.0
months and 3.0 months in the Flu-F-treated and Flu-treated groups, respectively. The OS was 15.0
months and 9.0 months in the Flu-F-treated and Flu-treated groups, respectively. Some common
symptoms, such as hypodynamia, anepithymia, dizziness and tinnitus and shortness of breath, were
improved in the Flu-F-treated group. There was no significant difference in the common adverse reactions
between the two groups.
Conclusion:
JPJDF and fluoropyrimidine have synergistic effect in the maintenance treatment of
mCRC.
Collapse
Affiliation(s)
- Xiaoling Fu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Shanghai 200437, China
| | - Yanbo Zhang
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Lisheng Chang
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Dengcheng Hui
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Ru Jia
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Ningning Liu
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Huayue Zhang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Shanghai 200437, China
| | - Gang Han
- Department of Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Zhifen Han
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Yuan Li
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Shanghai 200437, China
| | - Hui Liu
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Huirong Zhu
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Qi Li
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
148
|
Li W, Xiao Y. Synthesis and in vitro antiproliferative activities of lupanol derivatives towards human esophageal squamous carcinoma cells. Nat Prod Res 2020; 36:896-900. [PMID: 33155483 DOI: 10.1080/14786419.2020.1844687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A series of lupanol derivatives were synthesized and evaluated in vitro for their inhibitory activities against three human esophageal squamous carcinoma cells lines, Eca-109, TE-1 and EC-9706. Among lupanol derivatives, seven were new compounds, and lupanol cinnamate analogues 5 and 6, hydrazone analogues 9 and 10 presented high activities towards all the tested tumour cells, even higher activities than those of doxorubicine.
Collapse
Affiliation(s)
- Weijie Li
- Department of Applied Chemistry, School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou, P.R. China
| | - Yeyu Xiao
- Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, P.R. China
| |
Collapse
|
149
|
Hu Y, Pan X, Nie M, Liu Y, Zou X, Liu S, Liu Q, Wang R, Zhang L. A clinical study of Yiqi Huayu Jiedu decoction reducing the risk of postoperative gastric cancer recurrence and metastasis: Study protocol for a randomized controlled trail. Medicine (Baltimore) 2020; 99:e21775. [PMID: 32872077 PMCID: PMC7437732 DOI: 10.1097/md.0000000000021775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer is a common gastrointestinal tumor, seriously threatening human health. Radical surgery is the preferred treatment for gastric cancer. However, due to the late diagnosis and postoperative recurrence and metastasis, the prognosis is dismal. In China, traditional Chinese medicine (TCM) has been used to treat gastric cancer for many years. The purpose of this study is to explore the efficacy and safety of Yiqi Huayu Jiedu decoction in the treatment of postoperative gastric caner. METHODS/DESIGN 226 eligibility patients altogether will be randomly allocated to the treatment group and the control group at a ratio of 1:1. After enrollment, every patients will obtain 6 months of treatment, as well as 2 years of follow-up. At the end of this study, primary outcomes including 1-year progression-free survival rate, 2-year progression-free survival rate and disease-free survival, secondary outcomes containing tumor markers, TCM syndrome points, quality of life scale, imageological examination and the safety indicators will be assessed. DISCUSSION This study will provide the evidence-based evidence for the efficacy of Yiqi Huayu Jiedu decoction reducing the risk of postoperative gastric cancer recurrence and metastasis, which will be beneficial to form the therapeutic regimen in postoperative gastric cancer with integrated TCM and Western medicine. TRAIL REGISTRATION ChiCTR2000032802.
Collapse
Affiliation(s)
- Yue Hu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
| | - Xiaoting Pan
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengjun Nie
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuanjie Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xi Zou
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
| | - Shenlin Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
| | | | - Ruiping Wang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
| | - Li Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
| |
Collapse
|
150
|
Xiong J, Jiang B, Luo Y, Zou J, Gao X, Xu D, Du Y, Hao L. Multifunctional Nanoparticles Encapsulating Astragalus Polysaccharide and Gold Nanorods in Combination with Focused Ultrasound for the Treatment of Breast Cancer. Int J Nanomedicine 2020; 15:4151-4169. [PMID: 32606670 PMCID: PMC7305853 DOI: 10.2147/ijn.s246447] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose Focused ultrasound (FUS) is a noninvasive method to produce thermal and mechanical destruction along with an immune-stimulatory effect against cancer. However, FUS ablation alone appears insufficient to generate consistent antitumor immunity. In this study, a multifunctional nanoparticle was designed to boost FUS-induced immune effects and achieve systemic, long-lasting antitumor immunity, along with imaging and thermal enhancement. Materials and Methods PEGylated PLGA nanoparticles encapsulating astragalus polysaccharides (APS) and gold nanorods (AuNRs) were constructed by a simple double emulsion method, characterized, and tested for cytotoxicity. The abilities of PA imaging and thermal-synergetic ablation efficiency were analyzed in vitro and in vivo. The immune-synergistic effect on dendritic cell (DC) differentiation in vitro and the immune response in vivo were also evaluated. Results The obtained APS/AuNR/PLGA-PEG nanoparticles have an average diameter of 255.00±0.1717 nm and an APS-loading efficiency of 54.89±2.07%, demonstrating their PA imaging capability and high biocompatibility both in vitro and in vivo. In addition, the as-prepared nanoparticles achieved a higher necrosis cell rate and induced apoptosis rate in an in vitro cell suspension assay, greater necrosis area and decreased energy efficiency factor (EEF) in an in vivo rabbit liver assay, and remarkable thermal-synergic performance. In particular, the nanoparticles upregulated the expression of MHC-II, CD80 and CD86 on cocultured DCs in vitro, followed by declining phagocytic function and enhanced interleukin (IL)-12 and interferon (INF)-γ production. Furthermore, they boosted the production of tumor necrosis factor (TNF)-α, IFN-γ, IL-4, IL-10, and IgG1 (P< 0.001) but not IgG2a. Immune promotion peaked on day 3 after FUS in vivo. Conclusion The multifunctional APS/AuNR/PLGA-PEG nanoparticles can serve as an excellent synergistic agent for FUS therapy, facilitating real-time imaging, promoting thermal ablation effects, and boosting FUS-induced immune effects, which have the potential to be used for further clinical FUS treatment.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Binglei Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yong Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuan Gao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Die Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yan Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Ultrasonography Department, The Fourth People's Hospital of Chongqing, Central Hospital of Chongqing University, Chongqing 400014, People's Republic of China
| | - Lan Hao
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|