101
|
Barbagallo C, Stella M, Ferrara C, Caponnetto A, Battaglia R, Barbagallo D, Di Pietro C, Ragusa M. RNA-RNA competitive interactions: a molecular civil war ruling cell physiology and diseases. EXPLORATION OF MEDICINE 2023:504-540. [DOI: 10.37349/emed.2023.00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
The idea that proteins are the main determining factors in the functioning of cells and organisms, and their dysfunctions are the first cause of pathologies, has been predominant in biology and biomedicine until recently. This protein-centered view was too simplistic and failed to explain the physiological and pathological complexity of the cell. About 80% of the human genome is dynamically and pervasively transcribed, mostly as non-protein-coding RNAs (ncRNAs), which competitively interact with each other and with coding RNAs generating a complex RNA network regulating RNA processing, stability, and translation and, accordingly, fine-tuning the gene expression of the cells. Qualitative and quantitative dysregulations of RNA-RNA interaction networks are strongly involved in the onset and progression of many pathologies, including cancers and degenerative diseases. This review will summarize the RNA species involved in the competitive endogenous RNA network, their mechanisms of action, and involvement in pathological phenotypes. Moreover, it will give an overview of the most advanced experimental and computational methods to dissect and rebuild RNA networks.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Angela Caponnetto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalia Battaglia
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
102
|
Wei F, Meng D. Study on the role of histone epigenetic modification in replication of hepatitis B virus. Biochem Biophys Res Commun 2023; 669:1-9. [PMID: 37247516 DOI: 10.1016/j.bbrc.2023.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
Hepatitis B virus (HBV) infection is a global health problem and lacks effective therapies in clinic. This study attempted to investigate the role of histone deacetylase 3 (HDAC3) in HBV replication. Cells were treated with 1.3 folds of HBV genome. The expression patterns of HDAC3, miR-29a-3p, and nuclear factor of activated T-cells 5 (NFAT5) in cells were determined by real-time quantitative polymerase chain reaction and Western blot analysis. HBV replication was assessed by measurements of HBV DNA, HBV RNA, hepatitis B surface antigen, and hepatitis B E antigen. After chromatin immunoprecipitation and RNA pull-down assays to testify gene interactions, rescue experiments and animal experiments were performed to assess the role of miR-29a-3p/NFAT5 in HBV replication and the role of HDAC3 in vivo. HDAC3 level was decreased by pHBV1.3 plasmid in a concentration-dependent manner. HDAC3 overexpression can inhibit HBV replication, which was neutralized by miR-29a-3p overexpression or NFAT5 downregulation. Mechanically, HDAC3 overexpression reduced the enrichment of histone 3 lysine 9 acetylation on the miR-29a-3p promoter to inhibit miR-29a-3p expression and then promote NFAT5 transcription. In vivo, HDAC3 restrained HBV replication through the miR-29a-3p/NFAT5 axis. Overall, HDAC3 downregulation was associated with HBV replication and HDAC3 overexpression inhibited HBV replication through H3K9ac/miR-29a-3p/NFAT5.
Collapse
Affiliation(s)
- Fenfen Wei
- Department of infectious diseases, Jincheng people's hospital, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, 048000, China.
| | - Die Meng
- Department of infectious diseases, Jincheng people's hospital, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, 048000, China
| |
Collapse
|
103
|
Zhong J, Xu A, Xu P, Su M, Wang P, Liu Z, Li B, Liu C, Jiang N. Circ_0000235 targets MCT4 to promote glycolysis and progression of bladder cancer by sponging miR-330-5p. Cell Death Discov 2023; 9:283. [PMID: 37532687 PMCID: PMC10397263 DOI: 10.1038/s41420-023-01582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Warburg effect plays a crucial role in bladder cancer (Bca) development. However, the mechanism by which glycolysis is involved in Bca remains poorly understood. CircRNAs commonly play a regulatory role in tumor progression. Our study discovered and identified a novel circRNA, hsa_circ_0000235 (circ235), and investigated its role in the glycolytic process, which further results in the progression of Bca. We applied qRT-PCR to assess its clinicopathological relevance and evaluated its proliferation, migration, and glycolytic capacity. We investigated its mechanism using RNA immunoprecipitation, dual-luciferase reporters, and fluorescence in situ hybridization. The findings demonstrated that circ235 was dramatically increased in Bca tissues and was related to a worse prognosis. In vitro studies revealed that circ235 accelerated the rate of extracellular acidification and promoted glucose uptake and lactate manufacture in Bca cells. Additionally, it strengthened the proliferative and migratory capacities. Experiments on animals revealed that downregulating circ235 dramatically reduced carcinogenesis and tumor growth. Circ235 activates monocarboxylate transporter 4 (MCT4) by sponging miR-330-5p, which promotes glycolysis and tumor growth. In conclusion, these findings suggest that circ235 may be a viable molecular marker and therapeutic target for Bca.
Collapse
Affiliation(s)
- Jianye Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Laboratory of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minhong Su
- Department of Respiratory and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Boping Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Ning Jiang
- Laboratory of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
104
|
Zhiyanov A, Shkurnikov M, Nersisyan A, Hui C, Baranova A, Tonevitsky A. The signature of SARS-CoV-2 evolution reflects selective pressures within human guts. J Med Virol 2023; 95:e28996. [PMID: 37515485 DOI: 10.1002/jmv.28996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
In somatic cells, microRNAs (miRNAs) bind to the genomes of RNA viruses and influence their translation and replication. In London and Berlin samples represented in GISAID database, we traced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and divided these sequenced in two groups, "Ancestral variants" and "Omicrons," and analyzed them through the prism of the tissue-specific binding between host miRNAs and viral messenger RNAs. We demonstrate a significant number of miRNA-binding sites in the NSP4 region of the SARS-CoV-2 genome, with evidence of evolutionary pressure within this region exerted by human intestinal miRNAs. Notably, in infected cells, NSP4 promotes the formation of double-membrane vesicles, which serve as the scaffolds for replication-transcriptional complexes and protect viral RNA from intracellular destruction. In 3 years of selection, the loss of many miRNA-binding sites in general and those within the NSP4 in particular has shaped the SARS-CoV-2 genomes. With that, the descendants of the BA.2 variants were promoted as dominant strains, which define current momentum of the pandemics.
Collapse
Affiliation(s)
- Anton Zhiyanov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Ashot Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Cai Hui
- Department of Nanoengineering, Sun Yat-Sen University, Shenzhen, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, Virginia, USA
- Research Centre for Medical Genetics, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
105
|
Ambrozová L, Zeman T, Janout V, Janoutová J, Lochman J, Šerý O. Association between polymorphism rs2421943 of the insulin-degrading enzyme and schizophrenia: Preliminary report. J Clin Lab Anal 2023; 37:e24949. [PMID: 37515308 PMCID: PMC10492455 DOI: 10.1002/jcla.24949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Insulin-degrading enzyme (IDE) is an important gene in studies of the pathophysiology of type 2 diabetes mellitus (T2DM). Recent studies have suggested a possible link between type 2 diabetes mellitus (T2DM) and the pathophysiology of schizophrenia (SZ). At the same time, significant changes in insulin-degrading enzyme (IDE) gene expression have been found in the brains of people with schizophrenia. These findings highlight the need to further investigate the role of IDE in schizophrenia pathogenesis. METHODS We enrolled 733 participants from the Czech Republic, including 383 patients with schizophrenia and 350 healthy controls. Our study focused on the single nucleotide polymorphism (SNP) rs2421943 in the IDE gene, which has previously been associated with the pathogenesis of Alzheimer's disease. The SNP was analyzed using the PCR-RFLP method. RESULTS The G allele of the rs2421943 polymorphism was found to significantly increase the risk of developing SZ (p < 0.01) when a gender-based analysis showed that both AG and GG genotypes were associated with a more than 1.55 times increased risk of SZ in females (p < 0.03) but not in males. Besides, we identified a potential binding site at the G allele locus for has-miR-7110-5p, providing a potential mechanism for the observed association. CONCLUSION Our results confirm the role of the IDE gene in schizophrenia pathogenesis and suggest that future research should investigate the relationship between miRNA and estrogen influence on IDE expression in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Laura Ambrozová
- Laboratory of Neurobiology and Molecular PsychiatryDepartment of BiochemistryFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Tomáš Zeman
- Laboratory of Neurobiology and Molecular PsychiatryDepartment of BiochemistryFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Laboratory of Neurobiology and Pathological PhysiologyInstitute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Vladimír Janout
- Department of Public HealthFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
| | - Jana Janoutová
- Department of Public HealthFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
| | - Jan Lochman
- Laboratory of Neurobiology and Molecular PsychiatryDepartment of BiochemistryFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Laboratory of Neurobiology and Pathological PhysiologyInstitute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Molecular PsychiatryDepartment of BiochemistryFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Laboratory of Neurobiology and Pathological PhysiologyInstitute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
106
|
Liu Z, Zhou X, Chen B, Wu Z, Zhang C, Gu C, Li J, Yang X. Noncoding RNAs-based high KIF26B expression correlates with poor prognosis and tumor immune infiltration in colon cancer. Cell Cycle 2023; 22:1726-1742. [PMID: 37436127 PMCID: PMC10446804 DOI: 10.1080/15384101.2023.2222520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The protein kinesin family member 26B (KIF26B) is aberrantly expressed in various cancers. However, its particular role and association with tumor immune infiltration in colon adenocarcinoma (COAD) remain unclear. METHODS All original data were downloaded directly from The Cancer Genome Atlas (TCGA), UCSC Xena, and Gene Expression Omnibus (GEO) databases and processed with R 3.6.3. KIF26B expression was analyzed using Oncomine, TIMER, TCGA, GEO databases, and our clinical specimens. KIF26B expression at the protein level was explored with Human Protein Atlas (HPA) database. The upstream miRNAs and lncRNAs were predicted by StarBase and validated using RT-qPCR. Correlation of KIF26B expression with the expression of immune-related or immune checkpoint genes and GSEA analysis of KIF26B-related genes were investigated via R software. Relationship of KIF26B expression with immune biomarkers or tumor immune infiltration levels was studied through GEPIA2 and TIMER databases. RESULTS KIF26B was upregulated, and its overexpression was closely related to overall survival (OS), disease-specific survival (DSS), progression-free interval (PFI), T stage, N stage, and CEA levels in COAD. MIR4435-2HG/hsa-miR-500a-3p/KIF26B axis was identified as the promising regulatory pathway of KIF26B. KIF26B expression was positively correlated with immune-related genes, tumor immune infiltration, and biomarker genes of immune cells in COAD, and KIF26B-related genes were significantly enriched in macrophage activation-related pathways. Expression of immune checkpoint genes, including PDCD1, CD274, and CTLA4, was also closely related to KIF26B expression. CONCLUSIONS Our results clarified that ncRNA-based increased KIF26B expression was associated with a worse prognosis and high tumor immune infiltration in COAD.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Chen
- Nursing Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziyu Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cuifeng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Changji Gu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Li
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
107
|
Pérez-Carrillo L, Giménez-Escamilla I, García-Manzanares M, Triviño JC, Feijóo-Bandín S, Aragón-Herrera A, Lago F, Martínez-Dolz L, Portolés M, Tarazón E, Roselló-Lletí E. Altered MicroRNA Maturation in Ischemic Hearts: Implication of Hypoxia on XPO5 and DICER1 Dysregulation and RedoximiR State. Antioxidants (Basel) 2023; 12:1337. [PMID: 37507877 PMCID: PMC10376795 DOI: 10.3390/antiox12071337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic cardiomyopathy (ICM) is associated with abnormal microRNA expression levels that involve an altered gene expression profile. However, little is known about the underlying causes of microRNA disruption in ICM and whether microRNA maturation is compromised. Therefore, we focused on microRNA maturation defects analysis and the implication of the microRNA biogenesis pathway and redox-sensitive microRNAs (redoximiRs). Transcriptomic changes were investigated via ncRNA-seq (ICM, n = 22; controls, n = 8) and mRNA-seq (ICM, n = 13; control, n = 10). The effect of hypoxia on the biogenesis of microRNAs was evaluated in the AC16 cell line. ICM patients showed a reduction in microRNA maturation compared to control (4.30 ± 0.94 au vs. 5.34 ± 1.07 au, p ˂ 0.05), accompanied by a deregulation of the microRNA biogenesis pathway: a decrease in pre-microRNA export (XPO5, FC = -1.38, p ˂ 0.05) and cytoplasmic processing (DICER, FC = -1.32, p ˂ 0.01). Both processes were regulated by hypoxia in AC16 cells (XPO5, FC = -1.65; DICER1, FC = -1.55; p ˂ 0.01; Exportin-5, FC = -1.81; Dicer, FC = -1.15; p ˂ 0.05). Patients displayed deregulation of several redoximiRs, highlighting miR-122-5p (FC = -2.41, p ˂ 0.001), which maintained a good correlation with the ejection fraction (r = 0.681, p ˂ 0.01). We evidenced a decrease in microRNA maturation mainly linked to a decrease in XPO5-mediated pre-microRNA export and DICER1-mediated processing, together with a general effect of hypoxia through deregulation of biogenesis pathway and the redoximiRs.
Collapse
Affiliation(s)
- Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María García-Manzanares
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Medicine and Animal Surgery, Veterinary School, CEU Cardenal Herrera University, C/Lluís Vives, 1, 46115 Alfara del Patriarca, Spain
| | | | - Sandra Feijóo-Bandín
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Tr.ª da Choupana, 15706 Santiago de Compostela, Spain
| | - Alana Aragón-Herrera
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Tr.ª da Choupana, 15706 Santiago de Compostela, Spain
| | - Francisca Lago
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Tr.ª da Choupana, 15706 Santiago de Compostela, Spain
| | - Luis Martínez-Dolz
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
108
|
Gillis RF, Palmour RM. miRNA Expression Analysis of the Hippocampus in a Vervet Monkey Model of Fetal Alcohol Spectrum Disorder Reveals a Potential Role in Global mRNA Downregulation. Brain Sci 2023; 13:934. [PMID: 37371413 DOI: 10.3390/brainsci13060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNAs (miRNAs) are short-length non-protein-coding RNA sequences that post-transcriptionally regulate gene expression in a broad range of cellular processes including neuro- development and have previously been implicated in fetal alcohol spectrum disorders (FASD). In this study, we use our vervet monkey model of FASD to follow up on a prior multivariate (developmental age × ethanol exposure) mRNA analysis (GSE173516) to explore the possibility that the global mRNA downregulation we observed in that study could be related to miRNA expression and function. We report here a predominance of upregulated and differentially expressed miRNAs. Further, the 24 most upregulated miRNAs were significantly correlated with their predicted targets (Target Scan 7.2). We then explored the relationship between these 24 miRNAs and the fold changes observed in their paired mRNA targets using two prediction platforms (Target Scan 7.2 and miRwalk 3.0). Compared to a list of non-differentially expressed miRNAs from our dataset, the 24 upregulated and differentially expressed miRNAs had a greater impact on the fold changes of their corresponding mRNA targets across both platforms. Taken together, this evidence raises the possibility that ethanol-induced upregulation of specific miRNAs might contribute functionally to the general downregulation of mRNAs observed by multiple investigators in response to prenatal alcohol exposure.
Collapse
Affiliation(s)
- Rob F Gillis
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Roberta M Palmour
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Behavioural Science Foundation, Mansion KN 0101, Saint Kitts and Nevis
| |
Collapse
|
109
|
Morya VK, Lee HW, Park CW, Park CW, Hyun JT, Noh KC. Computational Analysis of miR-140 and miR-135 as Potential Targets to Develop Combinatorial Therapeutics for Degenerative Tendinopathy. Clin Orthop Surg 2023; 15:463-476. [PMID: 37274502 PMCID: PMC10232305 DOI: 10.4055/cios22237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/06/2023] Open
Abstract
Background Degenerative tendinopathy, a condition causing movement restriction due to high pain, highly impacts productivity and quality of life. The healing process is a complex phenomenon and involves a series of intra-cellular and inter-cellular processes. Proliferation and differentiation of the tenocyte is a major and essential process to heal degenerative tendinopathy. The recent development in microRNA (miRNA)-mediated reprogramming of the cellular function through specific pathways opened door for the development of new regenerative therapeutics. Based on information about gene expression and regulation of tendon injury and healing, we attempted to evaluate the combinatorial effect of selected miRNAs for better healing of degenerative tendinopathy. Methods The present study was designed to evaluate the combinatorial effect of two miRNAs (has-miR-140 and has-miR-135) in the healing process of the tendon. Publicly available information/data were retrieved from appropriate platforms such as PubMed. Only molecular data, directly associated with tendinopathies, including genes/proteins and miRNAs, were used in this study. The miRNAs involved in tendinopathy were analyzed by a Bioinformatics tools (e.g., TargetScan, miRDB, and the RNA22v2). Interactive involvement of the miRNAs with key proteins involved in tendinopathy was predicted by the Insilco approach. Results Based on information available in the public domain, tendon healing-associated miRNAs were predicted to explore their therapeutic potentials. Based on computation analysis, focusing on the potential regulatory effect on tendon healing, the miR-135 and miR-140 were selected for this study. These miRNAs were found as key players in tendon healing through Rho-associated coiled-coil containing protein kinase 1 (ROCK1), IGF-1/PI3K/Akt, PIN, and Wnt signaling pathways. It was also predicted that these miRNAs may reprogram the cells to induce proliferation and differentiation activity. Many miRNAs are likely to regulate genes important for the tendinopathy healing process, and the result of this study allows an approach for miRNA-mediated regeneration of the tenocyte for tendon healing. Based on computational analysis, the role of these miRNAs in different pathways was established, and the results provided insights into the combinatorial approach of miRNA-mediated cell reprogramming. Conclusions In this study, the association between miRNAs and the disease was evaluated to correlate the tendinopathy genes and the relevant role of different miRNAs in their regulation. Through this study, it was established that the synergistic effect of more than one miRNA on directed reprogramming of the cell could be helpful in the regeneration of damaged tissue. It is anticipated that this study will be helpful for the design of miRNA cocktails for the orchestration of cellular reprogramming events.
Collapse
Affiliation(s)
- Vivek Kumar Morya
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Ho-Won Lee
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Chang-Wook Park
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Chang-Won Park
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Jin Tak Hyun
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Kyu-Cheol Noh
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| |
Collapse
|
110
|
Zhu D, Feng T, Mo N, Han R, Lu W, Cui Z. Eriocheir sinensis feminization-1c ( Fem-1c) and Its Predicted miRNAs Involved in Sexual Development and Regulation. Animals (Basel) 2023; 13:1813. [PMID: 37889731 PMCID: PMC10251896 DOI: 10.3390/ani13111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Feminization-1c (Fem-1c) is important for sex differentiation in the model organism Caenorhabditis elegans. In our previous study, the basic molecular characteristics of the Fem-1c gene (EsFem-1c) in Eriocheir sinensis (Henri Milne Edwards, 1854) were cloned to determine the relationship with sex differentiation. In this study, the genomic sequence of EsFem-1c contained five exons and four introns, with an exceptionally long 3'UTR sequence. The qRT-PCR results of EsFem-1c demonstrated lower tissue expression in the androgenic gland of the intersex crab than the normal male crab, implying that EsFem-1c plays a role in crab AG development. RNA interference experiments and morphological observations of juvenile and mature crabs indicated that EsFem-1c influences sexual development in E. sinensis. A dual-luciferase reporter assay disclosed that tcf-miR-315-5p effectively inhibits the translation of the EsFem-1c gene, influencing male development. An intriguing finding was that miRNA tcf-miR-307 could increase EsFem-1c expression by binding to the alternative splicing region with a length of 248 bp (ASR-248) in the 3'UTR sequence. The present research contributes to a better understanding of the molecular regulation mechanism of EsFem-1c and provides a resource for future studies of the miRNA-mediated regulation of sexual development and regulation in E. sinensis.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Tianyi Feng
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Rui Han
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Wentao Lu
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- DECAPODA Biology Science and Technology Co., Ltd. (Lianyungang), Lianyungang 222000, China
| |
Collapse
|
111
|
Norkaew C, Subkorn P, Chatupheeraphat C, Roytrakul S, Tanyong D. Pinostrobin, a fingerroot compound, regulates miR-181b-5p and induces acute leukemic cell apoptosis. Sci Rep 2023; 13:8084. [PMID: 37208425 DOI: 10.1038/s41598-023-35193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/14/2023] [Indexed: 05/21/2023] Open
Abstract
Pinostrobin (PN) is the most abundant flavonoid found in fingerroot. Although the anti-leukemic properties of PN have been reported, its mechanisms are still unclear. MicroRNAs (miRNAs) are small RNA molecules that function in posttranscriptional silencing and are increasingly being used in cancer therapy. The aims of this study were to investigate the effects of PN on proliferation inhibition and induction of apoptosis, as well as the involvement of miRNAs in PN-mediated apoptosis in acute leukemia. The results showed that PN reduced cell viability and induced apoptosis in acute leukemia cells via both intrinsic and extrinsic pathways. A bioinformatics approach and Protein-Protein Interaction (PPI) network analysis revealed that ataxia-telangiectasia mutated kinase (ATM), one of the p53 activators that responds to DNA damage-induced apoptosis, is a crucial target of PN. Four prediction tools were used to predict ATM-regulated miRNAs; miR-181b-5p was the most likely candidate. The reduction in miR-181b-5 after PN treatment was found to trigger ATM, resulting in cellular apoptosis. Therefore, PN could be developed as a drug for acute leukemia; in addition, miR-181b-5p and ATM may be promising therapeutic targets.
Collapse
Affiliation(s)
- Chosita Norkaew
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Paweena Subkorn
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chawalit Chatupheeraphat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, 12120, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
112
|
Zhou H, Li S, Lin Y. Prognostic significance of SH2D5 expression in lung adenocarcinoma and its relation to immune cell infiltration. PeerJ 2023; 11:e15238. [PMID: 37187527 PMCID: PMC10178299 DOI: 10.7717/peerj.15238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Objective Through analyzing the SH2D5 expression profiles, clinical features, and immune infiltration in lung adenocarcinoma (LUAD), the study was intended to discuss the correlations of SH2D5 with prognosis and immune infiltration in LUAD. Methods We downloaded transcriptome and clinical data of LUAD patients from TCGA, GEO, and CCLE databases. Sangerbox, R language, GEPIA, UALCAN, and Kaplan-Meier Plotter were adopted to analyze the SH2D5 expression patterns, prognosis, and clinical features. Spearman correlation analysis was performed to determine the association between SH2D5 expression and immune cell infiltration and immune checkpoint genes. The miRNA-SH2D5 relations were predicted by miRDB and starbase. Lastly, quantitative PCR, IHC and Western blot were implemented for validation. Results A prominent up-regulation of SH2D5 was noted in the LUAD group relative to the normal group, which was validated by quantitative PCR, IHC and Western blot. SH2D5 expression was inversely related to overall survival (OS) of LUAD patients as well as B cell immune infiltration. Additionally, SH2D5 expression was negatively correlated with dendritic cells resting (p < 0.001), plasma cells (p < 0.001), mast cells resting (p = 0.031) and T cells CD4 memory resting (p = 0.036) in LUAD patients with abundant SH2D5 expression correlated with poor prognosis. Furthermore, enrichment analysis suggested that SH2D5 was associated with lung cancer and immunity. Lastly, we investigated the relationship between the expression of SH2D5 and the use of antitumor drugs. Conclusion High SH2D5 expression shares an association with unfavorable prognosis in LUAD, and SH2D5 may also provide new ideas for immunotherapy as a potential therapeutic target.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Emergency and Critical Care Medicine, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shengjun Li
- Department of Emergency and Critical Care Medicine, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Yuansheng Lin
- Department of Emergency and Critical Care Medicine, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| |
Collapse
|
113
|
Rebolledo C, Silva JP, Saavedra N, Maracaja-Coutinho V. Computational approaches for circRNAs prediction and in silico characterization. Brief Bioinform 2023; 24:7150741. [PMID: 37139555 DOI: 10.1093/bib/bbad154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded and covalently closed non-coding RNA molecules originated from RNA splicing. Their functions include regulatory potential over other RNA species, such as microRNAs, messenger RNAs and RNA binding proteins. For circRNA identification, several algorithms are available and can be classified in two major types: pseudo-reference-based and split-alignment-based approaches. In general, the data generated from circRNA transcriptome initiatives is deposited on public specific databases, which provide a large amount of information on different species and functional annotations. In this review, we describe the main computational resources for the identification and characterization of circRNAs, covering the algorithms and predictive tools to evaluate its potential role in a particular transcriptomics project, including the public repositories containing relevant data and information for circRNAs, recapitulating their characteristics, reliability and amount of data reported.
Collapse
Affiliation(s)
- Camilo Rebolledo
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Resources, Universidad de La Frontera, Temuco, Chile
- Advanced Center for Chronic Diseases - ACCDiS, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática - CM2B2, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Silva
- Centro de Modelamiento Molecular, Biofísica y Bioinformática - CM2B2, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- ANID Anillo ACT210004 SYSTEMIX, Rancagua, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Resources, Universidad de La Frontera, Temuco, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases - ACCDiS, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática - CM2B2, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- ANID Anillo ACT210004 SYSTEMIX, Rancagua, Chile
- Anillo Inflammation in HIV/AIDS - InflammAIDS, Santiago, Chile
| |
Collapse
|
114
|
Bhattacharjee S, Ghosh D, Saha R, Sarkar R, Kumar S, Khokhar M, Pandey RK. Mechanism of Immune Evasion in Mosquito-Borne Diseases. Pathogens 2023; 12:635. [PMID: 37242305 PMCID: PMC10222277 DOI: 10.3390/pathogens12050635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, mosquito-borne illnesses have emerged as a major health burden in many tropical regions. These diseases, such as malaria, dengue fever, chikungunya, yellow fever, Zika virus infection, Rift Valley fever, Japanese encephalitis, and West Nile virus infection, are transmitted through the bite of infected mosquitoes. These pathogens have been shown to interfere with the host's immune system through adaptive and innate immune mechanisms, as well as the human circulatory system. Crucial immune checkpoints such as antigen presentation, T cell activation, differentiation, and proinflammatory response play a vital role in the host cell's response to pathogenic infection. Furthermore, these immune evasions have the potential to stimulate the human immune system, resulting in other associated non-communicable diseases. This review aims to advance our understanding of mosquito-borne diseases and the immune evasion mechanisms by associated pathogens. Moreover, it highlights the adverse outcomes of mosquito-borne disease.
Collapse
Affiliation(s)
| | - Debanjan Ghosh
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Rima Sarkar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Saurav Kumar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS, Jodhpur 342005, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| |
Collapse
|
115
|
Nakajima M, Koido M, Guo L, Terao C, Ikegawa S. A novel CCDC91 isoform associated with ossification of the posterior longitudinal ligament of the spine works as a non-coding RNA to regulate osteogenic genes. Am J Hum Genet 2023; 110:638-647. [PMID: 36990086 PMCID: PMC10119134 DOI: 10.1016/j.ajhg.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common intractable disease that causes spinal stenosis and myelopathy. We have previously conducted genome-wide association studies for OPLL and identified 14 significant loci, but their biological implications remain mostly unclear. Here, we examined the 12p11.22 locus and identified a variant in the 5' UTR of a novel isoform of CCDC91 that was associated with OPLL. Using machine learning prediction models, we determined that higher expression of the novel CCDC91 isoform was associated with the G allele of rs35098487. The risk allele of rs35098487 showed higher affinity in the binding of nuclear proteins and transcription activity. Knockdown and overexpression of the CCDC91 isoform in mesenchymal stem cells and MG-63 cells showed paralleled expression of osteogenic genes, including RUNX2, the master transcription factor of osteogenic differentiation. The CCDC91 isoform directly interacted with MIR890, which bound to RUNX2 and decreased RUNX2 expression. Our findings suggest that the CCDC91 isoform acts as a competitive endogenous RNA by sponging MIR890 to increase RUNX2 expression.
Collapse
Affiliation(s)
- Masahiro Nakajima
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan; Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo 108-8639, Japan; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan.
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo 108-8639, Japan.
| |
Collapse
|
116
|
Fashina IA, McCoy CE, Furney SJ. In silico prioritisation of microRNA-associated common variants in multiple sclerosis. Hum Genomics 2023; 17:31. [PMID: 36991503 PMCID: PMC10061723 DOI: 10.1186/s40246-023-00478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have highlighted over 200 autosomal variants associated with multiple sclerosis (MS). However, variants in non-coding regions such as those encoding microRNAs have not been explored thoroughly, despite strong evidence of microRNA dysregulation in MS patients and model organisms. This study explores the effect of microRNA-associated variants in MS, through the largest publicly available GWAS, which involved 47,429 MS cases and 68,374 controls. METHODS We identified SNPs within the coordinates of microRNAs, ± 5-kb microRNA flanking regions and predicted 3'UTR target-binding sites using miRBase v22, TargetScan 7.0 RNA22 v2.0 and dbSNP v151. We established the subset of microRNA-associated SNPs which were tested in the summary statistics of the largest MS GWAS by intersecting these datasets. Next, we prioritised those microRNA-associated SNPs which are among known MS susceptibility SNPs, are in strong linkage disequilibrium with the former or meet a microRNA-specific Bonferroni-corrected threshold. Finally, we predicted the effects of those prioritised SNPs on their microRNAs and 3'UTR target-binding sites using TargetScan v7.0, miRVaS and ADmiRE. RESULTS We have identified 30 candidate microRNA-associated variants which meet at least one of our prioritisation criteria. Among these, we highlighted one microRNA variant rs1414273 (MIR548AC) and four 3'UTR microRNA-binding site variants within SLC2A4RG (rs6742), CD27 (rs1059501), MMEL1 (rs881640) and BCL2L13 (rs2587100). We determined changes to the predicted microRNA stability and binding site recognition of these microRNA and target sites. CONCLUSIONS We have systematically examined the functional, structural and regulatory effects of candidate MS variants among microRNAs and 3'UTR targets. This analysis allowed us to identify candidate microRNA-associated MS SNPs and highlights the value of prioritising non-coding RNA variation in GWAS. These candidate SNPs could influence microRNA regulation in MS patients. Our study is the first thorough investigation of both microRNA and 3'UTR target-binding site variation in multiple sclerosis using GWAS summary statistics.
Collapse
Affiliation(s)
- Ifeolutembi A. Fashina
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- SFI Centre for Research Training in Genomics Data Sciences, University of Galway, H91 TK33 Galway, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon J. Furney
- Genomic Oncology Research Group, Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
117
|
Mohammadi MA, Mansouri M, Derakhshani A, Rezaie M, Borhani M, Nasibi S, Mousavi SM, Afgar A, Macchiaroli N, Rosenzvit MC, Harandi MF. MicroRNA-Transcription factor regulatory networks in the early strobilar development of Echinococcus granulosus protoscoleces. BMC Genomics 2023; 24:114. [PMID: 36922762 PMCID: PMC10016175 DOI: 10.1186/s12864-023-09199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Echinococcus granulosus sensu lato has a complex developmental biology with a variety of factors relating to both intermediate and final hosts. To achieve maximum parasite adaptability, the development of the cestode is dependent on essential changes in transcript regulation. Transcription factors (TFs) and miRNAs are known as master regulators that affect the expression of downstream genes through a wide range of metabolic and signaling pathways. In this study, we aimed to develop a regulatory miRNA-Transcription factor (miRNA-TF) network across early developmental stages of E. granulosus protoscoleces by performing in silico analysis, and to experimentally validate TFs expression in protoscoleces obtained from in vitro culture, and from in vivo experiments. RESULTS We obtained list of 394 unique E. granulosus TFs and matched them with 818 differentially expressed genes which identified 41 predicted TFs with differential expression. These TFs were used to predict the potential targets of 31 differentially expressed miRNAs. As a result, eight miRNAs and eight TFs were found, and the predicted network was constructed using Cytoscape. At least four miRNAs (egr-miR-124a, egr-miR-124b-3p, egr-miR-745-3p, and egr-miR-87-3p) and their corresponding differentially expressed TFs (Zinc finger protein 45, Early growth response protein 3, Ecdysone induced protein 78c and ETS transcription factor elf 2) were highlighted in this investigation. The expression of predicted differentially expressed TFs obtained from in vitro and in vivo experiments, were experimentally validated by quantitative polymerase chain reaction. This confirmed findings of RNA-seq data. CONCLUSION miRNA-TF networks presented in this study control some of the most important metabolic and signaling pathways in the development and life cycle of E. granulosus, providing a potential approach for disrupting the early hours of dog infection and preventing the development of the helminth in the final host.
Collapse
Affiliation(s)
- Mohammad Ali Mohammadi
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Derakhshani
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Rezaie
- Student Research Committee, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Borhani
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Saeid Nasibi
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mohammad Mousavi
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Natalia Macchiaroli
- Laboratorio Biología Molecular de Hidatidosis, Facultad de Medicina, Instituto de Microbiología Y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Mara C. Rosenzvit
- Laboratorio Biología Molecular de Hidatidosis, Facultad de Medicina, Instituto de Microbiología Y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
118
|
Klingler F, Naumann L, Schlossbauer P, Dreyer L, Burkhart M, Handrick R, Junker HD, Hesse F, Neusüß C, Otte K. A novel system for glycosylation engineering by natural and artificial miRNAs. Metab Eng 2023; 77:53-63. [PMID: 36906118 DOI: 10.1016/j.ymben.2023.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/19/2022] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
N-linked glycosylation is a crucial post-translational modification of many biopharmaceuticals, including monoclonal antibodies (mAbs), capable of modifying their biological effect in patients and thus considered as a critical quality attribute (CQA). However, expression of desired and consistent glycosylation patterns remains a constant challenge for the biopharmaceutical industry and constitutes the need for tools to engineer glycosylation. Small non-coding microRNAs (miRNAs) are known regulators of entire gene networks and have therefore the potential of being used as tools for modulation of glycosylation pathways and for glycoengineering. Here, we demonstrate that novel identified natural miRNAs are capable of altering N-linked glycosylation patterns on mAbs expressed in Chinese hamster ovary (CHO) cells. We established a workflow for a functional high-throughput screening of a complete miRNA mimic library and identified 82 miRNA sequences affecting various moieties including galactosylation, sialylation, and α-1,6 linked core-fucosylation, an important glycan feature influencing antibody-dependent cytotoxicity (ADCC). Subsequent validation shed light on the intra-cellular mode of action and the impact on the cellular fucosylation pathway of miRNAs reducing core-fucosylation. While multiplex approaches increased phenotypic effects on the glycan structure, a synthetic biology approach utilizing rational design of artificial miRNAs further enhanced the potential of miRNAs as novel, versatile and tune-able tools for engineering of N-linked glycosylation pathways and expressed glycosylation patterns towards favourable phenotypes.
Collapse
Affiliation(s)
- Florian Klingler
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany.
| | - Lukas Naumann
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Patrick Schlossbauer
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - Leonard Dreyer
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Madina Burkhart
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - René Handrick
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - Hans-Dieter Junker
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Friedemann Hesse
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| | - Christian Neusüß
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Kerstin Otte
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany
| |
Collapse
|
119
|
Homberg N, Galvão Ferrarini M, Gaspin C, Sagot MF. MicroRNA Target Identification: Revisiting Accessibility and Seed Anchoring. Genes (Basel) 2023; 14:genes14030664. [PMID: 36980936 PMCID: PMC10048102 DOI: 10.3390/genes14030664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
By pairing to messenger RNAs (mRNAs for short), microRNAs (miRNAs) regulate gene expression in animals and plants. Accurately identifying which mRNAs interact with a given miRNA and the precise location of the interaction sites is crucial to reaching a more complete view of the regulatory network of an organism. Only a few experimental approaches, however, allow the identification of both within a single experiment. Computational predictions of miRNA–mRNA interactions thus remain generally the first step used, despite their drawback of a high rate of false-positive predictions. The major computational approaches available rely on a diversity of features, among which anchoring the miRNA seed and measuring mRNA accessibility are the key ones, with the first being universally used, while the use of the second remains controversial. Revisiting the importance of each is the aim of this paper, which uses Cross-Linking, Ligation, And Sequencing of Hybrids (CLASH) datasets to achieve this goal. Contrary to what might be expected, the results are more ambiguous regarding the use of the seed match as a feature, while accessibility appears to be a feature worth considering, indicating that, at least under some conditions, it may favour anchoring by miRNAs.
Collapse
Affiliation(s)
- Nicolas Homberg
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, 69622 Villeurbanne, France
- INRIA Lyon Centre, 69100 Villeurbanne, France
- UR0875 MIAT, INRAE, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Mariana Galvão Ferrarini
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, 69622 Villeurbanne, France
- INRIA Lyon Centre, 69100 Villeurbanne, France
| | - Christine Gaspin
- UR0875 MIAT, INRAE, Université de Toulouse, 31326 Castanet-Tolosan, France
- Correspondence: (C.G.); (M.-F.S.)
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, 69622 Villeurbanne, France
- INRIA Lyon Centre, 69100 Villeurbanne, France
- Correspondence: (C.G.); (M.-F.S.)
| |
Collapse
|
120
|
Identification and in silico characterization of CSRP3 synonymous variants in dilated cardiomyopathy. Mol Biol Rep 2023; 50:4105-4117. [PMID: 36877346 DOI: 10.1007/s11033-023-08314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Synonymous variations have always been ignored while studying the underlying genetic mechanisms for most of the human diseases. However, recent studies have suggested that these silent changes in the genome can alter the protein expression and folding. METHODS AND RESULTS CSRP3, which is a well-known candidate gene associated with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), was screened for 100 idiopathic DCM cases and 100 controls. Three synonymous variations were identified viz., c.96G > A, p.K32=; c.336G > A, p.A112=; c.354G > A, p.E118=. A comprehensive in silico analysis was performed using various web based widely accepted tools, Mfold, Codon Usage, HSF3.1 and RNA22. Mfold predicted structural changes in all the variants except c.96 G > A (p.K32=), however it predicted changes in the stability of mRNA due to all the synonymous variants. Codon bias was observed as evident by the Relative Synonymous Codon Usage and Log Ratio of Codon Usage Frequencies. The Human Splicing Finder also predicted remarkable changes in the regulatory elements in the variants c.336G > A and c.354 G > A. The miRNA target prediction using varied modes available in RNA22 revealed that 70.6% of the target sites of miRNAs in CSRP3 were altered due to variant c.336G > A while 29.41% sites were completely lost. CONCLUSION Findings of the present study suggest that synonymous variants revealed striking deviations in the structural conformation of mRNA, stability of mRNA, relative synonymous codon usage, splicing and miRNA binding sites from the wild type suggesting their possible role in the pathogenesis of DCM, either by destabilizing the mRNA structure, or codon usage bias or else altering the cis-acting regulatory elements during splicing.
Collapse
|
121
|
Guo W, Su L, Zhang H, Mi Z. Role of M2 macrophages-derived extracellular vesicles in IL-1β-stimulated chondrocyte proliferation and inflammatory responses. Cell Tissue Bank 2023; 24:93-107. [PMID: 35687263 DOI: 10.1007/s10561-022-10016-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
M2 macrophages-derived extracellular vesicles (M2-EVs) serve as a tool for the delivery of miRNAs and play an anti-inflammatory role in diseases. This study sought to explore the role of (M2-EVs) in the proliferation and inflammatory responses of IL-1β-stimulated chondrocytes. M2 macrophages were induced and characterized, followed by isolation and characterization of M2-EVs. Chondrocytes were treated with 10 ng/mL IL-1β and co-cultured with M2 macrophages transfected with Cy3-labeled miR-370-3p. Cell viability, TNF (tumor necrosis factor)-α, IL(Interleukin)-18, IL-10, miR-370-3p, and sex-determining region Y-related high-mobility-group box transcription factor 11 (SOX11) mRNA were determined via cell counting assay kit, colony formation, ELISA, and qRT-PCR. The binding relationship between miR-370-3p and SOX11 was testified via the dual-luciferase assay. The functional rescue experiment was designed to confirm the role of SOX11. M2-EVs improved chondrocyte viability and colony formation, lowered TNF-α and IL-18, and elevated IL-10. M2-EVs delivered miR-370-3p into chondrocytes to upregulate miR-370-3p. Upregulation of miR-370-3p in M2-EVs enhanced the protective role of M2-EVs in chondrocytes. miR-370-3p inhibited SOX11 transcription. SOX11 overexpression attenuated the protective role of M2-EVs in chondrocytes. Overall, our findings suggested that M2-EVs promote proliferation and suppress inflammatory responses in IL-1β-stimulated chondrocytes via the miR-370-3p/SOX11 axis.
Collapse
Affiliation(s)
- Weiwei Guo
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China.
| | - Li Su
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Hao Zhang
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Zhanhu Mi
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| |
Collapse
|
122
|
Expression analysis and targets prediction of microRNAs in OGD/R treated astrocyte-derived exosomes by smallRNA sequencing. Genomics 2023; 115:110594. [PMID: 36863417 DOI: 10.1016/j.ygeno.2023.110594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Astrocytes activate and crosstalk with neurons influencing inflammatory responses following ischemic stroke. The distribution, abundance, and activity of microRNAs in astrocytes-derived exosomes after ischemic stroke remains largely unknown. In this study, exosomes were extracted from primary cultured mouse astrocytes via ultracentrifugation, and exposed to oxygen glucose deprivation/re‑oxygenation injury to mimic experimental ischemic stroke. SmallRNAs from astrocyte-derived exosomes were sequenced, and differentially expressed microRNAs were randomly selected and verified by stem-loop real time quantitative polymerase chain reaction. We found that 176 microRNAs, including 148 known and 28 novel microRNAs, were differentially expressed in astrocyte-derived exosomes following oxygen glucose deprivation/re‑oxygenation injury. In gene ontology enrichment, Kyoto encyclopedia of genes and genomes pathway analyses, and microRNA target gene prediction analyses, these alteration in microRNAs were associated to a broad spectrum of physiological functions including signaling transduction, neuroprotection and stress responses. Our findings warrant further investigating of these differentially expressed microRNAs in human diseases particularly ischemic stroke.
Collapse
|
123
|
Wang ZH, Jiang S, Xu WH. ROS downregulate TCA activity to modulate energy metabolism via the HIF/miR-34/ACS-PK pathway for lifespan extension in Helicoverpa armigera. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119414. [PMID: 36535371 DOI: 10.1016/j.bbamcr.2022.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Previous studies have shown that high levels of reactive oxygen species (ROS) and low tricarboxylic acid (TCA) activity in the brain promote pupal diapause, which is characterized by metabolic depression and lifespan extension. However, it is unclear whether ROS are associated with TCA activity. In this study, we demonstrate that ROS downregulate TCA activity and acetyl-CoA and pyruvate levels in the brains of diapause-destined pupae in the moth Helicoverpa armigera, as well as the protein levels of acetyl-CoA synthetase (ACS) and pyruvate kinase (PK), two proteins involved in the biosynthesis of acetyl-CoA and pyruvate, respectively. Interestingly, miR-34, which is highly expressed in the brains of diapause-destined pupae, can respond to ROS signaling. Furthermore, we show that miR-34 can reduce the expression of ACS and PK by directly targeting their mRNAs. Additionally, hypoxia-inducible factor (HIF), a transcription factor, can be activated by ROS and then promotes miR-34 transcription by binding a cis-element in its promoter. Moreover, we observed delayed pupal development after treatment with a ROS activator paraquat and a HIF activator dimethyloxallyl glycine. Taken together, these results suggest that a novel pathway ROS/HIF/miR-34/ACS-PK was found to negatively regulate TCA activity to promote insect diapause for lifespan extension.
Collapse
Affiliation(s)
- Zheng-Hao Wang
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Songshan Jiang
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
124
|
U A, Viswam P, Kattupalli D, Eppurathu Vasudevan S. Elucidation of transfer RNAs as stress regulating agents and the experimental strategies to conceive the functional role of tRNA-derived fragments in plants. Crit Rev Biotechnol 2023; 43:275-292. [PMID: 35382663 DOI: 10.1080/07388551.2022.2026288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants, the transfer RNAs (tRNAs) exhibit their profound influence in orchestrating diverse physiological activities like cell growth, development, and response to several surrounding stimuli. The tRNAs, which were known to restrict their function solely in deciphering the codons, are now emerging as frontline defenders in stress biology. The plants that are constantly confronted with a huge panoply of stresses rely on tRNA-mediated stress regulation by altering the tRNA abundance, curbing the transport of tRNAs, fragmenting the mature tRNAs during stress. Among them, the studies on the generation of transfer RNA-derived fragments (tRFs) and their biological implication in stress response have attained huge interest. In plants, the tRFs hold stable expression patterns and regulate biological functions under diverse environmental conditions. In this review, we discuss the fate of plant tRNAs upon stress and thereafter how the tRFs are metamorphosed into sharp ammunition to wrestle with stress. We also address the various methods developed to date for uncovering the role of tRFs and their function in plants.
Collapse
Affiliation(s)
- Aswathi U
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Pooja Viswam
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Divya Kattupalli
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | | |
Collapse
|
125
|
Kuang LW, Zhang CC, Li BH, Liu HZ, Wang H, Li GC. Identification of the MALAT1/miR-106a-5p/ZNF148 feedback loop in regulating HaCaT cell proliferation, migration and apoptosis. Regen Med 2023; 18:239-258. [PMID: 36710662 DOI: 10.2217/rme-2022-0189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Aims: This study aims to investigate the function of positive feedback loops involving noncoding RNA in diabetic wound healing. Methods: We developed a mouse diabetic wound model to confirm that hyperglycemia can impair wound healing. We also used an in vitro keratinocyte model in high-glucose conditions to investigate the mechanism of delayed wound healing. Results: MALAT1 was decreased in diabetic mouse wound tissue and can promote keratinocyte biological functions. MALAT1 could bind to miR-106a-5p to modulate the expression of ZNF148, a target gene of miR-106a-5p. Surprisingly, ZNF148 bound to a region in the MALAT1 promoter to stimulate gene expression. Conclusion: ZNF148-activated MALAT1 increases ZNF148 expression by competitively binding miR-106a-3p, generating a positive feedback loop that enhances keratinocyte function.
Collapse
Affiliation(s)
- Li-Wen Kuang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430062, PR China
| | - Chen-Chen Zhang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430062, PR China
| | - Bing-Hui Li
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430062, PR China
| | - Hui-Zhen Liu
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430062, PR China
| | - Hui Wang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430062, PR China
| | - Gong-Chi Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430022, PR China
| |
Collapse
|
126
|
Lu W, Zhang T, Zhang Q, Zhang N, Jia L, Ma S, Xia Q. FibH Gene Complete Sequences (FibHome) Revealed Silkworm Pedigree. INSECTS 2023; 14:244. [PMID: 36975929 PMCID: PMC10055898 DOI: 10.3390/insects14030244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The highly repetitive and variable fibroin heavy chain (FibH) gene can be used as a silkworm identification; however, only a few complete FibH sequences are known. In this study, we extracted and examined 264 FibH gene complete sequences (FibHome) from a high-resolution silkworm pan-genome. The average FibH lengths of the wild silkworm, local, and improved strains were 19,698 bp, 16,427 bp, and 15,795 bp, respectively. All FibH sequences had a conserved 5' and 3' terminal non-repetitive (5' and 3' TNR, 99.74% and 99.99% identity, respectively) sequence and a variable repetitive core (RC). The RCs differed greatly, but they all shared the same motif. During domestication or breeding, the FibH gene mutated with hexanucleotide (GGTGCT) as the core unit. Numerous variations existed that were not unique to wild and domesticated silkworms. However, the transcriptional factor binding sites, such as fibroin modulator-binding protein, were highly conserved and had 100% identity in the FibH gene's intron and upstream sequences. The local and improved strains with the same FibH gene were divided into four families using this gene as a marker. Family I contained a maximum of 62 strains with the optional FibH (Opti-FibH, 15,960 bp) gene. This study provides new insights into FibH variations and silkworm breeding.
Collapse
Affiliation(s)
- Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Quan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Na Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| |
Collapse
|
127
|
Kuang L, Zhang C, Li B, Deng H, Chen R, Li G. Human Keratinocyte-Derived Exosomal MALAT1 Promotes Diabetic Wound Healing by Upregulating MFGE8 via microRNA-1914-3p. Int J Nanomedicine 2023; 18:949-970. [PMID: 36852184 PMCID: PMC9961177 DOI: 10.2147/ijn.s399785] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Purpose Diabetic wound is a highly prevalent and refractory disease. Extensive studies have confirmed that keratinocytes and macrophages play an important role in the process of wound healing. Additionally, exosomes are regarded as a vital intercellular communication tool. This study aimed to investigate the role of human keratinocyte-derived exosomal MALAT1 in the treatment of diabetic wound by influencing the biological function of macrophages. Methods We mainly assessed the function of MALAT1 on the biological changes of macrophages, and the expression of MALAT1 in the keratinocyte-exosomes analyzed by quantitative real-time polymerase chain reaction (RT-qPCR). The downstream interaction between RNAs or proteins was assessed by mechanistic experiments. Besides, we evaluated the effects of human keratinocyte-derived exosomal MALAT1 on diabetic wound healing in vivo to verify in vitro results. Results We demonstrated that human keratinocyte-derived exosomal MALAT1 enhanced the biological functions of high glucose-injured macrophages, including phagocytosis, converting to a pro-healing phenotype and reducing apoptosis. Mechanistically, MALAT1 accelerated the expression of MFGE8 by competitively binding to miR-1914-3p, thereby affecting the function of macrophages and the signal axis of TGFB1/SMAD3, and finally promoting the healing of diabetic wounds. Human keratinocyte-derived exosomal MALAT1 might promote collagen deposition, ECM remodeling, and expression of MFGE8, VEGF, and CD31 but reduce the expression of TGFB and SMAD3 in an in vivo model of diabetic mice wounds, which accelerated diabetic wound healing and restored its function. Conclusion The current study revealed that human keratinocyte-derived exosomal MALAT1 would suppress miR-1914-3p to activate MFGE8 and eventually promote wound healing by enhancing macrophage phagocytosis, converting to a pro-healing phenotype and reducing apoptosis. It proposed that keratinocyte-derived exosomes might have the capacity to serve as a new method for the clinical treatment of diabetic wound.
Collapse
Affiliation(s)
- Liwen Kuang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430062, People’s Republic of China
| | - Chenchen Zhang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430062, People’s Republic of China
| | - Binghui Li
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430062, People’s Republic of China
| | - Haibo Deng
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430062, People’s Republic of China
| | - Ran Chen
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430062, People’s Republic of China
| | - Gongchi Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China,Correspondence: Gongchi Li, Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Wuhan, Hubei, 430022, People’s Republic of China, Tel +8613618615209, Email
| |
Collapse
|
128
|
In Silico Identification of Cassava Genome-Encoded MicroRNAs with Predicted Potential for Targeting the ICMV-Kerala Begomoviral Pathogen of Cassava. Viruses 2023; 15:v15020486. [PMID: 36851701 PMCID: PMC9963618 DOI: 10.3390/v15020486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cassava mosaic disease (CMD) is caused by several divergent species belonging to the genus Begomovirus (Geminiviridae) transmitted by the whitefly Bemisia tabaci cryptic species group. In India and other parts of Asia, the Indian cassava mosaic virus-Kerala (ICMV-Ker) is an emergent begomovirus of cassava causing damage that results in reduced yield loss and tuber quality. Double-stranded RNA-mediated interference (RNAi) is an evolutionary conserved mechanism in eukaryotes and highly effective, innate defense system to inhibit plant viral replication and/or translation. The objective of this study was to identify and characterize cassava genome-encoded microRNAs (mes-miRNA) that are predicted to target ICMV-Ker ssDNA-encoded mRNAs, based on four in silico algorithms: miRanda, RNA22, Tapirhybrid, and psRNA. The goal is to deploy the predicted miRNAs to trigger RNAi and develop cassava plants with resistance to ICMV-Ker. Experimentally validated mature cassava miRNA sequences (n = 175) were downloaded from the miRBase biological database and aligned with the ICMV-Ker genome. The miRNAs were evaluated for base-pairing with the cassava miRNA seed regions and to complementary binding sites within target viral mRNAs. Among the 175 locus-derived mes-miRNAs evaluated, one cassava miRNA homolog, mes-miR1446a, was identified to have a predicted miRNA target binding site, at position 2053 of the ICMV-Ker genome. To predict whether the cassava miRNA might bind predicted ICMV-Ker mRNA target(s) that could disrupt viral infection of cassava plants, a cassava locus-derived miRNA-mRNA regulatory network was constructed using Circos software. The in silico-predicted cassava locus-derived mes-miRNA-mRNA network corroborated interactions between cassava mature miRNAs and the ICMV-Ker genome that warrant in vivo analysis, which could lead to the development of ICMV-Ker resistant cassava plants.
Collapse
|
129
|
Baig MS, Deepanshu, Prakash P, Alam P, Krishnan A. In silico analysis reveals hypoxia-induced miR-210-3p specifically targets SARS-CoV-2 RNA. J Biomol Struct Dyn 2023; 41:12305-12327. [PMID: 36752331 DOI: 10.1080/07391102.2023.2175255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/01/2023] [Indexed: 02/09/2023]
Abstract
Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deepanshu
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
130
|
Yang Y, Zhang W, Wang X, Yang J, Cui Y, Song H, Li W, Li W, Wu L, Du Y, He Z, Shi J, Zhang J. A passage-dependent network for estimating the in vitro senescence of mesenchymal stromal/stem cells using microarray, bulk and single cell RNA sequencing. Front Cell Dev Biol 2023; 11:998666. [PMID: 36824368 PMCID: PMC9941187 DOI: 10.3389/fcell.2023.998666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Long-term in vitro culture of human mesenchymal stem cells (MSCs) leads to cell lifespan shortening and growth stagnation due to cell senescence. Here, using sequencing data generated in the public domain, we have established a specific regulatory network of "transcription factor (TF)-microRNA (miRNA)-Target" to provide key molecules for evaluating the passage-dependent replicative senescence of mesenchymal stem cells for the quality control and status evaluation of mesenchymal stem cells prepared by different procedures. Short time-series expression miner (STEM) analysis was performed on the RNA-seq and miRNA-seq databases of mesenchymal stem cells from various passages to reveal the dynamic passage-related changes of miRNAs and mRNAs. Potential miRNA targets were predicted using seven miRNA target prediction databases, including TargetScan, miRTarBase, miRDB, miRWalk, RNA22, RNAinter, and TargetMiner. Then use the TransmiR v2.0 database to obtain experimental-supported transcription factor for regulating the selected miRNA. More than ten sequencing data related to mesenchymal stem cells or mesenchymal stem cells reprogramming were used to validate key miRNAs and mRNAs. And gene set variation analysis (GSVA) was performed to calculate the passage-dependent signature. The results showed that during the passage of mesenchymal stem cells, a total of 29 miRNAs were gradually downregulated and 210 mRNA were gradually upregulated. Enrichment analysis showed that the 29 miRNAs acted as multipotent regulatory factors of stem cells and participated in a variety of signaling pathways, including TGF-beta, HIPPO and oxygen related pathways. 210 mRNAs were involved in cell senescence. According to the target prediction results, the targets of these key miRNAs and mRNAs intersect to form a regulatory network of "TF-miRNA-Target" related to replicative senescence of cultured mesenchymal stem cells, across 35 transcription factor, 7 miRNAs (has-mir-454-3p, has-mir-196b-5p, has-mir-130b-5p, has-mir-1271-5p, has-let-7i-5p, has-let-7a-5p, and has-let-7b-5p) and 7 predicted targets (PRUNE2, DIO2, CPA4, PRKAA2, DMD, DDAH1, and GATA6). This network was further validated by analyzing datasets from a variety of mesenchymal stem cells subculture and lineage reprogramming studies, as well as qPCR analysis of early passages mesenchymal stem cells versus mesenchymal stem cells with senescence morphologies (SA-β-Gal+). The "TF-miRNA-Target" regulatory network constructed in this study reveals the functional mechanism of miRNAs in promoting the senescence of MSCs during in vitro expansion and provides indicators for monitoring the quality of functional mesenchymal stem cells during the preparation and clinical application.
Collapse
Affiliation(s)
- Yong Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Jingxian Yang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China,Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Haimeng Song
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Weiping Li
- Department of Gastrointestinal Surgery, The First People’s Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu, China
| | - Wei Li
- Department of General Surgery, Fuzhou Dongxiang District People’s Hospital, Fuzhou, Jiangxi, China
| | - Le Wu
- Department of General Surgery, Fuzhou Dongxiang District People’s Hospital, Fuzhou, Jiangxi, China
| | - Yao Du
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China,*Correspondence: Zhiying He, ; Jun Shi, ; Jiangnan Zhang,
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Zhiying He, ; Jun Shi, ; Jiangnan Zhang,
| | - Jiangnan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Zhiying He, ; Jun Shi, ; Jiangnan Zhang,
| |
Collapse
|
131
|
Web Services for RNA-RNA Interaction Prediction. Methods Mol Biol 2023; 2586:175-195. [PMID: 36705905 DOI: 10.1007/978-1-0716-2768-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Non-coding RNAs have various biological functions such as translational regulation, and RNA-RNA interactions play essential roles in the mechanisms of action of these RNAs. Therefore, RNA-RNA interaction prediction is an important problem in bioinformatics, and many tools have been developed for the computational prediction of RNA-RNA interactions. In addition to the development of novel algorithms with high accuracy, the development and maintenance of web services is essential for enhancing usability by experimental biologists. In this review, we survey web services for RNA-RNA interaction predictions and introduce how to use primary web services. We present various prediction tools, including general interaction prediction tools, prediction tools for specific RNA classes, and RNA-RNA interaction-based RNA design tools. Additionally, we discuss the future perspectives of the development of RNA-RNA interaction prediction tools and the sustainability of web services.
Collapse
|
132
|
Wang D, Guan H, Wang Y, Song G, Xia Y. N6-methyladenosine modification in trophoblasts promotes circSETD2 expression, inhibits miR-181a-5p, and elevates MCL1 transcription to reduce apoptosis of trophoblasts. ENVIRONMENTAL TOXICOLOGY 2023; 38:422-435. [PMID: 36260529 DOI: 10.1002/tox.23683] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Preeclampsia (PE) is an obstetric disorder. N6-methyladenosine (m6A) modification is related to PE trophoblast biological behaviors. This study explored the mechanism of m6A-modified circSETD2 in trophoblast biological behaviors. Chorionic trophoblast apoptosis and circSETD2 expression in PE rat models were detected. HTR8/SVneo cells were induced by CoCl2 to establish PE trophoblast models. circSETD2 was silenced or overexpressed to evaluate its effect on cell proliferation, invasion, and apoptosis. m6A level of circSETD2 in trophoblasts was changed by pcDNA3.1-METTL3 and pcDNA3.1-FTO. The targeting relations among miR-181a-5p, circSETD2, and MCL1 were verified by dual-luciferase assay. miR-181a-5p and MCL1 expressions were interfered with to confirm the effect of m6A-modified circSETD2. m6A methylation level was changed in PE rats for in vivo validation. PE rats showed diminished circSETD2 expression and increased apoptosis index. circSETD2 overexpression promoted trophoblast proliferation and invasion, and reduced apoptosis. METTL3 overexpression increased total m6A, circSETD2 m6A, and circSETD2 levels. m6A modification mediated circSETD2 upregulation. circSETD2 was a sponge of miR-181a-5p to elevate MCL1 transcription. miR-181a-5p overexpression or MCL1 silencing annulled the role of m6A-modified circSETD2. circSETD2 inhibition negated suppression of METTL3 overexpression on chorionic trophoblast apoptosis in vivo. Collectively, m6A modification of circSETD2 suppressed miR-181a-5p and increased MCL1 transcription, thus regulating trophoblasts.
Collapse
Affiliation(s)
- Dan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongbo Guan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guiyu Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yajun Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
133
|
Fu X, Mishra R, Chen L, Arfat MY, Sharma S, Kingsbury T, Gunasekaran M, Saha P, Hong C, Yang P, Li D, Kaushal S. Exosomes mediated fibrogenesis in dilated cardiomyopathy through a MicroRNA pathway. iScience 2023; 26:105963. [PMID: 36818289 PMCID: PMC9932122 DOI: 10.1016/j.isci.2023.105963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Cardiac fibrosis is a hallmark in late-stage familial dilated cardiomyopathy (DCM) patients, although the underlying mechanism remains elusive. Cardiac exosomes (Exos) have been reported relating to fibrosis in ischemic cardiomyopathy. Thus, we investigated whether Exos secreted from the familial DCM cardiomyocytes could promote fibrogenesis. Using human iPSCs differentiated cardiomyocytes we isolated Exos of angiotensin II stimulation conditioned media from either DCM or control (CTL) cardiomyocytes. Of interest, cultured cardiac fibroblasts had increased fibrogenesis following exposure to DCM-Exos rather than CTL-Exos. Meanwhile, injecting DCM-Exos into mouse hearts enhanced cardiac fibrosis and impaired cardiac function. Mechanistically, we identified the upregulation of miRNA-218-5p in the DCM-Exos as a critical contributor to fibrogenesis. MiRNA-218-5p activated TGF-β signaling via suppression of TNFAIP3, a master inflammation inhibitor. In conclusion, our results illustrate a profibrotic effect of cardiomyocytes-derived Exos that highlights an additional pathogenesis pathway for cardiac fibrosis in DCM.
Collapse
Affiliation(s)
- Xuebin Fu
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Rachana Mishra
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Ling Chen
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Mir Yasir Arfat
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Sudhish Sharma
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Tami Kingsbury
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muthukumar Gunasekaran
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Progyaparamita Saha
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Charles Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deqiang Li
- Department of Surgery, Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA,Corresponding author
| | - Sunjay Kaushal
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA,Corresponding author
| |
Collapse
|
134
|
Ma X, Feng Y, Quan X, Geng B, Li G, Fu X, Zeng L. Multi-omics analysis revealed the role of CCT2 in the induction of autophagy in Alzheimer's disease. Front Genet 2023; 13:967730. [PMID: 36704351 PMCID: PMC9871314 DOI: 10.3389/fgene.2022.967730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Chaperonin containing TCP1 subunit 2 (CCT2) is essential in various neurodegenerative diseases, albeit its role in the pathogenesis of Alzheimer's disease (AD) remains elusive. This study aimed to evaluate the role of CCT2 in Alzheimer's disease. First, bioinformatics database analysis revealed that CCT2 was significantly downregulated in patients with Alzheimer's disease and associated with autophagic clearance of β-amyloid. The 789 differentially expressed genes overlapped in AD-group and CCT2-low/high group, and the CCT2-high-associated genes screened by Pearson coefficients were enriched in protein folding, autophagy, and messenger RNA stability regulation pathways. These results suggest that CCT2 is significantly and positively associated with multiple pathways linked to autophagy and negatively associated with neuronal death. The logistic prediction model with 13 key genes, such as CCT2, screened in this study better predicts Alzheimer's disease occurrence (AUC = 0.9671) and is a favorable candidate for predicting potential biological targets of Alzheimer's disease. Additionally, this study predicts reciprocal micro RNAs and small molecule drugs for hub genes. Our findings suggest that low CCT2 expression may be responsible for the autophagy suppression in Alzheimer's disease, providing an accurate explanation for its pathogenesis and new targets and small molecule inhibitors for its treatment.
Collapse
Affiliation(s)
- Xueting Ma
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Yuxin Feng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Xiangyu Quan
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Bingyu Geng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Guodong Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Linlin Zeng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China,*Correspondence: Linlin Zeng,
| |
Collapse
|
135
|
Hua X, Li Y, Pentaparthi SR, McGrail DJ, Zou R, Guo L, Shrawat A, Cirillo KM, Li Q, Bhat A, Xu M, Qi D, Singh A, McGrath F, Andrews S, Aung KL, Das J, Zhou Y, Lodi A, Mills GB, Eckhardt SG, Mendillo ML, Tiziani S, Wu E, Huang JH, Sahni N, Yi SS. Landscape of MicroRNA Regulatory Network Architecture and Functional Rerouting in Cancer. Cancer Res 2023; 83:59-73. [PMID: 36265133 PMCID: PMC9811166 DOI: 10.1158/0008-5472.can-20-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 12/15/2020] [Accepted: 10/14/2022] [Indexed: 02/05/2023]
Abstract
Somatic mutations are a major source of cancer development, and many driver mutations have been identified in protein coding regions. However, the function of mutations located in miRNA and their target binding sites throughout the human genome remains largely unknown. Here, we built detailed cancer-specific miRNA regulatory networks across 30 cancer types to systematically analyze the effect of mutations in miRNAs and their target sites in 3' untranslated region (3' UTR), coding sequence (CDS), and 5' UTR regions. A total of 3,518,261 mutations from 9,819 samples were mapped to miRNA-gene interactions (mGI). Mutations in miRNAs showed a mutually exclusive pattern with mutations in their target genes in almost all cancer types. A linear regression method identified 148 candidate driver mutations that can significantly perturb miRNA regulatory networks. Driver mutations in 3'UTRs played their roles by altering RNA binding energy and the expression of target genes. Finally, mutated driver gene targets in 3' UTRs were significantly downregulated in cancer and functioned as tumor suppressors during cancer progression, suggesting potential miRNA candidates with significant clinical implications. A user-friendly, open-access web portal (mGI-map) was developed to facilitate further use of this data resource. Together, these results will facilitate novel noncoding biomarker identification and therapeutic drug design targeting the miRNA regulatory networks. SIGNIFICANCE A detailed miRNA-gene interaction map reveals extensive miRNA-mediated gene regulatory networks with mutation-induced perturbations across multiple cancers, serving as a resource for noncoding biomarker discovery and drug development.
Collapse
Affiliation(s)
- Xu Hua
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongsheng Li
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Sairahul R. Pentaparthi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Daniel J. McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond Zou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Guo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aditya Shrawat
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas
| | - Kara M. Cirillo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akshay Bhat
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Min Xu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
| | - Dan Qi
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
| | - Ashok Singh
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Francis McGrath
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Steven Andrews
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Kyaw Lwin Aung
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, and Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yunyun Zhou
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Gordon B. Mills
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Precision Oncology, Knight Cancer Institute, Portland, Oregon
| | - S. Gail Eckhardt
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stefano Tiziani
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
| | - Erxi Wu
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, Texas
- Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, Texas
| | - Jason H. Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, Texas
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, Texas
| | - S. Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, Texas
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
136
|
Wang X, Cheng Q. Suppression of exosomal hsa_circ_0001005 eliminates the Vemurafenib resistance of melanoma. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04434-y. [PMID: 36598578 DOI: 10.1007/s00432-022-04434-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/18/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES More and more evidences show that circular RNAs (circRNAs) can be used as miRNA sponge to regulate the drug resistance of malignancies, including melanoma. However, how exosomal circRNAs participate in the therapeutic resistance of melanoma remains ambiguous. METHODS Vemurafenib-resistant A375 cells were cultured and then the circRNA profile of exosomes from the parental A375 and A375-resistant cells were sequenced. Transmission electron microscopy (TEM), exogenous nanoparticle tracking analysis (NTA) and Western Blot assays were leveraged to confirm the successful collection of exosomes from A375 and A375R cells. Another five published RNA-seq data and microRNA-seq data, and seven miRNA databases were collected to construct a competing endogenous RNA (ceRNA) network. Comprehensive bioinformatic analysis was adopted to identify key molecules related to the drug resistance, including multiscale embedded gene co-expression network analysis (MEGENA). Then, qRT-PCR, cell viability and colony formation were used to estimate the function of hub circRNAs. The role of has_circ_0001005 in vivo was verified via xenograft assay. The Tumor online Prognostic analyses Platform (ToPP) was leveraged to develop the has_circ_0001005-related prognostic models for melanoma patients based on TCGA data. RESULTS Compared with parental cells, hsa_circ_0001005 expression was significantly increased in resistant cells and their exosomes. The elevated level of hsa_circ_0001005 was related to the poor clinical prognosis of melanoma patients. Hsa_circ_0001005 found in melanoma was mainly secreted by drug-resistant cells as exosomes. Exosomal hsa_circ_0001005 activated multiple canonical pathways related to drug resistance through sponging four miRNAs, thus suppressing the drug sensitivity of melanoma. Knocking down hsa_circ_0001005 in vitro, we found that the inhibition of hsa_circ_0001005 could hinder the clone formation of melanoma. Further in vivo animal experiments suggested that suppression of hsa_circ_0001005 can increase the sensitivity to Vemurafenib of melanoma cells. Finally, we also constructed the functional regulatory ceRNA network and prognostic risk models for hsa_circ_0001005, and further survival analysis reveals that the regulatory network and prognostic risk models obviously affected the prognosis of melanoma patients. CONCLUSIONS This study confirmed that the level of hsa_circ_0001005 in exosomes is the key factor affecting drug resistance of melanoma, which provides a new potential therapeutic target for melanoma patients.
Collapse
Affiliation(s)
- Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qiong Cheng
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
137
|
Cao Y, Li R, Du Y, Jin N, Fang T, Ma F, Jin P. miR-92b-5p negatively regulates IKK through targeting its ORF region in the innate immune responses of amphioxus (Branchiostoma belcheri). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104556. [PMID: 36167145 DOI: 10.1016/j.dci.2022.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Cephalochordate (Amphioxus), situated at a key phylogenetic position in the phylum Chordata, serves as a model organism for studying the origin and evolution of the vertebrate innate immune. In this study, five members of precursor miR-92 family (miR-92a-1, miR-92a-2, miR-92b, miR-92c and miR-92d) are identified in Branchiostoma belcheri, and their evolutionary conservation and potential molecular functions in innate immunity are analyzed. Among them, miR-92b-5p was validated in HEK293 cells to target the coding region but not classic 3'UTR of IKK (inhibitor of nuclear factor kappa-B kinase) mRNA, one integral component of MAPK and TLR4 immune signaling. Furthermore, the spatiotemporal expression patterns of miR-92b-5p and IKK were examined in different tissues or different time points (2 h, 4 h, 8 h, 12 h, 24 h and 48 h) post LPS stimulation at RNA and protein level in vivo. The seemingly inverse expression pattern between miR-92b-5p and IKK supports the involvement of miR-92b-5p in Branchiostoma belcheri innate immune response. In conclusion, our work not only illustrates the evolutionary pattern of Branchiostoma belcheri miR-92 family across chordates, but also reveals that miR-92b-5p could target IKK expression to regulate innate immune response.
Collapse
Affiliation(s)
- Yunpeng Cao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Ranting Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Yongxin Du
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Na Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Tao Fang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
138
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
139
|
Profiling the Spatial Expression Pattern and ceRNA Network of lncRNA, miRNA, and mRNA Associated with the Development of Intermuscular Bones in Zebrafish. BIOLOGY 2022; 12:biology12010075. [PMID: 36671767 PMCID: PMC9855694 DOI: 10.3390/biology12010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Intermuscular bones (IBs) are small spicule-like bones in the muscular septum of fish, which affect their edible and economic value. The molecular mechanism of IB development is still uncertain. Numerous studies have shown that the ceRNA network, which is composed of mRNA, lncRNA, and miRNA, plays an important regulatory role in bone development. In this study, we compared the mRNA, lncRNA, and miRNA expression profiles in different IB development segments of zebrafish. The development of IBs includes two main processes, which are formation and growth. A series of genes implicated in the formation and growth of IBs were identified through gene differential expression analysis and expression pattern analysis. Functional enrichment analysis showed that the functions of genes implicated in the regulation of the formation and growth of IBs were quite different. Ribosome and oxidative phosphorylation signaling pathways were significantly enriched during the formation of IBs, suggesting that many proteins are required to form IBs. Several pathways known to be associated with bone development have been shown to play an important role in the growth of IBs, including calcium, ECM-receptor interaction, Wnt, TGF-β, and hedgehog signaling pathways. According to the targeting relationship and expression correlation of mRNA, lncRNA, and miRNA, the ceRNA networks associated with the growth of IBs were constructed, which comprised 33 mRNAs, 9 lncRNAs, and 7 miRNAs. This study provides new insight into the molecular mechanism of the development of IBs.
Collapse
|
140
|
Millard RS, Bickley LK, Bateman KS, Verbruggen B, Farbos A, Lange A, Moore KA, Stentiford GD, Tyler CR, van Aerle R, Santos EM. Resistance to white spot syndrome virus in the European shore crab is associated with suppressed virion trafficking and heightened immune responses. Front Immunol 2022; 13:1057421. [PMID: 36636327 PMCID: PMC9831657 DOI: 10.3389/fimmu.2022.1057421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
Introduction All decapod crustaceans are considered potentially susceptible to White Spot Syndrome Virus (WSSV) infection, but the degree of White Spot Disease (WSD) susceptibility varies widely between species. The European shore crab Carcinus maenas can be infected with the virus for long periods of time without signs of disease. Given the high mortality rate of susceptible species, the differential susceptibility of these resistant hosts offers an opportunity to investigate mechanisms of disease resistance. Methods Here, the temporal transcriptional responses (mRNA and miRNA) of C. maenas following WSSV injection were analysed and compared to a previously published dataset for the highly WSSV susceptible Penaeus vannamei to identify key genes, processes and pathways contributing to increased WSD resistance. Results We show that, in contrast to P. vannamei, the transcriptional response during the first 2 days following WSSV injection in C. maenas is limited. During the later time points (7 days onwards), two groups of crabs were identified, a recalcitrant group where no replication of the virus occurred, and a group where significant viral replication occurred, with the transcriptional profiles of the latter group resembling those of WSSV-susceptible species. We identify key differences in the molecular responses of these groups to WSSV injection. Discussion We propose that increased WSD resistance in C. maenas may result from impaired WSSV endocytosis due to the inhibition of internal vesicle budding by dynamin-1, and a delay in movement to the nucleus caused by the downregulation of cytoskeletal transcripts required for WSSV cytoskeleton docking, during early stages of the infection. This response allows resistant hosts greater time to fine-tune immune responses associated with miRNA expression, apoptosis and the melanisation cascade to defend against, and clear, invading WSSV. These findings suggest that the initial stages of infection are key to resistance to WSSV in the crab and highlight possible pathways that could be targeted in farmed crustacean to enhance resistance to WSD.
Collapse
Affiliation(s)
- Rebecca S. Millard
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Weymouth, United Kingdom,Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom,*Correspondence: Rebecca S. Millard, ; Eduarda M. Santos,
| | - Lisa K. Bickley
- Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom,Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Kelly S. Bateman
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Weymouth, United Kingdom,Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom
| | - Bas Verbruggen
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Audrey Farbos
- University of Exeter Sequencing Facility, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Anke Lange
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Karen A. Moore
- University of Exeter Sequencing Facility, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Grant D. Stentiford
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Weymouth, United Kingdom,Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom
| | - Charles R. Tyler
- Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom,Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Weymouth, United Kingdom,Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom
| | - Eduarda M. Santos
- Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom,Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom,*Correspondence: Rebecca S. Millard, ; Eduarda M. Santos,
| |
Collapse
|
141
|
Yan T, Zhu M, Weng F, Zhu S, Wang C, Guo C. Comprehensive analysis of roles of atrial-fibrillation-related genes in lung adenocarcinoma using bioinformatic methods. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:55. [PMID: 36542177 DOI: 10.1007/s12032-022-01912-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Atrial fibrillation (AF) is the most common tachyarrhythmia in the world. Lung cancer is the leading cause of cancer deaths in 93 countries. Previous studies demonstrated that the prevalence of AF was higher in patients with lung cancer. However, research on the associations between AF and lung cancer is still rare. In the present study, we first identified AF-related genes using weighted gene correlation network analysis. We then analyzed the expression profiles, prognosis, immune infiltration, and methylation characteristics of these genes in LUAD patients using bioinformatics analysis. We found several AF-related genes, including CBX3, BUB1, DSC2, P4HA1, and CYP4Z1, which differently expressed between tumor and normal tissues. Survival analysis demonstrated that CYP4Z1 was positively correlated with overall survival in LUAD patients, while CBX3, BUB1, DSC2, and P4HA1 were negatively correlated. Moreover, we found that the methylation level of DSC2 in normal lung tissues was significantly higher than that in tumor tissues, and six methylation sites in the DNA sequences of DSC2 were identified negatively correlated with its expression levels. Immune infiltration analysis suggested that levels of immune cell infiltration were related to gene expression levels in varying degrees. We identified AF-related genes and found these genes were correlated with prognosis, immune infiltration, and methylation levels in lung cancer patients. We also constructed a risk signature based on these genes in LUAD patients. We hoped that the current study could provide a novel insight into roles of AF-related genes in lung cancer patients.
Collapse
Affiliation(s)
- Tao Yan
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Miao Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Fan Weng
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shijie Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
142
|
Zhang X, Tan J, Chen Y, Ma S, Bai W, Peng Y, Shi G. Identification of serum MiRNAs as candidate biomarkers for non-small cell lung cancer diagnosis. BMC Pulm Med 2022; 22:479. [PMID: 36522766 PMCID: PMC9756610 DOI: 10.1186/s12890-022-02267-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lung cancer is one of the most common solid tumors worldwide and the leading cause of cancer-associated death. Non-small cell lung cancer (NSCLC) is accounts for approximately 85% of all the lung cancers and lung squamous carcinoma (SCC) and adenocarcinoma (ADC) are the main subtypes of NSCLC. Early diagnose using serum biomarkers could improve the overall survival of patients. In this study, we aimed to identify miRNAs from serum with clinical utility in the diagnosis of NSCLC. METHODS Ten patients with SCC, ten patients with ADC and five noncancerous individuals were enrolled in the screening cohort. miRNA expression levels in serum were measured by microarray analysis. Candidate miRNAs were validated by real-time quantitative polymerase chain reaction analysis in a validation cohort of 78 NSCLC patients and 44 noncancerous individuals. Receiver operating characteristic curves were used to assess the diagnostic performance of serum miRNAs for NSCLC. Logistic regression was used to evaluate the diagnostic value of the combination of markers. RESULTS Six candidate miRNAs were differentially expressed between NSCLC patients and noncancerous individuals in the screening set (fold change > 2, p < 0.05). Among them, expression levels of miR-3149 and miR-4769.3p were confirmed to be significantly increased in tumor serum in the validation set. The area under the curve values of miR-3149 and miR-4769.3p in distinguishing NSCLC patients from noncancerous controls were 0.830 and 0.735, respectively. When combined with tumor markers CEA and Cyfra21-1, the joint diagnostic model increased the area under the curve to 0.898. CONCLUSION Serum miRNAs miR-3149 and miR-4769.3p were up-regulated in NSCLC and may be potential biomarkers for early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Xintong Zhang
- grid.414341.70000 0004 1757 0026Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing, China ,Beijing Tuberculosis Thoracic Tumor Institute, Beijing, 101149 China
| | - Jinjing Tan
- Beijing Tuberculosis Thoracic Tumor Institute, Beijing, 101149 China ,grid.414341.70000 0004 1757 0026Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yan Chen
- grid.414341.70000 0004 1757 0026Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing, China ,Beijing Tuberculosis Thoracic Tumor Institute, Beijing, 101149 China
| | - Shang Ma
- grid.414341.70000 0004 1757 0026Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing, China ,Beijing Tuberculosis Thoracic Tumor Institute, Beijing, 101149 China
| | - Wanqiu Bai
- grid.414341.70000 0004 1757 0026Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing, China ,Beijing Tuberculosis Thoracic Tumor Institute, Beijing, 101149 China
| | - Yanjing Peng
- Beijing Tuberculosis Thoracic Tumor Institute, Beijing, 101149 China ,grid.414341.70000 0004 1757 0026Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Guangli Shi
- grid.414341.70000 0004 1757 0026Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing, China ,Beijing Tuberculosis Thoracic Tumor Institute, Beijing, 101149 China
| |
Collapse
|
143
|
Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling. BIOLOGY 2022; 11:biology11121798. [PMID: 36552307 PMCID: PMC9775672 DOI: 10.3390/biology11121798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. They are suggested to be involved in most biological processes of the cell primarily by targeting messenger RNAs (mRNAs) for cleavage or translational repression. Their binding to their target sites is mediated by the Argonaute (AGO) family of proteins. Thus, miRNA target prediction is pivotal for research and clinical applications. Moreover, transfer-RNA-derived fragments (tRFs) and other types of small RNAs have been found to be potent regulators of Ago-mediated gene expression. Their role in mRNA regulation is still to be fully elucidated, and advancements in the computational prediction of their targets are in their infancy. To shed light on these complex RNA-RNA interactions, the availability of good quality high-throughput data and reliable computational methods is of utmost importance. Even though the arsenal of computational approaches in the field has been enriched in the last decade, there is still a degree of discrepancy between the results they yield. This review offers an overview of the relevant advancements in the field of bioinformatics and machine learning and summarizes the key strategies utilized for small RNA target prediction. Furthermore, we report the recent development of high-throughput sequencing technologies, and explore the role of non-miRNA AGO driver sequences.
Collapse
|
144
|
miRBind: A Deep Learning Method for miRNA Binding Classification. Genes (Basel) 2022; 13:genes13122323. [PMID: 36553590 PMCID: PMC9777820 DOI: 10.3390/genes13122323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The binding of microRNAs (miRNAs) to their target sites is a complex process, mediated by the Argonaute (Ago) family of proteins. The prediction of miRNA:target site binding is an important first step for any miRNA target prediction algorithm. To date, the potential for miRNA:target site binding is evaluated using either co-folding free energy measures or heuristic approaches, based on the identification of binding 'seeds', i.e., continuous stretches of binding corresponding to specific parts of the miRNA. The limitations of both these families of methods have produced generations of miRNA target prediction algorithms that are primarily focused on 'canonical' seed targets, even though unbiased experimental methods have shown that only approximately half of in vivo miRNA targets are 'canonical'. Herein, we present miRBind, a deep learning method and web server that can be used to accurately predict the potential of miRNA:target site binding. We trained our method using seed-agnostic experimental data and show that our method outperforms both seed-based approaches and co-fold free energy approaches. The full code for the development of miRBind and a freely accessible web server are freely available.
Collapse
|
145
|
Ali A, Salem M. Genome-wide identification of antisense lncRNAs and their association with susceptibility to Flavobacterium psychrophilum in rainbow trout. Front Immunol 2022; 13:1050722. [PMID: 36561762 PMCID: PMC9763276 DOI: 10.3389/fimmu.2022.1050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic genomes encode long noncoding natural antisense transcripts (lncNATs) that have been increasingly recognized as regulatory members of gene expression. Recently, we identified a few antisense transcripts correlating in expression with immune-related genes. However, a systematic genome-wide analysis of lncNATs in rainbow trout is lacking. This study used 134 RNA-Seq datasets from five different projects to identify antisense transcripts. A total of 13,503 lncNATs were identified genome-wide. About 75% of lncNATs showed multiple exons compared to 36.5% of the intergenic lncRNAs. RNA-Seq datasets from resistant, control, and susceptible rainbow trout genetic lines with significant differences in survival rate following Flavobacterium psychrophilum (Fp) infection were analyzed to investigate the potential role of the lncNATs during infection. Twenty-four pairwise comparisons between the different genetic lines, infectious status, and time points revealed 581 differentially expressed (DE) lncNATs and 179 differentially used exons (DUEs). Most of the DE lncNATs strongly and positively correlated in expression with their corresponding sense transcripts across 24 RNA-Seq datasets. LncNATs complementary to genes related to immunity, muscle contraction, proteolysis, and iron/heme metabolism were DE following infection. LncNATs complementary to hemolysis-related genes were DE in the resistant fish compared to susceptible fish on day 5 post-infection, suggesting enhanced clearance of free hemoglobin (Hb) and heme and increased erythropoiesis. LncNATs complementary to hepcidin, a master negative regulator of the plasma iron concentration, were the most downregulated lncNATs on day 5 of bacterial infection in the resistant fish. Ninety-four DE lncNAT, including five complementary to hepcidin, are located within 26 QTL regions previously identified in association with bacterial cold water disease (BCWD) in rainbow trout. Collectively, lncNATs are involved in the molecular architecture of fish immunity and should be further investigated for potential applications in genomic selection and genetic manipulation in aquaculture.
Collapse
Affiliation(s)
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
146
|
Host tRNA-Derived RNAs Target the 3'Untranslated Region of SARS-CoV-2. Pathogens 2022; 11:pathogens11121479. [PMID: 36558813 PMCID: PMC9786188 DOI: 10.3390/pathogens11121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic revealed a need for new understanding of the mechanisms regulating host-pathogen interactions during viral infection. Transfer RNA-derived RNAs (tDRs), previously called transfer RNA fragments (tRFs), have recently emerged as potential regulators of viral pathogenesis. Many predictive studies using bioinformatic approaches have been conducted providing a repertoire of potential small RNA candidates for further analyses; however, few targets have been validated to directly bind to SARS-CoV-2 sequences. In this study, we used available data sets to identify host tDR expression altered in response to SARS-CoV-2 infection. RNA-interaction-prediction tools were used to identify sequences in the SARS-CoV-2 genome where tDRs could potentially bind. We then developed luciferase assays to confirm direct regulation through a predicted region of SARS-CoV-2 by tDRs. We found that two tDRs were downregulated in both clinical and in vitro cell culture studies of SARS-CoV-2 infection. Binding sites for these two tDRs were present in the 3' untranslated region (3'UTR) of the SARS-CoV-2 reference virus and both sites were altered in Variants of Concern (VOCs) that emerged later in the pandemic. These studies directly confirm the binding of human tDRs to a specific region of the 3'UTR of SARS-CoV-2 providing evidence for a novel mechanism for host-pathogen regulation.
Collapse
|
147
|
Garg P, Jamal F, Srivastava P. Deciphering the role of precursor miR-12136 and miR-8485 in the progression of intellectual disability (ID). IBRO Neurosci Rep 2022; 13:393-401. [PMID: 36345471 PMCID: PMC9636553 DOI: 10.1016/j.ibneur.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
The short, non-coding RNAs known as miRNA modulate the expression of human protein-coding genes. About 90 % of genes in humans are controlled by the expression of miRNA. The dysfunction of these miRNA target genes leads to many human diseases, including neurodevelopmental disorders as well. Intellectual disability (ID) is a neurodevelopmental disorder that is characterized by adaptive behavior and intellectual functioning which includes logical reasoning, ability in learning, practical intelligence, and verbal skills. Identification of miRNA involved in ID and their associated target genes can help in the identification of diagnostic biomarkers related to ID at a very early age. The present study is an attempt to identify miRNA and their associated target genes that play an important role in the development of intellectual disability patients through the meta-analysis of available transcriptome data. A total of 6 transcriptomic studies were retrieved from NCBI and were subjected to quality check and trimming before alignment. The normalization and identification of differentially expressed miRNA were carried out using the EdgeR package of R studio. Further, the gene targets of downregulated miRNA were identified using miRDB. The system biology approaches were also applied to the study to identify the hub target genes and the diseases associated with main miRNAs.
Collapse
Affiliation(s)
- Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Farrukh Jamal
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, U.P., India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| |
Collapse
|
148
|
Gong S, Wang S, Shao M. Mechanism of METTL14-mediated m 6A modification in non-small cell lung cancer cell resistance to cisplatin. J Mol Med (Berl) 2022; 100:1771-1785. [PMID: 36352154 DOI: 10.1007/s00109-022-02268-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Methyltransferase-like 14 (METTL14) mediates N6-methyladenosine (m6A) modification to influence cancer progression. This study aims to determine the mechanism of METTL14-mediated m6A in non-small cell lung cancer (NSCLC) cell resistance to cisplatin (DDP). METTL14, miR-19a-5p, RBM24, and AXIN1 expressions in NSCLC tissues/cells were determined. DDP-resistant cell line was obtained, followed by the interference of METTL14 expression. NSCLC cells were treated with DDP to establish a drug-resistant cell line, and METTL14 expression in cells was intervened. The IC50 of NSCLC cells to DDP was measured by CCK-8 assay. NSCLC cell proliferation and apoptosis were observed by clone formation assay and flow cytometry. The content of m6A in total RNA in tissues and cells of NSCLC patients was detected using m6A Methylation Quantification Kit. The expressions of DGCR8-bound pri-miR-19a and m6A-modified pri-miR-19a were detected. The binding relationships between miR-19a-5p and RBM24 and RBM24 and AXIN1 were validated using dual-luciferase assay and RNA immunoprecipitation. Finally, mouse xenograft tumor model was established to verify the role of METTL14 in vivo. METTL14 was highly expressed in NSCLC. METTL14 silencing diminished IC50 to DDP, repressed NSCLC cell proliferation, and enhanced apoptosis. METTL14-mediated m6A induced recognition and processing of pri-miR-19a by DGCR8, thus promoting the transition of pri-miR-19a to miR-19a-5p, repressing RBM24 expression, reducing the binding of RBM24 and AXIN1, and suppressing AXIN1 transcription. miR-19a-5p overexpression or RBM24/AXIN1 silencing abolished the effect of METTL14 silencing on NSCLC cell resistance to DDP. METTL14 silencing in vivo enhanced the suppressive role of DDP to tumor growth. Collectively, METTL14-mediated m6A modification facilitated NSCLC cell resistance to DDP via miR-19a-5p/RBM24/AXIN1 axis. KEY MESSAGES: • METTL14 is highly expressed NSCLC and further increased in DDP-resistant cells. • METTL14 silencing attenuates DDP resistance of NSCLC cells. • METTL14 promotes the nature of pri-miR-19a by upregulating pri-miR-19a m6A level. • miR-19a-5p targets RBM24, thus reducing the binding of RBM24 and AXIN1 and inhibiting AXIN1 transcription. • METTL14 silencing in vivo enhances the suppressive role of DDP to tumor growth.
Collapse
Affiliation(s)
- Shulei Gong
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang, 110001, People's Republic of China
| | - Shiyang Wang
- Department of Geriatric Surgery, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang, 110001, People's Republic of China
| | - Mingrui Shao
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
149
|
MicroRNA-21-5p promotes mucosal type 2 inflammation via regulating GLP1R/IL-33 signaling in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2022; 150:1460-1475. [PMID: 35835254 DOI: 10.1016/j.jaci.2022.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND It has been known that chronic rhinosinusitis with nasal polyps (CRSwNP) is a type 2 inflammation-dominated disease; however, the reasons causing such type of mucosal inflammation in CRSwNP are not well elucidated. OBJECTIVE We sought to investigate the role of microRNA-21-5p (miR-21-5p) in regulating mucosal type 2 inflammation in CRSwNP. METHODS miR-21-5p expression was detected in nasal mucosa of patients with CRSwNP. Correlations between miR-21-5p and indicators of type 2 inflammation were further analyzed. miR-21 knockout mice were used to explore the role of miR-21-5p in a murine model of eosinophilic (E) CRSwNP. Target gene of miR-21-5p related to type 2 inflammation in CRSwNP was identified. RESULTS The upregulated miR-21-5p in the nasal mucosa of patients with CRSwNP, compared with control subjects, was expressed higher in patients with ECRSwNP than in patients with nonECRSwNP. miR-21-5p expression was positively correlated with mucosal eosinophil infiltrations and the expression of type 2 inflammatory cytokines. In the CRSwNP mice, miR-21 knockout significantly attenuated type 2 inflammation, as indicated by eosinophil infiltrations and expression of cytokines/chemokines in nasal mucosa and lavage fluid; moreover, genes associated with type 2 inflammation were extensively downregulated at the transcriptome level in miR-21 knockout mice. Glucagon-like peptide-1 receptor, which was negatively correlated with miR-21-5p expression in human nasal mucosa, was identified as the target of miR-21-5p. Overexpression of miR-21-5p induced IL-33 expression, whereas glucagon-like peptide-1 receptor agonist decreased IL-33 production in airway epithelial cells. CONCLUSIONS miR-21-5p aggravates type 2 inflammation in the nasal mucosa of patients with CRSwNP via targeting glucagon-like peptide-1 receptor/IL-33 signaling, which may be a potential therapeutic target for CRSwNP.
Collapse
|
150
|
Nersisyan S, Zhiyanov A, Engibaryan N, Maltseva D, Tonevitsky A. A novel approach for a joint analysis of isomiR and mRNA expression data reveals features of isomiR targeting in breast cancer. Front Genet 2022; 13:1070528. [PMID: 36531236 PMCID: PMC9751988 DOI: 10.3389/fgene.2022.1070528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 07/31/2023] Open
Abstract
A widely used procedure for selecting significant miRNA-mRNA or isomiR-mRNA pairs out of predicted interactions involves calculating the correlation between expression levels of miRNAs/isomiRs and mRNAs in a series of samples. In this manuscript, we aimed to assess the validity of this procedure by comparing isomiR-mRNA correlation profiles in sets of sequence-based predicted target mRNAs and non-target mRNAs (negative controls). Target prediction was carried out using RNA22 and TargetScan algorithms. Spearman's correlation analysis was conducted using miRNA and mRNA sequencing data of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) project. Luminal A, luminal B, basal-like breast cancer subtypes, and adjacent normal tissue samples were analyzed separately. Using the sets of putative targets and non-targets, we introduced adjusted isomiR targeting activity (ITA)-the number of negatively correlated potential isomiR targets adjusted by the background (estimated using non-target mRNAs). We found that for most isomiRs a significant negative correlation between isomiR-mRNA expression levels appeared more often in a set of predicted targets compared to the non-targets. This trend was detected for both classical seed region binding types (8mer, 7mer-m8, 7mer-A1, 6mer) predicted by TargetScan and the non-classical ones (G:U wobbles and up to one mismatch or unpaired nucleotide within seed sequence) predicted by RNA22. Adjusted ITA distributions were similar for target sites located in 3'-UTRs and coding mRNA sequences, while 5'-UTRs had much lower scores. Finally, we observed strong cancer subtype-specific patterns of isomiR activity, highlighting the differences between breast cancer molecular subtypes and normal tissues. Surprisingly, our target prediction- and correlation-based estimates of isomiR activities were practically non-correlated with the average isomiR expression levels neither in cancerous nor in normal samples.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Anton Zhiyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Narek Engibaryan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Art Photonics GmbH, Berlin, Germany
| |
Collapse
|