101
|
Liu J, Tao X, Zhu Y, Li C, Ruan K, Diaz-Perez Z, Rai P, Wang H, Zhai RG. NMNAT promotes glioma growth through regulating post-translational modifications of P53 to inhibit apoptosis. eLife 2021; 10:70046. [PMID: 34919052 PMCID: PMC8683086 DOI: 10.7554/elife.70046] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/10/2021] [Indexed: 12/31/2022] Open
Abstract
Gliomas are highly malignant brain tumors with poor prognosis and short survival. NAD+ has been shown to impact multiple processes that are dysregulated in cancer; however, anti-cancer therapies targeting NAD+ synthesis have had limited success due to insufficient mechanistic understanding. Here, we adapted a Drosophila glial neoplasia model and discovered the genetic requirement for NAD+ synthase nicotinamide mononucleotide adenylyltransferase (NMNAT) in glioma progression in vivo and in human glioma cells. Overexpressing enzymatically active NMNAT significantly promotes glial neoplasia growth and reduces animal viability. Mechanistic analysis suggests that NMNAT interferes with DNA damage-p53-caspase-3 apoptosis signaling pathway by enhancing NAD+-dependent posttranslational modifications (PTMs) poly(ADP-ribosyl)ation (PARylation) and deacetylation of p53. Since PARylation and deacetylation reduce p53 pro-apoptotic activity, modulating p53 PTMs could be a key mechanism by which NMNAT promotes glioma growth. Our findings reveal a novel tumorigenic mechanism involving protein complex formation of p53 with NAD+ synthetic enzyme NMNAT and NAD+-dependent PTM enzymes that regulates glioma growth.
Collapse
Affiliation(s)
- Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityShandongChina
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Kai Ruan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Priyamvada Rai
- Department of Radiation Oncology, University of Miami Miller School of MedicineMiamiUnited States
- Sylvester Comprehensive Cancer CenterMiamiUnited States
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityShandongChina
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
- Sylvester Comprehensive Cancer CenterMiamiUnited States
| |
Collapse
|
102
|
She J, Sheng R, Qin ZH. Pharmacology and Potential Implications of Nicotinamide Adenine Dinucleotide Precursors. Aging Dis 2021; 12:1879-1897. [PMID: 34881075 PMCID: PMC8612620 DOI: 10.14336/ad.2021.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022] Open
Abstract
Coenzyme I (nicotinamide adenine dinucleotide, NAD+/NADH) and coenzyme II (nicotinamide adenine dinucleotide phosphate, NADP+/NADPH) are involved in various biological processes in mammalian cells. NAD+ is synthesised through the de novo and salvage pathways, whereas coenzyme II cannot be synthesised de novo. NAD+ is a precursor of coenzyme II. Although NAD+ is synthesised in sufficient amounts under normal conditions, shortage in its supply due to over consumption and its decreased synthesis has been observed with increasing age and under certain disease conditions. Several studies have proved that in a wide range of tissues, such as liver, skin, muscle, pancreas, and fat, the level of NAD+ decreases with age. However, in the brain tissue, the level of NADH gradually increases and that of NAD+ decreases in aged people. The ratio of NAD+/NADH indicates the cellular redox state. A decrease in this ratio affects the cellular anaerobic glycolysis and oxidative phosphorylation functions, which reduces the ability of cells to produce ATP. Therefore, increasing the exogenous NAD+ supply under certain disease conditions or in elderly people may be beneficial. Precursors of NAD+ have been extensively explored and have been reported to effectively increase NAD+ levels and possess a broad range of functions. In this review article, we discuss the pharmacokinetics and pharmacodynamics of NAD+ precursors.
Collapse
Affiliation(s)
- Jing She
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
103
|
Abstract
Dysregulation of DNA damage response and repair (DDR) contributes to oncogenesis, yet also generates the potential for targeted cancer therapies by exploiting synthetic lethal interactions. Oncometabolites, small intermediates of metabolism overproduced in certain cancers, have emerged as a new mechanism of DDR modulation through their effects on multiple DNA repair pathways. Increasing evidence suggests that oncometabolite-induced DDR defects may offer the opportunity for tumor-selective chemo- and radio-sensitization. Here we review the biology of oncometabolites and diverse mechanisms by which they impact DDR, with a focus on emerging therapeutic strategies and ongoing clinical trials targeting oncometabolite-induced DDR defects in cancer.
Collapse
Affiliation(s)
- Susan E Gueble
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
104
|
Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol 2021; 18:773-791. [PMID: 34285417 DOI: 10.1038/s41571-021-00532-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Developing novel targeted anticancer therapies is a major goal of current research. The use of poly(ADP-ribose) polymerase (PARP) inhibitors in patients with homologous recombination-deficient tumours provides one of the best examples of a targeted therapy that has been successfully translated into the clinic. The success of this approach has so far led to the approval of four different PARP inhibitors for the treatment of several types of cancers and a total of seven different compounds are currently under clinical investigation for various indications. Clinical trials have demonstrated promising response rates among patients receiving PARP inhibitors, although the majority will inevitably develop resistance. Preclinical and clinical data have revealed multiple mechanisms of resistance and current efforts are focused on developing strategies to address this challenge. In this Review, we summarize the diverse processes underlying resistance to PARP inhibitors and discuss the potential strategies that might overcome these mechanisms such as combinations with chemotherapies, targeting the acquired vulnerabilities associated with resistance to PARP inhibitors or suppressing genomic instability.
Collapse
|
105
|
Wu MJ, Shi L, Dubrot J, Merritt J, Vijay V, Wei TY, Kessler E, Olander KE, Adil R, Pankaj A, Tummala KS, Weeresekara V, Zhen Y, Wu Q, Luo M, Shen W, Garcia-Beccaria M, Fernandez-Vaquero M, Hudson C, Ronseaux S, Sun Y, Saad-Berreta R, Jenkins RW, Wang T, Heikenwalder M, Ferrone CR, Goyal L, Nicolay B, Deshpande V, Kohli RM, Zheng H, Manguso RT, Bardeesy N. Mutant-IDH inhibits Interferon-TET2 signaling to promote immunoevasion and tumor maintenance in cholangiocarcinoma. Cancer Discov 2021; 12:812-835. [PMID: 34848557 DOI: 10.1158/2159-8290.cd-21-1077] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Isocitrate dehydrogenase 1 mutations (mIDH1) are common in cholangiocarcinoma. (R)-2-hydroxyglutarate generated by the mIDH1 enzyme inhibits multiple a-ketoglutarate-dependent enzymes, altering epigenetics and metabolism. Here, by developing mIDH1-driven genetically engineered mouse models, we show that mIDH1 supports cholangiocarcinoma tumor maintenance through an immunoevasion program centered on dual (R)-2-hydroxyglutarate-mediated mechanisms - suppression of CD8+ T cell activity and tumor cell-autonomous inactivation of TET2 DNA demethylase. Pharmacological mIDH1 inhibition stimulates CD8+ T cell recruitment and IFN-y expression and promotes TET2-dependent induction of IFN-y response genes in tumor cells. CD8+ T cell depletion or tumor cell-specific ablation of TET2 or Interferon-gamma receptor 1 causes treatment resistance. Whereas immune checkpoint activation limits mIDH1 inhibitor efficacy, CTLA4 blockade overcomes immunosuppression, providing therapeutic synergy. The findings in this mouse model of cholangiocarcinoma demonstrate that immune function and the IFN-y-TET2 axis are essential for response to mIDH1 inhibition and suggest a novel strategy for harnessing these inhibitors therapeutically.
Collapse
Affiliation(s)
- Meng-Ju Wu
- Cancer Center, Massachusetts General Hospital
| | - Lei Shi
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School
| | | | | | | | - Ting-Yu Wei
- Cancer Center, Massachusetts General Hospital
| | | | | | - Ramzi Adil
- Cancer Center, Massachusetts General Hospital
| | - Amaya Pankaj
- Research Fellow, Massachusetts General Hospital Cancer Center, Harvard Medical School
| | | | | | - Yuanli Zhen
- Cancer Center, Massachusetts General Hospital
| | | | | | | | | | | | | | | | - Yi Sun
- Cancer Center, Massachusetts General Hospital
| | | | | | - Tong Wang
- Biochemistry and Molecular Biophysics, University of Pennsylvania
| | | | | | - Lipika Goyal
- Internal Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School
| | | | | | - Rahul M Kohli
- Medicine; Biochemistry & Biophysics, University of Pennsylvania
| | - Hongwu Zheng
- Pathology and Laboratory Medicine, Weill Cornell Medicine
| | - Robert T Manguso
- Center for Cancer Research, Massachusetts General Hospital, Broad Institute
| | | |
Collapse
|
106
|
Wu J. Targeting nicotinamide adenosine dinucleotide (NAD) in diffuse gliomas. Neuro Oncol 2021; 24:245-246. [PMID: 34919142 DOI: 10.1093/neuonc/noab265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
107
|
Hu Q, Wu D, Walker M, Wang P, Tian R, Wang W. Genetically encoded biosensors for evaluating NAD +/NADH ratio in cytosolic and mitochondrial compartments. CELL REPORTS METHODS 2021; 1:100116. [PMID: 34901920 PMCID: PMC8659198 DOI: 10.1016/j.crmeth.2021.100116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/29/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
The ratio of oxidized to reduced NAD (NAD+/NADH) sets intracellular redox balance and antioxidant capacity. Intracellular NAD is compartmentalized and the mitochondrial NAD+/NADH ratio is intricately linked to cellular function. Here, we report the monitoring of the NAD+/NADH ratio in mitochondrial and cytosolic compartments in live cells by using a modified genetic biosensor (SoNar). The fluorescence signal of SoNar targeted to mitochondria (mt-SoNar) or cytosol (ct-SoNar) responded linearly to physiological NAD+/NADH ratios in situ. NAD+/NADH ratios in cytosol versus mitochondria responded rapidly, but differently, to acute metabolic perturbations, indicating distinct NAD pools. Subcellular NAD redox balance regained homeostasis via communications through malate-aspartate shuttle. Mitochondrial and cytosolic NAD+/NADH ratios are influenced by NAD+ precursor levels and are distinctly regulated under pathophysiological conditions. Compartment-targeted biosensors and real-time imaging allow assessment of subcellular NAD+/NADH redox signaling in live cells, enabling future mechanistic research of NAD redox in cell biology and disease development.
Collapse
Affiliation(s)
- Qingxun Hu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Dan Wu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Matthew Walker
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
108
|
Li J, M. Saville K, Ibrahim M, Zeng X, McClellan S, Angajala A, Beiser A, Andrews JF, Sun M, Koczor CA, Clark J, Hayat F, Makarov MV, Wilk A, Yates NA, Migaud ME, Sobol RW. NAD + bioavailability mediates PARG inhibition-induced replication arrest, intra S-phase checkpoint and apoptosis in glioma stem cells. NAR Cancer 2021; 3:zcab044. [PMID: 34806016 PMCID: PMC8600031 DOI: 10.1093/narcan/zcab044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 01/31/2023] Open
Abstract
Elevated expression of the DNA damage response proteins PARP1 and poly(ADP-ribose) glycohydrolase (PARG) in glioma stem cells (GSCs) suggests that glioma may be a unique target for PARG inhibitors (PARGi). While PARGi-induced cell death is achieved when combined with ionizing radiation, as a single agent PARG inhibitors appear to be mostly cytostatic. Supplementation with the NAD+ precursor dihydronicotinamide riboside (NRH) rapidly increased NAD+ levels in GSCs and glioma cells, inducing PARP1 activation and mild suppression of replication fork progression. Administration of NRH+PARGi triggers hyperaccumulation of poly(ADP-ribose) (PAR), intra S-phase arrest and apoptosis in GSCs but minimal PAR induction or cytotoxicity in normal astrocytes. PAR accumulation is regulated by select PARP1- and PAR-interacting proteins. The involvement of XRCC1 highlights the base excision repair pathway in responding to replication stress while enhanced interaction of PARP1 with PCNA, RPA and ORC2 upon PAR accumulation implicates replication associated PARP1 activation and assembly with pre-replication complex proteins upon initiation of replication arrest, the intra S-phase checkpoint and the onset of apoptosis.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Md Ibrahim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Steve McClellan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Anusha Angajala
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Joel F Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Mai Sun
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Christopher A Koczor
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Jennifer Clark
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Nathan A Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W Sobol
- To whom correspondence should be addressed. Tel: +1 251 445 9846;
| |
Collapse
|
109
|
Deshmukh R, Allega MF, Tardito S. A map of the altered glioma metabolism. Trends Mol Med 2021; 27:1045-1059. [PMID: 34489164 DOI: 10.1016/j.molmed.2021.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The frequent occurrence of neomorphic isocitrate dehydrogenase 1 (IDH1) mutations in low-grade glioma led to an IDH-centric classification of these tumors. However, exploiting metabolic alterations of glioma for diagnostic imaging and treatment has marginally improved patients' prognosis. Here we discuss the nutritional microenvironment of glioma, shaped by the distinctive dependence of the brain on glucose and ketone bodies for energy, and on amino acids for neurotransmission. We highlight the progress in metabolic applications for glioma diagnosis and therapy, and present a map that streamlines the rewired glioma metabolism. The map illustrates the altered reactions in central carbon and nitrogen metabolism that drive glioma biology, and represent metabolic vulnerabilities with translational potential.
Collapse
Affiliation(s)
- Ruhi Deshmukh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Maria Francesca Allega
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
110
|
Mellinghoff IK, Chang SM, Jaeckle KA, van den Bent M. Isocitrate Dehydrogenase Mutant Grade II and III Glial Neoplasms. Hematol Oncol Clin North Am 2021; 36:95-111. [PMID: 34711457 DOI: 10.1016/j.hoc.2021.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mutations in isocitrate dehydrogenase (IDH) 1 or IDH2 occur in most of the adult low-grade gliomas and, less commonly, in cholangiocarcinoma, chondrosarcoma, acute myeloid leukemia, and other human malignancies. Cancer-associated mutations alter the function of the enzyme, resulting in production of R(-)-2-hydroxyglutarate and broad epigenetic dysregulation. Small molecule IDH inhibitors have received regulatory approval for the treatment of IDH mutant (mIDH) leukemia and are under development for the treatment of mIDH solid tumors. This article provides a current view of mIDH adult astrocytic and oligodendroglial tumors, including their clinical presentation and treatment, and discusses novel approaches and challenges toward improving the treatment of these tumors.
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Room M 774SF, San Francisco, CA 94142-0112, USA
| | - Kurt A Jaeckle
- Department of Neurology and Oncology, Mayo Clinic Florida, Mangurian 4415, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Martin van den Bent
- Department of Neuro-onoclogy, Brain Tumor Center at Erasmus MC Cancer Institute, Nt-542, Dr Molenwaterplein 40, Rotterdam 3015 GD, The Netherlands.
| |
Collapse
|
111
|
Verheul C, Ntafoulis I, Kers TV, Hoogstrate Y, Mastroberardino PG, Barnhoorn S, Payán-Gómez C, Tching Chi Yen R, Struys EA, Koolen SLW, Dirven CMF, Leenstra S, French PJ, Lamfers MLM. Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neurooncol Adv 2021; 3:vdab103. [PMID: 34595478 PMCID: PMC8478778 DOI: 10.1093/noajnl/vdab103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Mutations of the isocitrate dehydrogenase (IDH) gene occur in over 80% of low-grade gliomas and secondary glioblastomas. Despite considerable efforts, endogenous in vitro IDH-mutated glioma models remain scarce. Availability of these models is key for the development of new therapeutic interventions. Methods Cell cultures were established from fresh tumor material and expanded in serum-free culture media. D-2-Hydroxyglutarate levels were determined by mass spectrometry. Genomic and transcriptomic profiling were carried out on the Illumina Novaseq platform, methylation profiling was performed with the Infinium MethylationEpic BeadChip array. Mitochondrial respiration was measured with the Seahorse XF24 Analyzer. Drug screens were performed with an NIH FDA-approved anti-cancer drug set and two IDH-mutant specific inhibitors. Results A set of twelve patient-derived IDHmt cell cultures was established. We confirmed high concordance in driver mutations, copy numbers and methylation profiles between the tumors and derived cultures. Homozygous deletion of CDKN2A/B was observed in all cultures. IDH-mutant cultures had lower mitochondrial reserve capacity. IDH-mutant specific inhibitors did not affect cell viability or global gene expression. Screening of 107 FDA-approved anti-cancer drugs identified nine compounds with potent activity against IDHmt gliomas, including three compounds with favorable pharmacokinetic characteristics for CNS penetration: teniposide, omacetaxine mepesuccinate, and marizomib. Conclusions Our twelve IDH-mutant cell cultures show high similarity to the parental tissues and offer a unique tool to study the biology and drug sensitivities of high-grade IDHmt gliomas in vitro. Our drug screening studies reveal lack of sensitivity to IDHmt inhibitors, but sensitivity to a set of nine available anti-cancer agents.
Collapse
Affiliation(s)
- Cassandra Verheul
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Ioannis Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Trisha V Kers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - César Payán-Gómez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá,Colombia
| | - Romain Tching Chi Yen
- Information Technologies for Translational Medicine (ITTM), Esch-Sur-Alzette, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Sur-Alzette,Luxembourg
| | - Eduard A Struys
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Center, Noord-Holland, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands.,Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
112
|
Lee SH, Golinska M, Griffiths JR. HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells. Cells 2021; 10:2371. [PMID: 34572020 PMCID: PMC8472468 DOI: 10.3390/cells10092371] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, KM6 Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
| | - Monika Golinska
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; (M.G.); (J.R.G.)
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - John R. Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; (M.G.); (J.R.G.)
| |
Collapse
|
113
|
Chou FJ, Liu Y, Lang F, Yang C. D-2-Hydroxyglutarate in Glioma Biology. Cells 2021; 10:cells10092345. [PMID: 34571995 PMCID: PMC8464856 DOI: 10.3390/cells10092345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) mutations are common genetic abnormalities in glioma, which result in the accumulation of an "oncometabolite", D-2-hydroxyglutarate (D-2-HG). Abnormally elevated D-2-HG levels result in a distinctive pattern in cancer biology, through competitively inhibiting α-ketoglutarate (α-KG)/Fe(II)-dependent dioxgenases (α-KGDDs). Recent studies have revealed that D-2-HG affects DNA/histone methylation, hypoxia signaling, DNA repair, and redox homeostasis, which impacts the oncogenesis of IDH-mutated cancers. In this review, we will discuss the current understanding of D-2-HG in cancer biology, as well as the emerging opportunities in therapeutics in IDH-mutated glioma.
Collapse
|
114
|
IDH1 mutant glioma is preferentially sensitive to the HDAC inhibitor panobinostat. J Neurooncol 2021; 154:159-170. [PMID: 34424450 PMCID: PMC8437887 DOI: 10.1007/s11060-021-03829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 11/12/2022]
Abstract
Introduction A large subset of diffusely infiltrative gliomas contains a gain-of-function mutation in isocitrate dehydrogenase 1 or 2 (IDH1/2mut) which produces 2-hydroxglutarate, an inhibitor of α-ketoglutarate-dependent DNA demethylases, thereby inducing widespread DNA and histone methylation. Because histone deacetylase (HDAC) enzymes are localized to methylated chromatin via methyl-binding domain proteins, IDH1/2mut gliomas may be more dependent on HDAC activity, and therefore may be more sensitive to HDAC inhibitors. Methods Six cultured patient-derived glioma cell lines, IDH1wt (n = 3) and IDH1mut (n = 3), were treated with an FDA-approved HDAC inhibitor, panobinostat. Cellular cytotoxicity and proliferation assays were conducted by flow cytometry. Histone modifications and cell signaling pathways were assessed using immunoblot and/or ELISA. Results IDH1mut gliomas exhibited marked upregulation of genes associated with the HDAC activity. Glioma cell cultures bearing IDH1mut were significantly more sensitive to the cytotoxic and antiproliferative effects of panobinostat, compared to IDH1wt glioma cells. Panobinostat caused a greater increase in acetylation of the histone residues H3K14, H3K18, and H3K27 in IDH1mut glioma cells. Another HDAC inhibitor, valproic acid, was also more effective against IDH1mut glioma cells. Conclusion These data suggest that IDH1mut gliomas may be preferentially sensitive to HDAC inhibitors. Further, IDH1mut glioma cultures showed enhanced accumulation of acetylated histone residues in response to panobinostat treatment, suggesting a direct epigenetic mechanism for this sensitivity. This provides a rationale for further exploration of HDAC inhibitors against IDH1mut gliomas. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03829-0.
Collapse
|
115
|
Audrito V, Messana VG, Brandimarte L, Deaglio S. The Extracellular NADome Modulates Immune Responses. Front Immunol 2021; 12:704779. [PMID: 34421911 PMCID: PMC8371318 DOI: 10.3389/fimmu.2021.704779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent - to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Brandimarte
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
116
|
Bhattacharjee D, Balabhaskararao K, Jain N. Mutant IDH1 inhibitors activate pSTAT3-Y705 leading to an increase in BCAT1 and YKL-40 levels in mutant IDH1-expressing cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119114. [PMID: 34329662 DOI: 10.1016/j.bbamcr.2021.119114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
IDH1 mutations are frequent and early events in gliomas. Mutant IDH1 produces D-2HG that causes epigenetic changes by increasing histone and DNA methylations, thereby contributing to tumor growth. Mutant IDH1 rewires metabolism and endows a few therapeutic vulnerabilities in cells. But, mutant IDH1 inhibitor(s) treatments reverse these therapeutic vulnerabilities by increasing cell growth. Nevertheless, it is unclear how mutant IDH1 inhibitor(s) increases cell growth. As mutant IDH1 inhibitor(s) increase cell growth, therefore we asked whether mutant IDH1 inhibitor(s) activate oncogenes in mutant IDH1-expressing cells. To answer this question, we used allosteric mutant IDH1 inhibitors to treat mutant IDH1-expressing HT1080 cells, and examined for activation of oncogenes by assessing the levels of our read-outs: BCAT1 and YKL-40. We found that mutant IDH1 inhibitors' treatments increased BCAT1 and YKL-40 levels in HT1080 cells. Next, we observed that mutant IDH1 inhibitors activated STAT3 by phosphorylation at Tyr-705 position (pSTAT3-Y705) and its nuclear translocation. Upon examining the molecular mechanism of pSTAT3-Y705 activation in mutant IDH1 inhibitor-treated cells, we found that mutant IDH1 strongly bound STAT3, but mutant IDH1 inhibitor treatment decreased mutant IDH1-STAT3 binding. Furthermore, we observed that STAT3-knockdown and pharmacological inhibition of STAT3 attenuated the mutant IDH1 inhibitor-mediated increase in BCAT1 and YKL-40 levels, whereas STAT3 overexpression and Interleukin-6 (STAT3 activator) treatments increased BCAT1 and YKL-40 levels. We conclude that mutant IDH1 inhibitors activate the oncogenic transcription factor-STAT3 leading to an increase in BCAT1 and YKL-40 levels in mutant IDH1-expressing cells.
Collapse
Affiliation(s)
- Debanjan Bhattacharjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kancharana Balabhaskararao
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
117
|
Sharma P, Xu J, Williams K, Easley M, Elder JB, Lonser R, Lang FF, Lapalombella R, Sampath D, Puduvalli VK. Inhibition of nicotinamide phosphoribosyltransferase, the rate-limiting enzyme of the nicotinamide adenine dinucleotide salvage pathway, to target glioma heterogeneity through mitochondrial oxidative stress. Neuro Oncol 2021; 24:229-244. [PMID: 34260721 PMCID: PMC8804900 DOI: 10.1093/neuonc/noab175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Tumor-specific metabolic processes essential for cell survival are promising targets to potentially circumvent intratumoral heterogeneity, a major resistance factor in gliomas. Tumor cells preferentially using nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway for synthesis of NAD, a critical cofactor for diverse biological processes including cellular redox reactions, energy metabolism and biosynthesis. NAMPT is overexpressed in most malignancies, including gliomas, and can serve as a tumor-specific target. METHODS Effects of pharmacological inhibition of NAMPT on cellular oxygen consumption rate, extracellular acidification, mitochondrial respiration, cell proliferation, invasion and survival were assessed through in vitro and ex vivo studies on genetically heterogeneous glioma cell lines, glioma stem-like cells (GSCs) and mouse and human ex vivo organotypic glioma slice culture models. RESULTS Pharmacological inhibition of the NAD salvage biosynthesis pathway using a highly specific inhibitor, KPT-9274, resulted in reduction of NAD levels and related downstream metabolites, inhibited proliferation, and induced apoptosis in vitro in cell lines and ex vivo in human glioma tissue. These effects were mediated by mitochondrial dysfunction, DNA damage and increased oxidative stress leading to apoptosis in GSCs independent of genotype, IDH status or MGMT promoter methylation status. Conversely, NAMPT inhibition had minimal in vitro effects on normal human astrocytes (NHA) and no apparent in vivo toxicity in non-tumor-bearing mice. CONCLUSIONS Pharmacological NAMPT inhibition by KPT9274 potently targeted genetically heterogeneous gliomas by activating mitochondrial dysfunction. Our preclinical results provide a rationale for targeting the NAMPT-dependent alternative NAD biosynthesis pathway as a novel clinical strategy against gliomas.
Collapse
Affiliation(s)
- Pratibha Sharma
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jihong Xu
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katie Williams
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michelle Easley
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J Brad Elder
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Russell Lonser
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa Lapalombella
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Deepa Sampath
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinay K Puduvalli
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
118
|
Kayabolen A, Yilmaz E, Bagci-Onder T. IDH Mutations in Glioma: Double-Edged Sword in Clinical Applications? Biomedicines 2021; 9:799. [PMID: 34356864 PMCID: PMC8301439 DOI: 10.3390/biomedicines9070799] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Discovery of point mutations in the genes encoding isocitrate dehydrogenases (IDH) in gliomas about a decade ago has challenged our view of the role of metabolism in tumor progression and provided a new stratification strategy for malignant gliomas. IDH enzymes catalyze the conversion of isocitrate to alpha-ketoglutarate (α-KG), an intermediate in the citric acid cycle. Specific mutations in the genes encoding IDHs cause neomorphic enzymatic activity that produces D-2-hydroxyglutarate (2-HG) and result in the inhibition of α-KG-dependent enzymes such as histone and DNA demethylases. Thus, chromatin structure and gene expression profiles in IDH-mutant gliomas appear to be different from those in IDH-wildtype gliomas. IDH mutations are highly common in lower grade gliomas (LGG) and secondary glioblastomas, and they are among the earliest genetic events driving tumorigenesis. Therefore, inhibition of mutant IDH enzymes in LGGs is widely accepted as an attractive therapeutic strategy. On the other hand, the metabolic consequences derived from IDH mutations lead to selective vulnerabilities within tumor cells, making them more sensitive to several therapeutic interventions. Therefore, instead of shutting down mutant IDH enzymes, exploiting the selective vulnerabilities caused by them might be another attractive and promising strategy. Here, we review therapeutic options and summarize current preclinical and clinical studies on IDH-mutant gliomas.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Ebru Yilmaz
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| |
Collapse
|
119
|
Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin 2021; 71:333-358. [PMID: 33982817 PMCID: PMC8298088 DOI: 10.3322/caac.21670] [Citation(s) in RCA: 320] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer has myriad effects on metabolism that include both rewiring of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment, and changes in normal tissue metabolism. With the recognition that fluorodeoxyglucose-positron emission tomography imaging is an important tool for the management of many cancers, other metabolites in biological samples have been in the spotlight for cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecule metabolites that like other -omics technologies can provide critical information about the cancer state that are otherwise not apparent. Here, the authors review how cancer and cancer therapies interact with metabolism at the cellular and systemic levels. An overview of metabolomics is provided with a focus on currently available technologies and how they have been applied in the clinical and translational research setting. The authors also discuss how metabolomics could be further leveraged in the future to improve the management of patients with cancer.
Collapse
Affiliation(s)
- Daniel R. Schmidt
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Rutulkumar Patel
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708 USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708 USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708 USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Matthew G. Vander Heiden
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708 USA
| |
Collapse
|
120
|
Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 2021; 18:645-661. [PMID: 34131315 DOI: 10.1038/s41571-021-00521-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Mutations in the genes encoding the cytoplasmic and mitochondrial forms of isocitrate dehydrogenase (IDH1 and IDH2, respectively; collectively referred to as IDH) are frequently detected in cancers of various origins, including but not limited to acute myeloid leukaemia (20%), cholangiocarcinoma (20%), chondrosarcoma (80%) and glioma (80%). In all cases, neomorphic activity of the mutated enzyme leads to production of the oncometabolite D-2-hydroxyglutarate, which has profound cell-autonomous and non-cell-autonomous effects. The broad effects of IDH mutations on epigenetic, differentiation and metabolic programmes, together with their high prevalence across a variety of cancer types, early presence in tumorigenesis and uniform expression in tumour cells, make mutant IDH an ideal therapeutic target. Herein, we describe the current biological understanding of IDH mutations and the roles of mutant IDH in the various associated cancers. We also present the available preclinical and clinical data on various methods of targeting IDH-mutant cancers and discuss, based on the underlying pathogenesis of different IDH-mutated cancer types, whether the treatment approaches will converge or be context dependent.
Collapse
Affiliation(s)
- Christopher J Pirozzi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
121
|
IDH Inhibitors and Beyond: The Cornerstone of Targeted Glioma Treatment. Mol Diagn Ther 2021; 25:457-473. [PMID: 34095989 DOI: 10.1007/s40291-021-00537-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Diffuse low-grade gliomas account for approximately 20% of all primary brain tumors, they arise from glial cells and show infiltrative growth without histological features of malignancy. Mutations of the IDH1 and IDH2 genes constitute a reliable molecular signature of low-grade gliomas and are the earliest driver mutations occurring during gliomagenesis, representing a relevant biomarker with diagnostic, prognostic, and predictive value. IDH mutations induce a neomorphic enzyme that converts α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate, which leads to widespread effects on cellular epigenetics and metabolism. Currently, there are no approved molecularly targeted therapies and the standard treatment for low-grade gliomas consists of radiation therapy and chemotherapy, with rising concern about treatment-related toxicities. Targeting D-2-hydroxyglutarate is considered a novel attractive therapeutic approach for low-grade gliomas and the insights from clinical trials suggest that mutant-selective IDH inhibitors are the ideal candidates, with a favorable benefit/risk ratio. A pivotal question is whether blocking IDH neomorphic activity may activate alternative oncogenetic pathways, inducing acquired resistance to IDH inhibitors. Based on this rationale, combination therapies to enhance the antitumor activity of IDH inhibitors and approaches aimed at exploiting, rather than inhibiting, the metabolism of IDH-mutant cancer cells, such as poly (adenosine 5'-diphosphate-ribose) polymerase inhibitors, are emerging from preclinical research and clinical trials. In this review, we discuss the pivotal role of IDH mutations in gliomagenesis and the complex interactions between the genomic and epigenetic landscapes, providing an overview of how, in the last decade, therapeutic approaches for low-grade gliomas have evolved.
Collapse
|
122
|
Pirozzi CJ, Yan H. Hitting Gliomas When They Are Down: Exploiting IDH-Mutant Metabolic Vulnerabilities. Cancer Discov 2021; 10:1629-1631. [PMID: 33139340 DOI: 10.1158/2159-8290.cd-20-1215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumors mutated in IDH1 tend to have lower levels of the essential substrate NAD+. In this issue of Cancer Discovery, Nagashima and colleagues exploit this metabolic sensitivity by devising a combinatorial therapy that both further reduces the pools as well as sequesters the remaining substrate in PAR chains, sensitizing the cells to temozolomide and PARG inhibition.See related article by Nagashima et al., p. 1672.
Collapse
Affiliation(s)
- Christopher J Pirozzi
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Hai Yan
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
123
|
Tesileanu CMS, Vallentgoed WR, Sanson M, Taal W, Clement PM, Wick W, Brandes AA, Baurain JF, Chinot OL, Wheeler H, Gill S, Griffin M, Rogers L, Rudà R, Weller M, McBain C, Reijneveld J, Enting RH, Caparrotti F, Lesimple T, Clenton S, Gijtenbeek A, Lim E, de Vos F, Mulholland PJ, Taphoorn MJB, de Heer I, Hoogstrate Y, de Wit M, Boggiani L, Venneker S, Oosting J, Bovée JVMG, Erridge S, Vogelbaum MA, Nowak AK, Mason WP, Kros JM, Wesseling P, Aldape K, Jenkins RB, Dubbink HJ, Baumert B, Golfinopoulos V, Gorlia T, van den Bent M, French PJ. Non-IDH1-R132H IDH1/2 mutations are associated with increased DNA methylation and improved survival in astrocytomas, compared to IDH1-R132H mutations. Acta Neuropathol 2021; 141:945-957. [PMID: 33740099 PMCID: PMC8113211 DOI: 10.1007/s00401-021-02291-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Somatic mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 occur at high frequency in several tumour types. Even though these mutations are confined to distinct hotspots, we show that gliomas are the only tumour type with an exceptionally high percentage of IDH1R132H mutations. Patients harbouring IDH1R132H mutated tumours have lower levels of genome-wide DNA-methylation, and an associated increased gene expression, compared to tumours with other IDH1/2 mutations ("non-R132H IDH1/2 mutations"). This reduced methylation is seen in multiple tumour types and thus appears independent of the site of origin. For 1p/19q non-codeleted glioma (astrocytoma) patients, we show that this difference is clinically relevant: in samples of the randomised phase III CATNON trial, patients harbouring tumours with IDH mutations other than IDH1R132H have a better outcome (hazard ratio 0.41, 95% CI [0.24, 0.71], p = 0.0013). Such non-R132H IDH1/2-mutated tumours also had a significantly lower proportion of tumours assigned to prognostically poor DNA-methylation classes (p < 0.001). IDH mutation-type was independent in a multivariable model containing known clinical and molecular prognostic factors. To confirm these observations, we validated the prognostic effect of IDH mutation type on a large independent dataset. The observation that non-R132H IDH1/2-mutated astrocytomas have a more favourable prognosis than their IDH1R132H mutated counterpart indicates that not all IDH-mutations are identical. This difference is clinically relevant and should be taken into account for patient prognostication.
Collapse
|
124
|
Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. ACTA ACUST UNITED AC 2021; 2:723-740. [DOI: 10.1038/s43018-021-00201-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
AbstractThe dynamics and phenotypes of intratumoral myeloid cells during tumor progression are poorly understood. Here we define myeloid cellular states in gliomas by longitudinal single-cell profiling and demonstrate their strict control by the tumor genotype: in isocitrate dehydrogenase (IDH)-mutant tumors, differentiation of infiltrating myeloid cells is blocked, resulting in an immature phenotype. In late-stage gliomas, monocyte-derived macrophages drive tolerogenic alignment of the microenvironment, thus preventing T cell response. We define the IDH-dependent tumor education of infiltrating macrophages to be causally related to a complex re-orchestration of tryptophan metabolism, resulting in activation of the aryl hydrocarbon receptor. We further show that the altered metabolism of IDH-mutant gliomas maintains this axis in bystander cells and that pharmacological inhibition of tryptophan metabolism can reverse immunosuppression. In conclusion, we provide evidence of a glioma genotype-dependent intratumoral network of resident and recruited myeloid cells and identify tryptophan metabolism as a target for immunotherapy of IDH-mutant tumors.
Collapse
|
125
|
From Laboratory Studies to Clinical Trials: Temozolomide Use in IDH-Mutant Gliomas. Cells 2021; 10:cells10051225. [PMID: 34067729 PMCID: PMC8157002 DOI: 10.3390/cells10051225] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss the use of the alkylating agent temozolomide (TMZ) in the treatment of IDH-mutant gliomas. We describe the challenges associated with TMZ in clinical (drug resistance and tumor recurrence) and preclinical settings (variabilities associated with in vitro models) in treating IDH-mutant glioma. Lastly, we summarize the emerging therapeutic targets that can potentially be used in combination with TMZ.
Collapse
|
126
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
127
|
Stuani L, Sabatier M, Saland E, Cognet G, Poupin N, Bosc C, Castelli FA, Gales L, Turtoi E, Montersino C, Farge T, Boet E, Broin N, Larrue C, Baran N, Cissé MY, Conti M, Loric S, Kaoma T, Hucteau A, Zavoriti A, Sahal A, Mouchel PL, Gotanègre M, Cassan C, Fernando L, Wang F, Hosseini M, Chu-Van E, Le Cam L, Carroll M, Selak MA, Vey N, Castellano R, Fenaille F, Turtoi A, Cazals G, Bories P, Gibon Y, Nicolay B, Ronseaux S, Marszalek JR, Takahashi K, DiNardo CD, Konopleva M, Pancaldi V, Collette Y, Bellvert F, Jourdan F, Linares LK, Récher C, Portais JC, Sarry JE. Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. J Exp Med 2021; 218:e20200924. [PMID: 33760042 PMCID: PMC7995203 DOI: 10.1084/jem.20200924] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/25/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid β-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors.
Collapse
MESH Headings
- Acute Disease
- Aminopyridines/pharmacology
- Animals
- Cell Line, Tumor
- Doxycycline/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic/drug effects
- Glycine/analogs & derivatives
- Glycine/pharmacology
- HL-60 Cells
- Humans
- Isocitrate Dehydrogenase/antagonists & inhibitors
- Isocitrate Dehydrogenase/genetics
- Isocitrate Dehydrogenase/metabolism
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mutation
- Oxadiazoles/pharmacology
- Oxidative Phosphorylation/drug effects
- Piperidines/pharmacology
- Pyridines/pharmacology
- Triazines/pharmacology
- Xenograft Model Antitumor Assays/methods
- Mice
Collapse
Affiliation(s)
- Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Guillaume Cognet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Nathalie Poupin
- UMR1331 Toxalim, Université de Toulouse, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Ecole Nationale Vétérinaire de Toulouse, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Florence A. Castelli
- CEA/DSV/iBiTec-S/SPI, Laboratoire d’Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Gif-sur-Yvette, France
| | - Lara Gales
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des sciences appliquées, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Evgenia Turtoi
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Institut Régional du Cancer Montpellier, Montpellier, France
- Montpellier Alliance for Metabolomics and Metabolism Analysis, Platform for Translational Oncometabolomics, Biocampus, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Montpellier, France
| | - Camille Montersino
- Aix-Marseille University, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Institut Paoli-Calmettes, Centre de Recherches en Cancérologie de Marseille, Marseille, France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Nicolas Broin
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Natalia Baran
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Madi Y. Cissé
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Marc Conti
- Institut National de la Santé et de la Recherché Médicale U938, Hôpital St Antoine, Paris, France
- Integracell, Longjumeau, France
| | - Sylvain Loric
- Institut National de la Santé et de la Recherché Médicale U938, Hôpital St Antoine, Paris, France
| | - Tony Kaoma
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Alexis Hucteau
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Aliki Zavoriti
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Pierre-Luc Mouchel
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Mathilde Gotanègre
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Cédric Cassan
- UMR1332 Biologie du Fruit et Pathologie, Plateforme Métabolome Bordeaux, Institut National de la Recherche Agronomique, Université de Bordeaux, Villenave d'Ornon, France
| | - Laurent Fernando
- UMR1331 Toxalim, Université de Toulouse, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Ecole Nationale Vétérinaire de Toulouse, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Feng Wang
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Mohsen Hosseini
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Emeline Chu-Van
- CEA/DSV/iBiTec-S/SPI, Laboratoire d’Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Gif-sur-Yvette, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Martin Carroll
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mary A. Selak
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Norbert Vey
- Aix-Marseille University, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Institut Paoli-Calmettes, Centre de Recherches en Cancérologie de Marseille, Marseille, France
| | - Rémy Castellano
- Aix-Marseille University, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Institut Paoli-Calmettes, Centre de Recherches en Cancérologie de Marseille, Marseille, France
| | - François Fenaille
- CEA/DSV/iBiTec-S/SPI, Laboratoire d’Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Gif-sur-Yvette, France
| | - Andrei Turtoi
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Guillaume Cazals
- Laboratoire de Mesures Physiques, Université de Montpellier, Montpellier, France
| | - Pierre Bories
- Réseau Régional de Cancérologie Onco-Occitanie, Toulouse, France
| | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, Plateforme Métabolome Bordeaux, Institut National de la Recherche Agronomique, Université de Bordeaux, Villenave d'Ornon, France
| | | | | | - Joseph R. Marszalek
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Koichi Takahashi
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Courtney D. DiNardo
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Véra Pancaldi
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Yves Collette
- Aix-Marseille University, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Institut Paoli-Calmettes, Centre de Recherches en Cancérologie de Marseille, Marseille, France
| | - Floriant Bellvert
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des sciences appliquées, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Fabien Jourdan
- UMR1331 Toxalim, Université de Toulouse, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Ecole Nationale Vétérinaire de Toulouse, INP-Purpan, Université Paul Sabatier, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Laetitia K. Linares
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des sciences appliquées, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- STROMALab, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
128
|
Miller JJ, Fink A, Banagis JA, Nagashima H, Subramanian M, Lee CK, Melamed L, Tummala SS, Tateishi K, Wakimoto H, Cahill DP. Sirtuin activation targets IDH-mutant tumors. Neuro Oncol 2021; 23:53-62. [PMID: 32710757 DOI: 10.1093/neuonc/noaa180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH)-mutant tumors exhibit an altered metabolic state and are critically dependent upon nicotinamide adenine dinucleotide (NAD+) for cellular survival. NAD+ steady-state levels can be influenced by both biosynthetic and consumptive processes. Here, we investigated activation of sirtuin (SIRT) enzymes, which consume NAD+ as a coenzyme, as a potential mechanism to reduce cellular NAD+ levels in these tumors. METHODS The effect of inhibition or activation of sirtuin activity, using (i) small molecules, (ii) clustered regularly interspaced short palindromic repeat/CRISPR associated protein 9 gene editing, and (iii) inducible overexpression, was investigated in IDH-mutant tumor lines, including patient-derived IDH-mutant glioma lines. RESULTS We found that Sirt1 activation led to marked augmentation of NAD+ depletion and accentuation of cytotoxicity when combined with inhibition of nicotinamide phosphoribosyltransferase (NAMPT), consistent with the enzymatic activity of SIRT1 as a primary cellular NAD+ consumer in IDH-mutant cells. Activation of Sirt1 through either genetic overexpression or pharmacologic Sirt1-activating compounds (STACs), an existing class of well-tolerated drugs, led to inhibition of IDH1-mutant tumor cell growth. CONCLUSIONS Activation of Sirt1 can selectively target IDH-mutant tumors. These findings indicate that relatively nontoxic STACs, administered either alone or in combination with NAMPT inhibition, could alter the growth trajectory of IDH-mutant gliomas while minimizing toxicity associated with cytotoxic chemotherapeutic regimens.
Collapse
Affiliation(s)
- Julie J Miller
- Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandria Fink
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jack A Banagis
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Nagashima
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megha Subramanian
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine K Lee
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa Melamed
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shilpa S Tummala
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
129
|
Rather GM, Pramono AA, Szekely Z, Bertino JR, Tedeschi PM. In cancer, all roads lead to NADPH. Pharmacol Ther 2021; 226:107864. [PMID: 33894275 DOI: 10.1016/j.pharmthera.2021.107864] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells require increased levels of NADPH for increased nucleotide synthesis and for protection from ROS. Recent studies show that increased NADPH is generated in several ways. Activated AKT phosphorylates NAD kinase (NADK), increasing its activity. NADP formed, is rapidly converted to NADPH by glucose 6-phosphate dehydrogenase and malic enzymes, overexpressed in tumor cells with mutant p53. Calmodulin, overexpressed in some cancers, also increases NADK activity. Also, in IDH1/2 mutant cancer, NADPH serves as the cofactor to generate D-2 hydroxyglutarate, an oncometabolite. The requirement of cancer cells for elevated levels of NADPH provides an opportunity to target its synthesis for cancer treatment.
Collapse
Affiliation(s)
- Gulam Mohmad Rather
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Alvinsyah Adhityo Pramono
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Zoltan Szekely
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Joseph R Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Department of Medicine and Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| | - Philip Michael Tedeschi
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
130
|
Abstract
2-Hydroxyglutarate (2-HG) is structurally similar to α-ketoglutarate (α-KG), which is an intermediate product of the tricarboxylic acid (TCA) cycle; it can be generated by reducing the ketone group of α-KG to a hydroxyl group. The significant role that 2-HG plays has been certified in the pathophysiology of 2-hydroxyglutaric aciduria (2HGA), tumors harboring mutant isocitrate dehydrogenase 1/2 (IDH1/2mt), and in clear cell renal cell carcinoma (ccRCC). It is taken as an oncometabolite, raising much attention on its oncogenic mechanism. In recent years, 2-HG has been verified to accumulate in the context of hypoxia or acidic pH, and there are also researches confirming the vital role that 2-HG plays in the fate decision of immune cells. Therefore, 2-HG not only participates in tumorigenesis. This text will also summarize 2-HG’s identities besides being an oncometabolite and will discuss their enlightenment for future research and clinical treatment.
Collapse
Affiliation(s)
- Xin Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
131
|
Hicks WH, Bird CE, Traylor JI, Shi DD, El Ahmadieh TY, Richardson TE, McBrayer SK, Abdullah KG. Contemporary Mouse Models in Glioma Research. Cells 2021; 10:cells10030712. [PMID: 33806933 PMCID: PMC8004772 DOI: 10.3390/cells10030712] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Despite advances in understanding of the molecular pathogenesis of glioma, outcomes remain dismal. Developing successful treatments for glioma requires faithful in vivo disease modeling and rigorous preclinical testing. Murine models, including xenograft, syngeneic, and genetically engineered models, are used to study glioma-genesis, identify methods of tumor progression, and test novel treatment strategies. Since the discovery of highly recurrent isocitrate dehydrogenase (IDH) mutations in lower-grade gliomas, there is increasing emphasis on effective modeling of IDH mutant brain tumors. Improvements in preclinical models that capture the phenotypic and molecular heterogeneity of gliomas are critical for the development of effective new therapies. Herein, we explore the current status, advancements, and challenges with contemporary murine glioma models.
Collapse
Affiliation(s)
- William H. Hicks
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Cylaina E. Bird
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Jeffrey I. Traylor
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Diana D. Shi
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Tarek Y. El Ahmadieh
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Timothy E. Richardson
- Department of Pathology, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 75229, USA;
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harrold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence: (S.K.M.); (K.G.A.)
| | - Kalil G. Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
- Harrold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence: (S.K.M.); (K.G.A.)
| |
Collapse
|
132
|
Integrated Gene Expression and Methylation Analyses Identify DLL3 as a Biomarker for Prognosis of Malignant Glioma. J Mol Neurosci 2021; 71:1622-1635. [PMID: 33713320 DOI: 10.1007/s12031-021-01817-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
Glioma is one of the most common neurological malignancies worldwide. Delta-like ligand 3 (DLL3), an inhibitory ligand-driven activation of the Notch pathway, has been shown to be significantly associated with overall survival in patients with glioma. Therefore, the purpose of this study was to determine whether DLL3 as a biomarker in glioma is associated with patients' clinicopathological features and prognosis. We identified differences in transcriptome and promoter methylation in the Chinese Glioma Genome Atlas (CGGA) in patients with malignant glioma with shorter (less than 1 year) and longer (greater than 3 years) survival time. Further analysis of The Cancer Genome Atlas (TCGA) revealed that four genes (DLL3, TSPAN15, RTN1, PAK7) are highly associated with patient prognosis and play an indispensable role in evolution. We chose the expression level of DLL3 in glioma patients for our study. Patients were divided into groups with low and high expression of DLL3 according to the cutoff values obtained, and Kaplan-Meier and Cox analysis were used to examine the correlation between DLL3 gene expression and patient survival. We then performed a gene set enrichment analysis (GSEA) to identify significantly enriched signaling pathways. Our results confirmed that the overall survival of patients with low DLL3 expression was significantly shorter than that of patients with high DLL3 expression. GSEA showed that the signaling pathways of the immune process and immune response, among others, were enhanced with the DLL3 low-expression phenotype. Collectively, our findings signify that DLL3 is a potent prognostic factor for glioma, which can provide a viable approach for glioma prognostic assessment and valuable insights for anti-tumor immune-targeted therapies.
Collapse
|
133
|
Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target. Biochem Soc Trans 2021; 48:733-744. [PMID: 32573651 DOI: 10.1042/bst20190033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/10/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its reduced form NADH are essential coupled redox metabolites that primarily promote cellular oxidative (catabolic) metabolic reactions. This enables energy generation through glycolysis and mitochondrial respiration to support cell growth and survival. In addition, many key enzymes that regulate diverse cell functions ranging from gene expression to proteostasis require NAD+ as a co-substrate for their catalytic activity. This includes the NAD+-dependent sirtuin family of protein deacetylases and the PARP family of DNA repair enzymes. Whilst their vital activity consumes NAD+ which is cleaved to nicotinamide, several pathways exist for re-generating NAD+ and sustaining NAD+ homeostasis. However, there is growing evidence of perturbed NAD+ homeostasis and NAD+-regulated processes contributing to multiple disease states. NAD+ levels decline in the human brain and other organs with age and this is associated with neurodegeneration and other age-related diseases. Dietary supplementation with NAD+ precursors is being investigated to counteract this. Paradoxically, many cancers have increased dependency on NAD+. Clinical efforts to exploit this have so far shown limited success. Emerging new opportunities to exploit dysregulation of NAD+ metabolism in cancers are critically discussed. An update is also provided on other key NAD+ research including perturbation of the NAD+ salvage enzyme NAMPT in the context of the tumour microenvironment (TME), methodology to study subcellular NAD+ dynamics in real-time and the regulation of differentiation by competing NAD+ pools.
Collapse
|
134
|
Role of NAD + in regulating cellular and metabolic signaling pathways. Mol Metab 2021; 49:101195. [PMID: 33609766 PMCID: PMC7973386 DOI: 10.1016/j.molmet.2021.101195] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD+), a critical coenzyme present in every living cell, is involved in a myriad of metabolic processes associated with cellular bioenergetics. For this reason, NAD+ is often studied in the context of aging, cancer, and neurodegenerative and metabolic disorders. Scope of review Cellular NAD+ depletion is associated with compromised adaptive cellular stress responses, impaired neuronal plasticity, impaired DNA repair, and cellular senescence. Increasing evidence has shown the efficacy of boosting NAD+ levels using NAD+ precursors in various diseases. This review provides a comprehensive understanding into the role of NAD+ in aging and other pathologies and discusses potential therapeutic targets. Major conclusions An alteration in the NAD+/NADH ratio or the NAD+ pool size can lead to derailment of the biological system and contribute to various neurodegenerative disorders, aging, and tumorigenesis. Due to the varied distribution of NAD+/NADH in different locations within cells, the direct role of impaired NAD+-dependent processes in humans remains unestablished. In this regard, longitudinal studies are needed to quantify NAD+ and its related metabolites. Future research should focus on measuring the fluxes through pathways associated with NAD+ synthesis and degradation. NAD+ regulates energy metabolism, DNA damage repair, gene expression, and stress response. NAD+ deterioration contributes to the progression of multiple metabolic disorders, cancers, and neurodegenerative diseases. Nicotinamide mononucleotide and nicotinamide riboside raise NAD+ levels in different tissues in preclinical models. Imaging studies on genetic models can illustrate the pathways of NAD+metabolism and their downstream functional effects. Human clinical trials to determine benefits of restoration of NAD+ by using NAD precursors are in progress.
Collapse
|
135
|
Kadiyala P, Carney SV, Gauss JC, Garcia-Fabiani MB, Haase S, Alghamri MS, Núñez FJ, Liu Y, Yu M, Taher A, Nunez FM, Li D, Edwards MB, Kleer CG, Appelman H, Sun Y, Zhao L, Moon JJ, Schwendeman A, Lowenstein PR, Castro MG. Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. J Clin Invest 2021; 131:139542. [PMID: 33332283 DOI: 10.1172/jci139542] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Mutant isocitrate dehydrogenase 1 (IDH1-R132H; mIDH1) is a hallmark of adult gliomas. Lower grade mIDH1 gliomas are classified into 2 molecular subgroups: 1p/19q codeletion/TERT-promoter mutations or inactivating mutations in α-thalassemia/mental retardation syndrome X-linked (ATRX) and TP53. This work focuses on glioma subtypes harboring mIDH1, TP53, and ATRX inactivation. IDH1-R132H is a gain-of-function mutation that converts α-ketoglutarate into 2-hydroxyglutarate (D-2HG). The role of D-2HG within the tumor microenvironment of mIDH1/mATRX/mTP53 gliomas remains unexplored. Inhibition of D-2HG, when used as monotherapy or in combination with radiation and temozolomide (IR/TMZ), led to increased median survival (MS) of mIDH1 glioma-bearing mice. Also, D-2HG inhibition elicited anti-mIDH1 glioma immunological memory. In response to D-2HG inhibition, PD-L1 expression levels on mIDH1-glioma cells increased to similar levels as observed in WT-IDH gliomas. Thus, we combined D-2HG inhibition/IR/TMZ with anti-PDL1 immune checkpoint blockade and observed complete tumor regression in 60% of mIDH1 glioma-bearing mice. This combination strategy reduced T cell exhaustion and favored the generation of memory CD8+ T cells. Our findings demonstrate that metabolic reprogramming elicits anti-mIDH1 glioma immunity, leading to increased MS and immunological memory. Our preclinical data support the testing of IDH-R132H inhibitors in combination with IR/TMZ and anti-PDL1 as targeted therapy for mIDH1/mATRX/mTP53 glioma patients.
Collapse
Affiliation(s)
- Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stephen V Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jessica C Gauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Maria B Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Felipe J Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yayuan Liu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayman Taher
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Fernando M Nunez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dan Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Marta B Edwards
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Henry Appelman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yilun Sun
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
136
|
Exogenous NAD + Postpones the D-Gal-Induced Senescence of Bone Marrow-Derived Mesenchymal Stem Cells via Sirt1 Signaling. Antioxidants (Basel) 2021; 10:antiox10020254. [PMID: 33562281 PMCID: PMC7915830 DOI: 10.3390/antiox10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 01/07/2023] Open
Abstract
Cell senescence is accompanied by decreased nicotinamide adenine dinucleotide (NAD+) levels; however, whether exogenous NAD+ affects bone marrow-derived mesenchymal stem cells (BMSCs) senescence and the involved mechanisms is still unclear. Here, we find that exogenous NAD+ replenishment significantly postpones BMSC senescence induced by D-galactose (D-gal). It is also shown that exogenous NAD+ leads to increased intracellular NAD+ levels and reduced intracellular reactive oxygen species in senescent BMSCs here. Further investigation showed that exogenous NAD+ weakened BMSC senescence by increasing Sirtuin 1 (Sirt1) expression. Moreover, exogenous NAD+ reduced senescence-associated-β-galactosidase activity, and downregulated poly (ADP-ribose) polymerase 1 expression. In addition, the reduced expression of Sirt1 by small interfering RNA abolished the beneficial effects of exogenous NAD+ in terms of postponing BMSCs senescence induced by D-gal. Taken together, our results indicate that exogenous NAD+ could postpone D-gal-induced BMSC senescence through Sirt1 signaling, providing a potential method for obtaining high quality BMSCs to support their research and clinical application.
Collapse
|
137
|
Abstract
The prognosis for childhood cancer has improved considerably over the past 50 years. This improvement is attributed to well-designed clinical trials which have incorporated chemotherapy, surgery, and radiation. With an increased understanding of cancer biology and genetics, we have entered an era of precision medicine and immunotherapy that provides potential for improved cure rates. However, preclinical evaluation of these therapies is more nuanced, requiring more robust animal models. Evaluation of targeted treatments requires molecularly defined xenograft models that can capture the diversity within pediatric cancer. The development of novel immunotherapies ideally involves the use of animal models that can accurately recapitulate the human immune response. In this review, we provide an overview of xenograft models for childhood cancers, review successful examples of novel therapies translated from xenograft models to the clinic, and describe the modern tools of xenograft biobanks and humanized xenograft models for the study of immunotherapies.
Collapse
Affiliation(s)
- Kevin O McNerney
- Children’s Hospital of Philadelphia, Divisions of Hematology and Oncology, Philadelphia, PA 19104, USA
| | - David T Teachey
- Children’s Hospital of Philadelphia, Divisions of Hematology and Oncology, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
138
|
Opitz CA, Turcan S. From anti-aging drugs to cancer therapy: is there a potential for sirtuin activators in gliomas? Neuro Oncol 2021; 23:3-5. [PMID: 33059365 PMCID: PMC7849941 DOI: 10.1093/neuonc/noaa234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christiane A Opitz
- German Cancer Consortium Brain Cancer Metabolism Group, German Cancer Research Center, Heidelberg, Germany
| | - Sevin Turcan
- German Cancer Consortium Brain Cancer Metabolism Group, German Cancer Research Center, Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
139
|
Gómez-Oliva R, Domínguez-García S, Carrascal L, Abalos-Martínez J, Pardillo-Díaz R, Verástegui C, Castro C, Nunez-Abades P, Geribaldi-Doldán N. Evolution of Experimental Models in the Study of Glioblastoma: Toward Finding Efficient Treatments. Front Oncol 2021; 10:614295. [PMID: 33585240 PMCID: PMC7878535 DOI: 10.3389/fonc.2020.614295] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common form of brain tumor characterized by its resistance to conventional therapies, including temozolomide, the most widely used chemotherapeutic agent in the treatment of GBM. Within the tumor, the presence of glioma stem cells (GSC) seems to be the reason for drug resistance. The discovery of GSC has boosted the search for new experimental models to study GBM, which allow the development of new GBM treatments targeting these cells. In here, we describe different strategies currently in use to study GBM. Initial GBM investigations were focused in the development of xenograft assays. Thereafter, techniques advanced to dissociate tumor cells into single-cell suspensions, which generate aggregates referred to as neurospheres, thus facilitating their selective expansion. Concomitantly, the finding of genes involved in the initiation and progression of GBM tumors, led to the generation of mice models for the GBM. The latest advances have been the use of GBM organoids or 3D-bioprinted mini-brains. 3D bio-printing mimics tissue cytoarchitecture by combining different types of cells interacting with each other and with extracellular matrix components. These in vivo models faithfully replicate human diseases in which the effect of new drugs can easily be tested. Based on recent data from human glioblastoma, this review critically evaluates the different experimental models used in the study of GB, including cell cultures, mouse models, brain organoids, and 3D bioprinting focusing in the advantages and disadvantages of each approach to understand the mechanisms involved in the progression and treatment response of this devastating disease.
Collapse
Affiliation(s)
- Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | - Ricardo Pardillo-Díaz
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Cristina Verástegui
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
140
|
Dey P, Kimmelman AC, DePinho RA. Metabolic Codependencies in the Tumor Microenvironment. Cancer Discov 2021; 11:1067-1081. [PMID: 33504580 DOI: 10.1158/2159-8290.cd-20-1211] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Metabolic reprogramming enables cancer cell growth, proliferation, and survival. This reprogramming is driven by the combined actions of oncogenic alterations in cancer cells and host cell factors acting on cancer cells in the tumor microenvironment. Cancer cell-intrinsic mechanisms activate signal transduction components that either directly enhance metabolic enzyme activity or upregulate transcription factors that in turn increase expression of metabolic regulators. Extrinsic signaling mechanisms involve host-derived factors that further promote and amplify metabolic reprogramming in cancer cells. This review describes intrinsic and extrinsic mechanisms driving cancer metabolism in the tumor microenvironment and how such mechanisms may be targeted therapeutically. SIGNIFICANCE: Cancer cell metabolic reprogramming is a consequence of the converging signals originating from both intrinsic and extrinsic factors. Intrinsic signaling maintains the baseline metabolic state, whereas extrinsic signals fine-tune the metabolic processes based on the availability of metabolites and the requirements of the cells. Therefore, successful targeting of metabolic pathways will require a nuanced approach based on the cancer's genotype, tumor microenvironment composition, and tissue location.
Collapse
Affiliation(s)
- Prasenjit Dey
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York. .,Tumor Immunology and Immunotherapy Program, State University of New York (SUNY) at Buffalo, Buffalo, New York
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
141
|
Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, Cui X, He Y, Xiang W, Han Q, Tang L, Yang W, Wang H. NAD + Metabolism Maintains Inducible PD-L1 Expression to Drive Tumor Immune Evasion. Cell Metab 2021; 33:110-127.e5. [PMID: 33171124 DOI: 10.1016/j.cmet.2020.10.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/04/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
NAD+ metabolism is implicated in aging and cancer. However, its role in immune checkpoint regulation and immune evasion remains unclear. Here, we find nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ biogenesis, drives interferon γ (IFNγ)-induced PD-L1 expression in multiple types of tumors and governs tumor immune evasion in a CD8+ T cell-dependent manner. Mechanistically, NAD+ metabolism maintains activity and expression of methylcytosine dioxygenase Tet1 via α-ketoglutarate (α-KG). IFNγ-activated Stat1 facilitates Tet1 binding to Irf1 to regulate Irf1 demethylation, leading to downstream PD-L1 expression on tumors. Importantly, high NAMPT-expressing tumors are more sensitive to anti-PD-L1 treatment and NAD+ augmentation enhances the efficacy of anti-PD-L1 antibody in immunotherapy-resistant tumors. Collectively, these data delineate an NAD+ metabolism-dependent epigenetic mechanism contributing to tumor immune evasion, and NAD+ replenishment combined with PD-(L)1 antibody provides a promising therapeutic strategy for immunotherapy-resistant tumors.
Collapse
Affiliation(s)
- Hongwei Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China; Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai 200438, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China; Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai 200438, China
| | - Cian Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Qianni Zong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Dan Ye
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiuliang Cui
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Yufei He
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qin Han
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Liang Tang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Wen Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China.
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China; Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
142
|
Viswanath P, Batsios G, Mukherjee J, Gillespie AM, Larson PEZ, Luchman HA, Phillips JJ, Costello JF, Pieper RO, Ronen SM. Non-invasive assessment of telomere maintenance mechanisms in brain tumors. Nat Commun 2021; 12:92. [PMID: 33397920 PMCID: PMC7782549 DOI: 10.1038/s41467-020-20312-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Telomere maintenance is a universal hallmark of cancer. Most tumors including low-grade oligodendrogliomas use telomerase reverse transcriptase (TERT) expression for telomere maintenance while astrocytomas use the alternative lengthening of telomeres (ALT) pathway. Although TERT and ALT are hallmarks of tumor proliferation and attractive therapeutic targets, translational methods of imaging TERT and ALT are lacking. Here we show that TERT and ALT are associated with unique 1H-magnetic resonance spectroscopy (MRS)-detectable metabolic signatures in genetically-engineered and patient-derived glioma models and patient biopsies. Importantly, we have leveraged this information to mechanistically validate hyperpolarized [1-13C]-alanine flux to pyruvate as an imaging biomarker of ALT status and hyperpolarized [1-13C]-alanine flux to lactate as an imaging biomarker of TERT status in low-grade gliomas. Collectively, we have identified metabolic biomarkers of TERT and ALT status that provide a way of integrating critical oncogenic information into non-invasive imaging modalities that can improve tumor diagnosis and treatment response monitoring.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - H Artee Luchman
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Joanna J Phillips
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
143
|
Shi X, Zhang W, Gu C, Ren H, Wang C, Yin N, Wang Z, Yu J, Liu F, Zhang H. NAD+ depletion radiosensitizes 2-DG-treated glioma cells by abolishing metabolic adaptation. Free Radic Biol Med 2021; 162:514-522. [PMID: 33197538 DOI: 10.1016/j.freeradbiomed.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 11/17/2022]
Abstract
Two-deoxy-d-glucose (2-DG) mediated glucose restriction (GR) has been applied as a potential therapeutic strategy for tumor clinical treatments. However, increasing evidences have indicated that 2-DG alone is inefficient in killing tumor cells, and the effect of 2-DG on modifying tumor radio-responses also remains controversial. In this study, we found that 2-DG triggered metabolic adaption in U87 glioma cells by up-regulating nicotinamide phosphoribosyltransferase (NAMPT) and cellular NAD+ content, which abolished 2-DG-induced potential radiosensitizing effect in glioma cells. Strikingly, NAD+ depletion evoked notable oxidative stress by NADPH reduction and hence re-radiosensitized 2-DG-treated glioma cells. Furthermore, isocitrate dehydrogenase-1 (IDH1) mutant U87 glioma cells with deficiency in the rate-limiting enzyme of Preiss-Handler pathway nicotinate phosphoribosyltransferase (Naprt1) revealed notable 2-DG-induced oxidative stress and radiosensitization. Our findings implied that targeting NAD+ could radiosensitize gliomas with GR, and 2-DG administration could be benefit for tumor patients with IDH1 mutation.
Collapse
Affiliation(s)
- Xiaolin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gu
- Department of Radiation Oncology, Changzhou No.4 People's Hospital, Soochow University, Changzhou, 213001, China
| | - Huangge Ren
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Chen Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Narui Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahua Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Fenju Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| | - Haowen Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| |
Collapse
|
144
|
Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021; 6:2. [PMID: 33384409 PMCID: PMC7775471 DOI: 10.1038/s41392-020-00354-w] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
NAD+ was discovered during yeast fermentation, and since its discovery, its important roles in redox metabolism, aging, and longevity, the immune system and DNA repair have been highlighted. A deregulation of the NAD+ levels has been associated with metabolic diseases and aging-related diseases, including neurodegeneration, defective immune responses, and cancer. NAD+ acts as a cofactor through its interplay with NADH, playing an essential role in many enzymatic reactions of energy metabolism, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, and the TCA cycle. NAD+ also plays a role in deacetylation by sirtuins and ADP ribosylation during DNA damage/repair by PARP proteins. Finally, different NAD hydrolase proteins also consume NAD+ while converting it into ADP-ribose or its cyclic counterpart. Some of these proteins, such as CD38, seem to be extensively involved in the immune response. Since NAD cannot be taken directly from food, NAD metabolism is essential, and NAMPT is the key enzyme recovering NAD from nicotinamide and generating most of the NAD cellular pools. Because of the complex network of pathways in which NAD+ is essential, the important role of NAD+ and its key generating enzyme, NAMPT, in cancer is understandable. In the present work, we review the role of NAD+ and NAMPT in the ways that they may influence cancer metabolism, the immune system, stemness, aging, and cancer. Finally, we review some ongoing research on therapeutic approaches.
Collapse
Affiliation(s)
- Lola E Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, Sevilla, Spain.
| |
Collapse
|
145
|
Durmaz A, Henderson TAD, Bebek G. Frequent Subgraph Mining of Functional Interaction Patterns Across Multiple Cancers. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2021; 26:261-272. [PMID: 33691023 PMCID: PMC7958985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular mechanisms characterizing cancer development and progression are complex and process through thousands of interacting elements in the cell. Understanding the underlying structure of interactions requires the integration of cellular networks with extensive combinations of dysregulation patterns. Recent pan-cancer studies focused on identifying common dysregulation patterns in a confined set of pathways or targeting a manually curated set of genes. However, the complex nature of the disease presents a challenge for finding pathways that would constitute a basis for tumor progression and requires evaluation of subnetworks with functional interactions. Uncovering these relationships is critical for translational medicine and the identification of future therapeutics. We present a frequent subgraph mining algorithm to find functional dysregulation patterns across the cancer spectrum. We mined frequent subgraphs coupled with biased random walks utilizing genomic alterations, gene expression profiles, and protein-protein interaction networks. In this unsupervised approach, we have recovered expert-curated pathways previously reported for explaining the underlying biology of cancer progression in multiple cancer types. Furthermore, we have clustered the genes identified in the frequent subgraphs into highly connected networks using a greedy approach and evaluated biological significance through pathway enrichment analysis. Gene clusters further elaborated on the inherent heterogeneity of cancer samples by both suggesting specific mechanisms for cancer type and common dysregulation patterns across different cancer types. Survival analysis of sample level clusters also revealed significant differences among cancer types (p < 0.001). These results could extend the current understanding of disease etiology by identifying biologically relevant interactions.Supplementary Information: Supplementary methods, figures, tables and code are available at https://github.com/bebeklab/FSM_Pancancer.
Collapse
Affiliation(s)
- Arda Durmaz
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, 10900 Euclid Ave., Cleveland OH 44106, USA5The Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA,
| | | | | |
Collapse
|
146
|
Leca J, Fortin J, Mak TW. Illuminating the cross-talk between tumor metabolism and immunity in IDH-mutated cancers. Curr Opin Biotechnol 2020; 68:181-185. [PMID: 33360716 DOI: 10.1016/j.copbio.2020.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 02/02/2023]
Abstract
Mutations in the genes encoding isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) are key drivers of diverse cancers, including gliomas and hematological malignancies. IDH mutations cause neomorphic enzymatic activity that results in the production of the oncometabolite 2-hydroxyglutarate (2-HG). In addition to 2-HG's well-known effects on tumor cells themselves, it has become increasingly clear that 2-HG directly influences the tumor microenvironment (TME). In particular, the non-cell-autonomous impact of 2-HG on the immune system likely plays a major role in shaping disease development and response to therapy. It is therefore critical to understand how IDH mutations affect the metabolism, epigenetics, and functions of tumor-infiltrating immune cells. Such knowledge may point towards new therapeutic approaches to treat IDH-mutant cancers.
Collapse
Affiliation(s)
- Julie Leca
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, ON, Canada; Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
147
|
Badr CE, Silver DJ, Siebzehnrubl FA, Deleyrolle LP. Metabolic heterogeneity and adaptability in brain tumors. Cell Mol Life Sci 2020; 77:5101-5119. [PMID: 32506168 PMCID: PMC8272080 DOI: 10.1007/s00018-020-03569-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
The metabolic complexity and flexibility commonly observed in brain tumors, especially glioblastoma, is fundamental for their development and progression. The ability of tumor cells to modify their genetic landscape and adapt metabolically, subverts therapeutic efficacy, and inevitably instigates therapeutic resistance. To overcome these challenges and develop effective therapeutic strategies targeting essential metabolic processes, it is necessary to identify the mechanisms underlying heterogeneity and define metabolic preferences and liabilities of malignant cells. In this review, we will discuss metabolic diversity in brain cancer and highlight the role of cancer stem cells in regulating metabolic heterogeneity. We will also highlight potential therapeutic modalities targeting metabolic vulnerabilities and examine how intercellular metabolic signaling can shape the tumor microenvironment.
Collapse
Affiliation(s)
- Christian E Badr
- Neuro-Oncology Division, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, CF24 4HQ, UK
| | - Loic P Deleyrolle
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
148
|
Abstract
As a result of rapid progress in genome medicine technologies, such as the evolution of DNA sequencing and the development of molecular targeted drugs, the era of precision cancer medicine has begun. In 2019, a nationwide genome medicine system was established and cancer gene panel sequencing began being covered by national health insurance in Japan. However, patients with brain tumors have not benefited much from genome medicine, even though gliomas contain many potential molecular targets, such as alterations in EGFR, IDH1/2, BRAF, and Histone H3K27. Targeted therapies for these molecules are currently under enthusiastic development; however, such attempts have not yet achieved remarkable success. To date, only a limited number of targeted drugs for brain tumors such as immune checkpoint, neurotrophic tyrosine receptor kinase (NTRK), and Bruton tyrosine kinase (BTK) inhibitors are available, and only in limited cases. Several obstacles remain in the development of drugs to treat brain tumors, including the difficulties in conducting clinical trials because of the relatively rare incidence and in drug delivery through the blood–brain barrier (BBB). Furthermore, general problems for numerous types of cancer, such as tumor heterogeneity, also exist for brain tumors. We hope that overcoming these issues could enable precision genome medicine to be more beneficial for patients with brain tumors such as malignant gliomas. In addition, careful consideration of ethical, legal, and social issues (ELSIs) is important as it is indispensable for maintaining good relationships with patients, which is one of the keys for genome medicine promotion.
Collapse
Affiliation(s)
- Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
149
|
Phillips RE, Soshnev AA, Allis CD. Epigenomic Reprogramming as a Driver of Malignant Glioma. Cancer Cell 2020; 38:647-660. [PMID: 32916125 PMCID: PMC8248764 DOI: 10.1016/j.ccell.2020.08.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are central nervous system tumors and remain among the most treatment-resistant cancers. Exome sequencing has revealed significant heterogeneity and important insights into the molecular pathogenesis of gliomas. Mutations in chromatin modifiers-proteins that shape the epigenomic landscape through remodeling and regulation of post-translational modifications on chromatin-are very frequent and often define specific glioma subtypes. This suggests that epigenomic reprogramming may be a fundamental driver of glioma. Here, we describe the key chromatin regulatory pathways disrupted in gliomas, delineating their physiological function and our current understanding of how their dysregulation may contribute to gliomagenesis.
Collapse
Affiliation(s)
- Richard E Phillips
- Department of Neurology and Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| | - Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
150
|
The Value of Enhanced MR Radiomics in Estimating the IDH1 Genotype in High-Grade Gliomas. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4630218. [PMID: 33163535 PMCID: PMC7604586 DOI: 10.1155/2020/4630218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/17/2020] [Indexed: 01/01/2023]
Abstract
Background The prognosis of IDH1-mutant glioma is significantly better than that of wild-type glioma, and the preoperative identification of IDH mutations in glioma is essential for the formulation of surgical procedures and prognostic assessment. Purpose To explore the value of a radiomic model based on preoperative-enhanced MR images in the assessment of the IDH1 genotype in high-grade glioma. Materials and Methods A retrospective analysis was performed on 182 patients with high-grade glioma confirmed by surgical pathology between December 2012 and January 2019 in our hospital with complete preoperative brain-enhanced MR images, including 79 patients with an IDH1 mutation (45 patients with WHO grade III and 34 patients with WHO grade IV) and 103 patients with wild-type IDH1 (33 patients with WHO grade III and 70 patients with WHO grade IV). Patients were divided into a primary dataset and a validation dataset at a ratio of 7 : 3 using a stratified random sampling; radiomic features were extracted using A.K. (Analysis Kit, GE Healthcare) software and were initially reduced using the Kruskal-Wallis and Spearman analyses. Lasso was finally conducted to obtain the optimized subset of the feature to build the radiomic model, and the model was then tested with cross-validation. ROC (receiver operating characteristic curve) analysis was performed to evaluate the performance of the model. Results The radiomic model showed good discrimination in both the primary dataset (AUC = 0.87, 95% CI: 0.754 to 0.855, ACC = 0.798, sensitivity = 85.5%, specificity = 75.4%, positive predictive value = 0.734, and negative predictive value = 0.867) and the validation dataset (AUC = 0.86, 95% CI: 0.690 to 0.913, ACC = 0.789, sensitivity = 91.3%, specificity = 69.0%, positive predictive value = 0.700, and negative predictive value = 0.909). Conclusion The radiomic model, based on the preoperative-enhanced MR, can effectively predict the IDH1 genotype in high-grade glioma.
Collapse
|