101
|
Abbaszadegan MR, Moghbeli M. Genetic and molecular origins of colorectal Cancer among the Iranians: an update. Diagn Pathol 2018; 13:97. [PMID: 30579343 PMCID: PMC6303916 DOI: 10.1186/s13000-018-0774-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one the leading causes of cancer related deaths among Iranians. Despite the various progresses in new therapeutic methods, it has still a low rate of survival. This high ratio of mortality is mainly related to the late diagnosis, in which the patients refer for treatment in advanced stages of tumor. MAIN BODY: colorectal cancer progression is largely associated with molecular and genetic bases. Although Iran has a high ratio of CRC mortality, there is not an efficient genetic panel for detection and prognosis. Therefore, it is critical to introduce new diagnostic markers with ability to detect in early stages. CONCLUSION Present review summarizes all of the genetic and epigenetic factors which are reported in CRC until now among the Iranian patients to pave the way of incorporation of new ethnic specific markers into the clinical practice and development of new targeted therapeutic methods.
Collapse
Affiliation(s)
| | - Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
102
|
Proença MA, Biselli JM, Succi M, Severino FE, Berardinelli GN, Caetano A, Reis RM, Hughes DJ, Silva AE. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis. World J Gastroenterol 2018; 24:5351-5365. [PMID: 30598580 PMCID: PMC6305535 DOI: 10.3748/wjg.v24.i47.5351] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the effect of Fusobacterium nucleatum (F. nucleatum) on the microenvironment of colonic neoplasms and the expression of inflammatory mediators and microRNAs (miRNAs).
METHODS Levels of F. nucleatum DNA, cytokine gene mRNA (TLR2, TLR4, NFKB1, TNF, IL1B, IL6 and IL8), and potentially interacting miRNAs (miR-21-3p, miR-22-3p, miR-28-5p, miR-34a-5p, miR-135b-5p) were measured by quantitative polymerase chain reaction (qPCR) TaqMan® assays in DNA and/or RNA extracted from the disease and adjacent normal fresh tissues of 27 colorectal adenoma (CRA) and 43 colorectal cancer (CRC) patients. KRAS mutations were detected by direct sequencing and microsatellite instability (MSI) status by multiplex PCR. Cytoscape v3.1.1 was used to construct the postulated miRNA:mRNA interaction network.
RESULTS Overabundance of F. nucleatum in neoplastic tissue compared to matched normal tissue was detected in CRA (51.8%) and more markedly in CRC (72.1%). We observed significantly greater expression of TLR4, IL1B, IL8, and miR-135b in CRA lesions and TLR2, IL1B, IL6, IL8, miR-34a and miR-135b in CRC tumours compared to their respective normal tissues. Only two transcripts for miR-22 and miR-28 were exclusively downregulated in CRC tumour samples. The mRNA expression of IL1B, IL6, IL8 and miR-22 was positively correlated with F. nucleatum quantification in CRC tumours. The mRNA expression of miR-135b and TNF was inversely correlated. The miRNA:mRNA interaction network suggested that the upregulation of miR-34a in CRC proceeds via a TLR2/TLR4-dependent response to F. nucleatum. Finally, KRAS mutations were more frequently observed in CRC samples infected with F. nucleatum and were associated with greater expression of miR-21 in CRA, while IL8 was upregulated in MSI-high CRC.
CONCLUSION Our findings indicate that F. nucleatum is a risk factor for CRC by increasing the expression of inflammatory mediators through a possible miRNA-mediated activation of TLR2/TLR4.
Collapse
Affiliation(s)
- Marcela Alcântara Proença
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Joice Matos Biselli
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Maysa Succi
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Fábio Eduardo Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, UNESP, Univ. Estadual Paulista, Campus of Botucatu, Botucatu, São Paulo 18618-687, Brazil
| | | | - Alaor Caetano
- Endoscopy Center of Rio Preto, São José do Rio Preto, São Paulo 15015-700, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
- Life and Health Sciences Research Institute, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Campus Gualtar, Braga 4710-057, Portugal
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| | - Ana Elizabete Silva
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
103
|
Liu XF, Thin KZ, Ming XL, Shuo-Li, Ping-Luo, Man-Zhu, Li ND, Tu JC. Small Nucleolar RNA Host Gene 18 Acts as a Tumor Suppressor and a Diagnostic Indicator in Hepatocellular Carcinoma. Technol Cancer Res Treat 2018; 17:1533033818794494. [PMID: 30126319 PMCID: PMC6104208 DOI: 10.1177/1533033818794494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Noncoding RNAs are crucial regulators acting as either tumor suppressor genes or oncogenes in human cancer progression. The aberrant expression of noncoding RNAs has been confirmed in different kinds of cancers. Hepatocellular carcinoma is one of the most common malignant tumors worldwide, characterized by insidious onset, great malignancy, and high rates of recurrence and metastasis. Due to lack of early predictive markers, numerous patients are diagnosed in the late stages. As therapeutic options for advanced patients are quite limited, great efforts have been made to screen patients at early stages. A previous study reported that small nucleolar RNA host gene 18 played crucial role in glioma. However, its functions and roles in hepatocellular carcinoma are unknown. PURPOSE To explore its functional role and diagnostic value in hepatocellular carcinoma, we investigated its expression level. METHODS We performed real-time quantitative polymerase chain reaction in tumor tissues and adjacent noncancerous tissues derived from patients with hepatocellular carcinoma as well as in plasma, including samples from the healthy control, patients with hepatitis B, cirrhosis, and hepatocellular carcinoma. RESULTS Small nucleolar RNA host gene 18 was downregulated in liver tissues compared to paired adjacent noncancerous tissues ( P < .0001). Meanwhile, plasma small nucleolar RNA host gene 18 showed a relatively high sensitivity and specificity (75.61% and 73.49%) for distinguishing patients with hepatocellular carcinoma whose α-fetoprotein levels were below 200 ng/mL from the healthy controls. CONCLUSION Our study suggested that small nucleolar RNA host gene 18 might act as a tumor suppressor gene in hepatocellular carcinoma and potentially a diagnostic indicator to distinguish hepatocellular carcinoma from the healthy control and cirrhosis.
Collapse
Affiliation(s)
- Xue-Fang Liu
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Khaing Zar Thin
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin-Liang Ming
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuo-Li
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping-Luo
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Man-Zhu
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nan-Di Li
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian-Cheng Tu
- 1 Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
104
|
Lu YF, Yu JR, Yang Z, Zhu GX, Gao P, Wang H, Chen SY, Zhang J, Liu MY, Niu Y, Wei XM, Wang W, Ye FJ, Zhang LX, Zhao Y, Sun GG. Promoter hypomethylation mediated upregulation of MicroRNA-10b-3p targets FOXO3 to promote the progression of esophageal squamous cell carcinoma (ESCC). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:301. [PMID: 30514328 PMCID: PMC6280546 DOI: 10.1186/s13046-018-0966-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Background Esophageal cancer is a high incident cancer worldwide with poor survival and limited therapeutic options. Alterations of microRNAs are common in cancers, and many of these micro RNAs are potential therapeutic and diagnostic targets to treat these cancers. miR-10b-3p located in chromosome region 2q31.1, and its expression is frequently increased in esophageal squamous cell carcinoma (ESCC). However, the biological functions, clinical significance and therapeutic implications of miR-10b-3p in ESCC remain unclear. Methods The expression levels of miR-10b-3p in ESCC specimens were analyzed by in situ hybridization (ISH) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Ectopic overexpression of miR-10b-3p in ESCC cells, mouse xenograft model, and metastasis model were used to evaluate the effects of miR-10b-3p on proliferation, and migration of cancer cells. Luciferase reporter assay and Western blot were performed to validate the potential targets of miR-10b-3p after the preliminary screening by computer-aided microarray analysis. Results We found that miR-10b-3p expression levels were significantly upregulated in the tumor tissues and serum samples of patients with ESCC. The expression levels of miR-10b-3p in both tumor tissues and serum samples were inversely associated with lymph node metastasis and clinical stages. We identified the expression level of miR-10b-3p in ESCC cancer samples as an independent prognostic marker of the overall survival rates of ESCC patients. We found more frequent hypomethylation of the CpG sites located upstream of the miR-10b-3p gene in the ESCC tissues compared with in the adjacent normal tissues, and the DNA methylation status of miR-10b-3p promoter region inversely correlated with the expression levels of miR-10b-3p. Ectopic overexpression of miR-10b-3p promoted cell proliferation, colony formation, migration and invasion in ESCC. While knockdown of miR-10b-3p had the opposite effects, particularly in promoting apoptosis. Mouse xenograft model confirmed that miR-10b-3p functions as a potent oncogenic miRNA in ESCC, which also promoting ESCC metastasis. Mechanistically, we found miR-10b-3p regulated FOXO3 expression by directly binding to the 3′-untranslated region. And systemic delivery of miR-10b-3p antagomir reduced tumor growth and inhibit FOXO3 protein expression in nude mice. Conclusions Collectively, our findings suggested upregulated expression of miR-10b-3p caused by promoter hypomethylation contributed to the progression of ESCC; Thus, miR-10b-3p is a potentially effective biomarker for ESCC that could have further therapeutic implications. Electronic supplementary material The online version of this article (10.1186/s13046-018-0966-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Fang Lu
- Department of medicine, Tangshan gongren Hospital, Tangshan, China
| | - Jia-Rui Yu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Guan-Xia Zhu
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, 310022, China.,Wenzhou Medical College, Wenzhou, China
| | - Peng Gao
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Huan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Si-Yuan Chen
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Jie Zhang
- Department of pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Mei-Yue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Xiao-Mei Wei
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Wei Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Feng-Jin Ye
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Li-Xin Zhang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Yue Zhao
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Guo-Gui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China.
| |
Collapse
|
105
|
Mensah AA, Cascione L, Gaudio E, Tarantelli C, Bomben R, Bernasconi E, Zito D, Lampis A, Hahne JC, Rinaldi A, Stathis A, Zucca E, Kwee I, Gattei V, Valeri N, Riveiro ME, Bertoni F. Bromodomain and extra-terminal domain inhibition modulates the expression of pathologically relevant microRNAs in diffuse large B-cell lymphoma. Haematologica 2018; 103:2049-2058. [PMID: 30076183 PMCID: PMC6269312 DOI: 10.3324/haematol.2018.191684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Aberrant changes in microRNA expression contribute to lymphomagenesis. Bromodomain and extra-terminal domain inhibitors such as OTX015 (MK-8628, birabresib) have demonstrated preclinical and clinical activity in hematologic tumors. MicroRNA profiling of diffuse large B-cell lymphoma cells treated with OTX015 revealed changes in the expression levels of a limited number of microRNAs, including miR-92a-1-5p, miR-21-3p, miR-155-5p and miR-96-5p. Analysis of publicly available chromatin immunoprecipitation sequencing data of diffuse large B-cell lymphoma cells treated with bromodomain and extra-terminal domain (BET) inhibitors showed that the BET family member BRD4 bound to the upstream regulatory regions of multiple microRNA genes and that this binding decreased following BET inhibition. Alignment of our microRNA profiling data with the BRD4 chromatin immunoprecipitation sequencing data revealed that microRNAs downregulated by OTX015 also exhibited reduced BRD4 binding in their promoter regions following treatment with another bromodomain and extra-terminal domain inhibitor, JQ1, indicating that BRD4 contributes directly to microRNA expression in lymphoma. Treatment with bromodomain and extra-terminal domain inhibitors also decreased the expression of the arginine methyltransferase PRMT5, which plays a crucial role in B-cell transformation and negatively modulates the transcription of miR-96-5p. The data presented here indicate that in addition to previously observed effects on the expression of coding genes, bromodomain and extra-terminal domain inhibitors also modulate the expression of microRNAs involved in lymphomagenesis.
Collapse
Affiliation(s)
- Afua A Mensah
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Luciano Cascione
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Eugenio Gaudio
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Chiara Tarantelli
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, Aviano, Italy
| | - Elena Bernasconi
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Domenico Zito
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| | - Andrea Lampis
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| | - Jens C Hahne
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| | - Andrea Rinaldi
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, Aviano, Italy
| | - Nicola Valeri
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| | | | - Francesco Bertoni
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| |
Collapse
|
106
|
Gao P, Wang H, Yu J, Zhang J, Yang Z, Liu M, Niu Y, Wei X, Wang W, Li H, Wang Y, Sun G. miR-3607-3p suppresses non-small cell lung cancer (NSCLC) by targeting TGFBR1 and CCNE2. PLoS Genet 2018; 14:e1007790. [PMID: 30557355 PMCID: PMC6312350 DOI: 10.1371/journal.pgen.1007790] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/31/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence indicates that miRNAs can be promising diagnostic and/or prognostic markers for various cancers. In this study, we identified a novel miRNA, miR-3607-3p, and its targets in non-small cell lung cancer (NSCLC). The expression of miR-3607-3p was measured and its correlation with patient prognosis was determined. Ectopic expression in NSCLC cells, xenografts, and metastasis models was used to evaluate the effects of miR-3607-3p on proliferation and migration of NSCLC. Luciferase assay and western blotting were performed to validate the potential targets of miR-3607-3p after preliminary screening by microarray analysis and computer-aided algorithms. We demonstrated that miR-3607-3p was downregulated in NSCLC tissues and that miR-3607-3p might act as an independent predictor for overall survival in NSCLC. Moreover, serum miR-3607-3p may be a novel and stable marker for NSCLC. We found that overexpression of miR-3607-3p inhibited cell proliferation, colony formation, migration and invasion, and hampered the cell cycle of NSCLC cell lines in vitro. Our results suggested that miR-3607-3p directly targets TGFBR1 and CCNE2. In accordance with in vitro studies, we confirmed that miR-3607-3p functions as a potent suppressor miRNA of NSCLC. We showed that miR-3607-3p agomir could reduce tumor growth and inhibit TGFBR1 and CCNE2 protein expression. Taken together, our findings indicate that miR-3607-3p can inhibit NSCLC cell growth and metastasis by targeting TGFBR1 and CCNE2 protein expression, and provide new evidence of miR-3607-3p as a potential non-invasive biomarker and therapeutic target for NSCLC.
Collapse
MESH Headings
- Aged
- Animals
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Cyclins/antagonists & inhibitors
- Cyclins/genetics
- Down-Regulation
- Female
- Gene Knockdown Techniques
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Mice
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness/genetics
- Neoplasm Invasiveness/prevention & control
- Neoplasm Metastasis
- Prognosis
- RNA, Small Nucleolar/antagonists & inhibitors
- RNA, Small Nucleolar/blood
- RNA, Small Nucleolar/genetics
- Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors
- Receptor, Transforming Growth Factor-beta Type I/genetics
Collapse
Affiliation(s)
- Peng Gao
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Huan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Jiarui Yu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Jie Zhang
- Department of pathology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Meiyue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Xiaomei Wei
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Wei Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Hongmin Li
- Department of pathology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Yadi Wang
- Department of Radiation Oncology, PLA Army General Hospital, Beijing, China
| | - Guogui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| |
Collapse
|
107
|
Noorolyai S, Mokhtarzadeh A, Baghbani E, Asadi M, Baghbanzadeh Kojabad A, Mogaddam MM, Baradaran B. The role of microRNAs involved in PI3-kinase signaling pathway in colorectal cancer. J Cell Physiol 2018; 234:5664-5673. [PMID: 30488557 DOI: 10.1002/jcp.27415] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022]
Abstract
In recent decades, cancer has been one of the most important concerns of the human community, which affects human life from many different ways, such as breast, lung, colorectal, prostate, and other cancers. Colorectal cancer is one of the most commonly diagnosed cancers in the world that has recently been introduced as the third leading cause of cancer deaths in the world. microRNAs have a very crucial role in tumorgenesis and prevention of cancer, which plays a significant role with influencing various factors through different signaling pathways. Phosphoinositide 3 (PI3)-kinase/AKT is one of the most important signaling pathways involved in the control and growth of tumor in colorectal cancer, through important proteins of this pathway, such as PTEN and AKT, that they can perform specific influence on this process. Our effort in this study is to collect microRNAs that act as tumor suppressors and oncomirs in this cancer through PI3-kinase/AKT signaling pathway.
Collapse
Affiliation(s)
- Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh Kojabad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
108
|
Kanth P, Hazel MW, Boucher KM, Yang Z, Wang L, Bronner MP, Boylan KE, Burt RW, Westover M, Neklason DW, Delker DA. Small RNA sequencing of sessile serrated polyps identifies microRNA profile associated with colon cancer. Genes Chromosomes Cancer 2018; 58:23-33. [PMID: 30265426 DOI: 10.1002/gcc.22686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Sessile serrated adenoma/polyps (SSA/Ps) of the colon account for 20-30% of all colon cancers. Small non-coding RNAs, including microRNAs (miRNAs), may function as oncogenes or tumor suppressor genes involved in cancer development. Small RNA sequencing (RNA-seq) was used to characterize miRNA profiles in SSA/Ps, hyperplastic polyps (HPs), adenomatous polyps and paired uninvolved colon. Our 108 small RNA-seq samples' results were compared to small RNA-seq data from 212 colon cancers from the Cancer Genome Atlas. Twenty-three and six miRNAs were differentially expressed in SSA/Ps compared to paired uninvolved colon and HPs, respectively. Differential expression of MIR31-5p, MIR135B-5p and MIR378A-5p was confirmed by RT-qPCR. SSA/P-specific miRNAs are similarly expressed in colon cancers containing genomic aberrations described in serrated cancers. Correlation of miRNA expression with consensus molecular subtypes suggests more than one subtype is associated with the serrated neoplasia pathway. Canonical pathway analysis suggests many of these miRNAs target growth factor signaling pathways.
Collapse
Affiliation(s)
- Priyanka Kanth
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, Salt Lake City, Utah
| | - Mark W Hazel
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Kenneth M Boucher
- Huntsman Cancer Institute, Salt Lake City, Utah.,Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Zhihong Yang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Li Wang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut
| | - Mary P Bronner
- Huntsman Cancer Institute, Salt Lake City, Utah.,Department of Pathology, University of Utah, Salt Lake City, Utah
| | | | - Randall W Burt
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, Salt Lake City, Utah
| | | | - Deborah W Neklason
- Huntsman Cancer Institute, Salt Lake City, Utah.,Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Don A Delker
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
109
|
Magalhães L, Quintana LG, Lopes DCF, Vidal AF, Pereira AL, D'Araujo Pinto LC, de Jesus Viana Pinheiro J, Khayat AS, Goulart LR, Burbano R, de Assumpção PP, Ribeiro-Dos-Santos Â. APC gene is modulated by hsa-miR-135b-5p in both diffuse and intestinal gastric cancer subtypes. BMC Cancer 2018; 18:1055. [PMID: 30376837 PMCID: PMC6208123 DOI: 10.1186/s12885-018-4980-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Background Several genetic and epigenetic alterations are related to the development and progression of Gastric Cancer (GC), one of those being the deregulated microRNA (miRNA) expression profile. miRNAs are small noncoding RNAs that negatively regulate the expression of thousands of genes, including oncogenes and tumor suppressor genes. Our group identified, in previous studies, some miRNAs that are differentially expressed in GC when compared to the gastric mucosa without cancer, including hsa-miR-29c and hsa-miR-135b. The aim of the study was to modulate the expression of the miRNAs hsa-miR-29c-5p and hsa-miR-135b-5p and evaluate the expression of their target genes in 2D and 3D cell cultures. Methods hsa-miR-29c-5p and hsa-miR-135b-5p expression profiles were modulated by transfecting mimics and antimiRs, respectively, in 2D and 3D cell cultures. The expression of the proteins coded by the genes CDC42, DNMT3A (target genes of hsa-miR-29c-5p) and APC (target gene of hsa-miR-135b-5p) were measured by Western Blot. Results Results showed that mimics and antimiRs transfection significantly altered the expression of both miRNAs, increasing the expression of hsa-miR-29c-5p and reducing the expression of hsa-miR-135b-5p, especially in the 3D culture of the cell lines. When analyzing the proteins expression, we observed that AGP01 and AGP03 cell lines transfected with mimics had a reduction in the levels of CDC42 and DNMT3A and all three cell lines transfected with antimiRs had an increase in the expression of the protein APC. Conclusion We concluded that three-dimensional culture can be a more representative in vitro model that resembles better the in vivo reality. Our results also showed that hsa-miR-29c-5p is an important regulator of CDC42 and DNMT3A genes in the intestinal subtype gastric cancer and hsa-miR-135b-5p regulates the APC gene in both intestinal and diffuse subtypes of GC. Dysregulation in their expression, and consequently in their respectively signaling pathways, shows how these miRNAs can influence the carcinogenesis of different histological subtypes of gastric cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4980-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leandro Magalhães
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Luciana Gonçalves Quintana
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratório de Neuropatologia Experimental, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Amanda Ferreira Vidal
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Adenilson Leão Pereira
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Lara Carolina D'Araujo Pinto
- Laboratório de Cultivo Celular, Faculdade de Odontologia, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - João de Jesus Viana Pinheiro
- Laboratório de Cultivo Celular, Faculdade de Odontologia, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - André Salim Khayat
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rommel Burbano
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Paulo Pimentel de Assumpção
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil. .,Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.
| |
Collapse
|
110
|
Hofbauer SL, de Martino M, Lucca I, Haitel A, Susani M, Shariat SF, Klatte T. A urinary microRNA (miR) signature for diagnosis of bladder cancer. Urol Oncol 2018; 36:531.e1-531.e8. [PMID: 30322728 DOI: 10.1016/j.urolonc.2018.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bladder cancer (BC) is diagnosed by cystoscopy, which is invasive, costly and causes considerable patient discomfort. MicroRNAs (miR) are dysregulated in BC and may serve as non-invasive urine markers for primary diagnostics and monitoring. The purpose of this study was to identify a urinary miR signature that predicts the presence of BC. METHODS For the detection of potential urinary miR markers, expression of 384 different miRs was analyzed in 16 urine samples from BC patients and controls using a Taqman™ Human MicroRNA Array (training set). The identified candidate gene signature was subsequently validated in an independent cohort of 202 urine samples of patients with BC and controls with microscopic hematuria. The final miR signature was developed from a multivariable logistic regression model. RESULTS Analysis of the training set identified 14 candidate miRs for further analysis within the validation set. Using backward stepwise elimination, we identified a subset of 6 miRs (let-7c, miR-135a, miR-135b, miR-148a, miR-204, miR-345) that distinguished BC from controls with an area under the curve of 88.3%. The signature was most accurate in diagnosing high-grade non-muscle invasive BC (area under the curve = 92.9%), but was capable to identify both low-grade and high-grade disease as well as non-muscle and muscle-invasive BC with high accuracies. CONCLUSIONS We identified a 6-gene miR signature that can accurately predict the presence of BC from urine samples, independent of stage and grade. This signature represents a simple urine assay that may help reducing costs and morbidity associated with invasive diagnostics.
Collapse
Affiliation(s)
- Sebastian L Hofbauer
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Michela de Martino
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Ilaria Lucca
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Andrea Haitel
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Martin Susani
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Tobias Klatte
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
111
|
Zhang J, Liu W, Shen F, Ma X, Liu X, Tian F, Zeng W, Xi X, Lin Y. The activation of microRNA-520h-associated TGF-β1/c-Myb/Smad7 axis promotes epithelial ovarian cancer progression. Cell Death Dis 2018; 9:884. [PMID: 30158641 PMCID: PMC6115398 DOI: 10.1038/s41419-018-0946-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/04/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022]
Abstract
Among the gynaecological cancers, epithelial ovarian cancer (EOC) has the highest lethality because of the high incidence of tumour progression and metastasis. Exploration of the detailed mechanisms underlying EOC metastasis and the identification of crucial targets is important to better estimate the prognosis and improve the treatment of this disease. The present study aimed to identify the role of miR-520h in the prognosis of patients with EOC, and the mechanisms of its involvement in EOC progression. We showed that miR-520h was upregulated in 116 patients with EOC, especially in those with advanced-stage disease, and high miR-520h expression predicted poor outcome. Furthermore, ectopic expression of miR-520h enhanced EOC cell proliferation, migration and invasion, and induced epithelial–mesenchymal transition in vitro and in vivo. miR-520h promoted EOC progression by downregulating Smad7, and subsequently activating the TGF-β signalling pathway. Most importantly, TGF-β1 stimulation increased miR-520h expression in EOC cells by upregulating its transcription factor c-Myb. In conclusion, we described the role of the TGF-β1/c-Myb/miR-520h/Smad7 axis in EOC metastasis, and highlighted the possible use of miR-520h as a prognostic marker for EOC.
Collapse
Affiliation(s)
- Jing Zhang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
| | - Wenxue Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Fangqian Shen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China
| | - Xiaoling Ma
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
| | - Xiaorui Liu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
| | - Fuju Tian
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
| | - Weihong Zeng
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, 200080, China.
| | - Yi Lin
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China.
| |
Collapse
|
112
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
113
|
Wang N, Zhang T. Downregulation of MicroRNA-135 Promotes Sensitivity of Non-Small Cell Lung Cancer to Gefitinib by Targeting TRIM16. Oncol Res 2018; 26:1005-1014. [PMID: 29295721 PMCID: PMC7844745 DOI: 10.3727/096504017x15144755633680] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Personalized treatment targeting the epidermal growth factor receptor (EGFR) may be a promising new treatment of non-small cell lung cancer (NSCLC). Gefitinib, a tyrosine kinase inhibitor, is the first drug for NSCLC, which unfortunately easily leads to drug resistance. Our study aimed to explore the functional role of microRNA (miR)-135 in the sensitivity to gefitinib of NSCLC cells. Expression of miR-135 in normal cells and NSCLC cells was assessed, followed by the effects of abnormally expressed miR-135 on cell viability, migration, invasion, apoptosis, sensitivity to gefitinib, and the expression levels of adhesion molecules and programmed death ligand 1 (PD-L1) in H1650 and H1975 cells. Next, the possible target gene of miR-135 was screened and verified. Finally, the potential involvement of the JAK/STAT signaling pathway was investigated. Expression of miR-135 was upregulated in NSCLC cells, and miR-135 silencing repressed cell viability, migration, and invasion, but increased cell apoptosis and sensitivity to gefitinib. E-cadherin and β-catenin were significantly upregulated, but PD-L1 was downregulated by the silencing of miR-135. Subsequently, tripartite-motif (TRIM) 16 was screened and verified to be a target gene of miR-135, and miR-135 suppression was shown to function through upregulation of TRIM16 expression. Phosphorylated levels of the key kinases in the JAK/STAT pathway were reduced by silencing miR-135 by targeting TRIM16. In conclusion, miR-135 acted as a tumor promoter, and its suppression could improve sensitivity to gefitinib by targeting TRIM16 and inhibition of the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ning Wang
- *Department of Thoracic Surgery, Shengli Oilfield Central Hospital, Dongying, P.R. China
| | - Tingting Zhang
- †Department of Oncology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| |
Collapse
|
114
|
De Robertis M, Poeta ML, Signori E, Fazio VM. Current understanding and clinical utility of miRNAs regulation of colon cancer stem cells. Semin Cancer Biol 2018; 53:232-247. [PMID: 30130662 DOI: 10.1016/j.semcancer.2018.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) in colorectal tumorigenesis are suggested to be responsible for initiation, development and propagation of colorectal cancer (CRC) and have been extensively characterized by the expression of phenotypic determinants, such as surface or intracellular proteins. The generation of CSCs is likely due to a dysregulation of the signaling pathways that principally control self-renewal and pluripotency in normal intestinal stem cells (ISCs) through different (epi)genetic changes that define cell fate, identity, and phenotype of CSCs. These aspects are currently under intense investigation. In the framework of the oncogenic signaling pathways controlled by microRNAs (miRNAs) during CRC development, a plethora of data suggests that miRNAs can play a key role in several regulatory pathways involving CSCs biology, epithelial-mesenchymal transition (EMT), angiogenesis, metastatization, and pharmacoresistance. This review examines the most relevant evidences about the role of miRNAs in the etiology of CRC, through the regulation of colon CSCs and the principal differences between colorectal CSCs and benign stem cells. In this perspective, the utility of the principal CSCs-related miRNAs changes is explored, emphasizing their use as potential biomarkers to aid in diagnosis, prognosis and predicting response to therapy in CRC patients, but also as promising targets for more effective and personalized anti-CRC treatments.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70126 Bari, Italy; Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Maria Luana Poeta
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70126 Bari, Italy
| | - Emanuela Signori
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; IRCCS "Casa Sollievo della Sofferenza", viale dei Cappuccini, 71013 San Giovanni Rotondo (FG), Italy
| |
Collapse
|
115
|
Yu S, Li L, Tian W, Nie D, Mu W, Qiu F, Liu Y, Liu X, Wang X, Du Z, Chu W, Yang B. PEP06 polypeptide 30 exerts antitumour effect in colorectal carcinoma via inhibiting epithelial-mesenchymal transition. Br J Pharmacol 2018; 175:3111-3130. [PMID: 29722931 PMCID: PMC6031886 DOI: 10.1111/bph.14352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE PEP06, a polypeptide modified from endostatin, was investigated for its antitumour effects on colorectal cancer (CRC) and the possible mechanisms of this antitumour activity were examined in in vitro and in vivo models. EXPERIMENTAL APPROACH After PEP06 treatment, cell proliferation and migration assays were performed in CRC cells. Epithelial-mesenchymal transition (EMT) progression was determined by Western blotting, immunofluorescent staining and immunohistochemistry in vitro and in a residual xenograft model. MiRNAs regulated by PEP06 were identified by miRNA microarray and verified by in situ hybridization and quantitative real-time PCR. The interactions between PEP06 and integrin αvβ3 were determined with Biacore SA biochips. The cellular function of miR-146b-5p was validated by gain-of-function and loss-of-function approaches. A mouse model of lung metastasis was used to determine the effect of PEP06 on metastatic growth. KEY RESULTS PEP06 did not affect cell viability but reduced migration and EMT in SW620 and HCT116 cells. PEP06 significantly repressed the expression of miR-146b-5p in these two cell lines through binding to integrin αvβ3. MiR-146b-5p was shown to increase EMT by targeting Smad4, and the miR-146b-5p-Smad4 cascade regulated EMT in CRC. PEP06 also suppressed CRC pulmonary metastasis, increased survival of mice and hampered residual tumour growth by inhibiting EMT through down-regulating miR-146b-5p. CONCLUSIONS AND IMPLICATIONS PEP06 is a polypeptide that inhibits the growth and metastasis of colon cancer through its RGD motif binding to integrin αvβ3, thereby down-regulating miR-146b-5p to inhibit EMT in vitro and in vivo. It might have potential as a therapeutic for CRC.
Collapse
Affiliation(s)
- Siming Yu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Linna Li
- Department of Pharmacology and ToxicologyBeijing Institute of Radiation MedicineBeijingChina
| | - Wei Tian
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Dan Nie
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Wei Mu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Fang Qiu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yu Liu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Xinghan Liu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Xiaofeng Wang
- Department of Oral and Maxillofacial SurgeryThe 2nd Affiliated Hospital, Harbin Medical UniversityHarbinHeilongjiangChina
| | - Zhimin Du
- Department of Pharmacythe Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University)Harbin150086China
| | - Wen‐Feng Chu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Baofeng Yang
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
116
|
To KKW, Tong CWS, Wu M, Cho WCS. MicroRNAs in the prognosis and therapy of colorectal cancer: From bench to bedside. World J Gastroenterol 2018; 24:2949-2973. [PMID: 30038463 PMCID: PMC6054943 DOI: 10.3748/wjg.v24.i27.2949] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs that can post-transcriptionally regulate the expression of various oncogenes and tumor suppressor genes. Dysregulated expression of many miRNAs have been shown to mediate the signaling pathways critical in the multistep carcinogenesis of colorectal cancer (CRC). MiRNAs are stable and protected from RNase-mediated degradation, thereby enabling its detection in biological fluids and archival tissues for biomarker studies. This review focuses on the role and application of miRNAs in the prognosis and therapy of CRC. While stage II CRC is potentially curable by surgical resection, a significant percentage of stage II CRC patients do develop recurrence. MiRNA biomarkers may be used to stratify such high-risk population for adjuvant chemotherapy to provide better prognoses. Growing evidence also suggests that miRNAs are involved in the metastatic process of CRC. Certain of these miRNAs may thus be used as prognostic biomarkers to identify patients more likely to have micro-metastasis, who could be monitored more closely after surgery and/or given more aggressive adjuvant chemotherapy. Intrinsic and acquired resistance to chemotherapy severely hinders successful chemotherapy in CRC treatment. Predictive miRNA biomarkers for response to chemotherapy may identify patients who will benefit the most from a particular regimen and also spare the patients from unnecessary side effects. Selection of patients to receive the new targeted therapy is becoming possible with the use of predictive miRNA biomarkers. Lastly, forced expression of tumor suppressor miRNA or silencing of oncogenic miRNA in tumors by gene therapy can also be adopted to treat CRC alone or in combination with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Kenneth KW To
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Christy WS Tong
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Mingxia Wu
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - William CS Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
117
|
MicroRNA-29b-2-5p inhibits cell proliferation by directly targeting Cbl-b in pancreatic ductal adenocarcinoma. BMC Cancer 2018; 18:681. [PMID: 29940895 PMCID: PMC6019739 DOI: 10.1186/s12885-018-4526-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/18/2018] [Indexed: 01/19/2023] Open
Abstract
Background MicroRNAs can be used in the prognosis of malignancies; however, their regulatory mechanisms are unknown, especially in pancreatic ductal adenocarcinoma (PDAC). Methods In 120 PDAC specimens, miRNA levels were assessed by quantitative real time polymerase chain reaction (qRT-PCR). Then, the role of miR-29b-2-5p in cell proliferation was evaluated both in vitro (Trypan blue staining and cell cycle analysis in the two PDAC cell lines SW1990 and Capan-2) and in vivo using a xenograft mouse model. Next, bioinformatics methods, a luciferase reporter assay, Western blot, and immunohistochemistry (IHC) were applied to assess the biological effects of Cbl-b inhibition by miR-29b-2-5p. Moreover, the relationship between Cbl-b and p53 was evaluated by immunoprecipitation (IP), Western blot, and immunofluorescence. Results From the 120 PDAC patients who underwent surgical resection, ten patients with longest survival and ten with shortest survival were selected. We found that high miR-29b-2-5p expression was associated with good prognosis (p = 0.02). The validation cohort confirmed miR-29b-2-5p as an independent prognostic factor in PDAC (n = 100, 95% CI = 0.305–0.756, p = 0.002). Furthermore, miR-29b-2-5p inhibited cell proliferation, induced cell cycle arrest, and promoted apoptosis both in vivo and in vitro. Interestingly, miR-29b-2-5p directly bound the Cbl-b gene, down-regulating its expression and reducing Cbl-b-mediated degradation of p53. Meanwhile, miR-29b-2-5p expression was negatively correlated with Cbl-b in PDAC tissues (r = − 0.33, p = 0.001). Conclusions Taken together, these findings indicated that miR-29b-2-5p improves prognosis in PDAC by targeting Cbl-b to promote p53 expression, and would constitute an important prognostic factor in PDAC. Electronic supplementary material The online version of this article (10.1186/s12885-018-4526-z) contains supplementary material, which is available to authorized users.
Collapse
|
118
|
Allen B, Schneider A, Victoria B, Nunez Lopez YO, Muller M, Szewczyk M, Pazdrowski J, Majchrzak E, Barczak W, Golusinski W, Golusinski P, Masternak MM. Blood Serum From Head and Neck Squamous Cell Carcinoma Patients Induces Altered MicroRNA and Target Gene Expression Profile in Treated Cells. Front Oncol 2018; 8:217. [PMID: 29942793 PMCID: PMC6004400 DOI: 10.3389/fonc.2018.00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022] Open
Abstract
The head and neck squamous cell carcinoma (HNSCC) represents one of the most common cancers in humans. Close to 600,000 new diagnoses are made every year worldwide and over half of diagnosed patients will not survive. In view of this low survival rate, the development of novel cell-based assays for HNSCC will allow more mechanistic approaches for specific diagnostics for each individual patient. The cell-based assays will provide more informative data predicting cellular processes in treated patient, which in effect would improve patient follow up. More importantly, it will increase the specificity and effectiveness of therapeutic approaches. In this study, we investigated the role of serum from HNSCC patients on the regulation of microRNA (miRNA) expression in exposed cells in vitro. Next-generation sequencing of miRNA revealed that serum from HNSCC patients induced a different miRNA expression profile than the serum from healthy individuals. Out of 377 miRNA detected, we found that 16 miRNAs were differentially expressed when comparing cells exposed to serum from HNSCC or healthy individuals. The analysis of gene ontologies and pathway analysis revealed that these miRNA target genes were involved in biological cancer-related processes, including cell cycle and apoptosis. The real-time PCR analysis revealed that serum from HNSCC patients downregulate the expression level of five genes involved in carcinogenesis and two of these genes-P53 and SLC2A1-are direct targets of detected miRNAs. These novel findings provide new insight into how cancer-associated factors in circulation regulate the expression of genes and regulatory elements in distal cells in favor of tumorigenesis. This has the potential for new therapeutic approaches and more specific diagnostics with tumor-specific cell lines or single-cell in vitro assays for personalized treatment and early detection of primary tumors or metastasis.
Collapse
Affiliation(s)
- Brittany Allen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Mark Muller
- Epigenetics Division, TopoGEN Inc, Buena Vista, CO, United States
| | - Mateusz Szewczyk
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Jakub Pazdrowski
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Ewa Majchrzak
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wojciech Barczak
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Pawel Golusinski
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland.,Biology and Environmental Studies, Head and Neck Cancer Biology Laboratory, Poznań University of Medical Sciences, Poznan, Poland
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States.,Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
119
|
The distinct role of strand-specific miR-514b-3p and miR-514b-5p in colorectal cancer metastasis. Cell Death Dis 2018; 9:687. [PMID: 29880874 PMCID: PMC5992212 DOI: 10.1038/s41419-018-0732-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
The abnormal expression of microRNAs (miRNAs) in colorectal cancer (CRC) progression has been widely investigated. It was reported that the same hairpin RNA structure could generate mature products from each strand, termed 5p and 3p, which binds different target mRNAs. Here, we explored the expression, functions, and mechanisms of miR-514b-3p and miR-514b-5p in CRC cells and tissues. We found that miR-514b-3p was significantly down-regulated in CRC samples, and the ratio of miR-514b-3p/miR-514b-5p increased from advanced CRC, early CRC to matched normal colorectal tissues. Follow-up functional experiments illustrated that miR-514b-3p and miR-514b-5p had distinct effects through interacting with different target genes: MiR-514b-3p reduced CRC cell migration, invasion and drug resistance through increasing epithelial marker and decreasing mesenchymal marker expressions, conversely, miR-514b-5p exerted its pro-metastatic properties in CRC by promoting EMT progression. MiR-514b-3p overexpressing CRC cells developed tumors more slowly in mice compared with control cells, however, miR-514b-5p accelerated tumor metastasis. Overall, our data indicated that though miR-514b-3p and miR-514b-5p were transcribed from the same RNA hairpin, each microRNA has distinct effect on CRC metastasis.
Collapse
|
120
|
Duan Q, Sun W, Yuan H, Mu X. MicroRNA-135b-5p prevents oxygen-glucose deprivation and reoxygenation-induced neuronal injury through regulation of the GSK-3β/Nrf2/ARE signaling pathway. Arch Med Sci 2018; 14:735-744. [PMID: 30002689 PMCID: PMC6040137 DOI: 10.5114/aoms.2017.71076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are emerging as critical regulators in the pathological process of cerebral ischemia/reperfusion injury. miRNAs play an important role in regulating neuronal survival. miR-135b-5p has been reported as an important miRNA in regulating cell apoptosis. However, the role of miR-135b-5p in regulating neuronal survival remains poorly understood. Here, we aimed to investigate the role of miR-135b-5p in cerebral ischemia/ reperfusion using an in vitro model of oxygen-glucose deprivation and reoxygenation-(OGD/R) induced neuron injury. MATERIAL AND METHODS miRNA, mRNA and protein expression was detected by real-time quantitative polymerase chain reaction and Western blot. Cell viability was detected by cell counting kit-8 and lactate dehydrogenase assays. Cell apoptosis was detected by caspase-3 activity assay. Oxidative stress was determined using commercial kits. The target of miR-135b-5p was confirmed by dual-luciferase reporter assay. RESULTS We found that miR-135b-5p expression was significantly decreased in hippocampal neurons receiving OGD/R treatment. Overexpression of miR-135b-5p markedly alleviated OGD/R-induced cell injury and oxidative stress, whereas suppression of miR-135b-5p showed the opposite effects. We observed that miR-135b-5p directly targeted the 3'-untranslated region of glycogen synthase kinase-3β (GSK-3β). We found that miR-135b-5p negatively regulates the expression of GSK-3β in hippocampal neurons. Moreover, miR-135b-5p overexpression promotes activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling. However, the restoration of GSK-3β expression significantly reversed the protective effects of miR-135b-5p overexpression. CONCLUSIONS Overall, our results suggest that miR-135b-5p protects neurons against OGD/R-induced injury through downregulation of GSK-3β and promotion of the Nrf2/ARE signaling pathway-mediated antioxidant responses.
Collapse
Affiliation(s)
- Qiang Duan
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Sun
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiang Mu
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
121
|
Parenti S, Montorsi L, Fantini S, Mammoli F, Gemelli C, Atene CG, Losi L, Frassineti C, Calabretta B, Tagliafico E, Ferrari S, Zanocco-Marani T, Grande A. KLF4 Mediates the Effect of 5-ASA on the β-Catenin Pathway in Colon Cancer Cells. Cancer Prev Res (Phila) 2018; 11:503-510. [PMID: 29794245 DOI: 10.1158/1940-6207.capr-17-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022]
Abstract
Mesalazine (5-ASA) is an aminosalicylate anti-inflammatory drug capable of inducing μ-protocadherin, a protein expressed by colorectal epithelial cells that is downregulated upon malignant transformation. Treatment with 5-ASA restores μ-protocadherin expression and promotes the sequestration of β-catenin to the plasma membrane. Here, we show that 5-ASA-induced μ-protocadherin expression is directly regulated by the KLF4 transcription factor. In addition, we suggest the existence of a dual mechanism whereby 5-ASA-mediated β-catenin inhibition is caused by μ-protocadherin-dependent sequestration of β-catenin to the plasma membrane and by the direct binding of KLF4 to β-catenin. In addition, we found that 5-ASA treatment suppresses the expression of miR-130a and miR-135b, which target KLF4 mRNA, raising the possibility that this mechanism is involved in the increased expression of KLF4 induced by 5-ASA. Cancer Prev Res; 11(8); 503-10. ©2018 AACR.
Collapse
Affiliation(s)
- Sandra Parenti
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Montorsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sebastian Fantini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabiana Mammoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia Gemelli
- Science and Technology Park for Medicine, Mirandola, Modena, Italy
| | | | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Frassineti
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Bruno Calabretta
- Department of Clinical and Diagnostic Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy.,Department of Cancer Biology and SKKC, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Enrico Tagliafico
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Alexis Grande
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
122
|
Chen S, Wang Y, Su Y, Zhang L, Zhang M, Li X, Wang J, Zhang X. miR‑205‑5p/PTK7 axis is involved in the proliferation, migration and invasion of colorectal cancer cells. Mol Med Rep 2018; 17:6253-6260. [PMID: 29488611 PMCID: PMC5928600 DOI: 10.3892/mmr.2018.8650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 04/24/2017] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are small non‑coding RNAs, which are critical in a diverse range of biological processes, including development, differentiation, homeostasis, and in the formation of diseases by accelerating and/or inhibiting the translation of mRNAs. The present study aimed to examine the potential role of miRNA (miR)‑205‑5p in the developmental process of colorectal cancer (CRC) through protein‑tyrosine kinase 7 (PTK7). Initially, TargetScan was used to predict the miRNA target sites in the sequence of the PTK7 3'‑untranslated region. It was then found that the mRNA expression level of miR‑205‑5p was lower in CRC cells, determined using reverse transcription‑quantitative polymerase chain reaction analysis, and there was a negative correlation between miR‑205‑5p and PTK7 in CRC tissues. It was also found that miR‑205‑5p regulated the gene transcription of PTK7, determined using a luciferase reporter assay. The results of RT‑qPCR and western blot analyses in human colorectal cancer revealed that miR‑205‑5p suppressed the expression of PTK7. Finally, it was revealed that miR‑205‑5p restricted the proliferation ability of CRC cells through inhibiting PTK7, which was determined using colony forming and 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assays. miR‑205‑5p accelerated cell apoptosis through inhibiting PTK7, demonstrated using Annexin V‑FITC/propidium iodide staining. The results of a Transwell assay indicated that miR‑205‑5p inhibited the migration and invasion abilities of CRC cells through inhibiting PTK7. Therefore, miR‑205‑5p is involved in the proliferation, migration and invasion of CRC through inhibiting PTK7.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Yan Wang
- Department of Pathology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yinan Su
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Lin Zhang
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Mingqing Zhang
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Xueqing Li
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Juan Wang
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Xipeng Zhang
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| |
Collapse
|
123
|
Gao S, Zhao ZY, Wu R, Zhang Y, Zhang ZY. Prognostic value of microRNAs in colorectal cancer: a meta-analysis. Cancer Manag Res 2018; 10:907-929. [PMID: 29750053 PMCID: PMC5935085 DOI: 10.2147/cmar.s157493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Numerous studies have shown that miRNA levels are closely related to the survival time of patients with colon, rectal, or colorectal cancer (CRC). However, the outcomes of different investigations have been inconsistent. Accordingly, a meta-analysis was conducted to study associations among the three types of cancers. Materials and methods Studies published in English that estimated the expression levels of miRNAs with survival curves in CRC were identified until May 20, 2017 by online searches in PubMed, Embase, Web of Science, and the Cochrane Library by two independent authors. Pooled HRs with 95% CIs were used to estimate the correlation between miRNA expression and overall survival. Results A total of 63 relevant articles regarding 13 different miRNAs, with 10,254 patients were ultimately included. CRC patients with high expression of blood miR141 (HR 2.52, 95% CI 1.68-3.77), tissue miR21 (HR 1.31, 95% CI 1.12-1.53), miR181a (HR 1.52, 95% CI 1.26-1.83), or miR224 (HR 2.12, 95% CI 1.04-4.34), or low expression of tissue miR126 (HR 1.55, 95% CI 1.24-1.93) had significantly poor overall survival (P<0.05). Conclusion In general, blood miR141 and tissue miR21, miR181a, miR224, and miR126 had significant prognostic value. Among these, blood miR141 and tissue miR224 were strong biomarkers of prognosis for CRC.
Collapse
Affiliation(s)
- Song Gao
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Zhi-Ying Zhao
- School of Computer Science and Engineering, Northeastern University, Shenyang
| | - Rong Wu
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Yue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Yong Zhang
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| |
Collapse
|
124
|
Cătană CS, Pichler M, Giannelli G, Mader RM, Berindan-Neagoe I. Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma. Oncotarget 2018; 8:29519-29534. [PMID: 28392501 PMCID: PMC5438748 DOI: 10.18632/oncotarget.15706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022] Open
Abstract
In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs.
Collapse
Affiliation(s)
- Cristina- Sorina Cătană
- Department of Medical Biochemistry, ""Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Martin Pichler
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Gianluigi Giannelli
- Department of Internal Medicine, Immunology and Infectious Diseases, Section of Internal Medicine, University of Bari Medical School, Bari, Italy
| | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Austria
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, ""Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Experimental Pathology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania.,Medfuture Research Center for Advanced Medicine, Cluj-Napoca, Romania
| |
Collapse
|
125
|
Tan X, Tang H, Bi J, Li N, Jia Y. MicroRNA-222-3p associated with Helicobacter pylori targets HIPK2 to promote cell proliferation, invasion, and inhibits apoptosis in gastric cancer. J Cell Biochem 2018; 119:5153-5162. [PMID: 29227536 DOI: 10.1002/jcb.26542] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/30/2017] [Indexed: 12/24/2022]
Abstract
Gastric cancer ranks as the second leading cause of malignancy-related death worldwide, and always diagnosed at advanced stage. MicroRNA-222-3p (miR-222-3p) is aberrantly upregulated in various malignant tumors including gastric cancer, but its role and underlying molecular mechanisms in gastric cancer remain largely unknown. Helicobacter pylori (H. pylori) infection acts as a trigger in the development of gastric cancer, and increasing evidence suggests that H. pylori affects microRNA expression. In this study, gastric cancer tissue samples were divided into H. pylori positive group (+) and negative group (-). QRT-PCR showed that miR-222-3p was significantly upregulated in H. pylori (+) group compared with H. pylori (-) group, and luciferase reporter assays identified homeodomain-interacting protein kinase 2 (HIPK2) as a novel target of miR-222-3p in gastric cancer. Immunohistochemistry revealed that HIPK2 levels were decreased in H. pylori (+) group compared with H. pylori (-). After that, functional experiments indicated that miR-222-3p overexpression promoted the proliferation and invasion, while inhibiting apoptosis of SGC7901 gastric cancer cells, but miR-222-3p knockdown exhibited the opposite effects. Also, HIPK2 knockdown induced similar effects as miR-222-3p overexpression in SGC7901 cells. Nude mouse experiments further suggested that HIPK2 overexpression signally attenuated the enhancing effect of miR-222-3p overexpression on cell proliferation, indicating that the effect of miR-222-3p on gastric cancer progression depends on HIPK2, at least in part. Overall, our results demonstrated that miR-222-3p/HIPK2 signal pathway regulated gastric cancer cell proliferation, apoptosis, and invasion, provided a novel therapeutic target for the treatment of gastric cancer infected by H. pylori.
Collapse
Affiliation(s)
- Xiaoyan Tan
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haiying Tang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jian Bi
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Na Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yujie Jia
- Dalian Medical University, Dalian, China
| |
Collapse
|
126
|
Eslamizadeh S, Heidari M, Agah S, Faghihloo E, Ghazi H, Mirzaei A, Akbari A. The Role of MicroRNA Signature as Diagnostic Biomarkers in Different Clinical Stages of Colorectal Cancer. CELL JOURNAL 2018; 20:220-230. [PMID: 29633600 PMCID: PMC5893294 DOI: 10.22074/cellj.2018.5366] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/27/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Colorectal cancer (CRC) is one of the most common cancers and a major cause of cancer-related death worldwide. The early diagnosis of colorectal tumors is one of the most important challenges in cancer management. MicroRNAs (miRNAs) have provided new insight into CRC development and have been suggested as reliable and stable biomarkers for diagnosis and prognosis. This study's objective was to analyze the differential expression of miRNAs at differentstages of CRC searching for possible correlation with clinicopathological features to examine their potential value as diagnostic biomarkers. MATERIALS AND METHODS In this case-control study, plasma and matched tissue samples were collected from 74 CRC patients at stage II-IV as well as blood samples from 32 healthy controls. After exhaustive study of the current literature, eight miRNAs including miR-200c, 20a, 21, 31,135b, 133b,145 and let-7g were selected. The expression level of the miRNAs was assayed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Statistical analysis, including t test , Mann-Whitney U, Kruskall-Wallis tests and receiver operating characteristic (ROC) curve was applied, where needed. RESULTS Significantly elevated levels of miR-21, miR-31, miR-20a, miR-135b, and decreased levels of miR- 200c, miR-145 and let-7 g were detected in both plasma and matched tissue samples compared to the healthy group (P<0.05). However, no significant differences were observed in the expression level of plasma and tissue miR-133b (P>0.05). ROC for tissue miRNAs showed an area under the ROC curve (AUC) of 0.98 and P<0.001 for miR-21, 0.91 and P<0.001 for miR-135b, 0.91 and P<0.001 for miR-31, and 0.92 and P<0.001 for miR-20a. CONCLUSIONS Our results indicate that the expression levels of microRNAs are systematically altered in CRC tissue and plasma. In conclusion, detection of miR-21, miR-135b, miR-31 and miR-20a levels in the tissue might be helpful to illuminate the molecular mechanisms underlying CRC carcinogenesis and serve as tumor-associated biomarkers for diagnosis.
Collapse
Affiliation(s)
- Sara Eslamizadeh
- Department of Molecular Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.,Department of Molecular Genetics, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Mansour Heidari
- Department of Molecular Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghazi
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
127
|
Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy. Biomaterials 2018; 167:80-90. [PMID: 29554483 DOI: 10.1016/j.biomaterials.2018.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 12/20/2022]
Abstract
Leukemia remains a fatal disease for most patients and novel therapeutic strategies are urgently needed. Aberrant DNA methylation is an epigenetic modification that is important in the initiation and progression of leukemia. Here, we demonstrated NCL/miR-221/NFκB/DNMT1 axis as a new molecular pathway promoting aggressive acute myeloid leukemia (AML) leukemogenesis and successfully designed and prepared a nuclear localization signal (NLS) peptide-targeted gold nanoparticles with co-loaded anti-221 and AS1411 (NPsN-AS1411/a221), which can specifically target NCL/miR-221/NFκB/DNMT1 signaling pathway in AML. NPsN-AS1411/a221 synergistically abrogate endogenous miR-221 promoting cancerous growth by inhibiting the expression of p27Kip1 suppressor gene, as well as effectively deregulate the DNMT1 expression through NFκB signaling which led to a reduction of global DNA methylation and the restoration of tumor suppressor p15INK4B via its promoter DNA hypomethylation. Functionally, NPsN-AS1411/a221 remarkably blockage leukemia proliferation and clonogenic potential in NCL/miR-221/NFκB/DNMT1 positive AML cell lines. More importantly, NPsN-AS1411/a221 cooperatively extend the overall survival, lower the white blood cells, reverse splenomegaly, inhibit blasts in bone marrow and metastatic to lung in a preclinical AML animal model. Altogether, our studies provide a proof of concept for multiple-functional drug delivery system that based on the specific gene network involved in tumor growth, and highlight the clinical potential of NCL/miR-221/NFκB/DNMT1-targeted AML nanotherapy.
Collapse
|
128
|
Derouet MF, Dakpo E, Wu L, Zehong G, Conner J, Keshavjee S, de Perrot M, Waddell T, Elimova E, Yeung J, Darling GE. miR-145 expression enhances integrin expression in SK-GT-4 cell line by down-regulating c-Myc expression. Oncotarget 2018; 9:15198-15207. [PMID: 29632636 PMCID: PMC5880596 DOI: 10.18632/oncotarget.24613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
Adenocarcinoma of the esophagus is increasing in frequency and is the 6th most common cause of cancer death in North America. In adenocarcinoma cell lines, we have previously demonstrated that expression of miR-145, leads to enhanced invasion, resistance to anoikis and better attachment to fibronectin in esophageal adenocarcinoma. In contrast, expression of miR-145 acts as a tumor suppressor in squamous cell carcinoma. The molecular mechanisms responsible for the oncogenic effects of miR-145 were investigated. In this report, we demonstrate that we can partially recreate the miR-145 effects in EAC by knock down of the expression of c-Myc, which is one of the targets of miR-145. Knocking down of c-Myc expression resulted in upregulation of integrin subunits α5 and β3. Finally, we demonstrated that integrin α5 expression correlates to fibronectin attachment potential whereas integrin β3 expression correlates with resistance to anoikis and invasion potential. Finally, we demonstrate that expression of miR-145 in esophageal adenocarcinoma cell line (SK-GT-4) enhances tumor growth and metastasis in a NOD/SCID xenograft model. Overall, the oncogenic potential of miR-145 in EAC appears to be mediated by downregulation of c-Myc leading to the expression of integrins subunits α5 and β3.
Collapse
Affiliation(s)
- Mathieu Francois Derouet
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada
| | - Eugenia Dakpo
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada
| | - Guan Zehong
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada
| | - James Conner
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Thomas Waddell
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Elena Elimova
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonathan Yeung
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Gail Elizabeth Darling
- Latner Thoracic Surgery Research Laboratories, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
129
|
Yu Y, Luo W, Yang ZJ, Chi JR, Li YR, Ding Y, Ge J, Wang X, Cao XC. miR-190 suppresses breast cancer metastasis by regulation of TGF-β-induced epithelial-mesenchymal transition. Mol Cancer 2018; 17:70. [PMID: 29510731 PMCID: PMC5838994 DOI: 10.1186/s12943-018-0818-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/26/2018] [Indexed: 01/23/2023] Open
Abstract
Background Breast cancer is the most common cancer among women worldwide and metastasis is the leading cause of death among patients with breast cancer. The transforming growth factor-β (TGF-β) pathway plays critical roles during breast cancer epithelial–mesenchymal transition (EMT) and metastasis. SMAD2, a positive regulator of TGF-β signaling, promotes breast cancer metastasis through induction of EMT. Methods The expression of miR-190 and SMAD2 in breast cancer tissues, adjacent normal breast tissues and cell lines were determined by RT-qPCR. The protein expression levels and localization were analyzed by western blotting and immunofluorescence. ChIP and dual-luciferase report assays were used to validate the regulation of ZEB1-miR-190-SMAD2 axis. The effect of miR-190 on breast cancer progression was investigated both in vitro and in vivo. Results miR-190 down-regulation is required for TGF-β-induced EMT. miR-190 suppresses breast cancer metastasis both in vitro and in vivo by targeting SMAD2. miR-190 expression is down-regulated and inversely correlates with SMAD2 in breast cancer samples, and its expression level was associated with outcome in patients with breast cancer. Furthermore, miR-190 is transcriptionally regulated by ZEB1. Conclusions Our data uncover the ZEB1-miR-190-SMAD2 axis and provide a mechanism to explain the TGF-β network in breast cancer metastasis. Electronic supplementary material The online version of this article (10.1186/s12943-018-0818-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Wei Luo
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zheng-Jun Yang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Jiang-Rui Chi
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yun-Rui Li
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yu Ding
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Jie Ge
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
130
|
Li ZW, Zhu YR, Zhou XZ, Zhuo BB, Wang XD. microRNA-135b expression silences Ppm1e to provoke AMPK activation and inhibit osteoblastoma cell proliferation. Oncotarget 2018; 8:26424-26433. [PMID: 28460435 PMCID: PMC5432269 DOI: 10.18632/oncotarget.15477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022] Open
Abstract
Forced-activation of AMP-activated protein kinase (AMPK) can possibly inhibit osteoblastoma cells. Here, we aim to provoke AMPK activation via microRNA silencing its phosphatase Ppm1e (protein phosphatase Mg2+/Mn2+-dependent 1e). We showed that microRNA-135b-5p (“miR-135b-5p”), the anti-Ppm1e microRNA, was significantly downregulated in human osteoblastoma tissues. It was correlated with Ppm1e upregulation and AMPKα1 de-phosphorylation. Forced-expression of miR-135b-5p in human osteoblastoma cells (MG-63 and U2OS lines) silenced Ppm1e, and induced a profound AMPKα1 phosphorylation (at Thr-172). Osteoblastoma cell proliferation was inhibited after miR-135b-5p expression. Intriguingly, Ppm1e shRNA knockdown similarly induced AMPKα1 phosphorylation, causing osteoblastoma cell proliferation. Reversely, AMPKα1 shRNA knockdown or dominant negative mutation almost abolished miR-135b-5p's actions in osteoblastoma cells. Further in vivo studies demonstrated that U2OS tumor growth in mice was dramatically inhibited after expressing miR-135b-5p or Ppm1e shRNA. Together, our results suggest that miR-135b-induced Ppm1e silence induces AMPK activation to inhibit osteoblastoma cell proliferation.
Collapse
Affiliation(s)
- Zheng-Wei Li
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China
| | - Yun-Rong Zhu
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin City, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, The First People's Hospital of SuQian, SuQian, China
| | - Bao-Biao Zhuo
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China
| | - Xiao-Dong Wang
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
131
|
Lampis A, Carotenuto P, Vlachogiannis G, Cascione L, Hedayat S, Burke R, Clarke P, Bosma E, Simbolo M, Scarpa A, Yu S, Cole R, Smyth E, Mateos JF, Begum R, Hezelova B, Eltahir Z, Wotherspoon A, Fotiadis N, Bali MA, Nepal C, Khan K, Stubbs M, Hahne JC, Gasparini P, Guzzardo V, Croce CM, Eccles S, Fassan M, Cunningham D, Andersen JB, Workman P, Valeri N, Braconi C. MIR21 Drives Resistance to Heat Shock Protein 90 Inhibition in Cholangiocarcinoma. Gastroenterology 2018; 154:1066-1079.e5. [PMID: 29113809 PMCID: PMC5863695 DOI: 10.1053/j.gastro.2017.10.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Cholangiocarcinomas (CCA) are resistant to chemotherapy, so new therapeutic agents are needed. We performed a screen to identify small-molecule compounds that are active against CCAs. Levels of microRNA 21 (MIR21 or miRNA21) are increased in CCAs. We investigated whether miRNA21 mediates resistance of CCA cells and organoids to HSP90 inhibitors. METHODS We performed a high-throughput screen of 484 small-molecule compounds to identify those that reduced viability of 6 human CCA cell lines. We tested the effects of HSP90 inhibitors on cells with disruption of the MIR21 gene, cells incubated with MIR21 inhibitors, and stable cell lines with inducible expression of MIR21. We obtained CCA biopsies from patients, cultured them as organoids (patient-derived organoids). We assessed their architecture, mutation and gene expression patterns, response to compounds in culture, and when grown as subcutaneous xenograft tumors in mice. RESULTS Cells with IDH1 and PBRM1 mutations had the highest level of sensitivity to histone deacetylase inhibitors. HSP90 inhibitors were effective in all cell lines, irrespective of mutations. Sensitivity of cells to HSP90 inhibitors correlated inversely with baseline level of MIR21. Disruption of MIR21 increased cell sensitivity to HSP90 inhibitors. CCA cells that expressed transgenic MIR21 were more resistant to HSP90 inhibitors than cells transfected with control vectors; inactivation of MIR21 in these cells restored sensitivity to these agents. MIR21 was shown to target the DnaJ heat shock protein family (Hsp40) member B5 (DNAJB5). Transgenic expression of DNAJB5 in CCA cells that overexpressed MIR21 re-sensitized them to HSP90 inhibitors. Sensitivity of patient-derived organoids to HSP90 inhibitors, in culture and when grown as xenograft tumors in mice, depended on expression of miRNA21. CONCLUSIONS miRNA21 appears to mediate resistance of CCA cells to HSP90 inhibitors by reducing levels of DNAJB5. HSP90 inhibitors might be developed for the treatment of CCA and miRNA21 might be a marker of sensitivity to these agents.
Collapse
Affiliation(s)
| | | | | | - Luciano Cascione
- Bioinformatics Core Unit, Institute of Oncology Research, Bellinzona, Switzerland
| | | | | | - Paul Clarke
- The Institute of Cancer Research, London, UK
| | - Else Bosma
- The Institute of Cancer Research, London, UK
| | - Michele Simbolo
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Sijia Yu
- The Institute of Cancer Research, London, UK
| | | | | | | | | | | | | | | | | | | | - Chirag Nepal
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Khurum Khan
- The Royal Marsden NHS Trust, London and Surrey, UK
| | - Mark Stubbs
- The Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Matteo Fassan
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University of Verona, Verona, Italy; Department of Medicine, University of Padua, Padua, Italy
| | | | - Jesper B Andersen
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Nicola Valeri
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Trust, London and Surrey, UK
| | - Chiara Braconi
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Trust, London and Surrey, UK.
| |
Collapse
|
132
|
Fan JB, Ruan JW, Liu W, Zhu LQ, Zhu XH, Yi H, Cui SY, Zhao JN, Cui ZM. miR-135b expression downregulates Ppm1e to activate AMPK signaling and protect osteoblastic cells from dexamethasone. Oncotarget 2018; 7:70613-70622. [PMID: 27661114 PMCID: PMC5342578 DOI: 10.18632/oncotarget.12138] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
Activation of AMP-activated protein kinase (AMPK) could potently protect osteoblasts/osteoblastic cells from dexamethasone (Dex). We aim to induce AMPK activation via microRNA ("miRNA") downregulation of its phosphatase Ppm1e. We discovered that microRNA-135b ("miR-135b") targets the 3' untranslated regions (UTRs) of Ppm1e. In human osteoblasticOB-6 cells and hFOB1.19 cells, forced-expression of miR-135b downregulated Ppm1e and activated AMPK signaling. miR-135b also protected osteoblastic cells from Dex. shRNA-induced knockdown of Ppm1e similarly activated AMPK and inhibited Dex-induced damages. Intriguingly, in the Ppm1e-silenced osteoblastic cells, miR-135b expression failed to offer further cytoprotection against Dex. Notably, AMPK knockdown (via shRNA) or dominant negative mutation abolished miR-135b-induced AMPK activation and cytoprotection against Dex. Molecularly, miR-135b, via activating AMPK, increased nicotinamide adenine dinucleotide phosphate (NADPH) activity and inhibited Dex-induced oxidative stress. At last, we found that miR-135b level was increased in human necrotic femoral head tissues, which was correlated with Ppm1e downregulation and AMPK activation. There results suggest that miR-135b expression downregulates Ppm1e to activate AMPK signaling, which protects osteoblastic cells from Dex.
Collapse
Affiliation(s)
- Jian-Bo Fan
- The Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China.,Department of Orthopaedics, Jinling Hospital, Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
| | - Jian-Wei Ruan
- The Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Wei Liu
- The Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Lun-Qing Zhu
- The Center of Diagnosis and Treatment for Childrens' Bone Disease, Childrens' Hospital Affiliated to Soochow University, Suzhou 215000, Jiangsu, PR China
| | - Xin-Hui Zhu
- The Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Hong Yi
- The Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Sheng-Yu Cui
- The Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Jian-Ning Zhao
- Department of Orthopaedics, Jinling Hospital, Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
| | - Zhi-Ming Cui
- The Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| |
Collapse
|
133
|
Shi L, Middleton J, Jeon YJ, Magee P, Veneziano D, Laganà A, Leong HS, Sahoo S, Fassan M, Booton R, Shah R, Crosbie PAJ, Garofalo M. KRAS induces lung tumorigenesis through microRNAs modulation. Cell Death Dis 2018; 9:219. [PMID: 29440633 PMCID: PMC5833396 DOI: 10.1038/s41419-017-0243-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023]
Abstract
Oncogenic KRAS induces tumor onset and development by modulating gene expression via different molecular mechanisms. MicroRNAs (miRNAs) are small non-coding RNAs that have been established as main players in tumorigenesis. By overexpressing wild type or mutant KRAS (KRASG12D) and using inducible human and mouse cell lines, we analyzed KRAS-regulated microRNAs in non-small-cell lung cancer (NSCLC). We show that miR-30c and miR-21 are significantly upregulated by both KRAS isoforms and induce drug resistance and enhance cell migration/invasion via inhibiting crucial tumor suppressor genes, such as NF1, RASA1, BID, and RASSF8. MiR-30c and miR-21 levels were significantly elevated in tumors from patients that underwent surgical resection of early stages NSCLC compared to normal lung and in plasma from the same patients. Systemic delivery of LNA-anti-miR-21 in combination with cisplatin in vivo completely suppressed the development of lung tumors in a mouse model of lung cancer. Mechanistically, we demonstrated that ELK1 is responsible for miR-30c and miR-21 transcriptional activation by direct binding to the miRNA proximal promoter regions. In summary, our study defines that miR-30c and miR-21 may be valid biomarkers for early NSCLC detection and their silencing could be beneficial for therapeutic applications.
Collapse
Affiliation(s)
- Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and University College London, London, UK
| | - Justin Middleton
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Young-Jun Jeon
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Peter Magee
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Dario Veneziano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, 10029, USA
| | - Hui-Sun Leong
- RNA Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Sudhakar Sahoo
- RNA Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Richard Booton
- Manchester Thoracic Oncology Centre, University Hospital of South Manchester, Southmoor Road, Wythenshawe, M23 9LT, UK
| | - Rajesh Shah
- Department of Thoracic Surgery, University Hospital of South Manchester, Southmoor Road, Wythenshawe, M23 9LT, UK
| | - Philip A J Crosbie
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and University College London, London, UK
- Manchester Thoracic Oncology Centre, University Hospital of South Manchester, Southmoor Road, Wythenshawe, M23 9LT, UK
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and University College London, London, UK.
| |
Collapse
|
134
|
Liu M, Zhang Y, Zhang J, Cai H, Zhang C, Yang Z, Niu Y, Wang H, Wei X, Wang W, Gao P, Li H, Zhang J, Sun G. MicroRNA-1253 suppresses cell proliferation and invasion of non-small-cell lung carcinoma by targeting WNT5A. Cell Death Dis 2018; 9:189. [PMID: 29415994 PMCID: PMC5833797 DOI: 10.1038/s41419-017-0218-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNA) are a class of small, noncoding RNA molecules that regulate the expression of target genes. miRNA dysregulation is involved in carcinogenesis and tumor progression. In this study, we identified microRNA-1253 (miR-1253) as being significantly down-regulated in non-small-cell lung carcinoma (NSCLC) tissues and associated with advanced clinical stage, lymph node metastasis, and poor survival. The enhanced expression of miR-1253 significantly inhibited the proliferation, migration, and invasion of NSCLC cells in vitro. Bioinformatics analyses showed that miR-1253 directly targeted WNT5A (long isoform), which was confirmed using the dual-luciferase reporter assay. The inhibitory effects of miR-1253 on the growth and metastasis of NSCLC cells were attenuated and phenocopied by WNT5A (long) overexpression and knockdown, respectively. Consistent with the in vitro results, subcutaneous tumor and metastatic NSCLC mouse models showed that miR-1253 functions as a potent suppressor of NSCLC in vivo. Taken together, our findings indicated that miR-1253 inhibited the proliferation and metastasis of NSCLC cells by targeting WNT5A (long isoform) and provided new evidence of miR-1253 as a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Meiyue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Yue Zhang
- Department of Nuclear Medicine, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jie Zhang
- Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Haifeng Cai
- Department of Breast Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Chao Zhang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Huan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Xiaomei Wei
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Wei Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Peng Gao
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Hongmin Li
- Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Jinghua Zhang
- Department of Breast Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China.
| | - Guogui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China.
| |
Collapse
|
135
|
Cheng D, Zhao S, Tang H, Zhang D, Sun H, Yu F, Jiang W, Yue B, Wang J, Zhang M, Yu Y, Liu X, Sun X, Zhou Z, Qin X, Zhang X, Yan D, Wen Y, Peng Z. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4. Oncotarget 2018; 7:45199-45213. [PMID: 27286257 PMCID: PMC5216716 DOI: 10.18632/oncotarget.9900] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/28/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tumor metastasis is one of the leading causes of poor prognosis for colorectal cancer (CRC) patients. Loss of Smad4 contributes to aggression process in many human cancers. However, the underlying precise mechanism of aberrant Smad4 expression in CRC development is still little known. RESULTS miR-20a-5p negatively regulated Smad4 by directly targeting its 3'UTR in human colorectal cancer cells. miR-20a-5p not only promoted CRC cells aggression capacity in vitro and liver metastasis in vivo, but also promoted the epithelial-to-mesenchymal transition process by downregulating Smad4 expression. In addition, tissue microarray analysis obtained from 544 CRC patients' clinical characters showed that miR-20a-5p was upregulated in human CRC tissues, especially in the tissues with metastasis. High level of miR-20a-5p predicted poor prognosis in CRC patients. METHODS Five miRNA target prediction programs were applied to identify potential miRNA(s) that target(s) Smad4 in CRC. Luciferase reporter assay and transfection technique were used to validate the correlation between miR-20a-5p and Smad4 in CRC. Wound healing, transwell and tumorigenesis assays were used to explore the function of miR-20a-5p and Smad4 in CRC progression in vitro and in vivo. The association between miR-20a-5p expression and the prognosis of CRC patients was evaluated by Kaplan-Meier analysis and multivariate cox proportional hazard analyses based on tissue microarray data. CONCLUSIONS miR-20a-5p, as an onco-miRNA, promoted the invasion and metastasis ability by suppressing Smad4 expression in CRC cells, and high miR-20a-5p predicted poor prognosis for CRC patients, providing a novel and promising therapeutic target in human colorectal cancer.
Collapse
Affiliation(s)
- Dantong Cheng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Senlin Zhao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Huamei Tang
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongyuan Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongcheng Sun
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fudong Yu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ben Yue
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingtao Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Zhang
- Department of Pathology, Fudan University Affiliated Shanghai Cancer Center, Shanghai, China
| | - Yang Yu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xisheng Liu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofeng Sun
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuebin Qin
- Department of Neuroscience, School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xin Zhang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Dongwang Yan
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yugang Wen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
136
|
Jiang W, Zhao S, Shen J, Guo L, Sun Y, Zhu Y, Ma Z, Zhang X, Hu Y, Xiao W, Li K, Li S, Zhou L, Huang L, Lu Z, Feng Y, Xiao J, Zhang EE, Yang L, Wan R. The MiR-135b-BMAL1-YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance. Cell Death Dis 2018; 9:149. [PMID: 29396463 PMCID: PMC5833454 DOI: 10.1038/s41419-017-0233-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Circadian disruption has been implicated in tumour development, but the underlying mechanism remains unclear. Here, we show that the molecular clockwork within malignant human pancreatic epithelium is disrupted and that this disruption is mediated by miR-135b-induced BMAL1 repression. miR-135b directly targets the BMAL1 3'-UTR and thereby disturbs the pancreatic oscillator, and the downregulation of miR-135b is essential for the realignment of the cellular clock. Asynchrony between miR-135b and BMAL1 expression impairs the local circadian gating control of tumour suppression and significantly promotes tumourigenesis and resistance to gemcitabine in pancreatic cancer (PC) cells, as demonstrated by bioinformatics analyses of public PC data sets and in vitro and in vivo functional studies. Moreover, we found that YY1 transcriptionally activated miR-135b and formed a 'miR-135b-BMAL1-YY1' loop, which holds significant predictive and prognostic value for patients with PC. Thus, our work has identified a novel signalling loop that mediates pancreatic clock disruption as an important mechanism of PC progression and chemoresistance.
Collapse
Affiliation(s)
- Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Senlin Zhao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Shen
- Tumour Initiation and Maintenance Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lihong Guo
- Department of Gastroenterology, Central Hospital of Shengli Oil-field, Dongying, Shandong, China
| | - Yi Sun
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuntian Zhu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejing, China
| | - Zhixiong Ma
- National Institute of Biological Sciences, Beijing, China
| | - Xin Zhang
- Department of Pathology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, China
| | - Yangyang Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqin Xiao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sisi Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanjun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Feng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Xiao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Lijuan Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
137
|
Zhang J, Liu L, Sun Y, Xiang J, Zhou D, Wang L, Xu H, Yang X, Du N, Zhang M, Yan Q, Xi X. MicroRNA-520g promotes epithelial ovarian cancer progression and chemoresistance via DAPK2 repression. Oncotarget 2018; 7:26516-34. [PMID: 27049921 PMCID: PMC5041996 DOI: 10.18632/oncotarget.8530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/18/2016] [Indexed: 11/25/2022] Open
Abstract
The lack of efficient tumor progression and chemoresistance indicators leads to high mortality in epithelial ovarian cancer (EOC) patients. Dysregulated miR-520g expression is involved in these processes in hepatic and colorectal cancers. In this study, we found that miR-520g expression gradually increased across normal, benign, borderline and EOC tissues. High miR-520g expression promoted tumor progression and chemoresistance to platinum-based chemotherapy, and reduced survival in EOC patients. miR-520g upregulation increased EOC cell proliferation, induced cell cycle transition and promoted cell invasion, while miR-520g downregulation inhibited tumor-related functions. In vivo, overexpression or downregulation of miR-520g respectively generated larger or smaller subcutaneous xenografts in nude mice. Death-associated protein kinase 2 (DAPK2) was a direct target of miR-520g. In 116 EOC tissue samples, miR-520g expression was significantly lower following DAPK2 overexpression. DAPK2 overexpression or miR-520g knockdown reduced EOC cell proliferation, invasion, wound healing and chemoresistance. This study suggests that miR-520g contributes to tumor progression and drug resistance by post-transcriptionally downregulating DAPK2, and that miR-520g may be a valuable therapeutic target in patients with EOC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Lei Liu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunyan Sun
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Jiandong Xiang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Dongmei Zhou
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Huali Xu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Xiaoming Yang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Na Du
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Meng Zhang
- Department of Pathology, Fudan University Affiliated Shanghai Cancer Center, Shanghai, China
| | - Qin Yan
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| |
Collapse
|
138
|
Serum miR-125b is a non-invasive predictive biomarker of the pre-operative chemoradiotherapy responsiveness in patients with rectal adenocarcinoma. Oncotarget 2017; 7:28647-57. [PMID: 27081702 PMCID: PMC5053752 DOI: 10.18632/oncotarget.8725] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
Background Therapeutic management of Locally Advanced Rectal Cancer (LARC) involves pre-operative chemoradiotherapy (pCRT) followed by surgery. However, after pCRT the complete pathological response is approximately 20%, whereas in 20 to 40% of patients the response is poor or absent. Methods Cancer biopsy specimens (n= 38) and serum samples (n= 34) obtained before pCRT from 38 LARC patients were included in the study. Patients were classified in responders (R, tumor regression grade [TRG] 1-2; n= 16) and non-responders (NR, TRG 3-5; n= 22) according to the pathological response observed upon surgery. We performed miRNA microarrays analysis on biopsy specimens, and validated the selected candidates both by qRT-PCR (tissue and serum) and by in situ hybridization (tissue, miR-125b) analyses. Results Eleven miRNAs were significantly different between R and NR (miR-154, miR-409-3p, miR-127-3p, miR-214*, miR-299-5p and miR-125b overexpressed in NR; miR-33a, miR-30e, miR-338-3p, miR-200a and miR-378 decreased). In particular, miR-125b resulted to be the best candidate to discriminate the two groups (AUC of 0.9026; 95% CI, 0.7618-1.043). Additionally, miR-125b serum levels were significantly overexpressed in NR patients compared to R (p-value=0.0087), with an excellent discriminating power (AUC of 0.782; 95% CI, 0.6123-0.9518). Conclusions The obtained results further support the clinical impact of miRNA analysis. High miR-125b expression in tissue and serum were associated with a poor treatment response in LARC patients, therefore miR-125b could be considered as a possible novel non-invasive biomarker of response in LARC treatment.
Collapse
|
139
|
Zhang Y, Hu Y, Fang JY, Xu J. Gain-of-function miRNA signature by mutant p53 associates with poor cancer outcome. Oncotarget 2017; 7:11056-66. [PMID: 26840456 PMCID: PMC4905457 DOI: 10.18632/oncotarget.7090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/15/2016] [Indexed: 01/05/2023] Open
Abstract
Missense mutation of p53 not only impairs its tumor suppression function, but also causes oncogenic gain of function (GOF). The molecular underpinning of mutant p53 (mutp53) GOF is not fully understood, especially for the potential roles of non-coding genes. Here we identify the microRNA expression profile (microRNAome) of mutp53 on Arg282 by controlled microarray experiments, and clarify the prognostic significance of mutp53-regulated miRNAs in cancers. A predominant repression effect on miRNA expression was found for mutant p53, with 183 significantly downregulated and only 12 upregulated miRNAs. Mutp53 and wild-type (wtp53) commonly upregulate let-7i, and other two miRNAs were upregulated by wtp53 but repressed by mutp53 (miR-610 and miR-3065–3p). Based the mutp53-regulated miRNA signature, a non-negative matrix factorization (NMF) model classified gastric cancer (GC) cases into subgroups with significantly different Disease-free survival (Kaplan-Meier test, P = 0.013). In contrast, the NMF model based on all miRNAs did not associate with cancer outcome. The mutp53 miRNA signature associated with the outcomes of breast cancer (P = 0.024) and hepatocellular cancer (P = 0.012). The miRPath analysis revealed that mutp53-suppressed miRNAs associate with Hippo, TGF-β and stem cell signaling pathways. Taken together, our results highlight a miRNA-mediated GOF mechanism of mutant p53 on Arg282, and suggest the prognostic potential of mutp53-associated miRNA signature.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Ye Hu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China.,Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Jie Xu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
140
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
141
|
Jia L, Luo S, Ren X, Li Y, Hu J, Liu B, Zhao L, Shan Y, Zhou H. miR-182 and miR-135b Mediate the Tumorigenesis and Invasiveness of Colorectal Cancer Cells via Targeting ST6GALNAC2 and PI3K/AKT Pathway. Dig Dis Sci 2017; 62:3447-3459. [PMID: 29030743 DOI: 10.1007/s10620-017-4755-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Metastasis is a leading cause of cancer-related death including colorectal cancer (CRC). MicroRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Aberrant sialylation is closely associated with malignant phenotype of tumor cells, including invasiveness and metastasis. AIM This study aimed to investigate the association of miR-182 and miR-135b with proliferation and invasion by targeting sialyltransferase ST6GALNAC2 in CRC cells and explore the potential molecular mechanism. METHODS We measured the levels of miR-182, miR-135b, and ST6GALNAC2 in a series of CRC cell lines and tissues using real-time PCR. Bioinformatics analysis and luciferase reporter assay were performed to test the direct binding of miR-182 and miR-135b to the target gene ST6GALNAC2. We also analyzed the possible role of miR-182/-135b on colony formation, wound healing, invasion, and tube formation. RESULTS The expression of miR-182 and miR-135b was higher in tumor tissues compared to adjacent noncancerous tissues of CRC patients, as well as up-regulated in SW620 cells than in SW480 cells with different metastatic potential. By applying bioinformatics analysis and luciferase reporter assay, we identified ST6GALNAC2 as the direct target of miR-182/-135b. Furthermore, miR-182/-135b inhibited significantly ST6GALNAC2 expression, and consistently, ST6GALNAC2 mediated migration, adhesion, invasion, proliferation, and tumor angiogenesis in CRC cell lines. Additionally, PI3K/AKT signaling pathway was regulated by miR-182/135b, which was partially blocked by altered level of ST6GALNAC2 in CRC. CONCLUSIONS The miR-182/-135b/ST6GALNAC2/PI3K/AKT axis may serve as a predictive biomarker and a potential therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
| | - Shihua Luo
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
- Department of Traumatology, Shanghai Ruijin Hospital, Jiaotong University, Shanghai, 200025, China
| | - Xiang Ren
- College of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Jialei Hu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Huimin Zhou
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| |
Collapse
|
142
|
Eldeib MG, Kandil YI, Abdelghany TM, Mansour OA, El-Zahabi MM. Alterations of microRNAs expression in response to 5-Fluorouracil, Oxaliplatin, and Irinotecan treatment of colorectal cancer cells. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
143
|
An Image-Based miRNA Screen Identifies miRNA-135s As Regulators of CNS Axon Growth and Regeneration by Targeting Krüppel-like Factor 4. J Neurosci 2017; 38:613-630. [PMID: 29196317 DOI: 10.1523/jneurosci.0662-17.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 01/08/2023] Open
Abstract
During embryonic development, axons extend over long distances to establish functional connections. In contrast, axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing CNS regeneration. Here, we performed one of the first miRNome-wide functional miRNA screens to identify miRNAs with robust effects on axon growth. High-content screening identified miR-135a and miR-135b as potent stimulators of axon growth and cortical neuron migration in vitro and in vivo in male and female mice. Intriguingly, both of these developmental effects of miR-135s relied in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon growth and regeneration. These results prompted us to test the effect of miR-135s on axon regeneration after injury. Our results show that intravitreal application of miR-135s facilitates retinal ganglion cell (RGC) axon regeneration after optic nerve injury in adult mice in part by repressing KLF4. In contrast, depletion of miR-135s further reduced RGC axon regeneration. Together, these data identify a novel neuronal role for miR-135s and the miR-135-KLF4 pathway and highlight the potential of miRNAs as tools for enhancing CNS axon regeneration.SIGNIFICANCE STATEMENT Axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing regeneration. By performing an miRNome-wide functional screen, our studies identify miR-135s as stimulators of axon growth and neuron migration and show that intravitreal application of these miRNAs facilitates CNS axon regeneration after nerve injury in adult mice. Intriguingly, these developmental and regeneration-promoting effects rely in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon regeneration. Our data identify a novel neuronal role for the miR-135-KLF4 pathway and support the idea that miRNAs can be used for enhancing CNS axon regeneration.
Collapse
|
144
|
Zhang J, Raju GS, Chang DW, Lin SH, Chen Z, Wu X. Global and targeted circulating microRNA profiling of colorectal adenoma and colorectal cancer. Cancer 2017; 124:785-796. [PMID: 29112225 DOI: 10.1002/cncr.31062] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Circulating microRNAs (miRNAs) are emerging as promising biomarkers for cancer. The objective of the current study was to investigate the potential of circulating cell-free miRNAs as biomarkers for colorectal cancer (CRC) and its precursor lesion, colorectal adenoma. METHODS The serum levels of 800 miRNAs were assessed in a discovery set of 21 patients with CRC, 19 patients with adenoma, and 21 healthy controls using the NanoString miRNA analysis platform. Significantly differentially expressed miRNAs were examined further in a validation cohort of 34 patients with CRC, 33 patients with adenoma, and 35 healthy controls using Fluidigm quantitative polymerase chain reaction assays. RESULTS The ratios between the expression values of the differentially expressed miRNAs were computed. Three miRNA ratios (miR-17-5p/miR-135b, miR-92a-3p/miR135b, and miR-451a/miR-491-5p) were validated for discriminating patients with adenoma and those with CRC from the healthy control group, and 5 miRNA ratios (let-7b/miR-367-3p, miR-130a-3p/miR-409-3p, miR-148-3p/miR-27b, miR-148a-3p/miR-409-3p, and miR-21-5p/miR-367-3p) were validated for discriminating patients with CRC from those with adenoma and healthy controls. The area under the receiver operating characteristic curve values for the 3 miRNA ratios in discriminating patients with adenoma from healthy controls were 0.831 and 0.735, respectively, in the discovery and validation sets. The area under the receiver operating characteristic curve values for the 5 miRNA ratios in discriminating patients with CRC from those with adenoma were 0.797 and 0.732, respectively, in the discovery and validation sets. Pathway analysis revealed that target genes regulated by the miRNAs from the miRNA ratios were enriched mainly in metabolism-related and inflammation-related pathways. CONCLUSIONS The data from the current study suggest that circulating miRNAs can distinguish patients with CRC and those with adenoma and may represent novel biomarkers for the early, noninvasive detection of CRC. Cancer 2018;124:785-96. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Gottumakkala S Raju
- Department of Gastroenterology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David W Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhinan Chen
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China.,Cell Engineering Research Center, Department of Cell Biology, State Key Laboratory of Cancer, Fourth Military Medical University, Xi'an, China
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
145
|
Yao D, Cui H, Zhou S, Guo L. Morin inhibited lung cancer cells viability, growth, and migration by suppressing miR-135b and inducing its target CCNG2. Tumour Biol 2017; 39:1010428317712443. [PMID: 28975847 DOI: 10.1177/1010428317712443] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is one of the most severe threats with the highest mortality rate to humans in the world. Recently, morin has been reported to have anti-tumor properties observed in several types of cancers. However, its mechanism is still unclear. We assessed the influences of morin on cell viability, colony formation, and migration ability of A549 and employed microRNA array to identify the microRNAs affected by morin. We found that morin-treated A549 cells showed statistically decreased cell viability, colony formation, and migration rate when comparing with the dimethyl sulfoxide-treated cells. Microarray results showed that with the treatment of morin, the expression level of miR-135b significantly reduced compared the control group, suggesting that morin may exert its anti-cancer property by suppressing the expression of miR-135b. In addition, we found a potential binding site of miR-135b within 3' untranslated region of CCNG2-encoding cyclin homolog cyclin-G2. We evidenced that miR-135b directly targets CCNG2, which could be a potential biomarker of lung cancer prognosis. Morin exerts its anti-tumor function via downregulating the expression of miR-135b that directly targets and represses CCNG2.
Collapse
Affiliation(s)
- Dongjie Yao
- 1 Department of Quality Control, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Hujun Cui
- 2 Department of Oncology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Shufen Zhou
- 3 Department of Gerontology, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Ling Guo
- 4 Department of Pathology, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
146
|
Le H, Wang X, Zha Y, Wang J, Zhu W, Ye Z, Liu X, Ma H, Zhang Y. Peripheral lung adenocarcinomas harboring epithelial growth factor receptor mutations with microRNA-135b overexpression are more likely to invade visceral pleura. Oncol Lett 2017; 14:7931-7940. [PMID: 29250182 DOI: 10.3892/ol.2017.7195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/11/2017] [Indexed: 01/15/2023] Open
Abstract
Lung adenocarcinoma, characterized by its early and aggressive local invasion and high metastatic potential, is the most frequently observed histological type of non-small-cell lung cancer (NSCLC). Visceral pleural invasion (VPI) caused by peripheral lung adenocarcinomas is closely associated with the poor prognosis of patients with NSCLC. The association between VPI and some clinicopathological characteristics has been observed in the past few decades. However, the molecular mechanism of VPI in lung adenocarcinomas is unknown. In the present, the expression level of microRNA (miR-)135b and epidermal growth factor receptor (EGFR) mutations using the reverse transcription-quantitative polymerase chain reaction and DNA sequencing, respectively. In addition, the present study aimed at exploring the association between the miR-135b level, EGFR mutations and VPI in peripheral lung adenocarcinoma. The results of the present study demonstrated that miR-135b was significantly upregulated in lung adenocarcinoma compared with adjacent normal tissue and positively associated EGFR mutations in peripheral lung adenocarcinoma. Furthermore, it was identified that lung adenocarcinomas with EGFR mutations and miR-135b overexpression were more likely to invade visceral pleura. Taken together, these findings indicate that miR-135b overexpression is positively associated with mutations to EGFR, which may promote the development of peripheral lung adenocarcinomas by the formation of VPI. This indicates that the two factors may serve as prognostic markers and molecular targets for the treatment of peripheral lung adenocarcinomas.
Collapse
Affiliation(s)
- Hanbo Le
- Department of Cardio-Thoracic Surgery, Lung Cancer Research Center, The Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316004, P.R. China
| | - Xiaoling Wang
- Laboratory of Cytobiology and Molecular Biology, The Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316004, P.R. China
| | - Yao Zha
- Laboratory of Cytobiology and Molecular Biology, The Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316004, P.R. China
| | - Jie Wang
- Laboratory of Cytobiology and Molecular Biology, The Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316004, P.R. China
| | - Wangyu Zhu
- Laboratory of Cytobiology and Molecular Biology, The Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316004, P.R. China
| | - Zhinan Ye
- Laboratory of Cytobiology and Molecular Biology, The Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316004, P.R. China
| | - Xiaoguang Liu
- Laboratory of Cytobiology and Molecular Biology, The Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316004, P.R. China
| | - Haijie Ma
- Laboratory of Cytobiology and Molecular Biology, The Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316004, P.R. China
| | - Yongkui Zhang
- Department of Cardio-Thoracic Surgery, Lung Cancer Research Center, The Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316004, P.R. China
| |
Collapse
|
147
|
Lu D, Yao Q, Zhan C, Le-Meng Z, Liu H, Cai Y, Tu C, Li X, Zou Y, Zhang S. MicroRNA-146a promote cell migration and invasion in human colorectal cancer via carboxypeptidase M/src-FAK pathway. Oncotarget 2017; 8:22674-22684. [PMID: 28186967 PMCID: PMC5410254 DOI: 10.18632/oncotarget.15158] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, and microRNAs play important roles in CRC progression. This study aimed to investigate the roles of miR-146a-5p in human CRC and their molecular mechanisms. First, we found that miR-146a-5p was significantly upregulated in CRC tissues and promoted the migration of CRC cells. Then, we identified carboxypeptidase M (CPM) as a direct target of miR-146a-5p, and found that it inhibited the migration and invasion of CRC cells. Our results also showed that CPM expression was positively correlated with overall survival and negatively correlated with recurrence, lymph node invasion, and N stage. Furthermore, we demonstrated that both miR-146a-5p and CPM regulated Src and FAK expression, while the Src-FAK signaling pathway is widely known to be associated with the migration and invasion of multiple tumor cells. This study is the first to demonstrate the functional and mechanistic relationship of the miR-146a-5p/CPM/Src-FAK axis and its effect on the migration and invasion of CRC cells. Thus, miR-146a-5p represents potential targets for CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Di Lu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qunyan Yao
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhang Le-Meng
- Department of The Affiliated Cancer Hospital, Xiang Ya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hongchun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu Cai
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chuantao Tu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xi Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanting Zou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuncai Zhang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
148
|
A novel SNP in promoter region of RP11-3N2.1 is associated with reduced risk of colorectal cancer. J Hum Genet 2017; 63:47-54. [PMID: 29167551 DOI: 10.1038/s10038-017-0361-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) in the promoter region of long intergenic non-coding RNAs (lincRNAs) could play a regulatory role in its expression level and then get involved in colorectal cancer (CRC). Thus, we conducted a two-stage case-control study to investigate the associations of Tag SNPs within the promoter region of selected lincRNAs from microarray data with risk of CRC. A total of 320 cases and 319 controls were recruited in the test set to explore the associations between 16 SNPs with no deviations from Hardy-Weinberg equilibrium (HWE) and risk of CRC. Furthermore, 501 cases and 538 controls were included as the validation set to confirm the significant associations. RP11-3N2.1 rs13230517 polymorphism was found to be negatively associated with CRC in both test set (AA vs. GG, OR = 0.68, 95% CI = 0.48-0.96) and validation set (AA vs. GG, OR = 0.76, 95% CI = 0.59-0.98). Pooled analysis showed that individuals with GA/AA genotypes had a significantly decreased risk of CRC when compared with those carrying GG genotype (OR = 0.74, 95% CI = 0.60-0.90) in the combined set. The crossover analysis revealed that rs13230517 GA/AA carriers had a decreased risk of CRC than GG carriers among non-drinkers in both test and combined set. However, no gene-environment multiplicative interactions were found on risk of CRC. Our findings suggest that rs13230517 polymorphism might participate in the pathogenesis of CRC and have the potential to be a biomarker for predicting the risk of CRC.
Collapse
|
149
|
Li H, Li J, Yang T, Lin S, Li H. MicroRNA-433 Represses Proliferation and Invasion of Colon Cancer Cells by Targeting Homeobox A1. Oncol Res 2017; 26:315-322. [PMID: 29137689 PMCID: PMC7844791 DOI: 10.3727/096504017x15067856789781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aberrant expression of miR-433 has been validated in some types of cancers. However, the expression profile and the biological function of miR-433 on colon cancer are still elusive. This study was designed to investigate the function of miR-433 on the proliferation and invasion of colon cancer cells. We detected the expression of miR-433 in colon cancer tissues, adjacent normal tissues, and cell lines. CCK8 and Transwell assays were performed to explore the impact of miR-433 on colon cancer cell proliferation and invasion. The luciferase reporter assay was applied to identify the direct target of miR-433. The results demonstrated that miR-433 was downregulated in colon cancer tissues and cell lines when compared with the control. Overexpression of miR-433 significantly suppressed the ability of colon cancer cell proliferation and invasion, whereas knockdown of miR-433 remarkably enhanced cell proliferation and invasion. Homeobox A1 (HOXA1) was identified as a target of miR-433, and it mediated the functions of miR-433 on colon cancer cells. To conclude, we revealed that miR-433 was downregulated in colon cancer, and it inhibited colon cancer cell proliferation and invasion by directly targeting HOXA1.
Collapse
Affiliation(s)
- Heming Li
- Emergency Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Junfeng Li
- Emergency Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Taisheng Yang
- Emergency Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Shuwen Lin
- Hepatobiliary Surgery Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Heng Li
- Cardiovascular Department, TungWah Hospital of Sun-Yat Sen University, Donggguan, P.R. China
| |
Collapse
|
150
|
Zhu Y, Gu L, Li Y, Lin X, Shen H, Cui K, Chen L, Zhou F, Zhao Q, Zhang J, Zhong B, Prochownik E, Li Y. miR-148a inhibits colitis and colitis-associated tumorigenesis in mice. Cell Death Differ 2017; 24:2199-2209. [PMID: 28960206 DOI: 10.1038/cdd.2017.151] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
miR-148a has been shown to regulate inflammation, immunity and the growth of certain tumors, but its roles in colitis and colorectal tumorigenesis remain largely undetermined. Here we found miR-148a-deficient mice to be more susceptible to colitis and colitis-associated tumorigenesis. Both were associated with increased nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) signaling. Bone marrow- and non-bone marrow-derived miR-148a contributed to colitis and colitis-associated tumorigenesis. miR-148a loss of heterozygosity exacerbated Apcmin/+ colon and small intestinal spontaneous tumor development. Restoring miR-148a expression prevented both spontaneous and carcinogen-induced colon tumor development. miR-148a was downregulated in human inflammatory bowel disease (IBD) and colorectal cancer patient tissues. This correlated with a high degree of miR-148a promoter methylation mediated by a complex comprised of P65 and DNA methyltransferase 3 alpha (DNMT3A). miR-148a directly targets several well-accepted upstream regulators of NF-κB and STAT3 signaling, including GP130, IKKα, IKKβ, IL1R1 and TNFR2, which leads to decreased NF-κB and STAT3 activation in macrophages and colon tissues. Our findings reveal that miR-148a is an indirect tumor suppressor that modulates colitis and colitis-associated tumorigenesis by suppressing the expression of signaling by NF-κB and STAT3 and their pro-inflammatory consequences.
Collapse
Affiliation(s)
- Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Li Gu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yajun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xi Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Hongxing Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Kaisa Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Li Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071 China.,Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071 China.,Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Jinxiang Zhang
- Department of Surgery, Wuhan Union Hospital, Wuhan 430022, China
| | - Bo Zhong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Edward Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.,The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|