101
|
Verma MS, Chandra M. Second harmonic generation-based nonlinear plasmonic RI-sensing in solution: the pivotal role of the particle size. Phys Chem Chem Phys 2021; 23:25565-25571. [PMID: 34782895 DOI: 10.1039/d1cp04546f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we demonstrate the utility of the second harmonic generation (SHG) for refractometric sensing in the solution phase. We employ an aqueous colloid of gold nanorods as our sensors, and modulation in their SHG with the surrounding refractive index (RI) is mirrored using second-harmonic light scattering (SHLS). A limit of detection (LOD) as low as 9 × 10-4 RIU is achieved. The RI sensitivity of our SHLS-based approach is two orders of magnitude higher than that obtained using linear Rayleigh scattering. Most importantly, we show that the particle size plays a crucial role in controlling the nonlinear plasmonic sensing performance of gold nanorods.
Collapse
Affiliation(s)
- Mrigank Singh Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
102
|
Shao Y, Zhou H, Wu Q, Xiong Y, Wang J, Ding Y. Recent advances in enzyme-enhanced immunosensors. Biotechnol Adv 2021; 53:107867. [PMID: 34774928 DOI: 10.1016/j.biotechadv.2021.107867] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Among the products for rapid detection in different fields, enzyme-based immunosensors have received considerable attention. Recently, great efforts have been devoted to enhancing the output signals of enzymes through different strategies that can significantly improve the sensitivity of enzyme-based immunosensors for the need of practical applications. In this manuscript, the significance of enzyme-based signal transduction patterns in immunoassay and the central role of enzymes in achieving precise control of reaction systems are systematically described. In view of the rapid development of this field, we classify these strategies based on the combination of immune recognition and enzyme amplification into three categories, namely enzyme-based enhancement strategies, combination of the catalytic amplification of enzymes with other signal amplification methods, and substrate-based enhancement strategies. The current focus and future direction of enzyme-based immunoassays are also discussed. This article is not exhaustive, but focuses on the latest advances in different signal generation methods based on enzyme-initiated catalytic reactions and their applications in the detection field, which could provide an accessible introduction of enzyme-based immunosensors for the community with a view to further improving its application efficiency.
Collapse
Affiliation(s)
- Yanna Shao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
103
|
Zhao P, Zhang J, Zhang W, Zhao D, Ma Y, Hou C, Lu L, Huo D. Fabrication of a novel hydrogel-based microfluidic chip and its application in pathogen analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5240-5246. [PMID: 34704107 DOI: 10.1039/d1ay01522b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we develop a novel hydrogel-based microfluidic chip, which can serve as a multifunctional analytical platform. The chip was fabricated through a newly developed hydrogel material, which shows satisfactory properties such as fast forming speed and good hydrophilicity. The chip mainly consists of two independent functional parts: a chromogenic layer and a microfluidic layer. The specially-designed toothed structure in the microfluidic layer can promote surface interactions and realize efficient enrichment of the target. The chromogenic layer contains chromogenic media, which can achieve rapid target identification through a simple visual readout. As a proof of concept, the proposed chip is employed for pathogen analysis. It shows satisfactory performance for efficient enrichment of Escherichia coli (E. coli) O157:H7. On the other hand, the visual detection limit of the chip for E. coli O157:H7 can reach 10 cfu mL-1. It is believed that this work could provide a valuable reference for chip material exploitation and application.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Jiajin Zhang
- Emory College of Art and Sciences, Emory University, Atlanta, GA 30322, America
| | - Wei Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Dong Zhao
- Strong-flavor Baijiu Solid State Fermentation Key Laboratory of China Light Industry, Wuliangye Group Co., Ltd, Yibin, 644000, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Laichun Lu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
104
|
Weng X, Zhang C, Jiang H. Advances in microfluidic nanobiosensors for the detection of foodborne pathogens. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
105
|
Das D, Chen WL, Chuang HS. Rapid and Sensitive Pathogen Detection by DNA Amplification Using Janus Particle-Enabled Rotational Diffusometry. Anal Chem 2021; 93:13945-13951. [PMID: 34618421 DOI: 10.1021/acs.analchem.1c03209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid and sensitive detection of infectious bacteria is in all-time high demand to prevent the further spread of the infection and allow early medical intervention. In this study, we use rotational diffusometry (RD), a natural phenomenon characterized by Janus particles, to detect pathogens like Escherichia coli by performing amplification of specific genes. This biosensing method is used to measure the change in viscosity of the fluid in the presence and absence of DNA in the solution by capturing images of modified microbeads at 10 Hz by a CCD camera followed by cross-correlation algorithm analysis. Using rotational diffusometry, we have achieved E. coli detection with 50 pg/μL DNA with a measurement time of 30 s and a sample volume of 2 μL. This sensitivity was achieved with 30 thermal cycles for three different amplicons, viz., 84, 147, and 246 bp. Meanwhile, in the case of 10 and 20 thermal cycles, the detection sensitivity was achieved with 0.1 and 1 ng/μL DNA concentrations for a 246 bp amplicon. Compared with conventional PCR, this technique appears to improve the detection time, thereby reaching a turnaround time of less than 60 min. Other studies showed a successful identification of DNA amplification up to 10 thermal cycles with different sizes of amplicons. The effect of DNA concentration, amplicon size, and the number of thermal cycles on the detection of E. coli was examined in detail and represented in the form of three maps. These maps show the clear difference and the advantages of RD method in comparison with conventional PCR. This unconventional and rapid biosensing method can be used further for downstream application of nucleic acid amplification-based pathogen detection and early disease control.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Long Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
106
|
Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202100255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Muzahidul I. Anik
- Department of Chemical Engineering University of Rhode Island South Kingstown Rhode Island USA
| | - Niaz Mahmud
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| |
Collapse
|
107
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
108
|
Marin M, Nikolic MV, Vidic J. Rapid point-of-need detection of bacteria and their toxins in food using gold nanoparticles. Compr Rev Food Sci Food Saf 2021; 20:5880-5900. [PMID: 34596343 DOI: 10.1111/1541-4337.12839] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Biosensors need to meet the rising food industry demand for sensitive, selective, safe, and fast food safety quality control. Disposable colorimetric sensors based on gold nanoparticles (AuNPs) and localized surface plasmon resonance are low-cost and easy-to-perform devices intended for rapid point-of-need measurements. Recent studies demonstrate various facile and versatile AuNPs-based analytical platforms for the detection of bacteria and their toxins in milk, meat, and other foods. In this review, we introduce the general characteristics and mechanisms of AuNPs calorimetric biosensors, and highlight optimizations needed to strengthen and improve the quality of devices for their application in food matrices.
Collapse
Affiliation(s)
- Marco Marin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| |
Collapse
|
109
|
Huang Y, Su Z, Li W, Ren J. Recent Progresses on Biosensors for Escherichia coli Detection. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02129-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
110
|
Nanomaterials meet microfluidics: Improved analytical methods and high-throughput synthetic approaches. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
111
|
Xue L, Jin N, Guo R, Wang S, Qi W, Liu Y, Li Y, Lin J. Microfluidic Colorimetric Biosensors Based on MnO 2 Nanozymes and Convergence-Divergence Spiral Micromixers for Rapid and Sensitive Detection of Salmonella. ACS Sens 2021; 6:2883-2892. [PMID: 34237939 DOI: 10.1021/acssensors.1c00292] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In-field screening of foodborne pathogens plays an important role in ensuring food safety. Thus, a microfluidic biosensor was developed for rapid and sensitive detection of Salmonella using manganese dioxide nanoflowers (MnO2 NFs) for amplifying the biological signal, a microfluidic chip with a convergence-divergence spiral micromixer for performing automatic operations, and a smartphone app with a saturation calculation algorithm for processing the image. First, immune magnetic nanoparticles (MNPs), the sample, and immune MnO2 NFs were fully mixed and sufficiently incubated in the spiral micromixer to form MNP-bacteria-MnO2 sandwich complexes, which were magnetically captured in a separation chamber in the microfluidic chip. Then, a 3,3',5,5'-tetramethylbenzidine (TMB) substrate was injected and catalyzed by a MnO2 NF nanomimetic enzyme on the complexes, resulting in the production of yellow catalysate. Finally, the catalysate was transferred into a detection chamber and its image was measured and processed using the smartphone app to determine the number of bacteria. This biosensor was able to detect Salmonella from 4.4 × 101 to 4.4 × 106 CFU/mL in 45 min with a detection limit of 44 CFU/mL, and has the potential to provide a promising platform for on-site detection of foodborne bacteria.
Collapse
Affiliation(s)
- Li Xue
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Nana Jin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Ruya Guo
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Wuzhen Qi
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Yuanjie Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jianhan Lin
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
112
|
Maldonado-Ortega DA, Navarro-Tovar G, Martínez-Castañón G, Gonzalez C. Effect of gold nanoparticles (AuNPs) on isolated rat tracheal segments. Toxicol Rep 2021; 8:1412-1418. [PMID: 34345594 PMCID: PMC8319458 DOI: 10.1016/j.toxrep.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
AuNPs at 100 μg/mL induce a contractile effect on isolated trachea rings of female and male rats. Nitric oxide (NO) is a potential mediator of the AuNPs actions upon the smooth muscle of isolated rat tracheal rings. Formation of AuNPs in physiological solution in controls with HAuCl4 trigger similar contractile effects than AuNPs.
The AuNPs have been used in biomedicine as therapeutic tools for cancer. However, its role in the context of respiratory physiology has been little studied. This study aimed to determine the impact of AuNPs on respiratory smooth muscle tone, using a model of isolated tracheal rings from female and male rats precontracted with acetylcholine (ACh). AuNPs exerted a contractile effect only in the concentration of 100 ug/ml. This contractile effect was not modified by gender. The possible mediator +could be nitric oxide (NO), measured in a physiological solution containing the tracheal rings treated with different concentrations of AuNPs. The results obtained in this study show that the AuNPs are bio-inert in a concentration range of 0.1−10 μg/mL; however, 100 μg/mL could trigger airway hyperresponsiveness. Similar effects were obtained in isolated trachea rings treated with 100 μg/mL HAuCl4. An evaluation of HAuCl4 in physiological buffer at various HEPES concentrations (0–20 mM) showed the formation of AuNPs that could explain the contractile effect on the tracheal smooth muscle.
Collapse
Affiliation(s)
- Daniel Alberto Maldonado-Ortega
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico
| | - Gabriela Navarro-Tovar
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico.,Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosi, Sierra Leona 550, Lomas de San Luis, 78210, San Luis Potosi, SLP, Mexico.,Consejo Nacional de Ciencia y Tecnologia, Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, 03940, México City, Mexico
| | - Gabriel Martínez-Castañón
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, Parque Chapultepec 1570, 78210, San Luis Potosi, SLP, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico.,Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosi, Sierra Leona 550, Lomas de San Luis, 78210, San Luis Potosi, SLP, Mexico
| |
Collapse
|
113
|
Zhou B, Guo X, Yang N, Huang Z, Huang L, Fang Z, Zhang C, Li L, Yu C. Surface engineering strategies of gold nanomaterials and their applications in biomedicine and detection. J Mater Chem B 2021; 9:5583-5598. [PMID: 34161402 DOI: 10.1039/d1tb00181g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanomaterials have potential applications in biosensors and biomedicine due to their controllable synthesis steps, high biocompatibility, low toxicity and easy surface modification. However, there are still various limitations including low water solubility and stability, which greatly affect their applications. In addition, some synthetic methods are very complicated and costly. Therefore, huge efforts have been made to improve their properties. This review mainly introduces the strategies for surface modification of gold nanomaterials, such as amines, biological small molecules and organic small molecules as well as the biological applications of these functionalized AuNPs. We aim to provide effective ideas for better functionalization of gold nanomaterials in the future.
Collapse
Affiliation(s)
- Bicong Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lihua Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhijie Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| |
Collapse
|
114
|
Shi Y, Ye P, Yang K, Meng J, Guo J, Pan Z, Bayin Q, Zhao W. Application of Microfluidics in Immunoassay: Recent Advancements. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2959843. [PMID: 34326976 PMCID: PMC8302407 DOI: 10.1155/2021/2959843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
In recent years, point-of-care testing has played an important role in immunoassay, biochemical analysis, and molecular diagnosis, especially in low-resource settings. Among various point-of-care-testing platforms, microfluidic chips have many outstanding advantages. Microfluidic chip applies the technology of miniaturizing conventional laboratory which enables the whole biochemical process including reagent loading, reaction, separation, and detection on the microchip. As a result, microfluidic platform has become a hotspot of research in the fields of food safety, health care, and environmental monitoring in the past few decades. Here, the state-of-the-art application of microfluidics in immunoassay in the past decade will be reviewed. According to different driving forces of fluid, microfluidic platform is divided into two parts: passive manipulation and active manipulation. In passive manipulation, we focus on the capillary-driven microfluidics, while in active manipulation, we introduce pressure microfluidics, centrifugal microfluidics, electric microfluidics, optofluidics, magnetic microfluidics, and digital microfluidics. Additionally, within the introduction of each platform, innovation of the methods used and their corresponding performance improvement will be discussed. Ultimately, the shortcomings of different platforms and approaches for improvement will be proposed.
Collapse
Affiliation(s)
- Yuxing Shi
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Ye
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kuojun Yang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jie Meng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhixiang Pan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiaoge Bayin
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
115
|
Sivakumar R, Lee NY. Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. CHEMOSPHERE 2021; 275:130096. [PMID: 33677270 DOI: 10.1016/j.chemosphere.2021.130096] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 05/14/2023]
Abstract
Emerging smartphone-based point-of-care tests (POCTs) are cost-effective, precise, and easy to implement in resource-limited areas. Thus, they are considered a potential alternative to conventional diagnostic testing. This review explores food safety and the detection of metal ions in environmental water based on unprecedented smartphone technology. Specifically, we provide an overview of various methods used for target analyte detection (antibiotics, enzymes, mycotoxins, pathogens, pesticides, small molecules, and metal ions), such as colorimetric, fluorescence, microscopic imaging, and electrochemical methods. This paper performs a comprehensive review of smartphone-based POCTs developed in the last three years (2018-2020) and evaluates their relative advantages and limitations. Moreover, we discuss the imperative role of new technology in the progress of POCTs. Sensor materials (metal nanoparticles, carbon dots, quantum dots, organic substrates, etc.) and detection techniques (paper-based, later flow assay, microfluidic platform, etc.) involved in POCTs based on smartphones, and the challenges faced by these techniques, are addressed.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
116
|
Chen X, Ning Y, Pan S, Liu B, Chang Y, Pang W, Duan X. Mixing during Trapping Enabled a Continuous-Flow Microfluidic Smartphone Immunoassay Using Acoustic Streaming. ACS Sens 2021; 6:2386-2394. [PMID: 34102847 DOI: 10.1021/acssensors.1c00602] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Smartphone-enabled microfluidic chemiluminescence immunoassay is a promising portable system for point-of-care (POC) biosensing applications. However, due to the rather faint emitted light in such a limited sample volume, it is still difficult to reach the clinically accepted range when the smartphone serves as a standalone detector. Besides, the multiple separation and washing steps during sample preparation hinder the immunoassay's applications for POC usage. Herein, we proposed a novel acoustic streaming tweezers-enabled microfluidic immunoassay, where the probe particles' purification, reaction, and sensing were simply achieved on the same chip at continuous-flow conditions. The dedicatedly designed high-speed microscale vortexes not only enable dynamic trapping and washing of the probe particles on-demand but also enhance the capture efficiency of the heterogeneous particle-based immunoassay through active mixing during trapping. The enriched probe particles and enhanced biomarker capture capability increase the local chemiluminescent light intensity and enable direct capture of the immunobinding signal by a regular smartphone camera. The system was tested for prostate-specific antigen (PSA) sensing both in buffer and serum, where a limit of detection of 0.2 ng/mL and a large dynamic response range from 0.3 to 10 ng/mL using only 10 μL of sample were achieved in a total assay time of less than 15 min. With the advantages of on-chip integration of sample preparation and detection and high sensing performance, the developed POC platform could be applied for many on-site diagnosis applications.
Collapse
Affiliation(s)
- Xian Chen
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yuan Ning
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shuting Pan
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bohua Liu
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Ye Chang
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
117
|
Hu Q, Wu Q, Huang F, Xu Z, Zhou L, Zhao S. Multicolor Coding Up-Conversion Nanoplatform for Rapid Screening of Multiple Foodborne Pathogens. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26782-26789. [PMID: 34077176 DOI: 10.1021/acsami.1c05522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Technologies for rapid screening of multiple foodborne pathogens have been urgently needed because of the complex food matrix and high outbreaks of foodborne diseases. In this study, multicolor coding up-conversion nanoparticles (UCNPs) were synthesized and applied for rapid and simultaneous detection of five kinds of foodborne pathogens. The multicolor coding UCNPs were obtained through doping different concentrations of a sensitizer (Yb3+) on the shell of the synthesized NaYF4:Yb3+, Tm3+ (20%/2%)@NaYF4:Yb3+, and Er3+ (x %/2%) core/shell nanocrystals. All the UCNPs could emit red and green luminescence simultaneously once excited with near-infrared wavelength (980 nm), and the ratio of red and green (R/G ratio) emission light intensity of each kind of UCNPs varied depending on the Yb3+ doping concentration. In addition, the magnetic nanoparticles (MNPs) modified with the monoclonal antibodies (mAbs) against the target bacteria were used to capture and separate the bacteria, resulting in obtaining the MNP-bacterium complexes. Different UCNPs with multicolor coding acted as signal probes were also modified with the mAbs to react with the MNP-bacterium complexes to form the MNP-bacterium-UCNP sandwich complexes. After the sandwich complexes were excited with a wavelength of 980 nm, the obtained R/G ratios and the green photoluminescence intensity (PL intensity) could be used to distinguish and quantitatively detect foodborne pathogens, respectively. This proposed nanoplatform could detect five foodborne pathogens simultaneously within 2 h with good sensitivity and specificity, showing great potential for multiplex detection of other targets in the fields of medical diagnosis and food security.
Collapse
Affiliation(s)
- Qiushi Hu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Qixiao Wu
- Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Fengchun Huang
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zheng Xu
- Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Lei Zhou
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Suling Zhao
- Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, P. R. China
| |
Collapse
|
118
|
Salva ML, Rocca M, Niemeyer CM, Delamarche E. Methods for immobilizing receptors in microfluidic devices: A review. MICRO AND NANO ENGINEERING 2021. [DOI: 10.1016/j.mne.2021.100085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
119
|
Yang J, Xiao X, Xia L, Li G, Shui L. Microfluidic Magnetic Analyte Delivery Technique for Separation, Enrichment, and Fluorescence Detection of Ultratrace Biomarkers. Anal Chem 2021; 93:8273-8280. [PMID: 34061492 DOI: 10.1021/acs.analchem.1c01130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A microfluidic magnetic analyte delivery (μMAD) technique was developed to realize sample preparation and ultrasensitive biomarker detection. A simply designed microfluidic device was employed to carry out this technique, including a poly(dimethylsiloxane)-glass hybrid microchip having four straight rectangular channels and a permanent magnet. In the μMAD process, functionalized magnetic beads (MBs) were used to recognize and isolate analytes from a complex sample matrix, deliver analytes into tiny microchannels, and preconcentrate analytes in the magnetic trapping/detection region for in situ fluorescence detection. In the feasibility study and sensitivity optimization, horseradish peroxidase-labeled MBs were used, and critical parameters for the signal amplification performance of μMAD were carefully evaluated. At optimized conditions, a sensitivity improvement of at least 2 orders of magnitude was achieved. As a proof of concept, μMAD was combined with the enzyme-linked immunosorbent assay (ELISA), while carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), and interleukin 6 (IL-6) were selected as model biomarkers. The limits of detection (LODs) of μMAD-ELISA were as low as 0.29 pg/mL for CEA, 0.047 pg/mL for PSA, and 0.021 pg/mL for IL-6, which corresponded to an over 200-fold reduction compared to their commercial ELISA results. Meanwhile, μMAD-ELISA revealed high selectivity and reproducibility. In clinical sample analysis, good accuracy was acquired for human serum analysis relative to commercial ELISA kits, and satisfied recoveries of 85.1-102% with RSDs of 1.7-9.8% for IL-6 and 84.7-113% with RSDs of 3.2-8.3% for interferon-γ were obtained. This ultrasensitive and easy operation technique provides a valuable approach for trace-level biomarker detection for practical applications.
Collapse
Affiliation(s)
- Jiani Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lingling Shui
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
120
|
Duan R, Fang X, Wang D. A Methylene Blue Assisted Electrochemical Sensor for Determination of Drug Resistance of Escherichia coli. Front Chem 2021; 9:689735. [PMID: 34136465 PMCID: PMC8201616 DOI: 10.3389/fchem.2021.689735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Due to the abuse of antibiotics in clinical, animal husbandry, and aquaculture, drug-resistant pathogens are produced, which poses a great threat to human and the public health. At present, a rapid and effective drug sensitivity test method is urgently needed to effectively control the spread of drug-resistant bacteria. Using methylene blue as a redox probe, the electrochemical signals of methylene blue in drug-resistant Escherichia coli strains were analyzed by a CV method. Graphene ink has been used for enhancing the electrochemical signal. Compared with the results of the traditional drug sensitivity test, we proposed a rapid electrochemical drug sensitivity test method which can effectively identify the drug sensitivity of Escherichia coli. The sensitivity of four E. coli isolates to ciprofloxacin, gentamicin, and ampicillin was tested by an electrochemical drug sensitivity test. The respiratory activity value %RA was used as an indicator of bacterial resistance by electrochemical method.
Collapse
Affiliation(s)
- Rongshuai Duan
- Department of Food and Drugs, Shandong Institute of Commerce and Technology, Jinan, China.,Qilu Medical University, Jinan, China
| | - Xiao Fang
- Department of Food and Drugs, Shandong Institute of Commerce and Technology, Jinan, China
| | - Dongliang Wang
- Department of Food and Drugs, Shandong Institute of Commerce and Technology, Jinan, China.,Dong-E E-Jiao Co. Ltd., Liaocheng, China
| |
Collapse
|
121
|
Yang T, Wang Z, Song Y, Yang X, Chen S, Fu S, Qin X, Zhang W, Man C, Jiang Y. A novel smartphone-based colorimetric aptasensor for on-site detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2021; 104:8506-8516. [PMID: 34053767 DOI: 10.3168/jds.2020-19905] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/16/2021] [Indexed: 01/25/2023]
Abstract
Effective testing tools for Escherichia coli O157:H7 can prevent outbreaks of foodborne illness. In this paper, a smartphone-based colorimetric aptasensor was developed using functionalized gold nanoparticles (GNP) and multi-walled carbon nanotubes (MWCNT) for monitoring E. coli O157:H7 in milk. The maximum absorption peak of GNP bonded with aptamer (Apt) generated evident transformation from 518 to 524 nm. The excess GNP-Apt was removed by functionalized MWCNT magnetized with carbonyl iron powder (CIP) and hybridized with a DNA probe, whereas the GNP-Apt immobilized on E. coli O157:H7 remained in the system. In the presence of a high-salt solution, the GNP-Apt that captured E. coli O157:H7 remained red, but the free GNP-Apt aggregated and appeared blue. The chromogenic results were analyzed by a smartphone-based colorimetric device that was fabricated using acrylic plates, a light-emitting diode, and a mobile power pack. To our knowledge, this was the first attempt to use a smartphone-based colorimetric aptasensor employing the capture of GNP-Apt coupled with separation of MWCNT@CIP probe to detect E. coli O157:H7. The aptasensor exhibited good reproducibility and no cross-reaction for other bacteria. A concentration of 8.43 × 103 cfu/mL of E. coli O157:H7 could be tested in pure culture, and 5.24 × 102 cfu/mL of E. coli O157:H7 could be detected in artificially contaminated milk after 1 h of incubation. Therefore, the smartphone-based colorimetric aptasensor was an efficient tool for the detection of E. coli O157:H7 in milk.
Collapse
Affiliation(s)
- Tao Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Zhenghui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Yang Song
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Sihan Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
122
|
Si P, Razmi N, Nur O, Solanki S, Pandey CM, Gupta RK, Malhotra BD, Willander M, de la Zerda A. Gold nanomaterials for optical biosensing and bioimaging. NANOSCALE ADVANCES 2021; 3:2679-2698. [PMID: 36134176 PMCID: PMC9418567 DOI: 10.1039/d0na00961j] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 05/03/2023]
Abstract
Gold nanoparticles (AuNPs) are highly compelling nanomaterials for biomedical studies due to their unique optical properties. By leveraging the versatile optical properties of different gold nanostructures, the performance of biosensing and biomedical imaging can be dramatically improved in terms of their sensitivity, specificity, speed, contrast, resolution and penetration depth. Here we review recent advances of optical biosensing and bioimaging techniques based on three major optical properties of AuNPs: surface plasmon resonance, surface enhanced Raman scattering and luminescence. We summarize the fabrication methods and optical properties of different types of AuNPs, highlight the emerging applications of these AuNPs for novel optical biosensors and biomedical imaging innovations, and discuss the future trends of AuNP-based optical biosensors and bioimaging as well as the challenges of implementing these techniques in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Peng Si
- Department of Structural Biology, Stanford University California 94305 USA
| | - Nasrin Razmi
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Omer Nur
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Shipra Solanki
- Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Chandra Mouli Pandey
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Magnus Willander
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University California 94305 USA
| |
Collapse
|
123
|
Zhu L, Zhao Y, Yao S, Xu M, Yin L, Zhai X, Teng X. A colorimetric aptasensor for the simple and rapid detection of human papillomavirus type 16 L1 proteins. Analyst 2021; 146:2712-2717. [PMID: 33688885 DOI: 10.1039/d1an00251a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, a novel colorimetric aptasensor was developed for the rapid detection and visual screening of HPV16 L1 proteins using gold nanoparticles (AuNPs) and an RNA aptamer against HPV16 L1 protein (APTHPV16 L1). The AuNP-APTHPV16 L1 conjugates could be aggregated by the addition of a salt in the presence of HPV16 L1 proteins at the ppb level. At the same time, the surface plasma resonance absorption peaks of AuNPs shifted to a short wavelength, and an observable change in color from red to blue occurred. The relative absorbance (Ablank - Asample/Ablank) at 520 nm exhibited a stable response to HPV16 L1 proteins over a concentration range from 9.6 to 201.6 ng mL-1. The visual detection limit of HPV16 L1 proteins was found to be 9.6 ng mL-1. Finally, the proposed colorimetric aptasensor was successfully applied for the rapid and effective detection of HPV16 L1 proteins in clinical samples and vaccine samples. The validity and reliability of the proposed colorimetric aptasensor were verified by the enzyme-linked immunosorbent assay method. The proposed colorimetric aptasensor provided a promising indicator for screening and quantitative detection of HPV16 L1 proteins in clinical samples.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Yu Zhao
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Shangchen Yao
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Mingzhe Xu
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Lihui Yin
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Xihai Zhai
- Institute of Plant Protection, Heilongjiang Academy of Agriculture Science, Harbin 150086, China
| | - Xu Teng
- AIE Institute, Guangzhou 510530, China.
| |
Collapse
|
124
|
Regenerable ZnO/GaAs Bulk Acoustic Wave Biosensor for Detection of Escherichia coli in "Complex" Biological Medium. BIOSENSORS-BASEL 2021; 11:bios11050145. [PMID: 34067116 PMCID: PMC8151011 DOI: 10.3390/bios11050145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
A regenerable bulk acoustic wave (BAW) biosensor is developed for the rapid, label-free and selective detection of Escherichia coli in liquid media. The geometry of the biosensor consists of a GaAs membrane coated with a thin film of piezoelectric ZnO on its top surface. A pair of electrodes deposited on the ZnO film allows the generation of BAWs by lateral field excitation. The back surface of the membrane is functionalized with alkanethiol self-assembled monolayers and antibodies against E. coli. The antibody immobilization was investigated as a function of the concentration of antibody suspensions, their pH and incubation time, designed to optimize the immunocapture of bacteria. The performance of the biosensor was evaluated by detection tests in different environments for bacterial suspensions ranging between 103 and 108 CFU/mL. A linear dependence between the frequency response and the logarithm of E. coli concentration was observed for suspensions ranging between 103 and 107 CFU/mL, with the limit of detection of the biosensor estimated at 103 CFU/mL. The 5-fold regeneration and excellent selectivity towards E. coli detected at 104 CFU/mL in a suspension tinted with Bacillus subtilis at 106 CFU/mL illustrate the biosensor potential for the attractive operation in complex biological media.
Collapse
|
125
|
Tang J, Cao X, Qiu G, deMello A, Wang J. Optical-Switch-Enabled Microfluidics for Sensitive Multichannel Colorimetric Analysis. Anal Chem 2021; 93:6784-6791. [PMID: 33877822 DOI: 10.1021/acs.analchem.1c00674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The implementation of colorimetric analysis within microfluidic environments engenders significant benefits with respect to reduced sample and reagent consumption, system miniaturization, and real-time measurement of flowing samples. That said, conventional approaches to colorimetric analysis within microfluidic channels are hampered by short optical pathlengths and single-channel configurations, which lead to poor detection sensitivities and low analytical throughputs. Although the use of multiplexed light source/photodetector modules allows for multichannel analysis, such configurations significantly increase both instrument complexity and cost. To address these issues, we present a four-channel colorimetric measurement scheme within an optical-switch-enabled microfluidic chip (OSEMC) fabricated by two-photon stereolithography. The integration of optical switches enables sequential signal readout from each detection channel, and thus, only a single light source and a photodetector are required for operation. Optical switches can be controlled in a bespoke manner by changing the medium in the switch channel between a "light-transmitting" fluid and a "light-blocking" fluid using pneumatic microvalves. Such optical switches are characterized by fast response times (approximately 200 ms), tunable switching frequencies (between 0.1 and 1.0 Hz studied), and excellent stability. Operational performance demonstrates both good sensitivity and reproducibility through the colorimetric analysis of nitrite and ammonium samples using four detection channels. Furthermore, the use of OSEMC for parallel and real-time analysis of flowing samples is investigated via characterization of the adsorption kinetics of tartrazine on activated charcoal and the catalytic reaction kinetics of horseradish peroxidase (HRP).
Collapse
Affiliation(s)
- Jiukai Tang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaobao Cao
- Institute of Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich 8093, Switzerland
| | - Guangyu Qiu
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Andrew deMello
- Institute of Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich 8093, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
126
|
Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021; 7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections are a major threat to human health, exacerbated by increasing antibiotic resistance. These infections can result in tremendous morbidity and mortality, emphasizing the need to identify and treat pathogenic bacteria quickly and effectively. Recent developments in detection methods have focused on electrochemical, optical, and mass-based biosensors. Advances in these systems include implementing multifunctional materials, microfluidic sampling, and portable data-processing to improve sensitivity, specificity, and ease of operation. Concurrently, advances in antibacterial treatment have largely focused on targeted and responsive delivery for both antibiotics and antibiotic alternatives. Antibiotic alternatives described here include repurposed drugs, antimicrobial peptides and polymers, nucleic acids, small molecules, living systems, and bacteriophages. Finally, closed-loop therapies are combining advances in the fields of both detection and treatment. This review provides a comprehensive summary of the current trends in detection and treatment systems for bacterial infections.
Collapse
Affiliation(s)
- Carly Deusenbery
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| | - Yingying Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
127
|
Ma J, Du M, Wang C, Xie X, Wang H, Zhang Q. Advances in airborne microorganisms detection using biosensors: A critical review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:47. [PMID: 33842019 PMCID: PMC8023783 DOI: 10.1007/s11783-021-1420-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
Humanity has been facing the threat of a variety of infectious diseases. Airborne microorganisms can cause airborne infectious diseases, which spread rapidly and extensively, causing huge losses to human society on a global scale. In recent years, the detection technology for airborne microorganisms has developed rapidly; it can be roughly divided into biochemical, immune, and molecular technologies. However, these technologies still have some shortcomings; they are time-consuming and have low sensitivity and poor stability. Most of them need to be used in the ideal environment of a laboratory, which limits their applications. A biosensor is a device that converts biological signals into detectable signals. As an interdisciplinary field, biosensors have successfully introduced a variety of technologies for bio-detection. Given their fast analysis speed, high sensitivity, good portability, strong specificity, and low cost, biosensors have been widely used in environmental monitoring, medical research, food and agricultural safety, military medicine and other fields. In recent years, the performance of biosensors has greatly improved, becoming a promising technology for airborne microorganism detection. This review introduces the detection principle of biosensors from the three aspects of component identification, energy conversion principle, and signal amplification. It also summarizes its research and application in airborne microorganism detection. The new progress and future development trend of the biosensor detection of airborne microorganisms are analyzed.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- National Bio-Protection Engineering Center, Tianjin, 300161 China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222 China
| | - Qian Zhang
- School of Mechanical Engineering and Safety Engineering, Institute of Particle Technology, University of Wuppertal, Wuppertal, D-42119 Germany
| |
Collapse
|
128
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
129
|
Du H, Wang X, Yang Q, Wu W. Quantum dot: Lightning invisible foodborne pathogens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
130
|
Wang X, Li J, Wang X, Tan Z, Chen R, Deng X, Wang Z. Low-Loss Broadband Transverse Electric Pass Hybrid Plasmonic Fiber Polarizers Using Metallic Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14718-14727. [PMID: 33728892 DOI: 10.1021/acsami.1c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metals were for decades perceived as devoid of interesting optical properties that could be harnessed for optical components and devices. However, with the development of accurate nanofabrication techniques and precise control over architectural parameters, metals can be structured and characterized on the nanoscale. Metallic plasmonic nanomaterials exhibit a number of unique structural and optical properties, which offer the potential for developing new types of plasmonic devices. Here, we demonstrate a low-loss broadband polarizer based on a hybrid plasmonic fiber structure using metals as polarization-selective absorption materials. The polarization mechanism, design, fabrication, and characteristics of the plasmonic polarizers are investigated theoretically, numerically, and experimentally. The theoretical analysis predicts that the polarization-selective absorption with insensitivity to wavelength enables hybrid plasmonic fibers to function as broadband polarizers. Numerical simulations give the comparison of the polarization-selective absorption of various metallic nanomaterials (Ag, Au, In, Al, Cr) and show that aluminum is regarded as the optimum absorption material for the plasmonic polarizer. Experimental results show that through precise control over geometrical parameters, this device is capable of offering a high polarization extinction ratio (PER) of over 40 dB and a low insertion loss (IL) of less than 1.3 dB in the wavelength region of 810.1-870.0 nm. Compared with commercial birefringent-crystal-fiber polarizers, the plasmonic fiber polarizer has a better PER and IL bandwidth. These merits, combined with a compact and robust configuration, enable the plasmonic polarizer to have great potential in a broad range of applications.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Jianwei Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Xingjun Wang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University, Beijing 100871, China
| | - Zhongwei Tan
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Ruixuan Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University, Beijing 100871, China
| | - Xinwei Deng
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Ziyu Wang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
131
|
Abstract
Over the past decades, microfluidic devices based on many advanced techniques have aroused widespread attention in the fields of chemical, biological, and analytical applications. Integration of microdevices with a variety of chip designs will facilitate promising functionality. Notably, the combination of microfluidics with functional nanomaterials may provide creative ideas to achieve rapid and sensitive detection of various biospecies. In this review, focused on the microfluids and microdevices in terms of their fabrication, integration, and functions, we summarize the up-to-date developments in microfluidics-based analysis of biospecies, where biomarkers, small molecules, cells, and pathogens as representative biospecies have been explored in-depth. The promising applications of microfluidic biosensors including clinical diagnosis, food safety control, and environmental monitoring are also discussed. This review aims to highlight the importance of microfluidics-based biosensors in achieving high throughput, highly sensitive, and low-cost analysis and to promote microfluidics toward a wider range of applications.
Collapse
Affiliation(s)
- Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Linlu Zhao
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Feifei Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
132
|
Man Y, Ban M, Li A, Jin X, Du Y, Pan L. A microfluidic colorimetric biosensor for in-field detection of Salmonella in fresh-cut vegetables using thiolated polystyrene microspheres, hose-based microvalve and smartphone imaging APP. Food Chem 2021; 354:129578. [PMID: 33756331 DOI: 10.1016/j.foodchem.2021.129578] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022]
Abstract
A microfluidic colorimetric biosensor was developed using thiolated polystyrene microspheres (SH-PSs) for aggregating of gold nanoparticles (AuNPs), a novel hose-based microvalve for controlling the flow direction, and a smartphone imaging APP for monitoring colorimetric signals. Aptamer-PS-cysteamine conjugates were used as detection probes and reacted with Salmonella in samples. Complementary DNA - magnetic nanoparticle (cDNA - MNP) conjugates were used as capture probes, reacted with the free aptamer-PS-cysteamine conjugates. AuNPs were aggregated on the surface of Salmonella-aptamer-PS-cysteamine conjugates, resulting in a visible color change in the detection chamber, which indicating different concentrations of Salmonella. The limit of detection was low to 6.0 × 101 cfu/mL. The microfluidic biosensor exhibited a good specificity. It was evaluated by analyzing salad samples spiked with Salmonella. The recoveries ranged from 91.68% to 113.76%, which indicated its potential application in real samples.
Collapse
Affiliation(s)
- Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Meijing Ban
- School of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Xinxin Jin
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Yuanfang Du
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
133
|
Jurinjak Tušek A, Šalić A, Valinger D, Jurina T, Benković M, Kljusurić JG, Zelić B. The power of microsystem technology in the food industry – Going small makes it better. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
134
|
Qindeel M, Barani M, Rahdar A, Arshad R, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Urinary Tract Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:546. [PMID: 33671511 PMCID: PMC7926703 DOI: 10.3390/nano11020546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
The diagnosis and treatment of urinary tract infections (UTIs) remain challenging due to the lack of convenient assessment techniques and to the resistance to conventional antimicrobial therapy, showing the need for novel approaches to address such problems. In this regard, nanotechnology has a strong potential for both the diagnosis and therapy of UTIs via controlled delivery of antimicrobials upon stable, effective and sustained drug release. On one side, nanoscience allowed the production of various nanomaterial-based evaluation tools as precise, effective, and rapid procedures for the identification of UTIs. On the other side, nanotechnology brought tremendous breakthroughs for the treatment of UTIs based on the use of metallic nanoparticles (NPs) for instance, owing to the antimicrobial properties of metals, or of surface-tailored nanocarriers, allowing to overcome multidrug-resistance and prevent biofilm formation via targeted drug delivery to desired sites of action and preventing the development of cytotoxic processes in healthy cells. The goal of the current study is therefore to present the newest developments for the diagnosis and treatment of UTIs based on nanotechnology procedures in relation to the currently available techniques.
Collapse
Affiliation(s)
- Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg. 37, D-66421 Homburg, Germany
| |
Collapse
|
135
|
Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci 2021; 22:2011. [PMID: 33670545 PMCID: PMC7921936 DOI: 10.3390/ijms22042011] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Microfluidics is a relatively newly emerged field based on the combined principles of physics, chemistry, biology, fluid dynamics, microelectronics, and material science. Various materials can be processed into miniaturized chips containing channels and chambers in the microscale range. A diverse repertoire of methods can be chosen to manufacture such platforms of desired size, shape, and geometry. Whether they are used alone or in combination with other devices, microfluidic chips can be employed in nanoparticle preparation, drug encapsulation, delivery, and targeting, cell analysis, diagnosis, and cell culture. This paper presents microfluidic technology in terms of the available platform materials and fabrication techniques, also focusing on the biomedical applications of these remarkable devices.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
136
|
FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens Bioelectron 2021; 178:113011. [PMID: 33517232 DOI: 10.1016/j.bios.2021.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
We review the challenges and opportunities for biosensor research in North America aimed to accelerate translational research. We call for platform approaches based on: i) tools that can support interoperability between food, environment and agriculture, ii) open-source tools for analytics, iii) algorithms used for data and information arbitrage, and iv) use-inspired sensor design. We summarize select mobile devices and phone-based biosensors that couple analytical systems with biosensors for improving decision support. Over 100 biosensors developed by labs in North America were analyzed, including lab-based and portable devices. The results of this literature review show that nearly one quarter of the manuscripts focused on fundamental platform development or material characterization. Among the biosensors analyzed for food (post-harvest) or environmental applications, most devices were based on optical transduction (whether a lab assay or portable device). Most biosensors for agricultural applications were based on electrochemical transduction and few utilized a mobile platform. Presently, the FEAST of biosensors has produced a wealth of opportunity but faces a famine of actionable information without a platform for analytics.
Collapse
|
137
|
Boutiette AL, Toothaker C, Corless B, Boukaftane C, Howell C. 3D printing direct to industrial roll-to-roll casting for fast prototyping of scalable microfluidic systems. PLoS One 2020; 15:e0244324. [PMID: 33370381 PMCID: PMC7769481 DOI: 10.1371/journal.pone.0244324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
Microfluidic technologies have enormous potential to offer breakthrough solutions across a wide range of applications. However, the rate of scale-up and commercialization of these technologies has lagged significantly behind promising breakthrough developments in the lab, due at least in part to the problems presented by transitioning from benchtop fabrication methods to mass-manufacturing. In this work, we develop and validate a method to create functional microfluidic prototype devices using 3D printed masters in an industrial-scale roll-to-roll continuous casting process. There were no significant difference in mixing performance between the roll-to-roll cast devices and the PDMS controls in fluidic mixing tests. Furthermore, the casting process provided information on the suitability of the prototype microfluidic patterns for scale-up. This work represents an important step in the realization of high-volume prototyping and manufacturing of microfluidic patterns for use across a broad range of applications.
Collapse
Affiliation(s)
- Amber L. Boutiette
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
| | - Cristoffer Toothaker
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
| | - Bailey Corless
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
| | | | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, United States of America
| |
Collapse
|
138
|
Huang F, Xue L, Qi W, Cai G, Liu Y, Lin J. An ultrasensitive impedance biosensor for Salmonella detection based on rotating high gradient magnetic separation and cascade reaction signal amplification. Biosens Bioelectron 2020; 176:112921. [PMID: 33383398 DOI: 10.1016/j.bios.2020.112921] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022]
Abstract
An impedance biosensor using rotary magnetic separation and cascade reaction was developed for rapid and ultrasensitive detection of Salmonella typhimurium. First, magnetic nanoparticles (MNPs) modified with anti-Salmonella monoclonal antibodies were injected into a capillary at the presence of a rotary high gradient magnetic field, which was rotated by a stepper motor. Then, a bacterial sample was injected into the capillary and the target bacteria were continuous-flow captured onto the MNPs. After organic-inorganic hybrid nanoflowers were prepared using manganese dioxide (MnO2), glucose oxidase (GOx) and anti-Salmonella polyclonal antibodies (pAbs), they were injected to label the bacteria, resulting in the formation of MNP-bacteria-nanoflower sandwich complexes. Finally, glucose (low conductivity) was injected and oxidized by GOx on the complexes to produce H2O2 (low conductivity) and gluconic acid (high conductivity), leading to impedance decrease. Besides, the produced H2O2 triggered a cascade reduction of MnO2 into Mn2+, leading to further impedance decrease. The impedance changes were measured using an interdigitated microelectrode and used to determine the concentration of target bacteria. This biosensor was able to detect Salmonella ranging from 101 to 106 CFU/mL in 2 h with a low detection limit of 101 CFU/mL and a mean recovery of 100.1% for the spiked chicken samples.
Collapse
Affiliation(s)
- Fengchun Huang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Li Xue
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Wuzhen Qi
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Gaozhe Cai
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuanjie Liu
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianhan Lin
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
139
|
Clemente A, Alba-Patiño A, Rojo-Molinero E, Russell SM, Borges M, Oliver A, de la Rica R. Rapid Detection of Pseudomonas aeruginosa Biofilms via Enzymatic Liquefaction of Respiratory Samples. ACS Sens 2020; 5:3956-3963. [PMID: 33232131 DOI: 10.1021/acssensors.0c01618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Respiratory infections caused by multi-drug-resistant Pseudomonas aeruginosa often yield poor outcomes if not detected right away. However, detecting this pathogen in respiratory samples with a rapid diagnostic test is challenging because the protective biofilms created by the pathogen are themselves surrounded by a high-viscosity sputum matrix. Here, we introduce a method for liquefying respiratory samples and disrupting bacterial biofilms on the spot within a minute. It relies on the generation of oxygen bubbles by bacterial catalase through the addition of hydrogen peroxide. When coupled with a mobile biosensor made of paper, the resulting diagnostic kit was able to detect P. aeruginosa infections in sputa from patients with excellent sensitivity and specificity within 8 min. The quick turnaround time along with few infrastructure requirements make this method ideal for the rapid screening of P. aeruginosa infections at the point of care.
Collapse
Affiliation(s)
- Antonio Clemente
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Alejandra Alba-Patiño
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Estrella Rojo-Molinero
- Servicio de Microbiología, Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Steven M. Russell
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| |
Collapse
|
140
|
Liao YH, Muthuramalingam K, Tung KH, Chuan HH, Liang KY, Hsu CP, Cheng CM. Portable Device for Quick Detection of Viable Bacteria in Water. MICROMACHINES 2020; 11:mi11121079. [PMID: 33291693 PMCID: PMC7761948 DOI: 10.3390/mi11121079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
(1) Background: Access to clean water is a very important factor for human life. However, pathogenic microorganisms in drinking water often cause diseases, and convenient/inexpensive testing methods are urgently needed. (2) Methods: The reagent contains 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and phenazine methosulfate (PMS) and can react with succinate dehydrogenase within bacterial cell membranes to produce visible purple crystals. The colorimetric change of the reagent after reaction can be measured by a sensor (AS7262). (3) Results: Compared with traditional methods, our device is simple to operate and can provide rapid (i.e., 5 min) semi-quantitative results regarding the concentration of bacteria within a test sample. (4) Conclusions: This easy-to-use device, which employs MTT-PMS reagents, can be regarded as a potential and portable tool for rapid water quality determination.
Collapse
Affiliation(s)
- Yu-Hsiang Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.L.); (K.-H.T.)
| | - Karthickraj Muthuramalingam
- Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan;
| | - Kuo-Hao Tung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.L.); (K.-H.T.)
| | - Ho-Hsien Chuan
- Department of Surgery, National Taiwan University Hospital, Chu-Tung Branch, Hsinchu 300, Taiwan;
| | - Ko-Yuan Liang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan;
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chen-Peng Hsu
- Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan;
- Correspondence: (C.-P.H.); (C.-M.C.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.L.); (K.-H.T.)
- Correspondence: (C.-P.H.); (C.-M.C.)
| |
Collapse
|
141
|
Development of a Novel Sensor System Based on Magnetic Microspheres to Detect Cardiac Troponin T. INT J POLYM SCI 2020. [DOI: 10.1155/2020/8855550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute myocardial infarction (AMI) causes irreversible injury to cardiomyocytes in a short time and may result in various complications, severely threatening patient safety. Therefore, it is necessary to predict the possibility of AMI in the prophase. Prognostic detection of biomarkers that specifically reflect myocardial damage in a patient’s blood has become an essential mediating measure to prevent the serious occurrence of AMI. The present study is aimed at exploring a novel sensing system with high specificity and precision based on magnetic microspheres developed to detect cardiac troponin T (cTnT), which is the most specific diagnostic marker for AMI in cardiovascular diseases. Naive human cTnT protein in serum samples and antigens on functional magnetic microspheres will competitively bind with limited specific antibodies. After rapid removal of heterogeneous elements in the sera using a magnetic separator, fluorescein isothiocyanate-labeled immunoglobulin G is added to react with specific antibodies on the magnetic microspheres. Then, a flow cytometer is used to collect signals of different fluorescence intensities. The results show that the method is characterized by economy, high accuracy, and novelty. It can be used for the detection of cTnT in blood at 1.7–106.1 ng/mL, with a detection limit of 0.5 ng/mL. Thus, the proposed sensor improves the accuracy and efficiency of diagnosis before clinical deterioration of AMI.
Collapse
|
142
|
A multicolor colorimetric assay for sensitive detection of sulfide ions based on anti-etching of triangular gold nanoplates. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
143
|
Ouyang J, Pu S, Chen X, Yang C, Zhang X, Li D. A convenient and rapid method for detecting d-glucose in honey used smartphone. Food Chem 2020; 331:127348. [PMID: 32619908 DOI: 10.1016/j.foodchem.2020.127348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/20/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
Information concerning food composition, including information on its glucose content, is essential for modern food industry due to greater consumer awareness and expectations. In this work, the gene encoding d-glucose dehydrogenase (GDH) from Bacillus Natto was expressed in Escherichia coli BL21(DE3) firstly. Ni-IDA column was used for the purification of GDH. Then, the purified GDH was used to construct a color system with stable and effective measurement of concentration of d-glucose. The smart phone photographing and the software Microsoft Photoshop have been used in the system for determination of the color. The enzymatic analysis system can detect the concentration of d-glucose from 5 mM to 40 mM, and other various sugars has no interference to the system. The system was used to quantitatively detect the concentration of d-glucose in honey. The system can be used for convenient and rapid detection of d-glucose in food, especially for large numbers of samples.
Collapse
Affiliation(s)
- Jie Ouyang
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Shujin Pu
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Xing Chen
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Chengli Yang
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Xuan Zhang
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Dali Li
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China.
| |
Collapse
|
144
|
Abstract
Micro and nanoparticles are not only understood as components of materials but as small functional units too. Particles can be designed for the primary transduction of physical and chemical signals and, therefore, become a valuable component in sensing systems. Due to their small size, they are particularly interesting for sensing in microfluidic systems, in microarray arrangements and in miniaturized biotechnological systems and microreactors, in general. Here, an overview of the recent development in the preparation of micro and nanoparticles for sensing purposes in microfluidics and application of particles in various microfluidic devices is presented. The concept of sensor particles is particularly useful for combining a direct contact between cells, biomolecules and media with a contactless optical readout. In addition to the construction and synthesis of micro and nanoparticles with transducer functions, examples of chemical and biological applications are reported.
Collapse
|
145
|
Chen W, Yao Y, Chen T, Shen W, Tang S, Lee HK. Application of smartphone-based spectroscopy to biosample analysis: A review. Biosens Bioelectron 2020; 172:112788. [PMID: 33157407 DOI: 10.1016/j.bios.2020.112788] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
The emergence of the smartphones has brought extensive changes to our lifestyles, from communicating with one another, to shopping and enjoyment of entertainment, and from studying to functioning at the workplace (and in the field). At the same time, this portable device has also provided new possibilities in scientific research and applications. Based on the growing awareness of good health management, researchers have coupled health monitoring to smartphone sensing technologies. Along the way, there have been developed a variety of smartphone-based optical detection platforms for analyzing biological samples, including standalone smartphone units and integrated smartphone sensing systems. In this review, we outline the applications of smartphone-based optical sensors for biosamples. These applications focus mainly on three aspects: Microscopic imaging sensing, colorimetric sensing and luminescence sensing. We also discuss briefly some limitations of the current state of smartphone-based spectroscopy and present prospects of the future applicability of smartphone sensors.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Yao Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore; National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore, 117411, Singapore; Tropical Marine Science Institute, National University of Singapore, S2S Building, 18 Kent Ridge Road, Singapore, 119227, Singapore.
| |
Collapse
|
146
|
Kim S, Kim S. Bacterial pathogen detection by conventional culture‐based and recent alternative (polymerase chain reaction, isothermal amplification, enzyme linked immunosorbent assay, bacteriophage amplification, and gold nanoparticle aggregation) methods in food samples: A review. J Food Saf 2020. [DOI: 10.1111/jfs.12870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sang‐Oh Kim
- Department of Plant and Food Sciences Sangmyung University Cheonan Republic of Korea
| | - Sang‐Soon Kim
- Department of Food Engineering Dankook University Cheonan Republic of Korea
| |
Collapse
|
147
|
Chen X, Liu B, Pang W, Duan X. Smartphone-enabled Dynamic Chemiluminescence Biomarker Quantitation Using Acoustic Tweezers Approach .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5041-5044. [PMID: 33019119 DOI: 10.1109/embc44109.2020.9176259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Quantitation of protein biomarker featured with portability, rapidity, high sensitivity is critical for the point-of-care testing (POCT) application. Herein, a novel smartphone-enabled microfluidic chemiluminescence platform for the quantitation of prostate specific antigen (PSA) was proposed based on acoustic tweezers approach. The primary antibodies labeled polystyrene microparticles (Ab1-PSs), target samples, the horseradish peroxidase labeled secondary antibodies (Ab2-HRP) were injected into the microfluidics simultaneously. Under the actuation of Lamb Wave Resonator (LWR), they were dynamically trapped and concentrated in the acoustic streaming; meanwhile, the biomolecular binding was enhanced. After the injection of chemiluminescent substrate, the concentrated immuno-particles catalyzed hydrogen peroxide (H2O2) reaction so that the emitted blue light was directly captured by smartphone. Besides, the flow rate and the applied power of LWR were optimized for the signal amplification. The chemiluminescence immunoassay exhibited a dynamic linear range from 0.5 ng/mL to 10 ng/mL with a limit of detection of 0.1 ng/mL in PBS buffer. The portable immunosensor will be utilized for the quantitation of PSA in serum samples to demonstrate the clinical significance.Clinical Relevance-The smartphone-enabled detection platform realizes the quantitation of biomarker within 10 min, which reveals a valuable potential tool for the early diagnosis of various diseases, even in resource-limited regions.
Collapse
|
148
|
Campbell VR, Carson MS, Lao A, Maran K, Yang EJ, Kamei DT. Point-of-Need Diagnostics for Foodborne Pathogen Screening. SLAS Technol 2020; 26:55-79. [PMID: 33012245 DOI: 10.1177/2472630320962003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Foodborne illness is a major public health issue that results in millions of global infections annually. The burden of such illness sits mostly with developing countries, as access to advanced laboratory equipment and skilled lab technicians, as well as consistent power sources, is limited and expensive. Current gold standards in foodborne pathogen screening involve labor-intensive sample enrichment steps, pathogen isolation and purification, and costly readout machinery. Overall, time to detection can take multiple days, excluding the time it takes to ship samples to off-site laboratories. Efforts have been made to simplify the workflow of such tests by integrating multiple steps of foodborne pathogen screening procedures into a singular device, as well as implementing more point-of-need readout methods. In this review, we explore recent advancements in developing point-of-need devices for foodborne pathogen screening. We discuss the detection of surface markers, nucleic acids, and metabolic products using both paper-based and microfluidic devices, focusing primarily on developments that have been made between 2015 and mid-2020.
Collapse
Affiliation(s)
- Veronica R Campbell
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Mariam S Carson
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Amelia Lao
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Kajal Maran
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Eric J Yang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
149
|
Smartphone colorimetric assay of acid phosphatase based on a controlled iodine-mediated etching of gold nanorods. Anal Bioanal Chem 2020; 412:8051-8059. [PMID: 33001243 DOI: 10.1007/s00216-020-02954-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
A simple but efficient colorimetric assay was developed for the detection and quantification of acid phosphatase (ACP) using a smartphone. This strategy is based on target-controlled iodine-mediated etching of gold nanorods (AuNRs). Due to effective hydrolysis of the substrate pyrophosphate (PPi) by ACP, chelated Cu2+ with PPi was released, which promoted the redox reaction with an iodide ion (I-), leading to the formation of I3-. As the etching agent of AuNRs, I3- caused a blueshift of the localized surface plasmon resonance peak and, more importantly, an observable color change. The vivid colors were recorded with a smartphone camera and directly analyzed using an image-processing app. On the basis of the direct correlation between ACP concentration and the etching degree of AuNRs as well as color change, this smartphone nanocolorimetry technique showed a good linear response toward ACP over the range of 0-15.0 U/L, with a detection limit of 0.97 U/L. Using the standard addition method, the practical applicability of the proposed smartphone-based assay was successfully demonstrated by determining ACP in human serum samples, with results consistent with those obtained by UV-Vis spectrophotometry.
Collapse
|
150
|
Babaie P, Saadati A, Hasanzadeh M. Recent progress and challenges on the bioassay of pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2020; 109:548-571. [PMID: 32924292 DOI: 10.1002/jbm.b.34723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
The present review (containing 242 references) illustrates the importance and application of optical and electrochemical methods as well as their performance improvement using various methods for the detection of pathogenic bacteria. The application of advanced nanomaterials including hyper branched nanopolymers, carbon-based materials and silver, gold and so on. nanoparticles for biosensing of pathogenic bacteria was also investigated. In addition, a summary of the applications of nanoparticle-based electrochemical biosensors for the identification of pathogenic bacteria has been provided and their advantages, detriments and future development capabilities was argued. Therefore, the main focus in the present review is to investigate the role of nanomaterials in the development of biosensors for the detection of pathogenic bacteria. In addition, type of nanoparticles, analytes, methods of detection and injection, sensitivity, matrix and method of tagging are also argued in detail. As a result, we have collected electrochemical and optical biosensors designed to detect pathogenic bacteria, and argued outstanding features, research opportunities, potential and prospects for their development, according to recently published research articles.
Collapse
Affiliation(s)
- Parinaz Babaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|