101
|
Klingner CM, Brodoehl S, Huonker R, Witte OW. The Processing of Somatosensory Information Shifts from an Early Parallel into a Serial Processing Mode: A Combined fMRI/MEG Study. Front Syst Neurosci 2016; 10:103. [PMID: 28066197 PMCID: PMC5167733 DOI: 10.3389/fnsys.2016.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/06/2016] [Indexed: 12/03/2022] Open
Abstract
The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII) receives information regarding a new stimulus in parallel with the primary somatosensory area (SI), whereas later processing in the SII is dominated by the preprocessed input from the SI.
Collapse
Affiliation(s)
- Carsten M Klingner
- Hans Berger Department of Neurology, Jena University Hospital-Friedrich Schiller University JenaJena, Germany; Biomagnetic Center, Jena University Hospital-Friedrich Schiller University JenaJena, Germany
| | - Stefan Brodoehl
- Hans Berger Department of Neurology, Jena University Hospital-Friedrich Schiller University Jena Jena, Germany
| | - Ralph Huonker
- Biomagnetic Center, Jena University Hospital-Friedrich Schiller University Jena Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital-Friedrich Schiller University JenaJena, Germany; Biomagnetic Center, Jena University Hospital-Friedrich Schiller University JenaJena, Germany
| |
Collapse
|
102
|
Eckert NR, Vierck CJ, Simon CB, Cruz-Almeida Y, Fillingim RB, Riley JL. Testing Assumptions in Human Pain Models: Psychophysical Differences Between First and Second Pain. THE JOURNAL OF PAIN 2016; 18:266-273. [PMID: 27888117 DOI: 10.1016/j.jpain.2016.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/12/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022]
Abstract
Acute pain arises from activation of myelinated (A delta) and unmyelinated (C) nociceptive afferents, leading to first (A-fiber) or second (C-fiber) pain sensations. The current study sought to investigate first and second pain within glabrous and hairy skin sites in human upper limbs. Fifty healthy adults (25 male/25 female, 18-30 years old, mean = 20.5 ± 1.4 years) participated in a psychophysical study investigating electronically rated, thermal first and second pain sensations within the glabrous skin at the palm and hairy skin of the forearm. Repeated measures analysis of variance indicated that the threshold for first pain was lower (more sensitive) than for second pain (P = .004), for glabrous as well as hairy skin, and thresholds at glabrous skin were higher than for hairy skin (P = .001). Hairy skin presented a steeper slope for testing, whereas there were no differences in slope between first and second pain. The study findings support assumptions associated with mechanistic differences between first and second pain sensations, while offering a novel method for producing first and second pain with the same thermal stimulus. Efforts to understand abnormalities among people with clinical pain and development of new therapeutic agents will benefit from specific psychophysical methods. PERSPECTIVE This article presents a novel method for directly comparing first and second pain within the same thermal stimulus. The ability to directly compare first and second pain sensations can aid in understanding pain abnormalities in clinical pain and development of therapeutic aids.
Collapse
Affiliation(s)
- Nathanial R Eckert
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida.
| | - Charles J Vierck
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida
| | - Corey B Simon
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida
| | - Yenisel Cruz-Almeida
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida
| | - Roger B Fillingim
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida
| | - Joseph L Riley
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida
| |
Collapse
|
103
|
Pawela CP, Kramer JM, Hogan QH. Dorsal root ganglion stimulation attenuates the BOLD signal response to noxious sensory input in specific brain regions: Insights into a possible mechanism for analgesia. Neuroimage 2016; 147:10-18. [PMID: 27876655 DOI: 10.1016/j.neuroimage.2016.11.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/26/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022] Open
Abstract
Targeted dorsal root ganglion (DRG) electrical stimulation (i.e. ganglionic field stimulation - GFS) is an emerging therapeutic approach to alleviate chronic pain. Here we describe blood oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to noxious hind-limb stimulation in a rat model that replicates clinical GFS using an electrode implanted adjacent to the DRG. Acute noxious sensory stimulation in the absence of GFS caused robust BOLD fMRI response in brain regions previously associated with sensory and pain-related response, such as primary/secondary somatosensory cortex, retrosplenial granular cortex, thalamus, caudate putamen, nucleus accumbens, globus pallidus, and amygdala. These regions differentially demonstrated either positive or negative correlation to the acute noxious stimulation paradigm, in agreement with previous rat fMRI studies. Therapeutic-level GFS significantly attenuated the global BOLD response to noxious stimulation in these regions. This BOLD signal attenuation persisted for 20minutes after the GFS was discontinued. Control experiments in sham-operated animals showed that the attenuation was not due to the effect of repetitive noxious stimulation. Additional control experiments also revealed minimal BOLD fMRI response to GFS at therapeutic intensity when presented in a standard block-design paradigm. High intensity GFS produced a BOLD signal map similar to acute noxious stimulation when presented in a block-design. These findings are the first to identify the specific brain region responses to neuromodulation at the DRG level and suggest possible mechanisms for GFS-induced treatment of chronic pain.
Collapse
Affiliation(s)
- Christopher P Pawela
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
104
|
Colon E, Liberati G, Mouraux A. EEG frequency tagging using ultra-slow periodic heat stimulation of the skin reveals cortical activity specifically related to C fiber thermonociceptors. Neuroimage 2016; 146:266-274. [PMID: 27871921 DOI: 10.1016/j.neuroimage.2016.11.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/25/2016] [Accepted: 11/17/2016] [Indexed: 11/29/2022] Open
Abstract
The recording of event-related brain potentials triggered by a transient heat stimulus is used extensively to study nociception and diagnose lesions or dysfunctions of the nociceptive system in humans. However, these responses are related exclusively to the activation of a specific subclass of nociceptive afferents: quickly-adapting thermonociceptors. In fact, except if the activation of Aδ fibers is avoided or if A fibers are blocked, these responses specifically reflect activity triggered by the activation of Type 2 quickly-adapting A fiber mechano-heat nociceptors (AMH-2). Here, we propose a novel method to isolate, in the human electroencephalogram (EEG), cortical activity related to the sustained periodic activation of heat-sensitive thermonociceptors, using very slow (0.2Hz) and long-lasting (75s) sinusoidal heat stimulation of the skin between baseline and 50°C. In a first experiment, we show that when such long-lasting thermal stimuli are applied to the hand dorsum of healthy volunteers, the slow rises and decreases of skin temperature elicit a consistent periodic EEG response at 0.2Hz and its harmonics, as well as a periodic modulation of the magnitude of theta, alpha and beta band EEG oscillations. In a second experiment, we demonstrate using an A fiber block that these EEG responses are predominantly conveyed by unmyelinated C fiber nociceptors. The proposed approach constitutes a novel mean to study C fiber function in humans, and to explore the cortical processing of tonic heat pain in physiological and pathological conditions.
Collapse
Affiliation(s)
- Elisabeth Colon
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Giulia Liberati
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
105
|
Lyubashina OA, Sivachenko IB, Panteleev SS, Nozdrachev AD. Effects of 5-HT3 receptor blockade on visceral nociceptive neurons in the ventrolateral reticular field of the rat medulla oblongata. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016040062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
106
|
Shalini SM, Herr DR, Ong WY. The Analgesic and Anxiolytic Effect of Souvenaid, a Novel Nutraceutical, Is Mediated by Alox15 Activity in the Prefrontal Cortex. Mol Neurobiol 2016; 54:6032-6045. [PMID: 27696115 DOI: 10.1007/s12035-016-0138-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/16/2016] [Indexed: 11/25/2022]
Abstract
Pain and anxiety have a complex relationship and pain is known to share neurobiological pathways and neurotransmitters with anxiety. Top-down modulatory pathways of pain have been shown to originate from cortical and subcortical regions, including the dorsolateral prefrontal cortex. In this study, a novel docosahexaenoic acid (DHA)-containing nutraceutical, Souvenaid, was administered to mice with infraorbital nerve ligation-induced neuropathic pain and behavioral responses recorded. Infraorbital nerve ligation resulted in increased face wash strokes of the face upon von Frey hair stimulation, indicating increased nociception. Part of this response involves general pain sensitization that is dependent on the CNS, since increased nociception was also found in the paws during the hot plate test. Mice receiving oral gavage of Souvenaid, a nutraceutical containing DHA; choline; and other cell membrane components, showed significantly reduced pain sensitization. The mechanism of Souvenaid's activity involves supraspinal antinociception, originating in the prefrontal cortex, since inhibition of the DHA-metabolizing enzyme 15-lipoxygenase (Alox15) in the prefrontal cortex attenuated the antinociceptive effect of Souvenaid. Alox15 inhibition also modulated anxiety behavior associated with pain after infraorbital nerve ligation. The effects of Souvenaid components and Alox15 on reducing central sensitization of pain may be due to strengthening of a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate the importance of the prefrontal cortex and DHA/Alox15 in central antinociceptive pathways and suggest that Souvenaid may be a novel therapeutic for neuropathic pain.
Collapse
Affiliation(s)
- Suku-Maran Shalini
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119260, Singapore
- Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
107
|
Ahmadi S, Rafieenia F, Rostamzadeh J. Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex. Basic Clin Neurosci 2016; 7:241-8. [PMID: 27563417 PMCID: PMC4981836 DOI: 10.15412/j.bcn.03070309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels in rat striatum and prefrontal cortex (PFC) after induction of morphine tolerance. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: The results showed that long-term morphine a administration induces tolerance to analgesic effect of the opioid, as revealed by a significant decrease in morphine-induced analgesia on day 8 compared to day 1 of the injections (P<0.001). The results also showed that the NR1 gene expression at mRNA level in rats tolerant to morphine was significantly increased in the striatum (P<0.01) but decreased in the PFC (P<0.001). Conclusion: Therefore, changes in the NR1 gene expression in rat striatum and PFC have a region-specific association with morphine-induced analgesic tolerance.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Fatemeh Rafieenia
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Jalal Rostamzadeh
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
108
|
Abstract
The pathogenesis of pain sensation includes mechanisms that result in acute or chronic pain. Pain itself is described as an unpleasant sensory and emotional experience beginning with a peripheral stimulus that undergoes a physiological process ultimately resulting in the sensation of pain. Biologists recognize pain to be a common sign of potential tissue damage. Hence, pain sensation is protective in function. However, pathologic states of pain exist secondary to disruption of the nociceptive process both peripherally and centrally or secondary to psychological conditions. It is essential to identify these aberrant states of pain and distinguish them from situations of potential tissue damage. Chronic pain is defined as pain that exceeds 3 or 6 months duration. This article is an overview of the essential neuroanatomy and neurophysiology of normal pain nociception, its clinical implications, and the development of persistent and pathological pain conditions following improperly or poorly treated pain.
Collapse
Affiliation(s)
- Pradeep Dinakar
- Department of Anesthesiology, Boston Children'sHospital, Harvard Medical School, Boston, MA; Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Alexandra Marion Stillman
- Cognitive Neurology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
109
|
Blain GM, Mangum TS, Sidhu SK, Weavil JC, Hureau TJ, Jessop JE, Bledsoe AD, Richardson RS, Amann M. Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol 2016; 594:5303-15. [PMID: 27241818 DOI: 10.1113/jp272283] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/16/2016] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS The purpose of this study was to determine the role of group III/IV muscle afferents in limiting the endurance exercise-induced metabolic perturbation assayed in muscle biopsy samples taken from locomotor muscle. Lumbar intrathecal fentanyl was used to attenuate the central projection of μ-opioid receptor-sensitive locomotor muscle afferents during a 5 km cycling time trial. The findings suggest that the central projection of group III/IV muscle afferent feedback constrains voluntary neural 'drive' to working locomotor muscle and limits the exercise-induced intramuscular metabolic perturbation. Therefore, the CNS might regulate the degree of metabolic perturbation within locomotor muscle and thereby limit peripheral fatigue. It appears that the group III/IV muscle afferents are an important neural link in this regulatory mechanism, which probably serves to protect locomotor muscle from the potentially severe functional impairment as a consequence of severe intramuscular metabolic disturbance. ABSTRACT To investigate the role of metabo- and mechanosensitive group III/IV muscle afferents in limiting the intramuscular metabolic perturbation during whole body endurance exercise, eight subjects performed 5 km cycling time trials under control conditions (CTRL) and with lumbar intrathecal fentanyl impairing lower limb muscle afferent feedback (FENT). Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Motoneuronal output was estimated through vastus lateralis surface electromyography (EMG). Exercise-induced changes in intramuscular metabolites were determined using liquid and gas chromatography-mass spectrometry. Quadriceps fatigue was quantified by pre- to post-exercise changes in potentiated quadriceps twitch torque (ΔQTsingle ) evoked by electrical femoral nerve stimulation. Although motoneuronal output was 21 ± 12% higher during FENT compared to CTRL (P < 0.05), time to complete the time trial was similar (∼8.8 min). Compared to CTRL, power output during FENT was 10 ± 4% higher in the first half of the time trial, but 11 ± 5% lower in the second half (both P < 0.01). The exercise-induced increase in intramuscular inorganic phosphate, H(+) , adenosine diphosphate, lactate and phosphocreatine depletion was 55 ± 30, 62 ± 18, 129 ± 63, 47 ± 14 (P < 0.001) and 27 ± 14% (P < 0.01) greater in FENT than CTRL. ΔQTsingle was greater following FENT than CTRL (-52 ± 2 vs -31 ± 1%, P < 0.001) and this difference was positively correlated with the difference in inorganic phosphate (r(2) = 0.79; P < 0.01) and H(+) (r(2) = 0.92; P < 0.01). In conclusion, during whole body exercise, group III/IV muscle afferents provide feedback to the CNS which, in turn, constrains motoneuronal output to the active skeletal muscle. This regulatory mechanism limits the exercise-induced intramuscular metabolic perturbation, preventing an abnormal homeostatic challenge and excessive peripheral fatigue.
Collapse
Affiliation(s)
- Gregory M Blain
- LAMHESS, EA 6312, University Nice Sophia Antipolis, University of Toulon, Nice, France.
| | - Tyler S Mangum
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Simranjit K Sidhu
- Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Discipline of Physiology, School of Medicine, The University of Adelaide, Australia
| | - Joshua C Weavil
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Thomas J Hureau
- LAMHESS, EA 6312, University Nice Sophia Antipolis, University of Toulon, Nice, France.,Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA.,Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Centre, Salt Lake City VAMC, UT, USA
| | - Markus Amann
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA.,Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Centre, Salt Lake City VAMC, UT, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
110
|
Jammes Y, Behr M, Weber JP, Berdah S. Consequences of simulated car driving at constant high speed on the sensorimotor control of leg muscles and the braking response. Clin Physiol Funct Imaging 2016; 37:767-775. [PMID: 27381059 DOI: 10.1111/cpf.12383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/06/2016] [Indexed: 11/28/2022]
Abstract
Due to the increase in time spent seated in cars, there is a risk of fatigue of the leg muscles which adjust the force exerted on the accelerator pedal. Any change in their sensorimotor control could lengthen the response to emergency braking. Fourteen healthy male subjects (mean age: 42 ± 4 years) were explored. Before and after a 1-h driving trial at 120 km h-1 , we measured the braking response, the maximal leg extension and foot inversion forces, the tonic vibratory response (TVR) in gastrocnemius medialis (GM) and tibialis anterior (TA) muscles to explore the myotatic reflex, and the Hoffmann reflex (H-reflex). During driving, surface electromyograms (EMGs) of GM and TA were recorded and the ratio between high (H) and low (L) EMG energies allowed to evaluate the recruitment of high- and low-frequency motor unit discharges. During driving, the H/L ratio decreased in TA, whereas modest and often no significant H/L changes occurred in GM muscle. After driving, the maximal foot inversion force decreased (-19%), while the leg extension force did not vary. Reduced TVR amplitude (-29%) was measured in TA, but no H-reflex changes were noted. The braking reaction time was not modified after the driving trial. Driving at constant elevated speed reduced the myotatic reflex and the recruitment of motor units in TA muscle. The corresponding changes were rarely present in the GM muscle that plays a key role in the braking response, and this could explain the absence of a reduced braking reaction time.
Collapse
Affiliation(s)
- Yves Jammes
- UMR MD2, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Michel Behr
- IFSTTAR LBA UMR T24, Aix Marseille University, Marseille, France
| | | | - Stephane Berdah
- IFSTTAR LBA UMR T24, Aix Marseille University, Marseille, France
| |
Collapse
|
111
|
Belasen A, Youn Y, Gee L, Prusik J, Lai B, Ramirez-Zamora A, Rizvi K, Yeung P, Shin DS, Argoff C, Pilitsis JG. The Effects of Mechanical and Thermal Stimuli on Local Field Potentials and Single Unit Activity in Parkinson's Disease Patients. Neuromodulation 2016; 19:698-707. [DOI: 10.1111/ner.12453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/24/2016] [Accepted: 04/24/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Abigail Belasen
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | - Youngwon Youn
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | - Lucy Gee
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
- Department of Neuroscience and Experimental Therapeutics; Albany Medical College; Albany NY USA
| | - Julia Prusik
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | - Brant Lai
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | | | - Khizer Rizvi
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | - Philip Yeung
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | - Damian S. Shin
- Department of Neuroscience and Experimental Therapeutics; Albany Medical College; Albany NY USA
| | - Charles Argoff
- Department of Neurology; Albany Medical Center; Albany NY USA
| | - Julie G. Pilitsis
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
- Department of Neuroscience and Experimental Therapeutics; Albany Medical College; Albany NY USA
| |
Collapse
|
112
|
Pellman BA, Kim JJ. What Can Ethobehavioral Studies Tell Us about the Brain's Fear System? Trends Neurosci 2016; 39:420-431. [PMID: 27130660 PMCID: PMC4884474 DOI: 10.1016/j.tins.2016.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 11/19/2022]
Abstract
Foraging-associated predation risk is a natural problem all prey must face. Fear evolved due to its protective functions, guiding and shaping behaviors that help animals adapt to various ecological challenges. Despite the breadth of risky situations in nature that demand diversity in fear behaviors, contemporary neurobiological models of fear stem largely from Pavlovian fear conditioning studies that focus on how a particular cue becomes capable of eliciting learned fear responses, thus oversimplifying the brain's fear system. Here we review fear from functional, mechanistic, and phylogenetic perspectives where environmental threats cause animals to alter their foraging strategies in terms of spatial and temporal navigation, and discuss whether the inferences we draw from fear conditioning studies operate in the natural world.
Collapse
Affiliation(s)
- Blake A Pellman
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA; Program in Neuroscience, University of Washington, Seattle, WA 98195-1525, USA.
| |
Collapse
|
113
|
Abstract
A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.
Collapse
|
114
|
Ligon CO, Moloney RD, Greenwood-Van Meerveld B. Targeting Epigenetic Mechanisms for Chronic Pain: A Valid Approach for the Development of Novel Therapeutics. J Pharmacol Exp Ther 2016; 357:84-93. [DOI: 10.1124/jpet.115.231670] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
115
|
HUREAU THOMASJ, DUCROCQ GUILLAUMEP, BLAIN GREGORYM. Peripheral and Central Fatigue Development during All-Out Repeated Cycling Sprints. Med Sci Sports Exerc 2016; 48:391-401. [DOI: 10.1249/mss.0000000000000800] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
116
|
Walk D, Poliak-Tunis M. Chronic Pain Management: An Overview of Taxonomy, Conditions Commonly Encountered, and Assessment. Med Clin North Am 2016; 100:1-16. [PMID: 26614715 DOI: 10.1016/j.mcna.2015.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pain has multiple mechanisms that result in pain amplification and maintenance, including central and peripheral sensitization and altered modulation of pain perception. Assessment of pain requires comprehensive assessment of symptoms and signs, suspected pain mechanisms, and the patient's biopsychosocial context. Multiple validated measures exist for the assessment of pain symptoms, pain-related disability, psychological impact of pain, and candidacy for opioid management.
Collapse
Affiliation(s)
- David Walk
- Department of Neurology, University of Minnesota, 420 Delaware Street Southeast, MMC 295, Minneapolis, MN 55455, USA.
| | - Michelle Poliak-Tunis
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
117
|
Kibaly C, Loh H, Law PY. A Mechanistic Approach to the Development of Gene Therapy for Chronic Pain. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:89-161. [DOI: 10.1016/bs.ircmb.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
118
|
Munasinghe NR, Christie MJ. Conotoxins That Could Provide Analgesia through Voltage Gated Sodium Channel Inhibition. Toxins (Basel) 2015; 7:5386-407. [PMID: 26690478 PMCID: PMC4690140 DOI: 10.3390/toxins7124890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/23/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022] Open
Abstract
Chronic pain creates a large socio-economic burden around the world. It is physically and mentally debilitating, and many sufferers are unresponsive to current therapeutics. Many drugs that provide pain relief have adverse side effects and addiction liabilities. Therefore, a great need has risen for alternative treatment strategies. One rich source of potential analgesic compounds that has emerged over the past few decades are conotoxins. These toxins are extremely diverse and display selective activity at ion channels. Voltage gated sodium (NaV) channels are one such group of ion channels that play a significant role in multiple pain pathways. This review will explore the literature around conotoxins that bind NaV channels and determine their analgesic potential.
Collapse
Affiliation(s)
- Nehan R Munasinghe
- Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia.
| | - MacDonald J Christie
- Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
119
|
de Knegt N, Defrin R, Schuengel C, Lobbezoo F, Evenhuis H, Scherder E. Quantitative sensory testing of temperature, pain, and touch in adults with Down syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2015; 47:306-317. [PMID: 26460852 DOI: 10.1016/j.ridd.2015.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 07/18/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
The spinothalamic pathway mediates sensations of temperature, pain, and touch. These functions seem impaired in children with Down syndrome (DS), but have not been extensively examined in adults. The objective of the present study was to compare the spinothalamic-mediated sensory functions between adults with DS and adults from the general population and to examine in the DS group the relationship between the sensory functions and level of intellectual functioning. Quantitative sensory testing (QST) was performed in 188 adults with DS (mean age 37.5 years) and 142 age-matched control participants (median age 40.5 years). Temperature, pain, and touch were evaluated with tests for cold-warm discrimination, sharp-dull discrimination (pinprick), and tactile threshold, respectively. Level of intellectual functioning was estimated with the Social Functioning Scale for Intellectual Disability (intellectual disability level) and the Wechsler Preschool and Primary Scale of Intelligence--Revised (intelligence level). Overall, the difference in spinothalamic-mediated sensory functions between the DS and control groups was not statistically significant. However, DS participants with a lower intelligence level had a statistically significant lower performance on the sharp-dull discrimination test than DS participants with higher intelligence level (adjusted p=.006) and control participants (adjusted p=.017). It was concluded that intellectual functioning level is an important factor to take into account for the assessment of spinothalamic-mediated sensory functioning in adults with DS: a lower level could coincide with impaired sensory functioning, but could also hamper QST assessment.
Collapse
Affiliation(s)
- Nanda de Knegt
- Department of Clinical Neuropsychology, VU University, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands.
| | - Ruth Defrin
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | - Carlo Schuengel
- Department of Clinical Child and Family Studies, VU University, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands.
| | - Frank Lobbezoo
- Department of Oral Kinesiology, Academic Center for Dentistry Amsterdam (ACTA) , Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| | - Heleen Evenhuis
- Department of General Practice, Erasmus MC, University Medical Center, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Erik Scherder
- Department of Clinical Neuropsychology, VU University, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands.
| |
Collapse
|
120
|
Luiz AP, Kopach O, Santana-Varela S, Wood JN. The role of Nav1.9 channel in the development of neuropathic orofacial pain associated with trigeminal neuralgia. Mol Pain 2015; 11:72. [PMID: 26607325 PMCID: PMC4658751 DOI: 10.1186/s12990-015-0076-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Trigeminal neuralgia is accompanied by severe mechanical, thermal and chemical hypersensitivity of the orofacial area innervated by neurons of trigeminal ganglion (TG). We examined the role of the voltage-gated sodium channel subtype Nav1.9 in the development of trigeminal neuralgia. RESULTS We found that Nav1.9 is required for the development of both thermal and mechanical hypersensitivity induced by constriction of the infraorbital nerve (CION). The CION model does not induce change on Nav1.9 mRNA expression in the ipsilateral TG neurons when evaluated 9 days after surgery. CONCLUSIONS These results demonstrate that Nav1.9 channels play a critical role in the development of orofacial neuropathic pain. New routes for the treatment of orofacial neuropathic pain focussing on regulation of the voltage-gated Nav1.9 sodium channel activity should be investigated.
Collapse
Affiliation(s)
- Ana Paula Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower St, London, WC1E 6BT, UK.
| | - Olga Kopach
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower St, London, WC1E 6BT, UK.
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower St, London, WC1E 6BT, UK.
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower St, London, WC1E 6BT, UK. .,Department of Molecular Medicine and Biopharmaceutical Sciences, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
121
|
Yi GS, Wang J, Deng B, Hong SH, Wei XL, Chen YY. Action potential threshold of wide dynamic range neurons in rat spinal dorsal horn evoked by manual acupuncture at ST36. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.03.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
122
|
Goodall S, Charlton K, Howatson G, Thomas K. Neuromuscular fatigability during repeated-sprint exercise in male athletes. Med Sci Sports Exerc 2015; 47:528-36. [PMID: 25010404 DOI: 10.1249/mss.0000000000000443] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE This study aimed to determine the pattern of neuromuscular fatigability that manifests during repeated-sprint running exercise. METHODS Twelve male participants (mean ± SD: age, 25 ± 6 yr; stature, 180 ± 7 cm; body mass, 77 ± 7 kg), currently training and competing in intermittent sprint sports, performed a repeated maximal sprint running protocol (12 × 30 m, 30-s rest periods). Pre- and postexercise twitch responses to transcutaneous motor point stimulation and transcranial magnetic stimulation were obtained to assess knee extensor neuromuscular and corticospinal function, respectively. Throughout the protocol, during alternate rest periods, blood lactate samples were taken and a single knee extensor maximal voluntary contraction (MVC) of the knee extensors was performed, with motor point stimulation delivered during and 2 s after, to determine voluntary activation (VA) and peripheral fatigue. RESULTS The repeated-sprint protocol induced significant increases in sprint time and blood [lactate] from the third sprint onwards (P < 0.001). Furthermore, knee extensor MVC, resting twitch amplitude, and VA were all significantly reduced after two sprints and reached their nadir after sprint 10 (Δ12%, Δ24%, Δ8%, P < 0.01, respectively). In line with a reduction in motor point-derived VA, there was also a reduction in VA measured with transcranial magnetic stimulation (Δ9%, P < 0.05) immediately after exercise. CONCLUSIONS These data are the first to demonstrate the development of neuromuscular fatigability of the knee extensors during and immediately after repeated-sprint exercise. Peripheral and central factors contributing to muscle fatigability were evident after two maximal sprints, and over half of the drop in postexercise MVC was due to supraspinal fatigue. Thus, peripheral, central, and supraspinal factors all contribute to the performance decrement and fatigability of the knee extensors after maximal repeated-sprint activity.
Collapse
Affiliation(s)
- Stuart Goodall
- 1Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UNITED KINGDOM; and 2Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, SOUTH AFRICA
| | | | | | | |
Collapse
|
123
|
Vaseghi B, Zoghi M, Jaberzadeh S. Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception - a double-blind randomised sham-controlled study. Eur J Neurosci 2015; 42:2426-37. [DOI: 10.1111/ejn.13043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 01/30/2023]
Affiliation(s)
- B. Vaseghi
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Frankston Vic. Australia
| | - M. Zoghi
- Department of Medicine; Royal Melbourne Hospital; The University of Melbourne; Parkville Vic. Australia
| | - S. Jaberzadeh
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Frankston Vic. Australia
| |
Collapse
|
124
|
Parallel processing of somatosensory information: Evidence from dynamic causal modeling of MEG data. Neuroimage 2015; 118:193-8. [DOI: 10.1016/j.neuroimage.2015.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/02/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
|
125
|
Panneton WM, Gan Q, Ariel M. Injections of Algesic Solutions into Muscle Activate the Lateral Reticular Formation: A Nociceptive Relay of the Spinoreticulothalamic Tract. PLoS One 2015; 10:e0130939. [PMID: 26154308 PMCID: PMC4496070 DOI: 10.1371/journal.pone.0130939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Although musculoskeletal pain disorders are common clinically, the central processing of muscle pain is little understood. The present study reports on central neurons activated by injections of algesic solutions into the gastrocnemius muscle of the rat, and their subsequent localization by c-Fos immunohistochemistry in the spinal cord and brainstem. An injection (300μl) of an algesic solution (6% hypertonic saline, pH 4.0 acetate buffer, or 0.05% capsaicin) was made into the gastrocnemius muscle and the distribution of immunolabeled neurons compared to that obtained after control injections of phosphate buffered saline [pH 7.0]. Most labeled neurons in the spinal cord were found in laminae IV-V, VI, VII and X, comparing favorably with other studies, with fewer labeled neurons in laminae I and II. This finding is consistent with the diffuse pain perception due to noxious stimuli to muscles mediated by sensory fibers to deep spinal neurons as compared to more restricted pain localization during noxious stimuli to skin mediated by sensory fibers to superficial laminae. Numerous neurons were immunolabeled in the brainstem, predominantly in the lateral reticular formation (LRF). Labeled neurons were found bilaterally in the caudalmost ventrolateral medulla, where neurons responsive to noxious stimulation of cutaneous and visceral structures lie. Immunolabeled neurons in the LRF continued rostrally and dorsally along the intermediate reticular nucleus in the medulla, including the subnucleus reticularis dorsalis caudally and the parvicellular reticular nucleus more rostrally, and through the pons medial and lateral to the motor trigeminal nucleus, including the subcoerulear network. Immunolabeled neurons, many of them catecholaminergic, were found bilaterally in the nucleus tractus solitarii, the gracile nucleus, the A1 area, the CVLM and RVLM, the superior salivatory nucleus, the nucleus locus coeruleus, the A5 area, and the nucleus raphe magnus in the pons. The external lateral and superior lateral subnuclei of the parabrachial nuclear complex were consistently labeled in experimental data, but they also were labeled in many control cases. The internal lateral subnucleus of the parabrachial complex was labeled moderately. Few immunolabeled neurons were found in the medial reticular formation, however, but the rostroventromedial medulla was labeled consistently. These data are discussed in terms of an interoceptive, multisynaptic spinoreticulothalamic path, with its large receptive fields and role in the motivational-affective components of pain perceptions.
Collapse
Affiliation(s)
- W. Michael Panneton
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, United States of America
- * E-mail:
| | - Qi Gan
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, United States of America
| | - Michael Ariel
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, United States of America
| |
Collapse
|
126
|
Angius L, Hopker JG, Marcora SM, Mauger AR. The effect of transcranial direct current stimulation of the motor cortex on exercise-induced pain. Eur J Appl Physiol 2015; 115:2311-9. [PMID: 26148882 DOI: 10.1007/s00421-015-3212-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/28/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE Transcranial direct current stimulation (tDCS) provides a new exciting means to investigate the role of the brain during exercise. However, this technique is not widely used in exercise science, with little known regarding effective electrode montages. This study investigated whether tDCS of the motor cortex (M1) would elicit an analgesic response to exercise-induced pain (EIP). METHODS Nine participants completed a VO2max test and three time to exhaustion (TTE) tasks on separate days following either 10 min 2 mA tDCS of the M1, a sham or a control. Additionally, seven participants completed 3 cold pressor tests (CPT) following the same experimental conditions (tDCS, SHAM, CON). Using a well-established tDCS protocol, tDCS was delivered by placing the anodal electrode above the left M1 with the cathodal electrode above dorsolateral right prefrontal cortex. Gas exchange, blood lactate, EIP and ratings of perceived exertion (RPE) were monitored during the TTE test. Perceived pain was recorded during the CPT. RESULTS During the TTE, no significant differences in time to exhaustion, RPE or EIP were found between conditions. However, during the CPT, perceived pain was significantly (P < 0.05) reduced in the tDCS condition (7.4 ± 1.2) compared with both the CON (8.6 ± 1.0) and SHAM (8.4 ± 1.3) conditions. CONCLUSION These findings demonstrate that stimulation of the M1 using tDCS does not induce analgesia during exercise, suggesting that the processing of pain produced via classic measures of experimental pain (i.e., a CPT) is different to that of EIP. These results provide important methodological advancement in developing the use of tDCS in exercise.
Collapse
Affiliation(s)
- Luca Angius
- Endurance Research Group, School of Sport and Exercise Sciences, Faculty of Science, University of Kent, Chatham Maritime, Kent, ME4 4AG, UK
| | - James G Hopker
- Endurance Research Group, School of Sport and Exercise Sciences, Faculty of Science, University of Kent, Chatham Maritime, Kent, ME4 4AG, UK
| | - Samuele M Marcora
- Endurance Research Group, School of Sport and Exercise Sciences, Faculty of Science, University of Kent, Chatham Maritime, Kent, ME4 4AG, UK
| | - Alexis R Mauger
- Endurance Research Group, School of Sport and Exercise Sciences, Faculty of Science, University of Kent, Chatham Maritime, Kent, ME4 4AG, UK.
| |
Collapse
|
127
|
Tatuene JK, Excoffier S, Vallee JP, Kleinschmidt A. Putative pathophysiological mechanisms in recurrent hemicrania from aortic dissection: a case report. BMC Res Notes 2015; 8:246. [PMID: 26082134 PMCID: PMC4470358 DOI: 10.1186/s13104-015-1223-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 06/09/2015] [Indexed: 01/03/2023] Open
Abstract
Background Transient or permanent neurological symptoms occur in 17–40% of patients with aortic dissection. They can distract from or even mask the underlying life-threatening condition. Case presentation We present the case of a young Caucasian man who consulted for recurrent episodes of stereotyped right-sided sudden-onset severe headache. Upon questioning, he also reported a dull chest pain. Clinical examination and brain magnetic resonance imaging were unremarkable. The concomitant presence of chest pain made us consider aortic dissection. Contrast-enhanced cervico-thoraco-abdominal computerized tomography revealed type A aortic dissection. The patient underwent surgical replacement of the ascending aorta and reported no further episode of headache thereafter. Differential diagnosis of headache in this case includes paroxysmal hemicrania, cluster headache, migraine, trigeminal neuralgia and short lasting unilateral neuralgiform headache with conjunctival injection and tearing. Failure to match diagnostic criteria for any of these primary headache disorders and the resolution of pain episodes following surgery led us to postulate that these new-onset hemicrania episodes were symptomatic of aortic dissection. We hypothesize that aortic wall ischemia could have activated the trigeminovascular system and thereby caused hemicranial pain. Such an effect might be mediated by two different pathways that can be referred to as anatomical and humoral. The humoral hypothesis would posit that ischemia results in synthesis of pro-inflammatory mediators released from the aortic wall into the blood stream, such that they reach the central nervous system and directly stimulate specific receptors. The anatomical hypothesis would imply that pain signals generated by nociceptors in the aortic wall are transferred to the trigeminal ganglion via the cardiac plexus, the first cervical ganglion and the internal carotid nerve such that pain perception is referred to related cranio-cervical dermatomes. Conclusion In cases of isolated headache that does not match key diagnostic criteria for a primary headache entity; a thorough review of systems should be performed to look for symptoms that may indicate symptomatic headache from potentially life-threatening conditions. Neurologists should consider aortic dissection in patients presenting with acute headache and chest pain. Further clinical or experimental studies are required to refute or validate the pathophysiological hypothesis discussed here.
Collapse
Affiliation(s)
- Joseph Kamtchum Tatuene
- Neurology Division, Department of Clinical Neurosciences, Geneva University Hospital, 4 Gabrielle-Perret-Gentil Street, 1211, Geneva 14, Switzerland.
| | - Sophie Excoffier
- Emergency Division, Department of Community Medicine, Primary Care and Emergency Medicine, Geneva University Hospital, Geneva, Switzerland.
| | - Jean-Paul Vallee
- Radiology Division, Department of Imaging and Medical Information Sciences, Geneva University Hospital, Geneva, Switzerland.
| | - Andreas Kleinschmidt
- Neurology Division, Department of Clinical Neurosciences, Geneva University Hospital, 4 Gabrielle-Perret-Gentil Street, 1211, Geneva 14, Switzerland.
| |
Collapse
|
128
|
Konrad P. Dorsal root entry zone lesion, midline myelotomy and anterolateral cordotomy. Neurosurg Clin N Am 2015; 25:699-722. [PMID: 25240658 DOI: 10.1016/j.nec.2014.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review encompasses the most common spinal cord lesioning procedures used for the treatment of pain: dorsal root entry zone lesioning, open cordotomy, percutaneous cordotomy, and midline myelotomy. A literature review and summary of each technique regarding relevant anatomy, patient selection, surgical technique, outcomes, and complications are discussed. A general review of somatic and visceral pain pathways of the spinal cord is included, as each procedure requires an understanding of the advantages and disadvantages of various approaches to lesioning the spinal cord for pain. Neurosurgical education of these rarely used procedures needs to be included in residency and fellowship training.
Collapse
Affiliation(s)
- Peter Konrad
- Functional Neurosurgery, Neurological Surgery and Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
129
|
Jellinger KA. Neuropathobiology of non-motor symptoms in Parkinson disease. J Neural Transm (Vienna) 2015; 122:1429-40. [PMID: 25976432 DOI: 10.1007/s00702-015-1405-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/30/2015] [Indexed: 01/23/2023]
Abstract
Parkinson disease (PD) is a multisystem disorder associated with α-synuclein aggregates throughout the central, autonomic, and peripheral nervous system, clinically characterized by motor and non-motor (NM) symptoms. The NMS in PD, many of which antedating motor dysfunction and representing a preclinical phase spanning 20 or more years, are linked to widespread distribution of α-synuclein pathology not restricted to the dopaminergic nigrostriatal system that is responsible for core motor features of PD. The pathologic substrate of NM manifestations such as olfactory, autonomic (gastrointestinal, urogenital, cardia, respiratory), sensory, skin, sleep, visual, neuropsychiatric dysfunctions (cognitive, mood, dementia), and others are critically reviewed. In addition to non-nigral brainstem nuclei, α-synuclein pathology involves sympathetic and parasympathetic, enteric, cardiac and pelvic plexuses, and many other organs indicating a topographical and chronological spread, particularly in the prodromal stages of the disease. Few animal models recapitulate NMS in PD. The relationship between regional α-synuclein/Lewy pathology, neurodegeneration and the corresponding clinical deficits awaits further elucidation. Controlled clinicopathologic studies will refine the correlations between presymptomatic and late-developing NM features of PD and neuropathology, and new premotor biomarkers will facilitate early diagnosis of PD as a basis for more effective preventive and therapeutic options of this devastating disease.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse 18, 1070, Vienna, Austria.
| |
Collapse
|
130
|
Luiz AP, Schroeder SD, Rae GA, Calixto JB, Chichorro JG. Contribution and interaction of kinin receptors and dynorphin A in a model of trigeminal neuropathic pain in mice. Neuroscience 2015; 300:189-200. [PMID: 25982562 DOI: 10.1016/j.neuroscience.2015.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/29/2023]
Abstract
Infraorbital nerve constriction (CION) causes hypersensitivity to facial mechanical, heat and cold stimulation in rats and mice and is a reliable model to study trigeminal neuropathic pain. In this model there is evidence that mechanisms operated by kinin B1 and B2 receptors contribute to heat hyperalgesia in both rats and mice. Herein we further explored this issue and assessed the role of kinin receptors in mechanical hyperalgesia after CION. Swiss and C57Bl/6 mice that underwent CION or sham surgery or dynorphin A (1-17) administration were repeatedly submitted to application of either heat stimuli to the snout or mechanical stimuli to the forehead. Treatment of the animals on the fifth day after CION surgery with DALBK (B1 receptor antagonist) or HOE-140 (B2 receptor antagonist), both at 0.01-1μmol/kg (i.p.), effectively reduced CION-induced mechanical hyperalgesia. Knockout mice for kinin B1, B2 or B1/B2 receptors did not develop heat or mechanical hyperalgesia in response to CION. Subarachnoid dynorphin A (1-17) delivery (15nmol/5μL) also resulted in orofacial heat hyperalgesia, which was attenuated by post-treatment with DALBK (1 and 3μmol/kg, i.p.), but was not affected by HOE-140. Additionally, treatment with an anti-dynorphin A antiserum (200μg/5μL, s.a.) reduced CION-induced heat hyperalgesia for up to 2h. These results suggest that both kinin B1 and B2 receptors are relevant in orofacial sensory nociceptive changes induced by CION. Furthermore, they also indicate that dynorphin A could stimulate kinin receptors and this effect seems to contribute to the maintenance of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- A P Luiz
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | - S D Schroeder
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - G A Rae
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - J B Calixto
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Center of Innovation and Pre-clinical Trials, Florianopolis, SC, Brazil
| | - J G Chichorro
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
131
|
Alexandre F, Derosiere G, Papaiordanidou M, Billot M, Varray A. Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles. Acta Physiol (Oxf) 2015; 214:124-34. [PMID: 25740017 DOI: 10.1111/apha.12478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
AIM Neuromuscular electrical stimulation (NMES) causes early onset of neuromuscular fatigue. Peripheral electrophysiological explorations suggest that supra-spinal alterations are involved through sensitive afferent pathways. As sensory input is projected over the primary somatosensory cortex (S1), S1 area involvement in inhibiting the central motor drive can be hypothesized. This study assessed cortical activity under a fatiguing NMES protocol at low frequency. METHODS Twenty healthy males performed five NMES sequences of 17 trains over the plantar flexors (30 Hz, 4 s on/6 s off). Before and after each sequence, neuromuscular tests composed of maximal voluntary contractions (MVCs) were carried out. Cortical activity was assessed during MVCs with functional near-infrared spectroscopy over S1 and primary motor (M1) areas, through oxy- [HbO] and deoxy-haemoglobin [HbR] variation. Electrophysiological data (H-reflex during MVC, EMG activity and level of voluntary activation) were also recorded. RESULTS MVC torque significantly decreased after the first 17 NMES trains (P < 0.001). The electrophysiological data were consistent with supra-spinal alterations. In addition, [HbO] declined significantly during the protocol over the S1 and M1 areas from the first 17 NMES trains (P < 0.01 and P < 0.001 respectively), while [HbR] increased (P < 0.05 and P < 0.01 respectively), indicating early decline in cortical activity over both primary cortical areas. CONCLUSIONS The declining cortical activity over the M1 area is highly consistent with the electrophysiological findings and supports motor cortex involvement in the loss of force after a fatiguing NMES protocol. In addition, the declining cortical activity over the S1 area indicates that the decreased motor output from M1 is not due to increased S1 inhibitory activity.
Collapse
Affiliation(s)
- F. Alexandre
- Movement To Health; Euromov; Montpellier University; Montpellier France
- Fontalvie; Clinique du Souffle ‘la Vallonie’; Lodève France
| | - G. Derosiere
- Movement To Health; Euromov; Montpellier University; Montpellier France
- Biomedical Engineering Research Group; National University of Ireland; Maynooth Ireland
| | - M. Papaiordanidou
- Movement To Health; Euromov; Montpellier University; Montpellier France
- Institut des Sciences du Mouvement; Aix-Marseille University; Marseille France
| | - M. Billot
- Movement To Health; Euromov; Montpellier University; Montpellier France
| | - A. Varray
- Movement To Health; Euromov; Montpellier University; Montpellier France
| |
Collapse
|
132
|
|
133
|
Laurin J, Pertici V, Dousset E, Marqueste T, Decherchi P. Group III and IV muscle afferents: Role on central motor drive and clinical implications. Neuroscience 2015; 290:543-51. [DOI: 10.1016/j.neuroscience.2015.01.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
|
134
|
Lake WB, Konrad PE. Cordotomy procedures for cancer pain: A discussion of surgical procedures and a review of the literature. World J Surg Proced 2015; 5:111-118. [DOI: 10.5412/wjsp.v5.i1.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/02/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Treating pain in patients with terminal cancer is challenging but essential part of their care. Most patients can be managed with pharmacological options but for some these pain control methods are inadequate. Ablative spinal procedures offer an alternative method of pain control for cancer patients with a terminal diagnosis that are failing to have their pain controlled sufficiently by other methods. This paper provides a review of ablative spinal procedures for control of cancer pain. Patient selection, surgical methods, outcomes and complications are discussed in detail for cordotomy, dorsal root entry zone (DREZ) lesioning and midline myelotomy. Cordotomy is primarily done by a percutaneous method and it is best suited for patients with unilateral somatic limb and trunk pain such as due to sarcoma. Possible complications include unilateral weakness possibly respiratory abnormalities. Approximately 90% of patients have significant immediate pain relief following percutaneous cordotomy but increasing portions of patients have pain recurrence as the follow-up period increases beyond one year. The DREZ lesion procedure is best suited to patients with plexus invasion due to malignancy and pain confined to one limb. Possible complications of DREZ procedures include hemiparesis and decreased proprioception. Midline myelotomy is best suited for bilateral abdominal, pelvic or lower extremity pain. Division of the commissure is necessary to address bilateral lower extremity pain. This procedure is relatively rare but published case series demonstrate satisfactory pain control for over half of the patients undergoing the procedure. Possible complications include bilateral lower extremity weakness and diminished proprioception below the lesion level. Unlike cordotomy and DREZ this procedure offers visceral pain control as opposed to only somatic pain control. Ablative spinal procedures offer pain control for terminal cancer patients that are not able to managed medically. This paper provides an in depth review of these procedures with the hope of improving education regarding these underutilized procedures.
Collapse
|
135
|
Gaffey A, Campbell J, Porritt K, Slater H. The effects of curcumin on musculoskeletal pain: a systematic review protocol. ACTA ACUST UNITED AC 2015; 13:59-73. [PMID: 26447034 DOI: 10.11124/jbisrir-2015-1684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 10/31/2022]
Affiliation(s)
- Andrew Gaffey
- School of Translational Health Science, Joanna Briggs Institute, Faculty of Health Sciences, University of Adelaide, South Australia
| | - Jared Campbell
- School of Translational Health Science, Joanna Briggs Institute, Faculty of Health Sciences, University of Adelaide, South Australia
| | - Kylie Porritt
- School of Translational Health Science, Joanna Briggs Institute, Faculty of Health Sciences, University of Adelaide, South Australia
| | - Helen Slater
- School of Physiotherapy and Exercise Science, Curtin University, Western Australia
| |
Collapse
|
136
|
Choi YM, Kim KH. Etifoxine for pain patients with anxiety. Korean J Pain 2015; 28:4-10. [PMID: 25589941 PMCID: PMC4293506 DOI: 10.3344/kjp.2015.28.1.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 02/05/2023] Open
Abstract
Etifoxine (etafenoxine, Stresam®) is a non-benzodiazepine anxiolytic with an anticonvulsant effect. It was developed in the 1960s for anxiety disorders and is currently being studied for its ability to promote peripheral nerve healing and to treat chemotherapy-induced pain. In addition to being mediated by GABAAα2 receptors like benzodiazepines, etifoxine appears to produce anxiolytic effects directly by binding to β2 or β3 subunits of the GABAA receptor complex. It also modulates GABAA receptors indirectly via stimulation of neurosteroid production after etifoxine binds to the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane in the central and peripheral nervous systems, previously known as the peripheral benzodiazepine receptor (PBR). Therefore, the effects of etifoxine are not completely reversed by the benzodiazepine antagonist flumazenil. Etifoxine is used for various emotional and bodily reactions followed by anxiety. It is contraindicated in situations such as shock, severely impaired liver or kidney function, and severe respiratory failure. The average dosage is 150 mg per day for no more than 12 weeks. The most common adverse effect is drowsiness at the initial stage. It does not usually cause any withdrawal syndromes. In conclusion, etifoxine shows less adverse effects of anterograde amnesia, sedation, impaired psychomotor performance, and withdrawal syndromes than those of benzodiazepines. It potentiates GABAA receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of TSPO. It seems promising that non-benzodiazepine anxiolytics including etifoxine will replenish shortcomings of benzodiazepines and selective serotonin reuptake inhibitors according to animated studies related to TSPO.
Collapse
Affiliation(s)
- Yun Mi Choi
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kyung Hoon Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
137
|
Moloney RD, O'Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psychiatry 2015; 6:15. [PMID: 25762939 PMCID: PMC4329736 DOI: 10.3389/fpsyt.2015.00015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
Collapse
Affiliation(s)
- Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland
| | - Siobhain M O'Mahony
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Psychiatry, University College Cork , Cork , Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| |
Collapse
|
138
|
Ahmadi S, Karami Z, Mohammadian A, Khosrobakhsh F, Rostamzadeh J. Cholestasis induced antinociception and decreased gene expression of MOR1 in rat brain. Neuroscience 2015; 284:78-86. [DOI: 10.1016/j.neuroscience.2014.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/10/2014] [Accepted: 08/21/2014] [Indexed: 01/08/2023]
|
139
|
Yin K, Zimmermann K, Vetter I, Lewis RJ. Therapeutic opportunities for targeting cold pain pathways. Biochem Pharmacol 2015; 93:125-40. [DOI: 10.1016/j.bcp.2014.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
|
140
|
Does modulation of spinal N-methyl-D-aspartic acid receptor by pre-activation accelerate the development of morphine tolerance? Med Hypotheses 2014; 84:91-3. [PMID: 25550113 DOI: 10.1016/j.mehy.2014.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/25/2014] [Accepted: 12/14/2014] [Indexed: 01/05/2023]
Abstract
Repeated morphine administration usually leads to a number of neuroadaptive processes, including tolerance and sensitization. However, research has shown that the induction and maintenance of central sensitization is dependent on N-methyl-d-aspartic acid receptor (NMDAR) activation. Chronic morphine exposure has been shown to result in spinal sensitization and activation of spinal NMDARs. Chronic morphine treatment and the activation of spinal NMDARs may be synergistic and form a closed loop that may worsen the development of morphine analgesic tolerance and spinal sensitization. Inhibition of NMDARs with an antagonist could effectively alleviate the development of morphine analgesic tolerance. So, what is the effect of modulating spinal NMDAR activation with exogenous agonists or neuropathic input on the development of morphine-induced analgesic tolerance? Our hypothesis is that chronic morphine treatment may worsen the already activation of spinal NMDARs and spinal sensitization after agonist application or neuropathic input to shorten the process of morphine-induced analgesic tolerance.
Collapse
|
141
|
Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract. Brain Struct Funct 2014; 221:1125-37. [PMID: 25503820 DOI: 10.1007/s00429-014-0959-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
|
142
|
Johnson AC, Greenwood-Van Meerveld B. Stress-induced pain: a target for the development of novel therapeutics. J Pharmacol Exp Ther 2014; 351:327-35. [PMID: 25194019 PMCID: PMC4201269 DOI: 10.1124/jpet.114.218065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/04/2014] [Indexed: 12/12/2022] Open
Abstract
Although current therapeutics provide relief from acute pain, drugs used for treatment of chronic pain are typically less efficacious and limited by adverse side effects, including tolerance, addiction, and gastrointestinal upset. Thus, there is a significant need for novel therapies for the treatment of chronic pain. In concert with chronic pain, persistent stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic pain disorders. Stress exacerbation of chronic pain suggests that centrally acting drugs targeting the pain- and stress-responsive brain regions represent a valid target for the development of novel therapeutics. This review provides an overview of how stress modulates spinal and central pain pathways, identifies key neurotransmitters and receptors within these pathways, and highlights their potential as novel targets for therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Anthony C Johnson
- Veterans Affairs Medical Center (B.G.-V.M.), Department of Physiology (B.G.-V.M.), and Oklahoma Center for Neuroscience (A.C.J., B.G.-V.M.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center (B.G.-V.M.), Department of Physiology (B.G.-V.M.), and Oklahoma Center for Neuroscience (A.C.J., B.G.-V.M.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
143
|
Siran R, Ahmad AH, Abdul Aziz CB, Ismail Z. REM sleep deprivation induces changes of Down Regulatory Antagonist Modulator (DREAM) expression in the ventrobasal thalamic nuclei of Sprague–Dawley rats. J Physiol Biochem 2014; 70:877-89. [DOI: 10.1007/s13105-014-0356-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/02/2014] [Indexed: 01/24/2023]
|
144
|
Phantom acupuncture: dissociating somatosensory and cognitive/affective components of acupuncture stimulation with a novel form of placebo acupuncture. PLoS One 2014; 9:e104582. [PMID: 25101637 PMCID: PMC4125217 DOI: 10.1371/journal.pone.0104582] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/01/2014] [Indexed: 12/30/2022] Open
Abstract
In a clinical setting, acupuncture treatment consists of multiple components including somatosensory stimulation, treatment context, and attention to needle-based procedures. In order to dissociate somatosensory versus contextual and attentional aspects of acupuncture, we devised a novel form of placebo acupuncture, a visual manipulation dubbed phantom acupuncture, which reproduces the acupuncture needling ritual without somatosensory tactile stimulation. Subjects (N = 20) received both real (REAL) and phantom (PHNT) acupuncture. Subjects were retrospectively classified into two groups based on PHNT credibility (PHNTc, who found phantom acupuncture credible; and PHNTnc, who did not). Autonomic and psychophysical responses were monitored. We found that PHNT can be delivered in a credible manner. Acupuncture needling, a complex, ritualistic somatosensory intervention, induces sympathetic activation (phasic skin conductance [SC] response), which may be specific to the somatosensory component of acupuncture. In contrast, contextual effects, such as needling credibility, are instead associated with a shift toward relative cardiovagal activation (decreased heart rate) during needling and sympathetic inhibition (decreased SC) and parasympathetic activation (decreased pupil size) following acupuncture needling. Visual stimulation characterizing the needling ritual is an important factor for phasic autonomic responses to acupuncture and may undelie the needling orienting response. Our study suggests that phantom acupuncture can be a viable sham control for acupuncture as it completely excludes the somatosensory component of real needling while maintaining the credibility of the acupuncture treatment context in many subjects.
Collapse
|
145
|
Khoshnejad M, Piché M, Saleh S, Duncan G, Rainville P. Serial processing in primary and secondary somatosensory cortex: A DCM analysis of human fMRI data in response to innocuous and noxious electrical stimulation. Neurosci Lett 2014; 577:83-8. [DOI: 10.1016/j.neulet.2014.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/21/2014] [Accepted: 06/06/2014] [Indexed: 11/15/2022]
|
146
|
Role of the primary motor cortex in the maintenance and treatment of pain in fibromyalgia. Med Hypotheses 2014; 83:332-6. [PMID: 24992875 DOI: 10.1016/j.mehy.2014.06.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/20/2014] [Accepted: 06/09/2014] [Indexed: 11/23/2022]
Abstract
Fibromyalgia is a highly prevalent, debilitating disease, characterized by chronic widespread pain. The mechanisms underlying pain are not completely understood, but it is believed to be associated with important neuroplastic changes in pain-related neural circuits. Although the involvement of the pain matrix in fibromyalgia is well established, another area that has been found to play a role in the maintenance and treatment of chronic pain is the primary motor cortex (M1). Maladaptive plasticity of M1 is a common finding in patients with chronic pain and many studies in animal models and in human subjects have shown that modulation of the activity of this cortical area induces significant analgesic effects. Furthermore, studies in other chronic pain syndromes have found alterations in baseline characteristics of M1, including an increase in cortical excitability and an abnormally enhanced response to incoming sensory stimuli. Given these findings, we hypothesize that M1 is a major modulator of pain in fibromyalgia and therefore its baseline activity reflects this strong feedback between M1 and pain-related neural areas. However, the feedback loop between M1 and the pain matrix is not enough to decrease pain in fibromyalgia per se, thus increasing its modulatory effect by engaging this network through different behavioral and modulatory techniques is a potentially beneficial treatment for pain in fibromyalgia.
Collapse
|
147
|
Gerdle B, Ghafouri B, Ernberg M, Larsson B. Chronic musculoskeletal pain: review of mechanisms and biochemical biomarkers as assessed by the microdialysis technique. J Pain Res 2014; 7:313-26. [PMID: 24966693 PMCID: PMC4062547 DOI: 10.2147/jpr.s59144] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic musculoskeletal pain conditions are multifaceted, and approximately 20% of the adult population lives with severe chronic pain, with a higher prevalence in women and in lower income groups. Chronic pain is influenced by and interacts with physical, emotional, psychological, and social factors, and a biopsychosocial framework is increasingly applied in clinical practice. However, there is still a lack of assessment procedures based on the activated neurobiological pain mechanisms (ie, the biological part of the biopsychosocial model of pain), which may be a necessary step for further optimizing outcomes after treatments for patients with chronic pain. It has been suggested that chronic pain conditions are mainly driven by alterations in the central nervous system with little or no peripheral stimuli or nociception. In contrast, other authors argue that such central alterations are driven by peripheral alterations and nociceptive input. Microdialysis is an in vivo method for studying local tissue alterations and allows for sampling of substances in the interstitium of the muscle, where nociceptor free nerve endings are found close to the muscle fibers. The extracellular matrix plays a key role in physiologic functions of cells, including the primary afferent nociceptor. The present review mainly concerns the results of microdialysis studies and how they can contribute to the understanding of activated peripheral nociceptive and pain mechanisms in humans with chronic pain. The primary aim was to review molecular studies using microdialysis for the investigation of human chronic muscle pain, ie, chronic masticatory muscle pain, chronic trapezius myalgia, chronic whiplash-associated disorders, and chronic widespread pain/fibromyalgia syndrome. Several studies clearly showed elevated levels of serotonin, glutamate, lactate, and pyruvate in localized chronic myalgias and may be potential biomarkers. These results indicate that peripheral muscle alterations are parts of the activated pain mechanisms in common chronic pain conditions. Muscle alterations have been reported in fibromyalgia syndrome and chronic widespread pain, but more studies are needed before definite conclusions can be drawn. For other substances, results are inconclusive across studies and patient groups.
Collapse
Affiliation(s)
- Björn Gerdle
- Rehabilitation Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden ; Pain and Rehabilitation Centre, County Council of Östergötland, Linköping, Sweden
| | - Bijar Ghafouri
- Rehabilitation Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden ; Rehabilitation Medicine, Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Malin Ernberg
- Department of Dental Medicine, Section of Orofacial Pain and Jaw Function, Karolinska Institutet, Huddinge, Sweden
| | - Britt Larsson
- Rehabilitation Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden ; Pain and Rehabilitation Centre, County Council of Östergötland, Linköping, Sweden
| |
Collapse
|
148
|
Ahmadi S, Golbaghi H, Azizbeigi R, Esmailzadeh N. N-methyl-D-aspartate receptors involved in morphine-induced hyperalgesia in sensitized mice. Eur J Pharmacol 2014; 737:85-90. [PMID: 24842190 DOI: 10.1016/j.ejphar.2014.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/11/2014] [Accepted: 04/20/2014] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate role of the N-Methyl-D-Aspartate (NMDA) receptors in the decrease of morphine analgesia in mice after nociceptive sensitization. We used a hot plate test to assess effects of morphine on pain behavior in male NMRI mice. All drugs were administered through an intraperitoneal route. Sensitization schedule composed of 3-days pre-treatment of morphine (20mg/kg) followed by 5-days washout. The results showed that morphine (5, 7.5, 10 and 15mg/kg) induced a significant analgesia in normal mice. However, the analgesic effects of morphine significantly decreased at higher dose (15mg/kg) in sensitized mice. Injections of either a competitive NMDA receptor antagonist, D-AP5 (0, 0.25, 0.5 and 1mg/kg) or an NMDA receptor channel blocker (30, 60 and 120mg/kg) alone had no effect on pain behavior. However, injections of D-AP5 (1mg/kg), along with morphine over 3-days of the sensitization schedule, significantly prevented the decrease in the analgesic effect of the opioid at doses of 7.5 and 10mg/kg on the hot plate test. Similarly, injections of MgSO4 (120mg/kg), along with morphine over 3-days of the sensitization schedule, significantly prevented the decrease in analgesic effect of morphine at doses of 10 and 15mg/kg. It can be concluded that NMDA receptors are influenced by morphine during the sensitization schedule, which in turn may affect morphine analgesia after the schedule. This may further support the potential effectiveness of NMDA blockade during repeated use of morphine for control of chronic pain.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, P.O. Box 66167-15145, Sanandaj, Iran.
| | - Hajar Golbaghi
- Department of Biology, Faculty of Science, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Ronak Azizbeigi
- Department of Physiology, Faculty of Veterinary Science, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Nabaz Esmailzadeh
- Department of Statistics, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
149
|
Arle JE, Carlson KW, Mei L, Iftimia N, Shils JL. Mechanism of dorsal column stimulation to treat neuropathic but not nociceptive pain: analysis with a computational model. Neuromodulation 2014; 17:642-55; discussion 655. [PMID: 24750347 DOI: 10.1111/ner.12178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/13/2013] [Accepted: 01/22/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Stimulation of axons within the dorsal columns of the human spinal cord has become a widely used therapy to treat refractory neuropathic pain. The mechanisms have yet to be fully elucidated and may even be contrary to standard "gate control theory." Our hypothesis is that a computational model provides a plausible description of the mechanism by which dorsal column stimulation (DCS) inhibits wide dynamic range (WDR) cell output in a neuropathic model but not in a nociceptive pain model. MATERIALS AND METHODS We created a computational model of the human spinal cord involving approximately 360,000 individual neurons and dendritic processing of some 60 million synapses--the most elaborate dynamic computational model of the human spinal cord to date. Neuropathic and nociceptive "pain" signals were created by activating topographically isolated regions of excitatory interneurons and high-threshold nociceptive fiber inputs, driving analogous regions of WDR neurons. Dorsal column fiber activity was then added at clinically relevant levels (e.g., Aβ firing rate between 0 and 110 Hz by using a 210-μsec pulse width, 50-150 Hz frequency, at 1-3 V amplitude). RESULTS Analysis of the nociceptive pain, neuropathic pain, and modulated circuits shows that, in contradiction to gate control theory, 1) nociceptive and neuropathic pain signaling must be distinct, and 2) DCS neuromodulation predominantly affects the neuropathic signal only, inhibiting centrally sensitized pathological neuron groups and ultimately the WDR pain transmission cells. CONCLUSION We offer a different set of necessary premises than gate control theory to explain neuropathic pain inhibition and the relative lack of nociceptive pain inhibition by using retrograde DCS. Hypotheses regarding not only the pain relief mechanisms of DCS were made but also regarding the circuitry of pain itself, both nociceptive and neuropathic. These hypotheses and further use of the model may lead to novel stimulation paradigms.
Collapse
Affiliation(s)
- Jeffrey E Arle
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
150
|
Hureau TJ, Olivier N, Millet GY, Meste O, Blain GM. Exercise performance is regulated during repeated sprints to limit the development of peripheral fatigue beyond a critical threshold. Exp Physiol 2014; 99:951-63. [PMID: 24728680 DOI: 10.1113/expphysiol.2014.077974] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We hypothesized that exercise performance is adjusted during repeated sprints in order not to surpass a critical threshold of peripheral fatigue. Twelve men randomly performed three experimental sessions on different days, i.e. one single 10 s all-out sprint and two trials of 10 × 10 s all-out sprints with 30 s of passive recovery in between. One trial was performed in the unfatigued state (CTRL) and one following electrically induced quadriceps muscle fatigue (FTNMES). Peripheral fatigue was quantified by comparing pre- with postexercise changes in potentiated quadriceps twitch force (ΔQtw-pot) evoked by supramaximal magnetic stimulation of the femoral nerve. Central fatigue was estimated by comparing pre- with postexercise voluntary activation of quadriceps motor units. The root mean square (RMS) of the vastus lateralis and vastus medialis EMG normalized to maximal M-wave amplitude (RMS.Mmax (-1)) was also calculated during sprints. Compared with CTRL condition, pre-existing quadriceps muscle fatigue in FTNMES (ΔQtw-pot = -29 ± 4%) resulted in a significant (P < 0.05) reduction in power output (-4.0 ± 0.9%) associated with a reduction in RMS.Mmax (-1). However, ΔQtw-pot postsprints decreased by 51% in both conditions, indicating that the level of peripheral fatigue was identical and independent of the degree of pre-existing fatigue. Our findings show that power output and cycling EMG are adjusted during exercise in order to limit the development of peripheral fatigue beyond a constant threshold. We hypothesize that the contribution of peripheral fatigue to exercise limitation involves a reduction in central motor drive in addition to the impairment in muscular function.
Collapse
Affiliation(s)
- Thomas J Hureau
- University of Nice Sophia Antipolis, Toulon, LAMHESS, EA 6309, F-06205, Nice, France University of Lille Nord de France, F-59000, Lille, France; UDSL, EA 4488, F-59790, Ronchin, France
| | - Nicolas Olivier
- University of Lille Nord de France, F-59000, Lille, France; UDSL, EA 4488, F-59790, Ronchin, France
| | - Guillaume Y Millet
- University of Lyon, F-42023, Saint Etienne, France University of Calgary, Faculty of Kinesiology, Human Performance Laboratory, Calgary, Alberta, Canada
| | - Olivier Meste
- CNRS - University of Nice Sophia Antipolis, I3S, F-06900, Sophia Antipolis, France
| | - Gregory M Blain
- University of Nice Sophia Antipolis, Toulon, LAMHESS, EA 6309, F-06205, Nice, France University of Lille Nord de France, F-59000, Lille, France; UDSL, EA 4488, F-59790, Ronchin, France
| |
Collapse
|