101
|
Li J, Wang Q, Liang J, Li H, Guo S, Gamal El-Din M, Chen C. An enhanced disintegration using refinery spent caustic for anaerobic digestion of refinery waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112022. [PMID: 33515842 DOI: 10.1016/j.jenvman.2021.112022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Alkali-mediated disintegration is efficient to improve the anaerobic digestion of waste activated sludge (WAS). In the present study, the role and potential of refinery spent caustic (RSC), an alkaline hazardous waste, in enhancing the disintegration of refinery waste activated sludge (RWAS) was investigated. The high alkalinity and free ammonia of RSC destroyed the microbial cell wall and promoted the release of intracellular substances. The contents of N-acetylglucosamine and proteins in the disintegrated liquid greatly increased to 0.41 mg/L and 1147 mg/L, respectively, relative to no disintegration (0.04 mg/L and 3.3 mg/L). The methane production (66.1 mL/g-VS) from RWAS anaerobic digestion increased by 226% compared to without disintegration (20.3 mL/g-VS). This study provides a newly developed "wastes-treat-wastes" management approach of refinery wastewater using combined treatment processes for RWAS and RSC using a cost-efficient and environmentally friendly disintegration of RWAS.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiahao Liang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Huimin Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
102
|
Sun Q, Tam NFY, Han J, Yung-Kang Peng W, Zhu Z, Chen JL. A simple paper-based colorimetric analytical device for rapid detection of Enterococcus faecalis under the stress of chlorophenols. Talanta 2021; 225:121966. [PMID: 33592720 DOI: 10.1016/j.talanta.2020.121966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Bacteria detection and toxicity measurement are essential in many aspects. Becoming increasingly popular in recent years, paper-based analytical devices (PADs) have proven to be cost-effective, portable and eco-friendly with quantitative diagnostic results. In this work, by a straightforward soaking-drying method, a resazurin-deposited PAD has been developed for rapid bacteria detection and biotoxicity measurement. The colorimetric response on the PAD was generated from metabolic reduction of resazurin by Enterococcus faecalis, a facultative anaerobic bacterial strain. After recording and quantifying the colorimetric response with Hue value by a smartphone, the bioassay on PAD enables the detection of resazurin reduction kinetics difference among bacteria at various densities in 10 min. Thereby, the bioassay on PAD was applied to study the toxicity of two chlorophenols, i.e. pentachlorophenol (PCP) and 4-chlorophenol (4-CP), to E. faecalis. Compared to growth-based inhibition test, which takes 5 h, this assay shows higher efficiency, i.e. in 30 min, the biotoxicity difference between PCP and 4-CP can be identified.
Collapse
Affiliation(s)
- Qidi Sun
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nora F Y Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Science, School of Science and Technology, The Open University of Hong Kong, Good Shepherd Street, Ho Man Tin, Hong Kong, China
| | - Jie Han
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Good Shepherd Street, Ho Man Tin, Hong Kong, China
| | - Will Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jian Lin Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Science, School of Science and Technology, The Open University of Hong Kong, Good Shepherd Street, Ho Man Tin, Hong Kong, China.
| |
Collapse
|
103
|
Shakeri Yekta S, Liu T, Mendes Anacleto T, Axelsson Bjerg M, Šafarič L, Goux X, Karlsson A, Björn A, Schnürer A. Effluent solids recirculation to municipal sludge digesters enhances long-chain fatty acids degradation capacity. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:56. [PMID: 33663594 PMCID: PMC7934545 DOI: 10.1186/s13068-021-01913-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/21/2021] [Indexed: 06/05/2023]
Abstract
BACKGROUND Slow degradation kinetics of long-chain fatty acids (LCFA) and their accumulation in anaerobic digesters disrupt methanogenic activity and biogas production at high loads of waste lipids. In this study, we evaluated the effect of effluent solids recirculation on microbial LCFA (oleate) degradation capacity in continuous stirred-tank sludge digesters, with the overall aim of providing operating conditions for efficient co-digestion of waste lipids. Furthermore, the impacts of LCFA feeding frequency and sulfide on process performance and microbial community dynamics were investigated, as parameters that were previously shown to be influential on LCFA conversion to biogas. RESULTS Effluent solids recirculation to municipal sludge digesters enabled biogas production of up to 78% of the theoretical potential from 1.0 g oleate l-1 day-1. In digesters without effluent recirculation, comparable conversion efficiency could only be reached at oleate loading rates up to 0.5 g l-1 day-1. Pulse feeding of oleate (supplementation of 2.0 g oleate l-1 every second day instead of 1.0 g oleate l-1 every day) did not have a substantial impact on the degree of oleate conversion to biogas in the digesters that operated with effluent recirculation, while it marginally enhanced oleate conversion to biogas in the digesters without effluent recirculation. Next-generation sequencing of 16S rRNA gene amplicons of bacteria and archaea revealed that pulse feeding resulted in prevalence of fatty acid-degrading Smithella when effluent recirculation was applied, whereas Candidatus Cloacimonas prevailed after pulse feeding of oleate in the digesters without effluent recirculation. Combined oleate pulse feeding and elevated sulfide level contributed to increased relative abundance of LCFA-degrading Syntrophomonas and enhanced conversion efficiency of oleate, but only in the digesters without effluent recirculation. CONCLUSIONS Effluent solids recirculation improves microbial LCFA degradation capacity, providing possibilities for co-digestion of larger amounts of waste lipids with municipal sludge.
Collapse
Affiliation(s)
- Sepehr Shakeri Yekta
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden.
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden.
| | - Tong Liu
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007, Uppsala, Sweden
| | - Thuane Mendes Anacleto
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Mette Axelsson Bjerg
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Luka Šafarič
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Xavier Goux
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4422, Belvaux, Luxembourg
| | - Anna Karlsson
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
- Scandinavian Biogas Fuels AB, 11160, Stockholm, Sweden
| | - Annika Björn
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Anna Schnürer
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007, Uppsala, Sweden
| |
Collapse
|
104
|
Xu W, Long F, Zhao H, Zhang Y, Liang D, Wang L, Lesnik KL, Cao H, Zhang Y, Liu H. Performance prediction of ZVI-based anaerobic digestion reactor using machine learning algorithms. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:59-66. [PMID: 33360168 DOI: 10.1016/j.wasman.2020.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/29/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The use of zero-valent iron (ZVI) to enhance anaerobic digestion (AD) systems is widely advocated as it improves methane production and system stability. Accurate modeling of ZVI-based AD reactor is conducive to predicting methane production potential, optimizing operational strategy, and gathering reference information for industrial design in place of time-consuming and laborious tests. In this study, three machine learning (ML) algorithms, namely random forest (RF), extreme gradient boosting (XGBoost), and deep learning (DL), were evaluated for their feasibility of predicting the performance of ZVI-based AD reactors based on the operating parameters collected in 9 published articles. XGBoost demonstrated the highest accuracy in predicting total methane production, with a root mean squared error (RMSE) of 21.09, compared to 26.03 and 27.35 of RF and DL, respectively. The accuracy represented by mean absolute percentage error also showed the same trend, with 14.26%, 15.14% and 17.82% for XGBoost, RF and DL, respectively. Through the feature importance generated by XGBoost, the parameters of total solid of feedstock (TSf), sCOD, ZVI dosage and particle size were identified as the dominant parameters that affect the methane production, with feature importance weights of 0.339, 0.238, 0.158, and 0.116, respectively. The digestion time was further introduced into the above-established model to predict the cumulative methane production. With the expansion of training dataset, DL outperformed XGBoost and RF to show the lowest RMSEs of 11.83 and 5.82 in the control and ZVI-added reactors, respectively. This study demonstrates the potential of using ML algorithms to model ZVI-based AD reactors.
Collapse
Affiliation(s)
- Weichao Xu
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, United States; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Beijing Engineering Research Center of Process Pollution Control, National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fei Long
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, United States
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Dawei Liang
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, United States; Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing 102206, PR China
| | - Luguang Wang
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, United States
| | - Keaton Larson Lesnik
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, United States
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Hong Liu
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, United States.
| |
Collapse
|
105
|
Arun J, Gopinath KP, Sivaramakrishnan R, SundarRajan P, Malolan R, Pugazhendhi A. Technical insights into the production of green fuel from CO 2 sequestered algal biomass: A conceptual review on green energy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142636. [PMID: 33065504 DOI: 10.1016/j.scitotenv.2020.142636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Algae a promising energy reserve due to its adaptability, cheap source, sustainability and it's growth ability in wastewater with efficient sequestration of industrial carbon dioxide. This review summarizes the pathways available for biofuel production from carbon sequestered algae biomass. In this regard, this review focuses on microalgae and its cultivation in wastewater with CO2 sequestration. Conversion of carbon sequestered biomass into bio-fuels via thermo-chemical routes and its engine emission properties. Energy perspective of green gaseous biofuels in near future. This review revealed that algae was the pre-dominant CO2 sequester than terrestrial plants in an eco-friendly and economical way with simultaneous wastewater remediation. Hydrothermal liquefaction of algae biomass was the most preferred mode for biofuel generation than pyrolysis due to high moisture content. The algae based fuels exhibit less greenhouse gases emission and higher energy value. This review helps the researchers, environmentalists and industrialists to evaluate the impact of algae based bio-energy towards green energy and environment.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Center for Waste Management - 'International Research Centre', Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600 119, Tamil Nadu, India.
| | | | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - PanneerSelvam SundarRajan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Rajagopal Malolan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
106
|
Cai Y, Zheng Z, Wang X. Obstacles faced by methanogenic archaea originating from substrate-driven toxicants in anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123938. [PMID: 33264986 DOI: 10.1016/j.jhazmat.2020.123938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is used to treat waste and produce bioenergy. However, toxicants, which originate from the substrate, can inhibit or damage the digestion process. Methanogenic archaea (MA), which are the executor in the methanogenesis stage, are more sensitive than bacteria to these toxicants. This review discusses the effects of substrate-driven toxicants, namely, antibiotics, H2S and sulfate, heavy metals (HMs), long-chain fatty acids (LCFAs), and ammonia nitrogen, on the activity of MAs, methanogenic pathways, and the inter-genus succession of MAs. The adverse effects of these five toxicants on MA include effects on pH, damages to cell membranes, the prevention of protein synthesis, changes in hydrogen partial pressure, a reduction in the bioavailability of trace elements, and hindrance of mass transfer. These effects cause a reduction in MA activity and the succession of MAs and methanogenic pathways, which affect AD performance. Under the stress of these toxicants, succession occurs among HA (hydrogenotrophic methanogen), AA (acetoclastic methanogen), and MM (methylotrophic methanogen), especially HA gradually replaces AA as the dominant MA. Simultaneously, the dominant methanogenic pathway also changes from the aceticlastic pathway to other methanogenic pathways. A comprehensive understanding of the impact of toxicants on MA permits more specific targeting when developing strategies to mitigate or eliminate the effects of these toxicants.
Collapse
Affiliation(s)
- Yafan Cai
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China; Department of Biochemical conversion, Deutsches Biomassforschungszentrum gemeinnütziges GmbH, Torgauer Straße116, 04347 Leipzig, Germany
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
107
|
Improving the Anaerobic Digestion of Swine Manure through an Optimized Ammonia Treatment: Process Performance, Digestate and Techno-Economic Aspects. ENERGIES 2021. [DOI: 10.3390/en14030787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Swine manure mono-digestion results in relatively low methane productivity due to the low degradation rate of its solid fraction (manure fibers), and due to the high ammonia and water content. The aqueous ammonia soaking (AAS) pretreatment of manure fibers has been proposed for overcoming these limitations. In this study, continuous anaerobic digestion (AD) of manure mixed with optimally AAS-treated manure fibers was compared to the AD of manure mixed with untreated manure fibers. Due to lab-scale pumping restrictions, the ratio of AAS-optimally treated manure fibers to manure was only 1/3 on a total solids (TS) basis. However, the biogas productivity and methane yield were improved by 17% and 38%, respectively, also confirming the predictions from a simplified 1st order hydrolysis model based on batch experiments. Furthermore, an improved reduction efficiency of major organic components was observed for the digester processing AAS-treated manure fibers compared to the non-treated one (e.g., 42% increased reduction for cellulose fraction). A preliminary techno-economic analysis of the proposed process showed that mixing raw manure with AAS manure fibers in large-scale digesters could result in a 72% increase of revenue compared to the AD of manure mixed with untreated fibers and 135% increase compared to that of solely manure.
Collapse
|
108
|
Yin Y, Wang J. Mechanisms of enhanced hydrogen production from sewage sludge by ferrous ion: Insights into functional genes and metabolic pathways. BIORESOURCE TECHNOLOGY 2021; 321:124435. [PMID: 33257168 DOI: 10.1016/j.biortech.2020.124435] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Hydrogen production from sewage sludge was studied in the presence of Fe2+. The results showed that the highest cumulative hydrogen production of 26 mL/100 mL was achieved with 600 mg/L Fe2+ supplementation, which was 2 times of the control test. In depth analysis of organics in liquid phase revealed that Fe2+ addition promoted sludge disintegration and protein degradation during fermentation process. Functions prediction by PICRUSt analysis indicated the effect of Fe2+ on microbial metabolism and functional genes expression. The results showed that the expression of hydrogen-producing functions, like ferredoxin hydrogenase and formate dehydrogenase was activated by Fe2+ supplementation, while the hydrogen-consuming metabolism, like methane metabolism and homoacetogenic metabolism was inhibited. Furthermore, Fe2+ addition could stimulate organics utilization. This study explored the effect of Fe2+ on functional genes abundance, revealing the mechanisms of enhanced hydrogen production by Fe2+ from the perspective of microbial metabolism.
Collapse
Affiliation(s)
- Yanan Yin
- Tsinghua University -- Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Tsinghua University -- Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
109
|
Schneider C, Evangelio Oñoro A, Hélix-Nielsen C, Fotidis IA. Forward-osmosis anaerobic-membrane bioreactors for brewery wastewater remediation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
110
|
Dry Mesophilic Anaerobic Digestion of Separately Collected Organic Fraction of Municipal Solid Waste: Two-Year Experience in an Industrial-Scale Plant. Processes (Basel) 2021. [DOI: 10.3390/pr9020213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this paper, performance analysis over two years’ operation of an industrial anaerobic digestion (AD) plant of a separately collected organic fraction of municipal solid waste is presented. The continuous plug-flow AD plant is still regularly operating and it has been fully operational since September 2018. Since then, it has been supplied with 40,000 t/y of pretreated separately collected organic fraction of municipal solid waste from municipalities of the Calabria region in Southern Italy. The AD process is carried out in a mesophilic regime at 40 ± 0.5 °C, using a constant hydraulic retention time (HRT) of 22 days and a substrate with average total solids and average total volatile solids of 30.0% and 22.2%, respectively. In the last two years, the plant produced an average of 191 m3 and 860 m3 of biogas per tonne (t) of organic input material and of total volatile solids, respectively, with an average methane specific production of 508 m3/t (total volatile solids). The average CH4 percentage in the biogas was of 59.09%. The obtained results came out from the combination of high organic content of separately collected organic fraction of municipal solid waste, optimized pretreatment system and operating conditions adopted.
Collapse
|
111
|
Im S, Mostafa A, Kim DH. Use of citric acid for reducing CH 4 and H 2S emissions during storage of pig slurry and increasing biogas production: Lab- and pilot-scale test, and assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142080. [PMID: 32898812 DOI: 10.1016/j.scitotenv.2020.142080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
The use of sulfuric acid (SA) for reducing greenhouse gases (GHGs, mainly CH4) emissions in manure management encounters with problems related with safety issue and increased H2S emissions. In the present study, citric acid (CA) as an alternative to SA was assessed in the lab-scale experiment at various dosages (pH 5.0-7.0), and then confirmed in the pilot-scale tank (effective volume of 30 ton). During 35 d of pig slurry (PS) storage at 30 °C, it was found that the CA addition to initial pH down to 6.5 could lead negligible reduction, while 85-99% and 48-72% reduction of CH4 and H2S emissions were achieved at pH ≤ 6.0, respectively. The similar reduction performance was confirmed (control vs. pH 6.0) in the pilot-scale test, but, interestingly, two times higher CH4 emissions of 123.7 kg CO2 eq./ton PS was detected caused by the automatic temperature increase (≥35 °C). The pH of acidified PS did not exceed 6.5 during the whole storage period, while it was maintained 7.3-7.7 in the control. A continuous AD reactor fed with acidified PS exhibited a higher CH4 yield of 10.0 m3 CH4/ton PS, compared to the control (5.7 m3 CH4/ton PS), due to the preservation of organic matters and added CA. In overall, about 8.5 [(4.4, storage) + (4.1, biogas)] kg of CH4/ton PS was generated from raw PS and it was reduced to 7.8 [(0.7, storage) + (7.1, biogas)] kg of CH4/ton PS by CA-acidification. Despite the carbon footprint for manufacturing CA, it was calculated that GHG reduction of 107 kg CO2 eq./ton PS could be attained by CA-acidification. In terms of economic profit, it was estimated that 6.3 USD/ton PS can be gained by CA-acidification, while it was 2.4 USD/ton PS in case of control.
Collapse
Affiliation(s)
- Seongwon Im
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, Republic of Korea
| | - Alsayed Mostafa
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, Republic of Korea
| | - Dong-Hoon Kim
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
112
|
Singh A, Schnürer A, Westerholm M. Enrichment and description of novel bacteria performing syntrophic propionate oxidation at high ammonia level. Environ Microbiol 2021; 23:1620-1637. [PMID: 33400377 DOI: 10.1111/1462-2920.15388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/15/2020] [Accepted: 01/02/2021] [Indexed: 01/04/2023]
Abstract
Inefficient syntrophic propionate degradation causes severe operating disturbances and reduces biogas productivity in many high-ammonia anaerobic digesters, but propionate-degrading microorganisms in these systems remain unknown. Here, we identified candidate ammonia-tolerant syntrophic propionate-oxidising bacteria using propionate enrichment at high ammonia levels (0.7-0.8 g NH3 L-1 ) in continuously-fed reactors. We reconstructed 30 high-quality metagenome-assembled genomes (MAGs) from the propionate-fed reactors, which revealed two novel species from the families Peptococcaceae and Desulfobulbaceae as syntrophic propionate-oxidising candidates. Both MAGs possess genomic potential for the propionate oxidation and electron transfer required for syntrophic energy conservation and, similar to ammonia-tolerant acetate degrading syntrophs, both MAGs contain genes predicted to link to ammonia and pH tolerance. Based on relative abundance, a Peptococcaceae sp. appeared to be the main propionate degrader and has been given the provisional name "Candidatus Syntrophopropionicum ammoniitolerans". This bacterium was also found in high-ammonia biogas digesters, using quantitative PCR. Acetate was degraded by syntrophic acetate-oxidising bacteria and the hydrogenotrophic methanogenic community consisted of Methanoculleus bourgensis and a yet to be characterised Methanoculleus sp. This work provides knowledge of cooperating syntrophic species in high-ammonia systems and reveals that ammonia-tolerant syntrophic propionate-degrading populations share common features, but diverge genomically and taxonomically from known species.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| |
Collapse
|
113
|
Wang J, Hao X, Liu Z, Guo Z, Zhu L, Xiong B, Jiang D, Shen L, Li M, Kang B, Tang G, Bai L. Biochar improves heavy metal passivation during wet anaerobic digestion of pig manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:635-644. [PMID: 32816179 DOI: 10.1007/s11356-020-10474-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/10/2020] [Indexed: 05/22/2023]
Abstract
Anaerobic digestion (AD) is regarded as an effective treatment to stabilize organic materials and recycle the energy in pig manure. In this study, 0%, 3%, 5%, and 7% biochar (based on dry weight) were added to pig manure to investigate its influence on improving biogas production and reducing heavy metal bioavailability. The potential ecological risk of heavy metals (namely Mn, Zn, Cu, Ni, As, Cd, Pb, and Cr) in digestates was also assessed. Results show that the methane yield was significantly (P < 0.05) increased by 26.7%, 23.0%, and 26.4% following addition of 3%, 5%, and 7% biochar, respectively. Moreover, there was a significant change in the heavy metal speciation in amendment each group. The 5% biochar group showed the highest passivation rate of Ni, As, and Pb, while the highest passivation rate of Cd, Cr, Mn, and Zn was observed with 7% biochar. Although the anaerobic digestion process slightly increased the ecological risk of heavy metals, all tested digestates were still classified as a moderate risk. Results of this study can provide a reference for the treatment of heavy metal pollution in large- and medium-sized anaerobic digesters treating pig manure.
Collapse
Affiliation(s)
- Jun Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxia Hao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zile Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zili Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bangjie Xiong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dongmei Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingzhou Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
114
|
Letelier-Gordo CO, Mancini E, Pedersen PB, Angelidaki I, Fotidis IA. Saline fish wastewater in biogas plants - Biomethanation toxicity and safe use. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111233. [PMID: 32827897 DOI: 10.1016/j.jenvman.2020.111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/29/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Increasing marine land-based recirculating aquaculture systems (RAS) and stricter environmental regulations, pose new challenges to the aquaculture industry on how to treat and dispose saline fish wastewater. The fish wastewater could be incorporated into biogas reactors, but currently, the effects of salinity on the biomethanation process are poorly known. This study aimed to assess the toxicity of fish wastewater with different salinities on the biomethanation process and to propose optimum co-digestion scenarios for maximal methane potential and safe use in biogas plants. Results showed that, depending on salinity and organic content, it is possible to efficiently co-digest from 3.22 to 61.85% fish wastewater (v/v, wastewater/manure) and improve the maximum methane production rate from 2.72 to 61.85%, respectively compared to cow manure mono-digestion. Additionally, salinity was identified as the main inhibitor of biomethanation process with a half-maximal inhibitory concentration (IC50) of 4.37 g L-1, while sulphate reduction was identified as a secondary inhibitor.
Collapse
Affiliation(s)
- Carlos O Letelier-Gordo
- National Institute of Aquatic Resources, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, DK-9850, Hirtshals, Denmark
| | - Enrico Mancini
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark
| | - Per Bovbjerg Pedersen
- National Institute of Aquatic Resources, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, DK-9850, Hirtshals, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark
| | - Ioannis A Fotidis
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark; School of Civil Engineering Southeast University Nanjing, 210096, China.
| |
Collapse
|
115
|
Enhancing the Performance of Microbial Fuel Cell by Using Chloroform Pre-treated Mixed Anaerobic Sludge to Control Methanogenesis in Anodic Chamber. Appl Biochem Biotechnol 2020; 193:846-855. [PMID: 33196970 DOI: 10.1007/s12010-020-03458-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Formation of methane in the anodic chamber of a microbial fuel cell (MFC) indicates an energy inefficiency in electricity generation as the energy required for electrogenesis gets redirected to methanogenesis. The hypothesis of this research is that inhibition of methanogenesis in the mixed anaerobic anodic inoculum is associated with an enhanced activity of the electrogenic bacterial consortia. Hence, the primary objective of this investigation is to evaluate the ability of chloroform to inhibit the methanogenesis at different dosing to enhance the activity of electrogenic consortia in MFC. A higher methane inhibition and hence an enhanced performance of MFC was achieved when mixed anaerobic sludge, collected from septic tank, was used as inoculum after pre-treatment with 0.25% (v/v) chloroform dosing (MFC-0.25CF). The MFC-0.25CF attained a maximum power density of 8.51 W/m3, which was more than twice as that of MFC inoculated with untreated sludge. Also, a clear correlation between the chloroform dosing, methane inhibition, wastewater treatment, and power generation was established, which demonstrated the effectiveness of the technique in enhancing power generation in MFC along with adequate biodegradation of organic matter present in wastewater at an optimum chloroform dosing of 0.25% (v/v) to inhibit methanogenesis.
Collapse
|
116
|
A Comparison of the Influence of Kraft Lignin and the Kraft Lignin/Silica System as Cell Carriers on the Stability and Efficiency of the Anaerobic Digestion Process. ENERGIES 2020. [DOI: 10.3390/en13215803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study compares the effects of pure kraft lignin and the kraft lignin/silica system (1:4 by weight). The comparative analysis of the physicochemical properties of both carriers showed that the kraft lignin/silica system was characterised by better properties. The experiment conducted in the study involved continuous anaerobic digestion under mesophilic conditions. Three samples were degraded in the following order: (i) sewage sludge (SS), (ii) SS with the addition of kraft lignin, and (iii) SS with the addition of the kraft lignin/silica system. A quantitative analysis of the digestate samples was carried out by means of in situ fluorescence. It showed more intense proliferation of microorganisms in the SS + kraft lignin/silica variant than in the sample with pure kraft lignin. The highest amount of biogas was obtained in the SS + kraft lignin/silica variant (689 m3 Mg−1 VS, including 413 m3 Mg−1 VS of methane; VS—volatile solids). There were comparable amounts of biogas in the SS variant (526 m3 Mg−1 VS of biogas, including 51% of methane) and the SS + kraft lignin variant (586 m3 Mg−1 VS of biogas, including 54% of methane). The research clearly showed that the material with a high share of silica was an effective cell carrier.
Collapse
|
117
|
Abstract
Anaerobic digestion is an efficient technology for a sustainable conversion of various organic wastes such as animal manure, municipal solid waste, agricultural residues and industrial waste into biogas. This technology offers a unique set of benefits, some of which include a good waste management technique, enhancement in the ecology of rural areas, improvement in health through a decrease of pathogens and optimization of the energy consumption of communities. The biogas produced through anaerobic digestion varies in composition, but it consists mainly of carbon dioxide methane together with a low quantity of trace gases. The variation in biogas composition are dependent on some factors namely the substrate type being digested, pH, operating temperature, organic loading rate, hydraulic retention time and digester design. However, the type of substrate used is of greater interest due to the direct dependency of microorganism activities on the nutritional composition of the substrate. Therefore, the aim of this review study is to provide a detailed analysis of the various types of organic wastes that have been used as a substrate for the sustainable production of biogas. Biogas formation from various substrates reported in the literature were investigated, an analysis and characterization of these substrates provided the pro and cons associated with each substrate. The findings obtained showed that the methane yield for all animal manure varied from 157 to 500 mL/gVS with goat and pig manure superseding the other animal manure whereas lignocellulose biomass varied from 160 to 212 mL/gVS. In addition, organic municipal solid waste and industrial waste showed methane yield in the ranges of 143–516 mL/gVS and 25–429 mL/gVS respectively. These variations in methane yield are primarily attributed to the nutritional composition of the various substrates.
Collapse
|
118
|
Wang G, Li Y, Sheng L, Xing Y, Liu G, Yao G, Ngo HH, Li Q, Wang XC, Li YY, Chen R. A review on facilitating bio-wastes degradation and energy recovery efficiencies in anaerobic digestion systems with biochar amendment. BIORESOURCE TECHNOLOGY 2020; 314:123777. [PMID: 32665106 DOI: 10.1016/j.biortech.2020.123777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
In this review, progress in the potential mechanisms of biochar amendment for AD performance promotion was summarized. As adsorbents, biochar was beneficial for alleviating microbial toxicity, accelerating refractory substances degradation, and upgrading biogas quality. The buffering capacity of biochar balanced pH decreasing caused by volatile fatty acids accumulation. Moreover, biochar regulated microbial metabolism by boosting activities, mediating electron transfer between syntrophic partners, and enriching functional microbes. Recent studies also suggested biochar as potential useful additives for membrane fouling alleviation in anaerobic membrane bioreactors (AnMBR). By analyzing the reported performances based on different operation models or substrate types, debatable issues and associated research gaps of understanding the real role of biochar in AD were critically discussed. Accordingly, Future perspectives of developing biochar-amended AD technology for real-world applications were elucidated. Lastly, with biochar-amended AD as a core process, a novel integrated scheme was proposed towards high-efficient energy-resource recovery from various bio-wastes.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Li Sheng
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Guohao Liu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Gaofei Yao
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Huu Hao Ngo
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
119
|
Sanjaya EH, Cheng H, Li YY. Mesophilic methane fermentation performance and ammonia inhibition of fish processing wastewater treatment using a self-agitated anaerobic baffled reactor. BIORESOURCE TECHNOLOGY 2020; 313:123644. [PMID: 32544803 DOI: 10.1016/j.biortech.2020.123644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
The performance of the self-agitated anaerobic baffled reactor (SA-ABR) was investigated by increasing the organic loading rates (OLRs) from 0.46 to 9.50 g-COD/L/d. A good performance was achieved by the SA-ABR for the treatment of fish processing wastewater (FPW). The maximum OLR was 6.77 g-COD/L/d and the biogas production rate reached 2.16 L/L-reactor/d with a methane content of 69% at this OLR. The COD, carbohydrate, protein, lipid and VS removal efficiencies were as high as 64, 65, 68, 78 and 79%, respectively. Ammonia inhibition was assumed with inhibition concentrations of 10% (IC10) and 20% (IC20) at 4140 and 5780 mg/L. However, it was found that the reactor could tolerate ammonia at a high concentration range of 4500-6373 mg/L after a long-term continuous experiment. Ammonia inhibition was addressed by diluting the substrate and the sludge in the reactor with tap water.
Collapse
Affiliation(s)
- Eli Hendrik Sanjaya
- Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang No. 5, Malang, East Java 65145, Indonesia
| | - Hui Cheng
- Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
120
|
Cavaleiro AJ, Guedes AP, Silva SA, Arantes AL, Sequeira JC, Salvador AF, Sousa DZ, Stams AJM, Alves MM. Effect of Sub-Stoichiometric Fe(III) Amounts on LCFA Degradation by Methanogenic Communities. Microorganisms 2020; 8:microorganisms8091375. [PMID: 32906848 PMCID: PMC7564256 DOI: 10.3390/microorganisms8091375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Long-chain fatty acids (LCFA) are common contaminants in municipal and industrial wastewater that can be converted anaerobically to methane. A low hydrogen partial pressure is required for LCFA degradation by anaerobic bacteria, requiring the establishment of syntrophic relationships with hydrogenotrophic methanogens. However, high LCFA loads can inhibit methanogens, hindering biodegradation. Because it has been suggested that anaerobic degradation of these compounds may be enhanced by the presence of alternative electron acceptors, such as iron, we investigated the effect of sub-stoichiometric amounts of Fe(III) on oleate (C18:1 LCFA) degradation by suspended and granular methanogenic sludge. Fe(III) accelerated oleate biodegradation and hydrogenotrophic methanogenesis in the assays with suspended sludge, with H2-consuming methanogens coexisting with iron-reducing bacteria. On the other hand, acetoclastic methanogenesis was delayed by Fe(III). These effects were less evident with granular sludge, possibly due to its higher initial methanogenic activity relative to suspended sludge. Enrichments with close-to-stoichiometric amounts of Fe(III) resulted in a microbial community mainly composed of Geobacter, Syntrophomonas, and Methanobacterium genera, with relative abundances of 83-89%, 3-6%, and 0.2-10%, respectively. In these enrichments, oleate was biodegraded to acetate and coupled to iron-reduction and methane production, revealing novel microbial interactions between syntrophic LCFA-degrading bacteria, iron-reducing bacteria, and methanogens.
Collapse
Affiliation(s)
- Ana J. Cavaleiro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.P.G.); (S.A.S.); (A.L.A.); (J.C.S.); (A.F.S.); (D.Z.S.); (A.J.M.S.); (M.M.A.)
- Correspondence: ; Tel.: +35-1253604423
| | - Ana P. Guedes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.P.G.); (S.A.S.); (A.L.A.); (J.C.S.); (A.F.S.); (D.Z.S.); (A.J.M.S.); (M.M.A.)
| | - Sérgio A. Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.P.G.); (S.A.S.); (A.L.A.); (J.C.S.); (A.F.S.); (D.Z.S.); (A.J.M.S.); (M.M.A.)
| | - Ana L. Arantes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.P.G.); (S.A.S.); (A.L.A.); (J.C.S.); (A.F.S.); (D.Z.S.); (A.J.M.S.); (M.M.A.)
| | - João C. Sequeira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.P.G.); (S.A.S.); (A.L.A.); (J.C.S.); (A.F.S.); (D.Z.S.); (A.J.M.S.); (M.M.A.)
| | - Andreia F. Salvador
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.P.G.); (S.A.S.); (A.L.A.); (J.C.S.); (A.F.S.); (D.Z.S.); (A.J.M.S.); (M.M.A.)
| | - Diana Z. Sousa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.P.G.); (S.A.S.); (A.L.A.); (J.C.S.); (A.F.S.); (D.Z.S.); (A.J.M.S.); (M.M.A.)
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Alfons J. M. Stams
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.P.G.); (S.A.S.); (A.L.A.); (J.C.S.); (A.F.S.); (D.Z.S.); (A.J.M.S.); (M.M.A.)
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - M. Madalena Alves
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.P.G.); (S.A.S.); (A.L.A.); (J.C.S.); (A.F.S.); (D.Z.S.); (A.J.M.S.); (M.M.A.)
| |
Collapse
|
121
|
Micro-Oxygenation in Upflow Anaerobic Sludge Bed (UASB) Reactors Using a Silicon Membrane for Sulfide Oxidation. Polymers (Basel) 2020; 12:polym12091990. [PMID: 32882933 PMCID: PMC7566014 DOI: 10.3390/polym12091990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Sulfide produced by sulphate-reducing bacteria in anaerobic reactors can seriously affect biogas quality. Microaeration has become a reliable way to remove sulfide, by promoting its oxidation. However, limited research is available regarding its application in upflow anaerobic sludge bed (UASB) reactors. In this research, silicon membranes were studied as a mechanism to dose oxygen in USAB reactors. Two configurations were tested: the membrane placed inside the reactor or in an external module. Our results show that the external membrane proved to be a more practical alternative, providing conditions for sulfide oxidation. This led to a reduction in its concentration in the liquid effluent and biogas. External membrane configuration achieved a sulfide conversion rate of 2.4 g-S m2 d−1. Since the membrane was not sulfide-selective, methane losses were observed (about 9%). In addition, excessive oxygen consumption was observed, compared to the stoichiometric requirement. As is the case for many membrane-based systems, membrane area is a key factor determining the correct operation of the system.
Collapse
|
122
|
Kuglarz K, Bury M, Kasprzycka A, Lalak-Kańczugowska J. Effect of nitrogen fertilization on the production of biogas from sweet sorghum and maize biomass. ENVIRONMENTAL TECHNOLOGY 2020; 41:2833-2843. [PMID: 30767620 DOI: 10.1080/09593330.2019.1584251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
The aim of the study was to determine the biogas productivity from selected cultivars of sorghum (Sorghum bicolor Moench) and maize (Zea mays L.) depending on the dose of mineral fertilization with nitrogen. The topic is novelty in the northern Poland area due to the fact that this crop is not very widespread here. The silage samples were derived from two experiments: (1) two factors experiment with sorghum varieties (Arbatax, KWS Maja, Herkules) and two doses of mineral nitrogen fertilization (0 and 150 kg ha-1 N) in split-plot design. (2) one-factor experiment with fodder maize, variety NK Magitop, and two doses of mineral nitrogen fertilization (0 and 150 kg ha-1 N) in a randomized complete block design. The experiment was performed in four replications in the split-plot design. Methane fermentation was carried out under mesophilic conditions. The temperature of the process was 37°C ± 1°C, while pH 7 ± 0.1. The content of total solids in the bioreactor was 7.0%. The composition of the gas produced was measured once a day with the use of an automatic biogas analyser (GFM 416, GasData). The trial was run in triplicate until the daily yield was less than 1% of the cumulative biogas yield [DIN 38 414-S8. Sediments and sediments. Determination of fermentation characteristics; 1985]. Sorghum was characterized by higher average biogas productivity (about 12%), higher methane content in biogas (about 10%), and higher methane productivity (about 43%). It can, therefore, be stated that sorghum represents as an alternative plant to maize for the purpose of biogas production.
Collapse
Affiliation(s)
- Krzysztof Kuglarz
- Faculty of Environmental Management and Agriculture, Department of Agronomy, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| | - Marek Bury
- Faculty of Environmental Management and Agriculture, Department of Agronomy, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| | - Agnieszka Kasprzycka
- The Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences, Lublin, Poland
| | - Justyna Lalak-Kańczugowska
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
123
|
Abstract
The urgent need to replace fossil fuels has seen macroalgae advancing as a potential feedstock for anaerobic digestion. The natural methane productivity (dry weight per hectare) of seaweeds is greater than in many terrestrial plant systems. As part of their defence systems, seaweeds, unlike terrestrial plants, produce a range of halogenated secondary metabolites, especially chlorinated and brominated compounds. Some orders of brown seaweeds also accumulate iodine, up to 1.2% of their dry weight. Fluorine remains rather unusual within the chemical structure. Halogenated hydrocarbons have moderate to high toxicities. In addition, halogenated organic compounds constitute a large group of environmental chemicals due to their extensive use in industry and agriculture. In recent years, concerns over the environmental fate and release of these halogenated organic compounds have resulted in research into their biodegradation and the evidence emerging shows that many of these compounds are more easily degraded under strictly anaerobic conditions compared to aerobic biodegradation. Biosorption via seaweed has become an alternative to the existing technologies in removing these pollutants. Halogenated compounds are known inhibitors of methane production from ruminants and humanmade anaerobic digesters. The focus of this paper is reviewing the available information on the effects of halogenated organic compounds on anaerobic digestion.
Collapse
|
124
|
Eregowda T, Rene ER, Matanhike L, Lens PNL. Effect of selenate and thiosulfate on anaerobic methanol degradation using activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29804-29811. [PMID: 31965493 DOI: 10.1007/s11356-020-07597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic bioconversion of methanol was tested in the presence of selenate (SeO42-), thiosulfate (S2O32-), and sulfate (SO42-) as electron acceptors. Complete SeO42- reduction occurred at COD:SeO42- ratios of 12 and 30, whereas ~ 83% reduction occurred when the COD:SeO42- ratio was 6. Methane production did not occur at the three COD:SeO42- ratios investigated. Up to 10.1 and 30.9% of S2O32- disproportionated to SO42- at COD:S2O32- ratios of 1.2 and 2.25, respectively, and > 99% reduction was observed at both ratios. The presence of S2O32- lowered the methane production by 73.1% at a COD:S2O32- ratio of 1.2 compared to the control (no S2O32-). This study showed that biogas production was not preferable for SeO42- and S2O32--rich effluents and volatile fatty acid production could be a potential resource recovery option.
Collapse
Affiliation(s)
- Tejaswini Eregowda
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands
| | - Eldon R Rene
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands.
| | - Luck Matanhike
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands
- Microbiology Department, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
125
|
Kouzi AI, Puranen M, Kontro MH. Evaluation of the factors limiting biogas production in full-scale processes and increasing the biogas production efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28155-28168. [PMID: 32415437 PMCID: PMC7334254 DOI: 10.1007/s11356-020-09035-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Biogas production from sewage sludge volatile solids (VS) by anaerobic digestion slows down towards the end of the process, among inhibitory factors being pH increase upon ammonia accumulation, poorly digestible biomaterials, and high fixed solid (FS) content. The possibility of concentrating the digested sludge VS (41.7-56.6% on a dry weight basis) by surface and bottom layer separation with biogas post-production was studied. Furthermore, the potential to recycle concentrated VS and digested sludge back to the process after adjusting pH 7.0 to optimal for biogas-producing microbes and after acid, alkali, thermal, and sonolytic treatments was examined. In general, pH 7.0 control alone improved biogas production from the recycled digested sludge the most. An equally good improvement in biogas production was achieved by recycling the digested sludge, which had been heated until ammonia had evaporated and the pH dropped to 7.0 (1-2 h, 75 °C), and at the same time, VS was degraded. The biogas production from the sonicated and recycled sludge was almost as good as from the pH-adjusted, or heat-treated recycled sludge. After the acid and base treatments of the digested sludge, the recycled sludge yielded often the lowest biogas volume, as the added chemicals increased the FS concentration, which proved to be a more important inhibitory factor than poorly degradable VS. The high FS content significantly reduced the benefits of the treatments. By separating the surface and bottom layers with biogas post-production, the surface layer of VS was concentrated to 51.6-61.8%, while different compositions of the layers affected the biogas production.
Collapse
Affiliation(s)
- Afamia I Kouzi
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | | | - Merja H Kontro
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.
| |
Collapse
|
126
|
Abstract
The biogas production technology has improved over the last years for the aim of reducing the costs of the process, increasing the biogas yields, and minimizing the greenhouse gas emissions. To obtain a stable and efficient biogas production, there are several design considerations and operational parameters to be taken into account. Besides, adapting the process to unanticipated conditions can be achieved by adequate monitoring of various operational parameters. This paper reviews the research that has been conducted over the last years. This review paper summarizes the developments in biogas design and operation, while highlighting the main factors that affect the efficiency of the anaerobic digestion process. The study’s outcomes revealed that the optimum operational values of the main parameters may vary from one biogas plant to another. Additionally, the negative conditions that should be avoided while operating a biogas plant were identified.
Collapse
|
127
|
Dykstra CM, Cheng C, Pavlostathis SG. Comparison of Carbon Dioxide with Anaerobic Digester Biogas as a Methanogenic Biocathode Feedstock. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8949-8957. [PMID: 32544322 DOI: 10.1021/acs.est.9b07438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BES biogas upgrading studies have typically used bicarbonate or commercial gas mixtures as a biocathode substrate instead of anaerobic digester biogas. Therefore, the objective of this study was to (i) compare the performance of a methanogenic BES between CO2-fed and biogas-fed cycles; (ii) investigate possible factors that may account for observed performance differences; and (iii) assess the performance of a biogas-fed biocathode at various applied cathode potentials. The maximum 1-d CH4 production rate in a biogas-fed biocathode (3003 mmol/m2-d) was 350% higher than in a CO2-fed biocathode (666 mmol/m2-d), and the biogas-fed biocathode was capable of maintaining high performance despite a variable biogas feed composition. Anode oxidation of reduced gases (e.g., CH4 and H2S) from biogas may theoretically contribute 4% to 35% of the total charge transfer from anode to cathode at applied cathode potentials of -0.80 to -0.55 V (vs SHE). The introduction of biogas did not significantly change the biocathode archaeal community (dominated by a Methanobrevibacter sp. phylotype), but the bacterial community shifted away from Bacteroidetes and toward Proteobacteria, which may have contributed to the improved performance of the biogas-fed system. This study shows that anaerobic digester biogas is a promising biocathode feedstock for BES biogas upgrading.
Collapse
Affiliation(s)
- Christy M Dykstra
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
- School of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182-0003, United States
| | - Cheng Cheng
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
- College of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
| |
Collapse
|
128
|
Dyksma S, Jansen L, Gallert C. Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. MICROBIOME 2020; 8:105. [PMID: 32620171 PMCID: PMC7334858 DOI: 10.1186/s40168-020-00862-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/11/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Anaerobic digestion (AD) is a globally important technology for effective waste and wastewater management. In AD, microorganisms interact in a complex food web for the production of biogas. Here, acetoclastic methanogens and syntrophic acetate-oxidizing bacteria (SAOB) compete for acetate, a major intermediate in the mineralization of organic matter. Although evidence is emerging that syntrophic acetate oxidation is an important pathway for methane production, knowledge about the SAOB is still very limited. RESULTS A metabolic reconstruction of metagenome-assembled genomes (MAGs) from a thermophilic solid state biowaste digester covered the basic functions of the biogas microbial community. Firmicutes was the most abundant phylum in the metagenome (53%) harboring species that take place in various functions ranging from the hydrolysis of polymers to syntrophic acetate oxidation. The Wood-Ljungdahl pathway for syntrophic acetate oxidation and corresponding genes for energy conservation were identified in a Dethiobacteraceae MAG that is phylogenetically related to known SAOB. 16S rRNA gene amplicon sequencing and enrichment cultivation consistently identified the uncultured Dethiobacteraceae together with Syntrophaceticus, Tepidanaerobacter, and unclassified Clostridia as members of a potential acetate-oxidizing core community in nine full-scare digesters, whereas acetoclastic methanogens were barely detected. CONCLUSIONS Results presented here provide new insights into a remarkable anaerobic digestion ecosystem where acetate catabolism is mainly realized by Bacteria. Metagenomics and enrichment cultivation revealed a core community of diverse and novel uncultured acetate-oxidizing bacteria and point to a particular niche for them in dry fermentation of biowaste. Their genomic repertoire suggests metabolic plasticity besides the potential for syntrophic acetate oxidation. Video Abstract.
Collapse
Affiliation(s)
- Stefan Dyksma
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany.
| | - Lukas Jansen
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| | - Claudia Gallert
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| |
Collapse
|
129
|
Sudmalis D, Mubita TM, Gagliano MC, Dinis E, Zeeman G, Rijnaarts HHM, Temmink H. Cation exchange membrane behaviour of extracellular polymeric substances (EPS) in salt adapted granular sludge. WATER RESEARCH 2020; 178:115855. [PMID: 32375109 DOI: 10.1016/j.watres.2020.115855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 05/14/2023]
Abstract
This paper aims to elucidate the role of extracellular polymeric substances (EPS) in regulating anion and cation concentrations and toxicity towards microorganisms in anaerobic granular sludges adapted to low (0.22 M of Na+) and high salinity (0.87 M of Na+). The ion exchange properties of EPS were studied with a novel approach, where EPS were entangled with an inert binder (PVDF-HFP) to form a membrane and characterized in an electrodialysis cell. With a mixture of NaCl and KCl salts the EPS membrane was shown to act as a cation exchange membrane (CEM) with a current efficiency of ∼80%, meaning that EPS do not behave as ideal CEM. Surprisingly, the membrane had selectivity for transport of K+ compared to Na+ with a separation factor ( [Formula: see text] ) of 1.3. These properties were compared to a layer prepared from a model compound of EPS (alginate) and a commercial CEM. The alginate layer had a similar current efficiency (∼80%.), but even higher [Formula: see text] of 1.9, while the commercial CEM did not show selectivity towards K+ or Na+, but exhibited the highest current efficiency of 92%. The selectivity of EPS and alginate towards K+ transport has interesting potential applications for ion separation from water streams and should be further investigated. The anion repelling and cation binding properties of EPS in hydrated and dehydrated granules were further confirmed with microscopy (SEM-EDX, epifluorescence) and ion chromatography (ICP-OES, IC) techniques. Results of specific methanogenic activity (SMA) tests conducted with 0.22 and 0.87 M Na+ adapted granular sludges and with various monovalent salts suggested that ions which are preferentially transported by EPS are also more toxic towards methanogenic cells.
Collapse
Affiliation(s)
- D Sudmalis
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - T M Mubita
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, MA, 8911, the Netherlands
| | - M C Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, MA, 8911, the Netherlands
| | - E Dinis
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, MA, 8911, the Netherlands
| | - G Zeeman
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - H H M Rijnaarts
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - H Temmink
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| |
Collapse
|
130
|
Tsigkou K, Tsafrakidou P, Zafiri C, Soto Beobide A, Kornaros M. Pretreatment of used disposable nappies: Super absorbent polymer deswelling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 112:20-29. [PMID: 32480300 DOI: 10.1016/j.wasman.2020.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Typical used disposable nappies usually consist of nonwoven fabrics, Super Absorbent Polymer (SAP), and organic material, namely fluffy pulp, urine and/or excreta. Currently, this waste stream is being disposed to landfills causing many environmental issues. An alternative management method could be the valorisation of the biodegradable material through anaerobic digestion, and the recycling of plastics and SAP. Pretreatment of nappies is mandatory to separate SAP and plastics from the organic material. The aim of this work was the development of a process to minimize SAP's volume, as this component can swell up to 1500 times its own mass by water absorbance, thus hindering any further biological process. CaCl2, MgCl2, and a range of CaCl2/MgCl2 combinations were tested against their deswelling efficiency on SAP, residual reagent concentration and reagent cost. The mixture of 20% CaCl2 and 50% MgCl2 (w/w) of SAP was concluded as the suitable combination of salts achieving a final SAP volume reduction of 92.7% with low residual cation concentrations and minimum cost. The physicochemical characterization of nappies' hydrolysate that took place to estimate its adequacy as substrate for anaerobic digestion resulted to a COD:N ratio within the acceptable range for a subsequent anaerobic digestion processing.
Collapse
Affiliation(s)
- Konstantina Tsigkou
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, Patras 26504, Greece
| | | | | | - Amaia Soto Beobide
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Platani, P.O. Box 1414, 265 04 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, Patras 26504, Greece.
| |
Collapse
|
131
|
Usman M, Zha L, Abomohra AEF, Li X, Zhang C, Salama ES. Evaluation of animal- and plant-based lipidic waste in anaerobic digestion: kinetics of long-chain fatty acids degradation. Crit Rev Biotechnol 2020; 40:733-749. [DOI: 10.1080/07388551.2020.1756215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Muhammad Usman
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, Gansu Province, China
| | - Abd El-Fatah Abomohra
- New Energy Department, School of Energy and Power Engineering, Jiangsu University, Jiangsu Province, China
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Xiangkai Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, Gansu Province, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
132
|
Xu J, Bu F, Zhu W, Luo G, Xie L. Microbial Consortiums of Hydrogenotrophic Methanogenic Mixed Cultures in Lab-Scale Ex-Situ Biogas Upgrading Systems under Different Conditions of Temperature, pH and CO. Microorganisms 2020; 8:microorganisms8050772. [PMID: 32455626 PMCID: PMC7285331 DOI: 10.3390/microorganisms8050772] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, hydrogenotrophic methanogenic mixed cultures taken from 13 lab-scale ex-situ biogas upgrading systems under different temperature (20–70 °C), pH (6.0–8.5), and CO (0–10%, v/v) variables were systematically investigated. High-throughput 16S rRNA gene sequencing was used to identify the microbial consortia, and statistical analyses were conducted to reveal the microbial diversity, the core functional microbes, and their correlative relationships with tested variables. Overall, bacterial community was more complex than the archaea community in all mixed cultures. Hydrogenotrophic methanogens Methanothermobacter, Methanobacterium, and Methanomassiliicoccus, and putative syntrophic acetate-oxidizing bacterium Coprothermobacter and Caldanaerobacter were found to predominate, but the core functional microbes varied under different conditions. Multivariable sensitivity analysis indicated that temperature (p < 0.01) was the crucial variable to determine the microbial consortium structures in hydrogenotrophic methanogenic mixed cultures. pH (0.01 < p < 0.05) significantly interfered with the relative abundance of dominant archaea. Although CO did not affect community (p > 0.1), some potential CO-utilizing syntrophic metabolisms might be enhanced. Understanding of microbial consortia in the hydrogenotrophic methanogenic mixed cultures related to environmental variables was a great advance to reveal the microbial ecology in microbial biogas upgrading process.
Collapse
Affiliation(s)
- Jun Xu
- The Yangtze River Water Environment Key Laboratory of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (J.X.); (F.B.); (W.Z.)
| | - Fan Bu
- The Yangtze River Water Environment Key Laboratory of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (J.X.); (F.B.); (W.Z.)
| | - Wenzhe Zhu
- The Yangtze River Water Environment Key Laboratory of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (J.X.); (F.B.); (W.Z.)
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200092, China;
| | - Li Xie
- The Yangtze River Water Environment Key Laboratory of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (J.X.); (F.B.); (W.Z.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Correspondence:
| |
Collapse
|
133
|
Impact of Storage Conditions on the Methanogenic Activity of Anaerobic Digestion Inocula. WATER 2020. [DOI: 10.3390/w12051321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The impact of storage temperature (4, 22 and 37 °C) and storage time (7, 14 and 21 days) on anaerobic digestion inocula was investigated through specific methanogenic activity assays. Experimental results showed that methanogenic activity decreased over time with storage, regardless of storage temperature. However, the rate at which the methanogenic activity decreased was two and five times slower at 4 °C than at 22 and 37 °C, respectively. The inoculum stored at 4 °C and room temperature (22 °C) maintained methanogenic activity close to that of fresh inoculum for 14 days (<10% difference). However, a storage temperature of 4 °C is preferred because of the slower decrease in activity with lengthier storage time. From this research, it was concluded that inoculum storage time should generally be kept to a minimum, but that storage at 4 °C could help maintain methanogenic activity for longer.
Collapse
|
134
|
Ali SS, Kornaros M, Manni A, Sun J, El-Shanshoury AERR, Kenawy ER, Khalil MA. Enhanced anaerobic digestion performance by two artificially constructed microbial consortia capable of woody biomass degradation and chlorophenols detoxification. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122076. [PMID: 32004834 DOI: 10.1016/j.jhazmat.2020.122076] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Catalpa sawdust (CSW) is a promising biomass-based biofuel. However, the complex lignocellulosic structure limits its efficient utilization in biorefinery applications. It is even more so when chlorophenols (CPs), highly toxic organic substances widely used as wood preservatives, are present. Hence, it is crucial to develop effective and eco-friendly approaches to attain deconstruction of lignocellulose and chlorophenols simultaneously as well as to improve methane (CH4) production efficiently. This study might be the first to explore the performance of the novel constructed microbial consortia CS-5 and BC-4 on woody biomass degradation and CPs detoxification simultaneously with CH4 production. After the degradation of CSW and CPs for 15 days by C5-5 or BC-4, significant reduction in lignocellulosic components and CPs mixture was realized with a total weight loss of 69.2 and 56.3 % and CPs degradation of 89 and 95 %, respectively. The toxicity of individual or mixed CPs after 15 days of degradation was reduced by approximately 90 %. The synergistic action of CS-5 and BC-4 enhanced biogas and CH4 yields over 76 and 64 % respectively, higher than control. Furthermore, CH4 production increased by 113.7 % at the peak phase of AD process. Methanosataceae represented 45.1 % of the methanogenic Archaea in digester G-III.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Alessandro Manni
- Department of Industrial Engineering, University of Rome Tor Vergata, Italy
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | | | - El-Refaie Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha A Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt; Biology Department, Faculty of Science, Taif University, Saudi Arabia
| |
Collapse
|
135
|
Abunde Neba F, Tornyeviadzi HM, Addo A, Asiedu NY, Morken J, Østerhus SW, Seidu R. Geometry, kinetics and reactor network synthesis: Attainable limits for minimizing residence time in biomethane digesters. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2020.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
136
|
Li L, Geng S, Li Z, Song K. Effect of microplastic on anaerobic digestion of wasted activated sludge. CHEMOSPHERE 2020; 247:125874. [PMID: 31945722 DOI: 10.1016/j.chemosphere.2020.125874] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/25/2019] [Accepted: 01/06/2020] [Indexed: 05/22/2023]
Abstract
Over 90% of microplastics that enter wastewater treatment plants end in the wasted activated sludge. The effect of microplastic abundance on the activated sludge anaerobic digestion has been rarely reported. This study investigated the methane production performance during anaerobic digestion with different abundance of microplastic doses (0, 1,000, 3,000, 6,000, 10,000, 30,000, 60,000, 100,000 and 200,000 polyester particle/kg activated sludge). The methane production was reduced to 88.53 ± 0.5%, 90.09 ± 1.2%, 89.95 ± 4.7%, 95.08 ± 0.5%, 90.29 ± 0.5%, 93.16 ± 0.8%, 92.92 ± 1.3%, and 92.72 ± 0.6% as compared with control after digestion for 59 days. The methane production of all conditions was fitted with the logarithm model (R2 > 0.95) and one-substrate model (R2 > 0.99). The predicted and actual methane production values of digestion for 59 days had high correlation in all conditions with R2 > 0.95. The analysis based on the biochemical methane potential test model indicated that the methane production potential (B0) and hydrolysis coefficient (k) decreased at nearly all tested conditions. The reactor digestate with microplastics retained higher organic matter and nutrient concentration and had slightly lower dewaterability than the control. The inhibition of methane production potential could be attributed to the incomplete digestion with the existence of microplastics. The microbial community showed no significant difference with and without microplastics.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shixiong Geng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei, 230022, China
| | - Zhouyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
137
|
Xueping C, Juan Y, Zheng C, Hongmei Z, Wangda C, Fayan B, Yu Z, Imran Ahamed K, Chiquan H, Xiaoyan L. Acetotrophic methanogens are sensitive to long-term nickel contamination in paddy soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1014-1025. [PMID: 32096538 DOI: 10.1039/d0em00029a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Paddy soil accounts for approximately one-fifth of the world's cultivated area and faces a serious threat from nickel (Ni). Ni pollution has an impact on the activity, composition and emission of methanogens in paddy, which is a major natural source of methane (CH4) emissions. We combined a high-throughput sequencing approach and laboratory incubation methods to evaluate the impact of long-term Ni pollution on the methanogenic archaeal community in paddy soil. The highest rate of CH4 production was 697 mg kg-1 of dry soil per d with the addition of sodium acetate at 50 mg kg-1 of Ni, which was significantly negatively correlated with the total and available Ni (p < 0.05). While the highest CH4 production rates were 485 and 544 mg kg-1 of dry soil per d with the addition of sodium formate and methanol, respectively, there was no significant difference in the CH4 production rate and maximum CH4 accumulation between the different Ni additions. Heavy pollution with 500 mg kg-1 of Ni unexceptionally inhibited the relative abundance of various genera of methanogens (22.2% in total). The abundance of acetotrophic Methanosaeta decreased with an increasing concentration of Ni (3.25-1.11%). The diverse nutrient types of species belonging to Methanosarcina were the highest under treatment with Ni200 (18.0%), and lowest in the soil with 500 mg kg-1 of Ni (2.8%). Similarly, the abundances of the most abundant hydrogenotrophic methanogens of Methanocellales were relatively high with Ni200 (26.2%) compared with those with Ni500 (5.4%). The mcrA gene was enriched under the light pollution treatment (50 mg kg-1 of Ni, 6.73 × 107 ± 9.0 × 106 copies per g of soil) compared with the control (4.18 × 107 ± 5.1 × 106 copies per g of soil). These results indicate that the long-term pollution by Ni has an impact on the activity and composition of methanogens with heavy Ni pollution, and in particular, acetotrophic methanogens are sensitive to Ni pollution in paddy soil.
Collapse
Affiliation(s)
- Chen Xueping
- S, chool of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Wang C, Li Y, Sun Y. Acclimation of Acid-Tolerant Methanogenic Culture for Bioaugmentation: Strategy Comparison and Microbiome Succession. ACS OMEGA 2020; 5:6062-6068. [PMID: 32226888 PMCID: PMC7098015 DOI: 10.1021/acsomega.9b03783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
To enrich an acid-tolerant methanogenic culture used as bioaugmented seed under acidic conditions, we operated four semicontinuous digesters under various conditions of pH decline for producing methane at pH 5.0. 16S rRNA amplification was performed to unravel the association between declining pH and microbiome succession. The findings demonstrated that a gradual decrease of pH, at a step size of 0.5, and a prolonged run time at each pH could achieve a suitable microbial culture, in which acetoclastic Methanothrix and hydrogenotrophic Methanolinea represented the dominant methanogens. In contrast, a sharp decline in pH could result in heavy loss of the acetoclastic methanogen Methanothrix, leading to a cessation of methane production. Hydrogenotrophic methanogens exhibited high acid tolerance, and Methanospirillum could thrive despite a sudden low-pH shock. Although Methanolinea required a longer time to enrich, it played a substantial role in methane production under an acidic environment.
Collapse
Affiliation(s)
- Changrui Wang
- College
of Energy and Power Engineering, Lanzhou
University of Technology, Lanzhou 730050, China
- Laboratory
of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy
Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
- Key
Laboratory of Complementary Energy System of Biomass and Solar Energy, Lanzhou 730050, Gansu Province, China
| | - Ying Li
- Laboratory
of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy
Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yongming Sun
- Laboratory
of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy
Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
- Key
Laboratory of Renewable Energy, Chinese
Academy of Sciences, Guangzhou 510640, PR China
- Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou 510640, PR China
| |
Collapse
|
139
|
Abunde Neba F, Tornyeviadzi HM, Østerhus SW, Seidu R. Self-optimizing attainable regions of the anaerobic treatment process: Modeling performance targets under kinetic uncertainty. WATER RESEARCH 2020; 171:115377. [PMID: 31841957 DOI: 10.1016/j.watres.2019.115377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Despite the advantage of model-based design, anaerobic digesters are seldom designed using biokinetic models due to lack of reliable kinetic coefficients and/or systematic approaches for incorporating kinetic models into digester design. This study presents a systematic framework, which couples practical identifiability, uncertainty quantification and attainable region (AR) concepts for defining process performance targets, especially when reliable kinetic coefficients are unavailable. Within the framework, we introduce the concept of self-optimizing ARs, which define performance targets that results in near optimal operation in spite of variations in kinetic coefficients. Using the case of modified Hill model, only 3 out of the 6 model parameters (unidentifiable set) are responsible for the model prediction uncertainty. The uncertainty bands (mean, 10th percentile and 90th percentile) on the model states has been computed using the Monte Carlo Simulation procedure and attainable regions for the different levels of uncertainty has been constructed and the boundaries interpreted into digester structures. The self-optimizing attainable regions have been defined as the intersection region of the attainable regions corresponding to the mean, 10th percentile and 90th percentile. Incorporating uncertainty significantly reduces performance targets of the process but increases self-optimality in defining performance targets. Unlike the attainable region, which represents the limits of achievability for defined kinetics, the self-optimizing attainable region represents the set of all possible states attainable by the system even in cases of kinetic uncertainty. In summary, the concept of self-optimizing ARs provides a systematic way of defining process performance targets and making economic decisions under conditions of uncertainty.
Collapse
Affiliation(s)
- F Abunde Neba
- Abunde Sustainable Engineering Group, AbundeSEG, Ghana; Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway; Department of Marine Operations and Civil Engineering, Norwegian University of Science and Technology, Ålesund, Norway.
| | - Hoese M Tornyeviadzi
- Abunde Sustainable Engineering Group, AbundeSEG, Ghana; Department of Marine Operations and Civil Engineering, Norwegian University of Science and Technology, Ålesund, Norway
| | - Stein W Østerhus
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Razak Seidu
- Department of Marine Operations and Civil Engineering, Norwegian University of Science and Technology, Ålesund, Norway
| |
Collapse
|
140
|
Tian X, Song Y, Xi H, Shen Z, Zhou Y, Wang K. Inhibition and removal of trichloroacetaldehyde by biological acidification with glucose co-metabolism. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121796. [PMID: 31901546 DOI: 10.1016/j.jhazmat.2019.121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Biological acidification plays a crucial role in biological removal of organic compounds during petrochemical wastewater treatment. Trichloroacetaldehyde is a typical organic pollutant in petrochemical wastewater, however, no studies have been conducted on its effect on biological acidification. In this study, batch bioassays of volatile fatty acids were conducted to explore the inhibitory effect of trichloroacetaldehyde on biological acidification, the variations of key enzymes and extracellular polymeric substances under trichloroacetaldehyde shock, and the mechanism of trichloroacetaldehyde removal. The results of these bioassays indicated that trichloroacetaldehyde inhibited the acid yield at higher concentrations (EC50 112.20 mg/L), and butyric fermentation was predominant. Moreover, the contents of extracellular polymeric substances and several key acidifying enzymes greatly decreased when the trichloroacetaldehyde concentration exceeded 100 mg/L, which was due to the toxicity that trichloroacetaldehyde poses to the microbes involved in biological acidification. The trichloroacetaldehyde mechanism was as follows: first, trichloroacetaldehyde was adsorbed by extracellular polymeric substances and anaerobic granular sludge, and then transformed into trichloroethanol, trichloroethane, dichloroacetaldehyde, and dichloroethanol under the combined action of the aldehyde reductase and reductive dehalogenases secreted from the microbial consortium. The ability of biological acidification to remove trichloroacetaldehyde was limited; therefore, trichloroacetaldehyde should be pretreated before it enters biological treatment systems.
Collapse
Affiliation(s)
- Xiangmiao Tian
- School of Environment, Tsinghua University, Beijing, 100084, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yudong Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Hongbo Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yuexi Zhou
- School of Environment, Tsinghua University, Beijing, 100084, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Kaijun Wang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
141
|
Effects of Increasing Nitrogen Content on Process Stability and Reactor Performance in Anaerobic Digestion. ENERGIES 2020. [DOI: 10.3390/en13051139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to analyse the effect of different nitrogen increase rates in feedstock on the process stability and conversion efficiency in anaerobic digestion (AD). The research was conducted in continuously stirred tank reactors (CSTR), initially filled with two different inocula: inocula #1 with low and #2 with high nitrogen (N) concentrations. Three N feeding regimes were investigated: the “0-increase” feeding regime with a constant N amount in feeding and the regimes “0.25-increase” and “0.5-increase” where the N concentrations in feedstock were raised by 0.25 and 0.5 g·kg−1, respectively, related to fresh matter (FM) every second week. The N concentration inside the reactors increased according to the feeding regimes. The levels of inhibition (Inhibition) in specific methane yields (SMY), related to the conversion efficiency of the substrates, were quantified. At the N concentration in digestate of 10.82 ± 0.52 g·kg−1 FM measured in the reactors with inoculum #2 and “0.5-increase” feeding regime, the level of inhibition was equal to 38.99% ± 14.99%. The results show that high nitrogen increase rates in feeding regime are negatively related to the efficiency of the AD process, even if low volatile fatty acid (VFA) concentrations indicate a stable process.
Collapse
|
142
|
Li B, Romero A, Wadhawan T, Tobin M, Manning E, Higgins M, Al-Omari A, Murthy S, Riffat R, De Clippeleir H. Recuperative thickening for sludge retention time and throughput management in anaerobic digestion with thermal hydrolysis pretreatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:465-477. [PMID: 31529658 DOI: 10.1002/wer.1230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/07/2019] [Accepted: 08/25/2019] [Indexed: 05/22/2023]
Abstract
This study evaluated the application of recuperative thickening (RT) to enhance anaerobic digestion (AD) performance for AD systems with thermal hydrolysis pretreatment (THP). RT was applied for two different reasons: (a) for increasing the sludge retention time (SRT) to degrade slowly hydrolyzable materials more efficiently and (b) for maintaining SRT at decreased hydraulic retention time (HRT) thus showing potential for increased AD throughput rates. A SRT increase from 15 to 30 days by RT application did not improve AD performance or hydrolysis rates significantly as 15-day SRT was already a factor 2 higher than the estimated washout SRT. When applying RT to increase throughput rates (HRT of 7 days) while maintaining 15-day SRT, no negative impact on biogas production or hydrolysis kinetics was observed. It was estimated that RT application on THP digesters can increase digester throughput by 100% and thus show clear potential for further AD intensification. PRACTITIONER POINTS: Increased SRT from 15 to 30 days through recuperative thickening application did not improve biogas production. A lower required minimum SRT (6-7 days) was estimated in THP-AD systems compared to conventional AD. Operation at decreased HRT by RT application resulted in similar AD performance under constant organic loading rates. A 100% increase in throughput rates can be applied using RT without decreasing AD performance.
Collapse
Affiliation(s)
- Baoqiang Li
- George Washington University, Washington, District of Columbia
- DC Water, Washington, District of Columbia
| | - Adrian Romero
- George Washington University, Washington, District of Columbia
- DC Water, Washington, District of Columbia
- Jacobs Engineering, Charlotte, North Carolina
| | | | - Michael Tobin
- George Washington University, Washington, District of Columbia
- DC Water, Washington, District of Columbia
| | - Elizabeth Manning
- George Washington University, Washington, District of Columbia
- DC Water, Washington, District of Columbia
| | | | | | | | - Rumana Riffat
- George Washington University, Washington, District of Columbia
| | | |
Collapse
|
143
|
The Impact of Exogenous Aerobic Bacteria on Sustainable Methane Production Associated with Municipal Solid Waste Biodegradation: Revealed by High-Throughput Sequencing. SUSTAINABILITY 2020. [DOI: 10.3390/su12051815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, the impact of exogenous aerobic bacteria mixture (EABM) on municipal solid waste (MSW) is well evaluated in the following aspects: biogas production, leachate analysis, organic waste degradation, EABM population, and the composition of microbial communities. The study was designed and performed as follows: the control bioreactor (R1) was filled up with MSW and the culture medium of EABM and the experimental bioreactor (R2) was filled up with MSW and EABM. The data suggests that the composition of microbial communities (bacterial and methanogenic) in R1 and R2 were similar at day 0, while the addition of EABM in R2 led to a differential abundance of Bacillus cereus, Bacillus subtilis, Staphylococcus saprophyticus, Staphlyoccus xylosus, and Pantoea agglomerans in two bioreactors. The population of exogenous aerobic bacteria in R2 greatly increased during hydrolysis and acidogenesis stages, and subsequently increased the degradation of volatile solid (VS), protein, lipid, and lignin by 59.25%, 25.68%, 60.47%, and 197.62%, respectively, compared to R1. The duration of hydrolysis and acidogenesis in R2 was 33.33% shorter than that in R1. At the end of the study, the accumulative methane yield in R2 (494.4 L) was almost three times more than that in R1 (187.4 L). In addition, the abundance of acetoclasic methanogens increased at acetogenesis and methanogenesis stages in both bioreactors, which indicates that acetoclasic methanogens (especially Methanoseata) could contribute to methane production. This study demonstrates that EABM can accelerate organic waste degradation to promote MSW biodegradation and methane production. Moreover, the operational parameters helped EABM to generate 20.85% more in accumulative methane yield. With a better understanding of how EABM affects MSW and the composition of bacterial community, this study offers a potential practical approach to MSW disposal and cleaner energy generation worldwide.
Collapse
|
144
|
Wang AM, Hwu CS, Wu CH. Inhibition of tetrachloroethene and trichloroethene on methanogenesis in anaerobic sludges from various origins. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:544-549. [PMID: 32385208 DOI: 10.2166/wst.2020.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nine anaerobic sludges were screened to obtain the most effective methanogenic inoculum for the anaerobic treatment of groundwater that is contaminated with tetrachloroethene (PCE) or trichloroethene (TCE). The selection was based on the toxicity of PCE or TCE to acetoclastic methanogens in different sludges. The effects of two biological factors, sludge origin and specific acetoclastic methanogenic activity, and a physical factor, specific surface area of sludge, on the degree of inhibition were examined and compared. The fifty percent inhibition concentrations (IC50) of PCE and TCE that were obtained from 30 °C batch inhibition tests ranged from 0.18 to 0.41 and 1.71 to 3.31 mM, respectively, for the examined sludges. The toxicity of the contaminants to anaerobic sludges did not depend on the two biological factors but was closely correlated with the specific surface area of sludge. Suspended sludges, which have higher specific surface areas than granular sludges, suffered much greater inhibition. This paper suggests the use of anaerobic granular sludges as inocula in bioreactors for treating PCE- and TCE-contaminated groundwater to reduce the effect of their inhibition.
Collapse
Affiliation(s)
- A M Wang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan E-mail:
| | - C S Hwu
- Hui-Min Environmental Tech. Corp., 1F, No. 5, Alley 2, Lane 69, Sec. 5, Min Sheng East Rd., Taipei City 10572, Taiwan
| | - C H Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan E-mail:
| |
Collapse
|
145
|
Overcome inhibition of anaerobic digestion of chicken manure under ammonia-stressed condition by lowering the organic loading rate. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
146
|
Zheng G, Liu J, Shao Z, Chen T. Emission characteristics and health risk assessment of VOCs from a food waste anaerobic digestion plant: A case study of Suzhou, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113546. [PMID: 31708279 DOI: 10.1016/j.envpol.2019.113546] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
The process of anaerobic digestion in food waste treatment plants generates a large amount of volatile organic compounds (VOCs). Long-term exposure to this exhaust gas can pose a threat to the health of workers and people living nearby. In this study, VOCs emitted from different working units in a food waste anaerobic digestion plant were monitored for a year. Variations in VOCs emitted from each unit were analyzed and a health risk assessment was conducted for each working unit. The results show that the concentration of VOCs in different units varied greatly. The highest cumulative concentration of VOCs appeared in the hydrothermal hydrolysis unit (3.49 × 104 μg/m3), followed by the sorting/crushing room (8.97 × 103 μg/m3), anaerobic digestion unit (6.21 × 102 μg/m3), and biogas production unit (2.01 × 102 μg/m3). Oxygenated compounds and terpenes were the major components of the emitted VOCs, accounting for more than 98% of total VOC emissions. The carcinogenic risk in the plant exceeded the safety threshold (ILCR<1 × 10-6), while the non-carcinogenic risk was within the acceptable range (HI < 1). The carcinogenic risk from the hydrothermal hydrolysis unit was the highest, reaching 4.4 × 10-5, and was labeled as "probable risk." The carcinogenic risk at the plant boundary was 1.2 × 10-5, indicating exhaust gases can cause a health threat to neighbors. Therefore, management VOCs in anaerobic digestion plants should receive more attention, and employees should minimize the time they spend in the hydrothermal hydrolysis unit.
Collapse
Affiliation(s)
- Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Junwan Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuze Shao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
147
|
Huang H, Biswal BK, Chen GH, Wu D. Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: Evaluation on reactor performance and dynamics of microbial community. BIORESOURCE TECHNOLOGY 2020; 297:122396. [PMID: 31748132 DOI: 10.1016/j.biortech.2019.122396] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the impact of sludge retention times (SRTs: 40, 20, 10 and 5 days) on performance of the sulfidogenic anaerobic digestion (SAD) reactor treating sulfate-laden waste activated sludge and dynamics of sulfate reducing bacteria (SRB). The findings showed that sulfide production, volatile sludge removal efficiency, ammonia release and methane yield decreased by 33.7%, 66.4%, 21.3% and 68.7%, respectively when SRT was shortened from 40 to 5 d. Significant enrichment of hydrolyzers/fermenters (genera Mesotoga and Sulfurovum) was observed at longer SRT (40 d), but shorter SRT (5 d) favors enrichment of diverse SRB (genera Desulfomicrobium and Desulfovibrio). PICRUSt data revealed bacterial communities possessed diverse predicted functions including sulfur metabolism enzymes (e.g. sulfate adenylyltransferase), and their abundance was higher at shorter SRT. Statistical analysis (PCA) confirmed positive relationships between SRB and SAD performance. The findings of this research could be useful for design and optimization of sulfidogenic-based anaerobic digestion process.
Collapse
Affiliation(s)
- Hao Huang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
148
|
Lu T, Zhang J, Li P, Shen P, Wei Y. Enhancement of methane production and antibiotic resistance genes reduction by ferrous chloride during anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2020; 298:122519. [PMID: 31855663 DOI: 10.1016/j.biortech.2019.122519] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
In this study, effects of ferrous chloride (FeCl2) addition on methane production and antibiotic resistance genes (ARGs) reduction were investigated during anaerobic digestion (AD) of swine manure. FeCl2 could both improve the accumulative methane production and reduce the abundance of total ARGs, i.e., the maximum increase of CH4 production of 21.5% at FC5, and the maximum ARGs reduction of 33.3% at FC25. The reduction of pathogenic bacteria and metal resistance genes (MRGs) was enhanced. Acetate and propionate utilization were intensified by enhancing H2 utilization and direct interspecies electron transfer (DIET), where DIET was further enhanced by the reaction of the FeCl2 and acetic acid. The bacterial community played important role in the evolution of ARGs (68.26%), which were also affected by MRGs, mobile genetic elements (MGEs), and environmental factors. Therefore, FeCl2-based AD is a feasible and attractive way to improve methane production and ARG reduction.
Collapse
Affiliation(s)
- Tiedong Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ping Li
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
149
|
Zhang J, Buhe C, Yu D, Zhong H, Wei Y. Ammonia stress reduces antibiotic efflux but enriches horizontal gene transfer of antibiotic resistance genes in anaerobic digestion. BIORESOURCE TECHNOLOGY 2020; 295:122191. [PMID: 31634801 DOI: 10.1016/j.biortech.2019.122191] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 05/03/2023]
Abstract
The dynamics of antibiotic resistance genes (ARGs) response to ammonia stress were evaluated using metagenomics and quantitative PCR (qPCR) in anaerobic digestion (AD). Ammonia stress reduced ARGs associated with antibiotic efflux, especially the major facilitator superfamily (MFS) of tet(L), due to free ammonia (FA) that changed the proton gradient of efflux system. Nonetheless, ARGs of antibiotic target alteration, especially ermB, were enriched under ammonia stress, which could be attributed to the initiation of the internal enhancer of the transferability of the broad host range plasmid, pAMbeta1. Statistical analysis elucidated the significant changes of ARGs are directly attributed to the mobile genetic elements (MGEs), but the little affected ARGs are mainly determined by the functional microbes reflected by nitrogen cycling genes (NCyc). This study deciphered the profiles of ARGs response to ammonia stress in AD, which indicated the importance of alleviation of ammonia inhibition for the mitigation of ARGs dissemination.
Collapse
Affiliation(s)
- Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chulu Buhe
- School of Public Policy & Management, Tsinghua University, Beijing 100084, China
| | - Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
150
|
Gou M, Wang H, Li J, Sun Z, Nie Y, Nobu MK, Tang Y. Different inhibitory mechanisms of chlortetracycline and enrofloxacin on mesophilic anaerobic degradation of propionate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1406-1416. [PMID: 31745805 DOI: 10.1007/s11356-019-06705-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
In anaerobic digestion, propionate is a key intermediate whose degradation is thermodynamically challenging and accumulation is detrimental to the process. Many wastewater streams contain antibiotics due to its globally increasing use, and these compounds can inhibit methane production. However, the effect of antibiotics on propionate degradation in anaerobic digestion remains unclear. In this study, the influence of two antibiotics (chlortetracycline [CTC] and enrofloxacin [EFX]) on biogas production and mesophilic propionate-degrading microbial community was investigated. CTC strongly repressed propionate oxidation, acetate utilization, and methane production, while EFX only inhibited propionate oxidation and methane production to a lesser extent. Microbial community analyses showed that syntrophic propionate-oxidizing bacteria (SPOB) Syntrophobacter had strong tolerance to both CTC and EFX. CTC inhibition mainly acted on the activity of acetate-oxidizing bacteria (Mesotoga, Geovibrio, Tepidanaerobacter, unclassified Bacteroidetes, and unclassified Clostridia) and acetoclastic methanogen, while EFX inhibition applied to the SPOB Smithella and acetoclastic methanogen. Network analysis further indicated that more complicated correlation among bacterial genera occurred in CTC treatments. These results suggested that CTC and EFX inhibited propionate degradation via different mechanisms, which was the result of joint action by antibiotics and microbial interactions.
Collapse
Affiliation(s)
- Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - HuiZhong Wang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Jie Li
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - ZhaoYong Sun
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Yong Nie
- College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Masaru Konishi Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - YueQin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|