101
|
Saayman X, Graham E, Nathan WJ, Nussenzweig A, Esashi F. Centromeres as universal hotspots of DNA breakage, driving RAD51-mediated recombination during quiescence. Mol Cell 2023; 83:523-538.e7. [PMID: 36702125 PMCID: PMC10009740 DOI: 10.1016/j.molcel.2023.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 10/07/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023]
Abstract
Centromeres are essential for chromosome segregation in most animals and plants yet are among the most rapidly evolving genome elements. The mechanisms underlying this paradoxical phenomenon remain enigmatic. Here, we report that human centromeres innately harbor a striking enrichment of DNA breaks within functionally active centromere regions. Establishing a single-cell imaging strategy that enables comparative assessment of DNA breaks at repetitive regions, we show that centromeric DNA breaks are induced not only during active cellular proliferation but also de novo during quiescence. Markedly, centromere DNA breaks in quiescent cells are resolved enzymatically by the evolutionarily conserved RAD51 recombinase, which in turn safeguards the specification of functional centromeres. This study highlights the innate fragility of centromeres, which may have been co-opted over time to reinforce centromere specification while driving rapid evolution. The findings also provide insights into how fragile centromeres are likely to contribute to human disease.
Collapse
Affiliation(s)
- Xanita Saayman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - William J Nathan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892-4254, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892-4254, USA
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
102
|
Le TK, Cherif C, Omabe K, Paris C, Lannes F, Audebert S, Baudelet E, Hamimed M, Barbolosi D, Finetti P, Bastide C, Fazli L, Gleave M, Bertucci F, Taïeb D, Rocchi P. DDX5 mRNA-targeting antisense oligonucleotide as a new promising therapeutic in combating castration-resistant prostate cancer. Mol Ther 2023; 31:471-486. [PMID: 35965411 PMCID: PMC9931527 DOI: 10.1016/j.ymthe.2022.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/26/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023] Open
Abstract
The heat shock protein 27 (Hsp27) has emerged as a principal factor of the castration-resistant prostate cancer (CRPC) progression. Also, an antisense oligonucleotide (ASO) against Hsp27 (OGX-427 or apatorsen) has been assessed in different clinical trials. Here, we illustrate that Hsp27 highly regulates the expression of the human DEAD-box protein 5 (DDX5), and we define DDX5 as a novel therapeutic target for CRPC treatment. DDX5 overexpression is strongly correlated with aggressive tumor features, notably with CRPC. DDX5 downregulation using a specific ASO-based inhibitor that acts on DDX5 mRNAs inhibits cell proliferation in preclinical models, and it particularly restores the treatment sensitivity of CRPC. Interestingly, through the identification and analysis of DDX5 protein interaction networks, we have identified some specific functions of DDX5 in CRPC that could contribute actively to tumor progression and therapeutic resistance. We first present the interactions of DDX5 and the Ku70/80 heterodimer and the transcription factor IIH, thereby uncovering DDX5 roles in different DNA repair pathways. Collectively, our study highlights critical functions of DDX5 contributing to CRPC progression and provides preclinical proof of concept that a combination of ASO-directed DDX5 inhibition with a DNA damage-inducing therapy can serve as a highly potential novel strategy to treat CRPC.
Collapse
Affiliation(s)
- Thi Khanh Le
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; Department of Life Science, University of Science and Technology of Hanoi, Hanoi 000084, Vietnam
| | - Chaïma Cherif
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - Kenneth Omabe
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - Clément Paris
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - François Lannes
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; Urology Deparment, AP-HM Hospital Nord, Aix-Marseille University, 13915 Marseille Cedex 20, France
| | - Stéphane Audebert
- Marseille Protéomique, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France
| | - Emilie Baudelet
- Marseille Protéomique, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France
| | - Mourad Hamimed
- Inria - Inserm team COMPO, COMPutational pharmacology and clinical Oncology, Centre Inria Sophia Antipolis - Méditerranée, Centre de Recherches en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Dominique Barbolosi
- Inria - Inserm team COMPO, COMPutational pharmacology and clinical Oncology, Centre Inria Sophia Antipolis - Méditerranée, Centre de Recherches en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - Cyrille Bastide
- Urology Deparment, AP-HM Hospital Nord, Aix-Marseille University, 13915 Marseille Cedex 20, France
| | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - François Bertucci
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - David Taïeb
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; La Timone University Hospital, Aix-Marseille University, 13005 Marseille, France; European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France.
| |
Collapse
|
103
|
Vital T, Wali A, Butler KV, Xiong Y, Foster JP, Marcel SS, McFadden AW, Nguyen VU, Bailey BM, Lamb KN, James LI, Frye SV, Mosely AL, Jin J, Pattenden SG, Davis IJ. MS0621, a novel small-molecule modulator of Ewing sarcoma chromatin accessibility, interacts with an RNA-associated macromolecular complex and influences RNA splicing. Front Oncol 2023; 13:1099550. [PMID: 36793594 PMCID: PMC9924231 DOI: 10.3389/fonc.2023.1099550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Ewing sarcoma is a cancer of children and young adults characterized by the critical translocation-associated fusion oncoprotein EWSR1::FLI1. EWSR1::FLI1 targets characteristic genetic loci where it mediates aberrant chromatin and the establishment of de novo enhancers. Ewing sarcoma thus provides a model to interrogate mechanisms underlying chromatin dysregulation in tumorigenesis. Previously, we developed a high-throughput chromatin-based screening platform based on the de novo enhancers and demonstrated its utility in identifying small molecules capable of altering chromatin accessibility. Here, we report the identification of MS0621, a molecule with previously uncharacterized mechanism of action, as a small molecule modulator of chromatin state at sites of aberrant chromatin accessibility at EWSR1::FLI1-bound loci. MS0621 suppresses cellular proliferation of Ewing sarcoma cell lines by cell cycle arrest. Proteomic studies demonstrate that MS0621 associates with EWSR1::FLI1, RNA binding and splicing proteins, as well as chromatin regulatory proteins. Surprisingly, interactions with chromatin and many RNA-binding proteins, including EWSR1::FLI1 and its known interactors, were RNA-independent. Our findings suggest that MS0621 affects EWSR1::FLI1-mediated chromatin activity by interacting with and altering the activity of RNA splicing machinery and chromatin modulating factors. Genetic modulation of these proteins similarly inhibits proliferation and alters chromatin in Ewing sarcoma cells. The use of an oncogene-associated chromatin signature as a target allows for a direct approach to screen for unrecognized modulators of epigenetic machinery and provides a framework for using chromatin-based assays for future therapeutic discovery efforts.
Collapse
Affiliation(s)
- Tamara Vital
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Aminah Wali
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kyle V. Butler
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joseph P. Foster
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shelsa S. Marcel
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andrew W. McFadden
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Valerie U. Nguyen
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benton M. Bailey
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelsey N. Lamb
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lindsey I. James
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen V. Frye
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amber L. Mosely
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samantha G. Pattenden
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ian J. Davis
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
104
|
|
105
|
Miller HE, Montemayor D, Li J, Levy SA, Pawar R, Hartono S, Sharma K, Frost B, Chedin F, Bishop AJR. Exploration and analysis of R-loop mapping data with RLBase. Nucleic Acids Res 2023; 51:D1129-D1137. [PMID: 36039757 PMCID: PMC9825527 DOI: 10.1093/nar/gkac732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 01/30/2023] Open
Abstract
R-loops are three-stranded nucleic acid structures formed from the hybridization of RNA and DNA. In 2012, Ginno et al. introduced the first R-loop mapping method. Since that time, dozens of R-loop mapping studies have been conducted, yielding hundreds of publicly available datasets. Current R-loop databases provide only limited access to these data. Moreover, no web tools for analyzing user-supplied R-loop datasets have yet been described. In our recent work, we reprocessed 810 R-loop mapping samples, building the largest R-loop data resource to date. We also defined R-loop consensus regions and developed a framework for R-loop data analysis. Now, we introduce RLBase, a user-friendly database that provides the capability to (i) explore hundreds of public R-loop mapping datasets, (ii) explore R-loop consensus regions, (iii) analyze user-supplied data and (iv) download standardized and reprocessed datasets. RLBase is directly accessible via the following URL: https://gccri.bishop-lab.uthscsa.edu/shiny/rlbase/.
Collapse
Affiliation(s)
- Henry E Miller
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.,Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA.,Bioinformatics Research Network, Atlanta, GA 30317, USA
| | - Daniel Montemayor
- Department of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA.,Center for Precision Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Janet Li
- Bioinformatics Research Network, Atlanta, GA 30317, USA.,Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.,Canada's Michael Smith Genome Sciences Center, BC Cancer Research, Vancouver, BC V5Z 1L3, Canada
| | - Simon A Levy
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.,Bioinformatics Research Network, Atlanta, GA 30317, USA.,Sam & Ann Barshop Institute for Longevity & Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA.,Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Roshan Pawar
- Bioinformatics Research Network, Atlanta, GA 30317, USA.,Faculty of Applied Science, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stella Hartono
- Department of Molecular and Cellular Biology, UC Davis, Davis, CA 95616, USA
| | - Kumar Sharma
- Department of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA.,Center for Precision Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Bess Frost
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.,Sam & Ann Barshop Institute for Longevity & Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA.,Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Frédéric Chedin
- Department of Molecular and Cellular Biology, UC Davis, Davis, CA 95616, USA
| | - Alexander J R Bishop
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.,Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA.,May's Cancer Center, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
106
|
Shen L, Yang Y. Detecting R-Loop Formation Using a Plasmid-Based In Vitro Transcription Assay. Methods Mol Biol 2023; 2666:265-278. [PMID: 37166671 DOI: 10.1007/978-1-0716-3191-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
R-loops are three-stranded nucleic acid structures that consist of a DNA-RNA hybrid and a displaced single-stranded DNA. Since it was first reported by Ronald Davis and colleagues over 40 years ago, the study of R-loops has become an increasingly expanded area of research. Numerous factors have been identified to modulate the dynamic formation and resolution of R-loops, which are critical for proper controls of gene expression and genome stability. Along the lines of these discoveries, various biochemical and cellular assays have been developed to detect R-loop changes in vitro and in vivo. In this chapter, we describe a protocol for measuring R-loop formation using a plasmid-based in vitro transcription assay. The R-loop formed is then detected and quantified by using gel mobility, antibody staining, and DNA-RNA immunoprecipitation (DRIP)-qPCR assays. Unlike the helicase assay that uses short R-loop substrates, this assay system introduces DNA topology and active transcription as additional variables that impact R-loop formation, thus, more closely recapitulating in vivo situations. Furthermore, this method can be adopted for investigation of cis-elements and trans-acting factors that influence R-loop formation.
Collapse
Affiliation(s)
- Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA, USA
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA, USA.
| |
Collapse
|
107
|
Roles of RNA-binding proteins in neurological disorders, COVID-19, and cancer. Hum Cell 2023; 36:493-514. [PMID: 36528839 PMCID: PMC9760055 DOI: 10.1007/s13577-022-00843-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) have emerged as important players in multiple biological processes including transcription regulation, splicing, R-loop homeostasis, DNA rearrangement, miRNA function, biogenesis, and ribosome biogenesis. A large number of RBPs had already been identified by different approaches in various organisms and exhibited regulatory functions on RNAs' fate. RBPs can either directly or indirectly interact with their target RNAs or mRNAs to assume a key biological function whose outcome may trigger disease or normal biological events. They also exert distinct functions related to their canonical and non-canonical forms. This review summarizes the current understanding of a wide range of RBPs' functions and highlights their emerging roles in the regulation of diverse pathways, different physiological processes, and their molecular links with diseases. Various types of diseases, encompassing colorectal carcinoma, non-small cell lung carcinoma, amyotrophic lateral sclerosis, and Severe acute respiratory syndrome coronavirus 2, aberrantly express RBPs. We also highlight some recent advances in the field that could prompt the development of RBPs-based therapeutic interventions.
Collapse
|
108
|
Crossley MP, Song C, Bocek MJ, Choi JH, Kousouros JN, Sathirachinda A, Lin C, Brickner JR, Bai G, Lans H, Vermeulen W, Abu-Remaileh M, Cimprich KA. R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune response. Nature 2023; 613:187-194. [PMID: 36544021 PMCID: PMC9949885 DOI: 10.1038/s41586-022-05545-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
R-loops are RNA-DNA-hybrid-containing nucleic acids with important cellular roles. Deregulation of R-loop dynamics can lead to DNA damage and genome instability1, which has been linked to the action of endonucleases such as XPG2-4. However, the mechanisms and cellular consequences of such processing have remained unclear. Here we identify a new population of RNA-DNA hybrids in the cytoplasm that are R-loop-processing products. When nuclear R-loops were perturbed by depleting the RNA-DNA helicase senataxin (SETX) or the breast cancer gene BRCA1 (refs. 5-7), we observed XPG- and XPF-dependent cytoplasmic hybrid formation. We identify their source as a subset of stable, overlapping nuclear hybrids with a specific nucleotide signature. Cytoplasmic hybrids bind to the pattern recognition receptors cGAS and TLR3 (ref. 8), activating IRF3 and inducing apoptosis. Excised hybrids and an R-loop-induced innate immune response were also observed in SETX-mutated cells from patients with ataxia oculomotor apraxia type 2 (ref. 9) and in BRCA1-mutated cancer cells10. These findings establish RNA-DNA hybrids as immunogenic species that aberrantly accumulate in the cytoplasm after R-loop processing, linking R-loop accumulation to cell death through the innate immune response. Aberrant R-loop processing and subsequent innate immune activation may contribute to many diseases, such as neurodegeneration and cancer.
Collapse
Affiliation(s)
- Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Chenlin Song
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Michael J Bocek
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Jun-Hyuk Choi
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon, South Korea
| | - Joseph N Kousouros
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Ataya Sathirachinda
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Cindy Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Gongshi Bai
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
109
|
Laverde EE, Polyzos AA, Tsegay PP, Shaver M, Hutcheson JD, Balakrishnan L, McMurray CT, Liu Y. Flap Endonuclease 1 Endonucleolytically Processes RNA to Resolve R-Loops through DNA Base Excision Repair. Genes (Basel) 2022; 14:genes14010098. [PMID: 36672839 PMCID: PMC9859040 DOI: 10.3390/genes14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an essential enzyme that removes RNA primers and base lesions during DNA lagging strand maturation and long-patch base excision repair (BER). It plays a crucial role in maintaining genome stability and integrity. FEN1 is also implicated in RNA processing and biogenesis. A recent study from our group has shown that FEN1 is involved in trinucleotide repeat deletion by processing the RNA strand in R-loops through BER, further suggesting that the enzyme can modulate genome stability by facilitating the resolution of R-loops. However, it remains unknown how FEN1 can process RNA to resolve an R-loop. In this study, we examined the FEN1 cleavage activity on the RNA:DNA hybrid intermediates generated during DNA lagging strand processing and BER in R-loops. We found that both human and yeast FEN1 efficiently cleaved an RNA flap in the intermediates using its endonuclease activity. We further demonstrated that FEN1 was recruited to R-loops in normal human fibroblasts and senataxin-deficient (AOA2) fibroblasts, and its R-loop recruitment was significantly increased by oxidative DNA damage. We showed that FEN1 specifically employed its endonucleolytic cleavage activity to remove the RNA strand in an R-loop during BER. We found that FEN1 coordinated its DNA and RNA endonucleolytic cleavage activity with the 3'-5' exonuclease of APE1 to resolve the R-loop. Our results further suggest that FEN1 employed its unique tracking mechanism to endonucleolytically cleave the RNA strand in an R-loop by coordinating with other BER enzymes and cofactors during BER. Our study provides the first evidence that FEN1 endonucleolytic cleavage can result in the resolution of R-loops via the BER pathway, thereby maintaining genome integrity.
Collapse
Affiliation(s)
- Eduardo E. Laverde
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Aris A. Polyzos
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pawlos P. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Mohammad Shaver
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana-Purdue University, Indianapolis, IN 46202, USA
| | - Cynthia T. McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
110
|
Boleslavska B, Oravetzova A, Shukla K, Nascakova Z, Ibini O, Hasanova Z, Andrs M, Kanagaraj R, Dobrovolna J, Janscak P. DDX17 helicase promotes resolution of R-loop-mediated transcription-replication conflicts in human cells. Nucleic Acids Res 2022; 50:12274-12290. [PMID: 36453994 PMCID: PMC9757067 DOI: 10.1093/nar/gkac1116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
R-loops are three-stranded nucleic acid structures composed of an RNA:DNA hybrid and displaced DNA strand. These structures can halt DNA replication when formed co-transcriptionally in the opposite orientation to replication fork progression. A recent study has shown that replication forks stalled by co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage by MUS81 endonuclease, followed by ELL-dependent reactivation of transcription, and fork religation by the DNA ligase IV (LIG4)/XRCC4 complex. However, how R-loops are eliminated to allow the sequential restart of transcription and replication in this pathway remains elusive. Here, we identified the human DDX17 helicase as a factor that associates with R-loops and counteracts R-loop-mediated replication stress to preserve genome stability. We show that DDX17 unwinds R-loops in vitro and promotes MUS81-dependent restart of R-loop-stalled forks in human cells in a manner dependent on its helicase activity. Loss of DDX17 helicase induces accumulation of R-loops and the formation of R-loop-dependent anaphase bridges and micronuclei. These findings establish DDX17 as a component of the MUS81-LIG4-ELL pathway for resolution of R-loop-mediated transcription-replication conflicts, which may be involved in R-loop unwinding.
Collapse
Affiliation(s)
- Barbora Boleslavska
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic,Faculty of Science, Charles University in Prague, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Anna Oravetzova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic,Faculty of Science, Charles University in Prague, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Kaustubh Shukla
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Zuzana Nascakova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | - Zdenka Hasanova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martin Andrs
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Radhakrishnan Kanagaraj
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK,School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK,Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Jana Dobrovolna
- Correspondence may also be addressed to Jana Dobrovolna. Tel: +420 241063127;
| | - Pavel Janscak
- To whom correspondence should be addressed. Tel: +41 44 6353470;
| |
Collapse
|
111
|
Zhou J, Zhang W, Sun Q. R-loop: The new genome regulatory element in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2275-2289. [PMID: 36223078 DOI: 10.1111/jipb.13383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
An R-loop is a three-stranded chromatin structure that consists of a displaced single strand of DNA and an RNA:DNA hybrid duplex, which was thought to be a rare by-product of transcription. However, recent genome-wide data have shown that R-loops are widespread and pervasive in a variety of genomes, and a growing body of experimental evidence indicates that R-loops have both beneficial and harmful effects on an organism. To maximize benefit and avoid harm, organisms have evolved several means by which they tightly regulate R-loop levels. Here, we summarize our current understanding of the biogenesis and effects of R-loops, the mechanisms that regulate them, and methods of R-loop profiling, reviewing recent research advances on R-loops in plants. Furthermore, we provide perspectives on future research directions for R-loop biology in plants, which might lead to a more comprehensive understanding of R-loop functions in plant genome regulation and contribute to future agricultural improvements.
Collapse
Affiliation(s)
- Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
112
|
Watts JA, Grunseich C, Rodriguez Y, Liu Y, Li D, Burdick J, Bruzel A, Crouch RJ, Mahley RW, Wilson S, Cheung V. A common transcriptional mechanism involving R-loop and RNA abasic site regulates an enhancer RNA of APOE. Nucleic Acids Res 2022; 50:12497-12514. [PMID: 36453989 PMCID: PMC9757052 DOI: 10.1093/nar/gkac1107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
RNA is modified by hundreds of chemical reactions and folds into innumerable shapes. However, the regulatory role of RNA sequence and structure and how dysregulation leads to diseases remain largely unknown. Here, we uncovered a mechanism where RNA abasic sites in R-loops regulate transcription by pausing RNA polymerase II. We found an enhancer RNA, AANCR, that regulates the transcription and expression of apolipoprotein E (APOE). In some human cells such as fibroblasts, AANCR is folded into an R-loop and modified by N-glycosidic cleavage; in this form, AANCR is a partially transcribed nonfunctional enhancer and APOE is not expressed. In contrast, in other cell types including hepatocytes and under stress, AANCR does not form a stable R-loop as its sequence is not modified, so it is transcribed into a full-length enhancer that promotes APOE expression. DNA sequence variants in AANCR are associated significantly with APOE expression and Alzheimer's Disease, thus AANCR is a modifier of Alzheimer's Disease. Besides AANCR, thousands of noncoding RNAs are regulated by abasic sites in R-loops. Together our data reveal the essentiality of the folding and modification of RNA in cellular regulation and demonstrate that dysregulation underlies common complex diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Jason A Watts
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christopher Grunseich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yesenia Rodriguez
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yaojuan Liu
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dongjun Li
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joshua T Burdick
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan Bruzel
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J Crouch
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Mahley
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Departments of Pathology and Medicine, University of California, San Francisco, CA, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vivian G Cheung
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
113
|
Zhao W, Pei Q, Zhu Y, Zhan D, Mao G, Wang M, Qiu Y, Zuo K, Pei H, Sun LQ, Wen M, Tan R. The Association of R-Loop Binding Proteins Subtypes with CIN Implicates Therapeutic Strategies in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14225607. [PMID: 36428700 PMCID: PMC9688457 DOI: 10.3390/cancers14225607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chromosomal instability (CIN) covers approximately 65 to 70% of colorectal cancer patients and plays an essential role in cancer progression. However, the molecular features and therapeutic strategies related to those patients are still controversial. R-loop binding proteins (RLBPs) exert significant roles in transcription and replication. Here, integrative colorectal cancer proteogenomic analysis identified two RLBPs subtypes correlated with distinct prognoses. Cluster I (CI), represented by high expression of RLBPs, was associated with the CIN phenotype. While Cluster II (CII) with the worst prognosis and low expression of RLBPs was composed of a high percentage of patients with mucinous adenocarcinoma or right-sided colon cancer. The molecular feature analysis revealed that the active RNA processing, ribosome synthesis, and aberrant DNA damage repair were shown in CI, a high inflammatory signaling pathway, and lymphocyte infiltration was enriched in CII. In addition, we revealed 42 tumor-associated RLBPs proteins. The CI with high expression of tumor-associated proteins was sensitive to drugs targeting genome integrity and EGFR in both cell and organoid models. Thus, our study unveils a significant molecular association of the CIN phenotype with RLBPs, and also provides a powerful resource for further functional exploration of RLBPs in cancer progression and therapeutic application.
Collapse
Affiliation(s)
- Wenchao Zhao
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongwei Zhu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Guo Mao
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Meng Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
| | - Yanfang Qiu
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
| | - Ke Zuo
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Haiping Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lun-Quan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ming Wen
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (M.W.); (R.T.); Tel.: +86-731-84327212 (M.W.); +86-731-84327212 (R.T.)
| | - Rong Tan
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (M.W.); (R.T.); Tel.: +86-731-84327212 (M.W.); +86-731-84327212 (R.T.)
| |
Collapse
|
114
|
Bader AS, Luessing J, Hawley BR, Skalka GL, Lu WT, Lowndes N, Bushell M. DDX17 is required for efficient DSB repair at DNA:RNA hybrid deficient loci. Nucleic Acids Res 2022; 50:10487-10502. [PMID: 36200807 PMCID: PMC9561282 DOI: 10.1093/nar/gkac843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Proteins with RNA-binding activity are increasingly being implicated in DNA damage responses (DDR). Additionally, DNA:RNA-hybrids are rapidly generated around DNA double-strand breaks (DSBs), and are essential for effective repair. Here, using a meta-analysis of proteomic data, we identify novel DNA repair proteins and characterise a novel role for DDX17 in DNA repair. We found DDX17 to be required for both cell survival and DNA repair in response to numerous agents that induce DSBs. Analysis of DSB repair factor recruitment to damage sites suggested a role for DDX17 early in the DSB ubiquitin cascade. Genome-wide mapping of R-loops revealed that while DDX17 promotes the formation of DNA:RNA-hybrids around DSB sites, this role is specific to loci that have low levels of pre-existing hybrids. We propose that DDX17 facilitates DSB repair at loci that are inefficient at forming DNA:RNA-hybrids by catalysing the formation of DSB-induced hybrids, thereby allowing propagation of the damage response.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Janna Luessing
- Centre for Chromosome Biology, Biomedical Sciences Biulding (BSB), School of Biological & Checmical Sciences, University of Galway, Galway, H91W2TY, Ireland
| | - Ben R Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | | | - Wei-Ting Lu
- The Francis Crick Institute, London NW1 1AT, UK
| | - Noel F Lowndes
- Centre for Chromosome Biology, Biomedical Sciences Biulding (BSB), School of Biological & Checmical Sciences, University of Galway, Galway, H91W2TY, Ireland
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
115
|
Hao S, Wang Y, Zhao Y, Gao W, Cui W, Li Y, Cui J, Liu Y, Lin L, Xu X, Wang H. Dynamic switching of crotonylation to ubiquitination of H2A at lysine 119 attenuates transcription-replication conflicts caused by replication stress. Nucleic Acids Res 2022; 50:9873-9892. [PMID: 36062559 PMCID: PMC9508856 DOI: 10.1093/nar/gkac734] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
The reversible post-translational modification (PTM) of proteins plays an important role in many cellular processes. Lysine crotonylation (Kcr) is a newly identified PTM, but its functional significance remains unclear. Here, we found that Kcr is involved in the replication stress response. We show that crotonylation of histone H2A at lysine 119 (H2AK119) and ubiquitination of H2AK119 are reversibly regulated by replication stress. Decrotonylation of H2AK119 by SIRT1 is a prerequisite for subsequent ubiquitination of H2AK119 by BMI1. Accumulation of ubiquitinated H2AK119 at reversed replication forks leads to the release of RNA Polymerase II and transcription repression in the vicinity of stalled replication forks. These effects attenuate transcription–replication conflicts (TRCs) and TRC-associated R-loop formation and DNA double-strand breaks. These findings suggest that decrotonylation and ubiquitination of H2A at lysine 119 act together to resolve replication stress-induced TRCs and protect genome stability.
Collapse
Affiliation(s)
- Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuqin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wen Gao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Youhang Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lixiu Lin
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, China Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
116
|
Li C, Dou P, Lu X, Guan P, Lin Z, Zhou Y, Lu X, Lin X, Xu G. Identification and Validation of TRIM25 as a Glucose Metabolism Regulator in Prostate Cancer. Int J Mol Sci 2022; 23:ijms23169325. [PMID: 36012594 PMCID: PMC9408812 DOI: 10.3390/ijms23169325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) malignant progression is accompanied with the reprogramming of glucose metabolism. However, the genes involved in the regulation of glucose metabolism in PCa are not fully understood. Here, we propose a new method, DMRG, which constructs a weighted differential network (W-K-DN) to define the important metabolism-related genes. Based on biological knowledge and prostate cancer transcriptome data, a tripartite motif-containing 25 (TRIM25) was defined using DMRG; TRIM25 was involved in the regulation of glucose metabolism, which was verified by overexpressing or knocking down TRIM25 in PCa cell lines. Differential expression analysis of TCA cycle enzymes revealed that TRIM25 regulated isocitrate dehydrogenase 1 (IDH1) and fumarate hydratase (FH) expression. Moreover, a protein–RNA interaction network of TRIM25 revealed that TRIM25 interacted with RNA-binding proteins, including DExH-box helicase 9 and DEAD-box helicase 5, to play a role in regulating the RNA processing of metabolic enzymes, including IDH1 and FH. Furthermore, TRIM25 expression level was found to be positively correlated with Gleason scores in PCa patient tissues. In conclusion, this study provides a new method to define genes influencing tumor progression, and sheds light on the role of the defined TRIM25 in regulating glucose metabolism and promoting PCa malignancy.
Collapse
Affiliation(s)
- Chao Li
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peng Dou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Pengwei Guan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhikun Lin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanyan Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- Correspondence: (X.L.); (G.X.)
| | - Xiaohui Lin
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- Correspondence: (X.L.); (G.X.)
| |
Collapse
|
117
|
Bruno T, Corleone G, Catena V, Cortile C, De Nicola F, Fabretti F, Gumenyuk S, Pisani F, Mengarelli A, Passananti C, Fanciulli M. AATF/Che-1 localizes to paraspeckles and suppresses R-loops accumulation and interferon activation in Multiple Myeloma. EMBO J 2022; 41:e109711. [PMID: 35929179 PMCID: PMC9670196 DOI: 10.15252/embj.2021109711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 01/13/2023] Open
Abstract
Several kinds of stress promote the formation of three-stranded RNA:DNA hybrids called R-loops. Insufficient clearance of these structures promotes genomic instability and DNA damage, which ultimately contribute to the establishment of cancer phenotypes. Paraspeckle assemblies participate in R-loop resolution and preserve genome stability, however, the main determinants of this mechanism are still unknown. This study finds that in Multiple Myeloma (MM), AATF/Che-1 (Che-1), an RNA-binding protein fundamental to transcription regulation, interacts with paraspeckles via the lncRNA NEAT1_2 (NEAT1) and directly localizes on R-loops. We systematically show that depletion of Che-1 produces a marked accumulation of RNA:DNA hybrids. We provide evidence that such failure to resolve R-loops causes sustained activation of a systemic inflammatory response characterized by an interferon (IFN) gene expression signature. Furthermore, elevated levels of R-loops and of mRNA for paraspeckle genes in patient cells are linearly correlated with Multiple Myeloma progression. Moreover, increased interferon gene expression signature in patients is associated with markedly poor prognosis. Taken together, our study indicates that Che-1/NEAT1 cooperation prevents excessive inflammatory signaling in Multiple Myeloma by facilitating the clearance of R-loops. Further studies on different cancer types are needed to test if this mechanism is ubiquitously conserved and fundamental for cell homeostasis.
Collapse
Affiliation(s)
- Tiziana Bruno
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Giacomo Corleone
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Valeria Catena
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Clelia Cortile
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany,Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Svitlana Gumenyuk
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesco Pisani
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Andrea Mengarelli
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Claudio Passananti
- Department of Molecular Medicine, CNR‐Institute of Molecular Biology and PathologySapienza University of RomeRomeItaly
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
118
|
Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022; 23:521-540. [PMID: 35459910 DOI: 10.1038/s41580-022-00474-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA-DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.
Collapse
Affiliation(s)
- Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
119
|
Kumar A, Fournier LA, Stirling PC. Integrative analysis and prediction of human R-loop binding proteins. G3 (BETHESDA, MD.) 2022; 12:jkac142. [PMID: 35666183 PMCID: PMC9339281 DOI: 10.1093/g3journal/jkac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
In the past decade, there has been a growing appreciation for R-loop structures as important regulators of the epigenome, telomere maintenance, DNA repair, and replication. Given these numerous functions, dozens, or potentially hundreds, of proteins could serve as direct or indirect regulators of R-loop writing, reading, and erasing. In order to understand common properties shared amongst potential R-loop binding proteins, we mined published proteomic studies and distilled 10 features that were enriched in R-loop binding proteins compared with the rest of the proteome. Applying an easy-ensemble machine learning approach, we used these R-loop binding protein-specific features along with their amino acid composition to create random forest classifiers that predict the likelihood of a protein to bind to R-loops. Known R-loop regulating pathways such as splicing, DNA damage repair and chromatin remodeling are highly enriched in our datasets, and we validate 2 new R-loop binding proteins LIG1 and FXR1 in human cells. Together these datasets provide a reference to pursue analyses of novel R-loop regulatory proteins.
Collapse
Affiliation(s)
| | | | - Peter C Stirling
- Corresponding author: Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z1L3, Canada.
| |
Collapse
|
120
|
Lin WL, Chen JK, Wen X, He W, Zarceno GA, Chen Y, Chen S, Paull TT, Liu HW. DDX18 prevents R-loop-induced DNA damage and genome instability via PARP-1. Cell Rep 2022; 40:111089. [PMID: 35858569 DOI: 10.1016/j.celrep.2022.111089] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
R loops occur frequently in genomes and contribute to fundamental biological processes at multiple levels. Consequently, understanding the molecular and cellular biology of R loops has become an emerging area of research. Here, it is shown that poly(ADP-ribose) polymerase-1 (PARP-1) can mediate the association of DDX18, a putative RNA helicase, with R loops thereby modulating R-loop homeostasis in endogenous R-loop-prone and DNA lesion regions. DDX18 depletion results in aberrant endogenous R-loop accumulation, which leads to DNA-replication defects. In addition, DDX18 depletion renders cells more sensitive to DNA-damaging agents and reduces RPA32 and RAD51 foci formation in response to irradiation. Notably, DDX18 depletion leads to γH2AX accumulation and genome instability, and RNase H1 overexpression rescues all the DNA-repair defects caused by DDX18 depletion. Taken together, these studies uncover a function of DDX18 in R-loop-mediated events and suggest a role for PARP-1 in mediating the binding of specific DDX-family proteins with R loops in cells.
Collapse
Affiliation(s)
- Wen-Ling Lin
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jung-Kuei Chen
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Xuemei Wen
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Wei He
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA; School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Geovanny A Zarceno
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yutian Chen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Shi Chen
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518055, China
| | - Tanya T Paull
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Hung-Wen Liu
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA; Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
121
|
High-throughput techniques enable advances in the roles of DNA and RNA secondary structures in transcriptional and post-transcriptional gene regulation. Genome Biol 2022; 23:159. [PMID: 35851062 PMCID: PMC9290270 DOI: 10.1186/s13059-022-02727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
The most stable structure of DNA is the canonical right-handed double helix termed B DNA. However, certain environments and sequence motifs favor alternative conformations, termed non-canonical secondary structures. The roles of DNA and RNA secondary structures in transcriptional regulation remain incompletely understood. However, advances in high-throughput assays have enabled genome wide characterization of some secondary structures. Here, we describe their regulatory functions in promoters and 3’UTRs, providing insights into key mechanisms through which they regulate gene expression. We discuss their implication in human disease, and how advances in molecular technologies and emerging high-throughput experimental methods could provide additional insights.
Collapse
|
122
|
Saha S, Yang X, Huang SYN, Agama K, Baechler SA, Sun Y, Zhang H, Saha LK, Su S, Jenkins LM, Wang W, Pommier Y. Resolution of R-loops by topoisomerase III-β (TOP3B) in coordination with the DEAD-box helicase DDX5. Cell Rep 2022; 40:111067. [PMID: 35830799 PMCID: PMC10575568 DOI: 10.1016/j.celrep.2022.111067] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The present study demonstrates how TOP3B is involved in resolving R-loops. We observed elevated R-loops in TOP3B knockout cells (TOP3BKO), which are suppressed by TOP3B transfection. R-loop-inducing agents, the topoisomerase I inhibitor camptothecin, and the splicing inhibitor pladienolide-B also induce higher R-loops in TOP3BKO cells. Camptothecin- and pladienolide-B-induced R-loops are concurrent with the induction of TOP3B cleavage complexes (TOP3Bccs). RNA/DNA hybrid IP-western blotting show that TOP3B is physically associated with R-loops. Biochemical assays using recombinant TOP3B and oligonucleotides mimicking R-loops show that TOP3B cleaves the single-stranded DNA displaced by the R-loop RNA-DNA duplex. IP-mass spectrometry and IP-western experiments reveal that TOP3B interacts with the R-loop helicase DDX5 independently of TDRD3. Finally, we demonstrate that DDX5 and TOP3B are epistatic in resolving R-loops in a pathway parallel with senataxin. We propose a decatenation model for R-loop resolution by TOP3B-DDX5 protecting cells from R-loop-induced damage.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lisa M Jenkins
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
123
|
Chen X, Lin L, Chen G, Yan H, Li Z, Xiao M, He X, Zhang F, Zhang Y. High Levels of DEAH-Box Helicases Relate to Poor Prognosis and Reduction of DHX9 Improves Radiosensitivity of Hepatocellular Carcinoma. Front Oncol 2022; 12:900671. [PMID: 35814441 PMCID: PMC9256992 DOI: 10.3389/fonc.2022.900671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLiver hepatocellular carcinoma (LIHC), one of the most common primary malignancies, exhibits high levels of molecular and clinical heterogeneity. Increasing evidence has confirmed the important roles of some RNA helicase families in tumor development, but the function of the DEAH-box RNA helicase family in LIHC therapeutic strategies has not yet been clarified.MethodsThe LIHC dataset was downloaded from The Cancer Genome Atlas (TCGA). Consensus clustering was applied to group the patients. Least absolute shrinkage and selection operator Cox regression and univariate and multivariate Cox regression were used to develop and validate a prognostic risk model. The Tumor Immune Estimation Resource and Tumor Immune Single Cell Hub databases were used to explore the role of DEAH-box RNA helicases in LIHC immunotherapy. In vitro experiments were performed to investigate the role of DHX9 in LIHC radiosensitivity.ResultsTwelve survival-related DEAH-box RNA helicases were identified. High helicase expression levels were associated with a poor prognosis and clinical features. A prognostic model comprising six DEAH-box RNA helicases (DHX8, DHX9, DHX34, DHX35, DHX38, and DHX57) was constructed. The risk score of this model was found to be an independent prognostic indicator, and LIHC patients with different prognosis were distinguished by the model in the training and test cohorts. DNA damage repair pathways were also enriched in patients with high-risk scores. The six DEAH-box RNA helicases in the risk model were substantially related to innate immune cell infiltration and immune inhibitors. In vitro experiments showed that DHX9 knockdown improved radiosensitivity by increasing DNA damage.ConclusionThe DEAH-box RNA helicase signature can be used as a reliable prognostic biomarker for LIHC. In addition, DHX9 may be a definitive indicator and therapeutic target in radiotherapy and immunotherapy for LIHC.
Collapse
Affiliation(s)
- Xi Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Letao Lin
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Guanyu Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Huzheng Yan
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenyu Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Meigui Xiao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xu He
- Interventional Medical Center, Zhuhai People’s Hospital, Zhuhai, China
| | - Fujun Zhang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Fujun Zhang, ; Yanling Zhang,
| | - Yanling Zhang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- *Correspondence: Fujun Zhang, ; Yanling Zhang,
| |
Collapse
|
124
|
Cuartas J, Gangwani L. R-loop Mediated DNA Damage and Impaired DNA Repair in Spinal Muscular Atrophy. Front Cell Neurosci 2022; 16:826608. [PMID: 35783101 PMCID: PMC9243258 DOI: 10.3389/fncel.2022.826608] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Defects in DNA repair pathways are a major cause of DNA damage accumulation leading to genomic instability and neurodegeneration. Efficient DNA damage repair is critical to maintain genomicstability and support cell function and viability. DNA damage results in the activation of cell death pathways, causing neuronal death in an expanding spectrum of neurological disorders, such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), Alzheimer’s disease (AD), and spinal muscular atrophy (SMA). SMA is a neurodegenerative disorder caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. SMA is characterized by the degeneration of spinal cord motor neurons due to low levels of the SMN protein. The molecular mechanism of selective motor neuron degeneration in SMA was unclear for about 20 years. However, several studies have identified biochemical and molecular mechanisms that may contribute to the predominant degeneration of motor neurons in SMA, including the RhoA/ROCK, the c-Jun NH2-terminal kinase (JNK), and p53-mediated pathways, which are involved in mediating DNA damage-dependent cell death. Recent studies provided insight into selective degeneration of motor neurons, which might be caused by accumulation of R-loop-mediated DNA damage and impaired non-homologous end joining (NHEJ) DNA repair pathway leading to genomic instability. Here, we review the latest findings involving R-loop-mediated DNA damage and defects in neuron-specific DNA repair mechanisms in SMA and discuss these findings in the context of other neurodegenerative disorders linked to DNA damage.
Collapse
Affiliation(s)
- Juliana Cuartas
- Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- *Correspondence: Laxman Gangwani
| |
Collapse
|
125
|
Dong X, Zhang J, Zhang Q, Liang Z, Xu Y, Zhao Y, Zhang B. Cytosolic Nuclear Sensor Dhx9 Controls Medullary Thymic Epithelial Cell Differentiation by p53-Mediated Pathways. Front Immunol 2022; 13:896472. [PMID: 35720303 PMCID: PMC9203851 DOI: 10.3389/fimmu.2022.896472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Thymic epithelial cells (TECs) critically participate in T cell maturation and selection for the establishment of immunity to foreign antigens and immune tolerance to self-antigens of T cells. It is well known that many intracellular and extracellular molecules elegantly have mastered the development of medullary TECs (mTECs) and cortical TECs (cTECs). However, the role played by NTP-dependent helicase proteins in TEC development is currently unclear. Herein, we created mice with a TEC-specific DExD/H-box helicase 9 (Dhx9) deletion (Dhx9 cKO) to study the involvement of Dhx9 in TEC differentiation and function. We found that a Dhx9 deficiency in TECs caused a significant decreased cell number of TECs, including mTECs and thymic tuft cells, accompanied by accelerated mTEC maturation but no detectable effect on cTECs. Dhx9-deleted mTECs transcriptionally expressed poor tissue-restricted antigen profiles compared with WT mTECs. Importantly, Dhx9 cKO mice displayed an impaired thymopoiesis, poor thymic T cell output, and they suffered from spontaneous autoimmune disorders. RNA-seq analysis showed that the Dhx9 deficiency caused an upregulated DNA damage response pathway and Gadd45, Cdkn1a, Cdc25, Wee1, and Myt1 expression to induce cell cycle arrest in mTECs. In contrast, the p53-dependent upregulated RANK-NF-κB pathway axis accelerated the maturation of mTECs. Our results collectively indicated that Dhx9, a cytosolic nuclear sensor recognizing viral DNA or RNA, played an important role in mTEC development and function in mice.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
- *Correspondence: Baojun Zhang, ; Yong Zhao,
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Baojun Zhang, ; Yong Zhao,
| |
Collapse
|
126
|
Georgakopoulos-Soares I, Parada GE, Hemberg M. Secondary structures in RNA synthesis, splicing and translation. Comput Struct Biotechnol J 2022; 20:2871-2884. [PMID: 35765654 PMCID: PMC9198270 DOI: 10.1016/j.csbj.2022.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022] Open
Abstract
Even though the functional role of mRNA molecules is primarily decided by the nucleotide sequence, several properties are determined by secondary structure conformations. Examples of secondary structures include long range interactions, hairpins, R-loops and G-quadruplexes and they are formed through interactions of non-adjacent nucleotides. Here, we discuss advances in our understanding of how secondary structures can impact RNA synthesis, splicing, translation and mRNA half-life. During RNA synthesis, secondary structures determine RNA polymerase II (RNAPII) speed, thereby influencing splicing. Splicing is also determined by RNA binding proteins and their binding rates are modulated by secondary structures. For the initiation of translation, secondary structures can control the choice of translation start site. Here, we highlight the mechanisms by which secondary structures modulate these processes, discuss advances in technologies to detect and study them systematically, and consider the roles of RNA secondary structures in disease.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Guillermo E. Parada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5A 1A8, Canada
| | - Martin Hemberg
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
127
|
Cristini A, Tellier M, Constantinescu F, Accalai C, Albulescu LO, Heiringhoff R, Bery N, Sordet O, Murphy S, Gromak N. RNase H2, mutated in Aicardi-Goutières syndrome, resolves co-transcriptional R-loops to prevent DNA breaks and inflammation. Nat Commun 2022; 13:2961. [PMID: 35618715 PMCID: PMC9135716 DOI: 10.1038/s41467-022-30604-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
RNase H2 is a specialized enzyme that degrades RNA in RNA/DNA hybrids and deficiency of this enzyme causes a severe neuroinflammatory disease, Aicardi Goutières syndrome (AGS). However, the molecular mechanism underlying AGS is still unclear. Here, we show that RNase H2 is associated with a subset of genes, in a transcription-dependent manner where it interacts with RNA Polymerase II. RNase H2 depletion impairs transcription leading to accumulation of R-loops, structures that comprise RNA/DNA hybrids and a displaced DNA strand, mainly associated with short and intronless genes. Importantly, accumulated R-loops are processed by XPG and XPF endonucleases which leads to DNA damage and activation of the immune response, features associated with AGS. Consequently, we uncover a key role for RNase H2 in the transcription of human genes by maintaining R-loop homeostasis. Our results provide insight into the mechanistic contribution of R-loops to AGS pathogenesis.
Collapse
Affiliation(s)
- Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Flavia Constantinescu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Clelia Accalai
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Laura Oana Albulescu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Robin Heiringhoff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Nicolas Bery
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037, Toulouse, France
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
128
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
129
|
Giordano AMS, Luciani M, Gatto F, Abou Alezz M, Beghè C, Della Volpe L, Migliara A, Valsoni S, Genua M, Dzieciatkowska M, Frati G, Tahraoui-Bories J, Giliani SC, Orcesi S, Fazzi E, Ostuni R, D'Alessandro A, Di Micco R, Merelli I, Lombardo A, Reijns MAM, Gromak N, Gritti A, Kajaste-Rudnitski A. DNA damage contributes to neurotoxic inflammation in Aicardi-Goutières syndrome astrocytes. J Exp Med 2022; 219:213058. [PMID: 35262626 PMCID: PMC8916121 DOI: 10.1084/jem.20211121] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 01/09/2023] Open
Abstract
Aberrant induction of type I IFN is a hallmark of the inherited encephalopathy Aicardi-Goutières syndrome (AGS), but the mechanisms triggering disease in the human central nervous system (CNS) remain elusive. Here, we generated human models of AGS using genetically modified and patient-derived pluripotent stem cells harboring TREX1 or RNASEH2B loss-of-function alleles. Genome-wide transcriptomic analysis reveals that spontaneous proinflammatory activation in AGS astrocytes initiates signaling cascades impacting multiple CNS cell subsets analyzed at the single-cell level. We identify accumulating DNA damage, with elevated R-loop and micronuclei formation, as a driver of STING- and NLRP3-related inflammatory responses leading to the secretion of neurotoxic mediators. Importantly, pharmacological inhibition of proapoptotic or inflammatory cascades in AGS astrocytes prevents neurotoxicity without apparent impact on their increased type I IFN responses. Together, our work identifies DNA damage as a major driver of neurotoxic inflammation in AGS astrocytes, suggests a role for AGS gene products in R-loop homeostasis, and identifies common denominators of disease that can be targeted to prevent astrocyte-mediated neurotoxicity in AGS.
Collapse
Affiliation(s)
- Anna Maria Sole Giordano
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Francesca Gatto
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucrezia Della Volpe
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Alessandro Migliara
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Sara Valsoni
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Giacomo Frati
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Julie Tahraoui-Bories
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Clara Giliani
- Department of Molecular and Translational Medicine, "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Child Neurology and Psychiatry Unit, Istituto di Ricovero e Cura a Carattere Scientifico Mondino Foundation, Pavia, Italy
| | - Elisa Fazzi
- Unit of Child Neurology and Psychiatry, Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Martin A M Reijns
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
130
|
Patel PS, Krishnan R, Hakem R. Emerging roles of DNA topoisomerases in the regulation of R-loops. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503450. [PMID: 35483781 DOI: 10.1016/j.mrgentox.2022.503450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
R-loops are comprised of a DNA:RNA hybrid and a displaced single-strand DNA (ssDNA) that reinvades the DNA duplex behind the moving RNA polymerase. Because they have several physiological functions within the cell, including gene expression, chromosomal segregation, and mitochondrial DNA replication, among others, R-loop homeostasis is tightly regulated to ensure normal functioning of cellular processes. Thus, several classes of enzymes including RNases, helicases, topoisomerases, as well as proteins involved in splicing and the biogenesis of messenger ribonucleoproteins, have been implicated in R-loop prevention, suppression, and resolution. There exist six topoisomerase enzymes encoded by the human genome that function to introduce transient DNA breaks to relax supercoiled DNA. In this mini-review, we discuss functions of DNA topoisomerases and their emerging role in transcription, replication, and regulation of R-loops, and we highlight how their role in maintaining genome stability can be exploited for cancer therapy.
Collapse
Affiliation(s)
- Parasvi S Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
131
|
Palombo R, Paronetto MP. pncCCND1_B Engages an Inhibitory Protein Network to Downregulate CCND1 Expression upon DNA Damage. Cancers (Basel) 2022; 14:cancers14061537. [PMID: 35326688 PMCID: PMC8946712 DOI: 10.3390/cancers14061537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Promoter-associated noncoding RNAs (pancRNAs) represent a class of noncoding transcripts driven from the promoter region of protein-coding or non-coding genes that operate as cis-acting elements to regulate the expression of the host gene. PancRNAs act by altering the chromatin structure and recruiting transcription regulators. PncCCND1_B is driven by the promoter region of CCND1 and regulates CCND1 expression in Ewing sarcoma through recruitment of a multi-molecular complex composed of the RNA binding protein Sam68 and the DNA/RNA helicase DHX9. In this study, we investigated the regulation of CCND1 expression in Ewing sarcoma cells upon exposure to chemotherapeutic drugs. Pan-inhibitor screening indicated that etoposide, a drug used for Ewing sarcoma treatment, promotes transcription of pncCCND1_B and repression of CCND1 expression. RNA immunoprecipitation experiments showed increased binding of Sam68 to the pncCCND1_B after treatment, despite the significant reduction in DHX9 protein. This effect was associated with the formation of DNA:RNA duplexes at the CCND1 promoter. Furthermore, Sam68 interacted with HDAC1 in etoposide treated cells, thus contributing to chromatin remodeling and epigenetic changes. Interestingly, inhibition of the ATM signaling pathway by KU 55,933 treatment was sufficient to inhibit etoposide-induced Sam68-HDAC1 interaction without rescuing DHX9 expression. In these conditions, the DNA:RNA hybrids persist, thus contributing to the local chromatin inactivation at the CCND1 promoter region. Altogether, our results show an active role of Sam68 in DNA damage signaling and chromatin remodeling on the CCND1 gene by fine-tuning transitions of epigenetic complexes on the CCND1 promoter.
Collapse
Affiliation(s)
- Ramona Palombo
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
- Correspondence:
| |
Collapse
|
132
|
Alecki C, Vera M. Role of Nuclear Non-Canonical Nucleic Acid Structures in Organismal Development and Adaptation to Stress Conditions. Front Genet 2022; 13:823241. [PMID: 35281835 PMCID: PMC8906566 DOI: 10.3389/fgene.2022.823241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Over the last decades, numerous examples have involved nuclear non-coding RNAs (ncRNAs) in the regulation of gene expression. ncRNAs can interact with the genome by forming non-canonical nucleic acid structures such as R-loops or DNA:RNA triplexes. They bind chromatin and DNA modifiers and transcription factors and favor or prevent their targeting to specific DNA sequences and regulate gene expression of diverse genes. We review the function of these non-canonical nucleic acid structures in regulating gene expression of multicellular organisms during development and in response to different stress conditions and DNA damage using examples described in several organisms, from plants to humans. We also overview recent techniques developed to study where R-loops or DNA:RNA triplexes are formed in the genome and their interaction with proteins.
Collapse
Affiliation(s)
- Célia Alecki
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
133
|
Yiu SPT, Guo R, Zerbe C, Weekes MP, Gewurz BE. Epstein-Barr virus BNRF1 destabilizes SMC5/6 cohesin complexes to evade its restriction of replication compartments. Cell Rep 2022; 38:110411. [PMID: 35263599 PMCID: PMC8981113 DOI: 10.1016/j.celrep.2022.110411] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/29/2021] [Accepted: 01/28/2022] [Indexed: 11/11/2022] Open
Abstract
Epstein-Barr virus (EBV) persistently infects people worldwide. Delivery of ∼170-kb EBV genomes to nuclei and use of nuclear membrane-less replication compartments (RCs) for their lytic cycle amplification necessitate evasion of intrinsic antiviral responses. Proteomics analysis indicates that, upon B cell infection or lytic reactivation, EBV depletes the cohesin SMC5/6, which has major roles in chromosome maintenance and DNA damage repair. The major tegument protein BNRF1 targets SMC5/6 complexes by a ubiquitin proteasome pathway dependent on calpain proteolysis and Cullin-7. In the absence of BNRF1, SMC5/6 associates with R-loop structures, including at the viral lytic origin of replication, and interferes with RC formation and encapsidation. CRISPR analysis identifies RC restriction roles of SMC5/6 components involved in DNA entrapment and SUMOylation. Our study highlights SMC5/6 as an intrinsic immune sensor and restriction factor for a human herpesvirus RC and has implications for the pathogenesis of EBV-associated cancers.
Collapse
Affiliation(s)
- Stephanie Pei Tung Yiu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cassie Zerbe
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
134
|
Kim S, Hwang S. G-Quadruplex Matters in Tissue-Specific Tumorigenesis by BRCA1 Deficiency. Genes (Basel) 2022; 13:genes13030391. [PMID: 35327946 PMCID: PMC8948836 DOI: 10.3390/genes13030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
How and why distinct genetic alterations, such as BRCA1 mutation, promote tumorigenesis in certain tissues, but not others, remain an important issue in cancer research. The underlying mechanisms may reveal tissue-specific therapeutic vulnerabilities. Although the roles of BRCA1, such as DNA damage repair and stalled fork stabilization, obviously contribute to tumor suppression, these ubiquitously important functions cannot explain tissue-specific tumorigenesis by BRCA1 mutations. Recent advances in our understanding of the cancer genome and fundamental cellular processes on DNA, such as transcription and DNA replication, have provided new insights regarding BRCA1-associated tumorigenesis, suggesting that G-quadruplex (G4) plays a critical role. In this review, we summarize the importance of G4 structures in mutagenesis of the cancer genome and cell type-specific gene regulation, and discuss a recently revealed molecular mechanism of G4/base excision repair (BER)-mediated transcriptional activation. The latter adequately explains the correlation between the accumulation of unresolved transcriptional regulatory G4s and multi-level genomic alterations observed in BRCA1-associated tumors. In summary, tissue-specific tumorigenesis by BRCA1 deficiency can be explained by cell type-specific levels of transcriptional regulatory G4s and the role of BRCA1 in resolving it. This mechanism would provide an integrated understanding of the initiation and development of BRCA1-associated tumors.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
| | - Sohyun Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Sungnam 13496, Korea
- Correspondence:
| |
Collapse
|
135
|
Luo H, Zhu G, Eshelman MA, Fung TK, Lai Q, Wang F, Zeisig BB, Lesperance J, Ma X, Chen S, Cesari N, Cogle C, Chen B, Xu B, Yang FC, So CWE, Qiu Y, Xu M, Huang S. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Mol Cell 2022; 82:833-851.e11. [PMID: 35180428 PMCID: PMC8985430 DOI: 10.1016/j.molcel.2022.01.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
HOTTIP lncRNA is highly expressed in acute myeloid leukemia (AML) driven by MLL rearrangements or NPM1 mutations to mediate HOXA topologically associated domain (TAD) formation and drive aberrant transcription. However, the mechanism through which HOTTIP accesses CCCTC-binding factor (CTCF) chromatin boundaries and regulates CTCF-mediated genome topology remains unknown. Here, we show that HOTTIP directly interacts with and regulates a fraction of CTCF-binding sites (CBSs) in the AML genome by recruiting CTCF/cohesin complex and R-loop-associated regulators to form R-loops. HOTTIP-mediated R-loops reinforce the CTCF boundary and facilitate formation of TADs to drive gene transcription. Either deleting CBS or targeting RNase H to eliminate R-loops in the boundary CBS of β-catenin TAD impaired CTCF boundary activity, inhibited promoter/enhancer interactions, reduced β-catenin target expression, and mitigated leukemogenesis in xenograft mouse models with aberrant HOTTIP expression. Thus, HOTTIP-mediated R-loop formation directly reinforces CTCF chromatin boundary activity and TAD integrity to drive oncogene transcription and leukemia development.
Collapse
MESH Headings
- Animals
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Gene Expression Regulation, Leukemic
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Transgenic
- R-Loop Structures
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Structure-Activity Relationship
- Transcription, Genetic
- Transcriptional Activation
- beta Catenin/genetics
- beta Catenin/metabolism
- Cohesins
Collapse
Affiliation(s)
- Huacheng Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ganqian Zhu
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Melanie A Eshelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Tsz Kan Fung
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Qian Lai
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Fei Wang
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Bernd B Zeisig
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Julia Lesperance
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xiaoyan Ma
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Shi Chen
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Nicholas Cesari
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher Cogle
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Baoan Chen
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Feng-Chun Yang
- Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA; Mays Cancer Center, Joe R. & Teresa Lozano Long School of Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Chi Wai Eric So
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK.
| | - Yi Qiu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Mingjiang Xu
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA; Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA.
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
136
|
Jiao A, Sun C, Wang X, Lei L, Liu H, Li W, Yang X, Zheng H, Ding R, Zhu K, Su Y, Zhang C, Zhang L, Zhang B. DExD/H-box helicase 9 intrinsically controls CD8 + T cell-mediated antiviral response through noncanonical mechanisms. SCIENCE ADVANCES 2022; 8:eabk2691. [PMID: 35138904 PMCID: PMC8827654 DOI: 10.1126/sciadv.abk2691] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Upon virus infection, CD8+ T cell accumulation is tightly controlled by simultaneous proliferation and apoptosis. However, it remains unclear how TCR signal coordinates these events to achieve expansion and effector cell differentiation. We found that T cell-specific deletion of nuclear helicase Dhx9 led to impaired CD8+ T cell survival, effector differentiation, and viral clearance. Mechanistically, Dhx9 acts as the key regulator to ensure LCK- and CD3ε-mediated ZAP70 phosphorylation and ERK activation to protect CD8+ T cells from apoptosis before proliferative burst. Dhx9 directly regulates Id2 transcription to control effector CD8+ T cell differentiation. The DSRM and OB_Fold domains are required for LCK binding and Id2 transcription, respectively. Dhx9 expression is predominantly increased in effector CD8+ T cells of COVID-19 patients. Therefore, we revealed a previously unknown regulatory mechanism that Dhx9 protects activated CD8+ T cells from apoptosis and ensures effector differentiation to promote antiviral immunity independent of nuclear sensor function.
Collapse
Affiliation(s)
- Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune Related Diseases, Xi’an, Shaanxi, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune Related Diseases, Xi’an, Shaanxi, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune Related Diseases, Xi’an, Shaanxi, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune Related Diseases, Xi’an, Shaanxi, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Wenhui Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune Related Diseases, Xi’an, Shaanxi, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Renyi Ding
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kun Zhu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
- Corresponding author. (B.Z.); (L.Z.)
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune Related Diseases, Xi’an, Shaanxi, China
- Corresponding author. (B.Z.); (L.Z.)
| |
Collapse
|
137
|
Idrissou M, Maréchal A. The PRP19 Ubiquitin Ligase, Standing at the Cross-Roads of mRNA Processing and Genome Stability. Cancers (Basel) 2022; 14:878. [PMID: 35205626 PMCID: PMC8869861 DOI: 10.3390/cancers14040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/07/2022] Open
Abstract
mRNA processing factors are increasingly being recognized as important regulators of genome stability. By preventing and resolving RNA:DNA hybrids that form co-transcriptionally, these proteins help avoid replication-transcription conflicts and thus contribute to genome stability through their normal function in RNA maturation. Some of these factors also have direct roles in the activation of the DNA damage response and in DNA repair. One of the most intriguing cases is that of PRP19, an evolutionarily conserved essential E3 ubiquitin ligase that promotes mRNA splicing, but also participates directly in ATR activation, double-strand break resection and mitosis. Here, we review historical and recent work on PRP19 and its associated proteins, highlighting their multifarious cellular functions as central regulators of spliceosome activity, R-loop homeostasis, DNA damage signaling and repair and cell division. Finally, we discuss open questions that are bound to shed further light on the functions of PRP19-containing complexes in both normal and cancer cells.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N3, Canada
| | - Alexandre Maréchal
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N3, Canada
| |
Collapse
|
138
|
Marabitti V, Valenzisi P, Lillo G, Malacaria E, Palermo V, Pichierri P, Franchitto A. R-Loop-Associated Genomic Instability and Implication of WRN and WRNIP1. Int J Mol Sci 2022; 23:ijms23031547. [PMID: 35163467 PMCID: PMC8836129 DOI: 10.3390/ijms23031547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Maintenance of genome stability is crucial for cell survival and relies on accurate DNA replication. However, replication fork progression is under constant attack from different exogenous and endogenous factors that can give rise to replication stress, a source of genomic instability and a notable hallmark of pre-cancerous and cancerous cells. Notably, one of the major natural threats for DNA replication is transcription. Encounters or conflicts between replication and transcription are unavoidable, as they compete for the same DNA template, so that collisions occur quite frequently. The main harmful transcription-associated structures are R-loops. These are DNA structures consisting of a DNA–RNA hybrid and a displaced single-stranded DNA, which play important physiological roles. However, if their homeostasis is altered, they become a potent source of replication stress and genome instability giving rise to several human diseases, including cancer. To combat the deleterious consequences of pathological R-loop persistence, cells have evolved multiple mechanisms, and an ever growing number of replication fork protection factors have been implicated in preventing/removing these harmful structures; however, many others are perhaps still unknown. In this review, we report the current knowledge on how aberrant R-loops affect genome integrity and how they are handled, and we discuss our recent findings on the role played by two fork protection factors, the Werner syndrome protein (WRN) and the Werner helicase-interacting protein 1 (WRNIP1) in response to R-loop-induced genome instability.
Collapse
|
139
|
Kannan A, Cuartas J, Gangwani P, Branzei D, Gangwani L. Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4. Brain 2022; 145:3072-3094. [PMID: 35045161 PMCID: PMC9536298 DOI: 10.1093/brain/awab464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Mutation in the senataxin (SETX) gene causes an autosomal dominant neuromuscular disorder, amyotrophic lateral sclerosis 4 (ALS4), characterized by degeneration of motor neurons, muscle weakness and atrophy. SETX is an RNA-DNA helicase that mediates resolution of co-transcriptional RNA:DNA hybrids (R-loops). The process of R-loop resolution is essential for the normal functioning of cells, including neurons. The molecular basis of ALS4 pathogenesis and the mechanism of R-loop resolution are unclear. We report that the zinc finger protein ZPR1 binds to RNA:DNA hybrids, recruits SETX onto R-loops and is critical for R-loop resolution. ZPR1 deficiency disrupts the integrity of R-loop resolution complexes containing SETX and causes increased R-loop accumulation throughout gene transcription. We uncover that SETX is a downstream target of ZPR1 and that overexpression of ZPR1 can rescue R-loop resolution complexe assembly in SETX-deficient cells but not vice versa. To uncover the mechanism of R-loop resolution, we examined the function of SETX-ZPR1 complexes using two genetic motor neuron disease models with altered R-loop resolution. Notably, chronic low levels of SETX-ZPR1 complexes onto R-loops result in a decrease of R-loop resolution activity causing an increase in R-loop levels in spinal muscular atrophy. ZPR1 overexpression increases recruitment of SETX onto R-loops, decreases R-loops and rescues the spinal muscular atrophy phenotype in motor neurons and patient cells. Strikingly, interaction of SETX with ZPR1 is disrupted in ALS4 patients that have heterozygous SETX (L389S) mutation. ZPR1 fails to recruit the mutant SETX homodimer but recruits the heterodimer with partially disrupted interaction between SETX and ZPR1. Interestingly, disruption of SETX-ZPR1 complexes causes increase in R-loop resolution activity leading to fewer R-loops in ALS4. Modulation of ZPR1 levels regulates R-loop accumulation and rescues the pathogenic R-loop phenotype in ALS4 patient cells. These findings originate a new concept, ‘opposite alterations in a cell biological activity (R-loop resolution) result in similar pathogenesis (neurodegeneration) in different genetic motor neuron disorders’. We propose that ZPR1 collaborates with SETX and may function as a molecular brake to regulate SETX-dependent R-loop resolution activity critical for the normal functioning of motor neurons.
Collapse
Affiliation(s)
- Annapoorna Kannan
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Juliana Cuartas
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Pratik Gangwani
- Automated Driving Compute System Architecture, GM Global Technical Center - Sloan Engineering Center, Warren, Michigan 48092, USA
| | - Dana Branzei
- The FIRC Institute of Molecular Oncology Foundation, IFOM Foundation, Via Adamello 16, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| |
Collapse
|
140
|
Proximity labeling identifies a repertoire of site-specific R-loop modulators. Nat Commun 2022; 13:53. [PMID: 35013239 PMCID: PMC8748879 DOI: 10.1038/s41467-021-27722-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022] Open
Abstract
R-loops are three-stranded nucleic acid structures that accumulate on chromatin in neurological diseases and cancers and contribute to genome instability. Using a proximity-dependent labeling system, we identified distinct classes of proteins that regulate R-loops in vivo through different mechanisms. We show that ATRX suppresses R-loops by interacting with RNAs and preventing R-loop formation. Our proteomics screen also discovered an unexpected enrichment for proteins containing zinc fingers and homeodomains. One of the most consistently enriched proteins was activity-dependent neuroprotective protein (ADNP), which is frequently mutated in ASD and causal in ADNP syndrome. We find that ADNP resolves R-loops in vitro and that it is necessary to suppress R-loops in vivo at its genomic targets. Furthermore, deletion of the ADNP homeodomain severely diminishes R-loop resolution activity in vitro, results in R-loop accumulation at ADNP targets, and compromises neuronal differentiation. Notably, patient-derived human induced pluripotent stem cells that contain an ADNP syndrome-causing mutation exhibit R-loop and CTCF accumulation at ADNP targets. Our findings point to a specific role for ADNP-mediated R-loop resolution in physiological and pathological neuronal function and, more broadly, to a role for zinc finger and homeodomain proteins in R-loop regulation, with important implications for developmental disorders and cancers. R-loops are three-stranded nucleic acid structures that contribute to genome instability and accumulate in neurological diseases. Here the authors identify R-loop proximal factors, which are enriched for zinc finger and homeodomain proteins, including activity-dependent neuroprotective protein (ADNP). ADNP plays a role in R-loop resolution and loss-of-function leads to R-loop accumulation.
Collapse
|
141
|
Shinriki S, Hirayama M, Nagamachi A, Yokoyama A, Kawamura T, Kanai A, Kawai H, Iwakiri J, Liu R, Maeshiro M, Tungalag S, Tasaki M, Ueda M, Tomizawa K, Kataoka N, Ideue T, Suzuki Y, Asai K, Tani T, Inaba T, Matsui H. DDX41 coordinates RNA splicing and transcriptional elongation to prevent DNA replication stress in hematopoietic cells. Leukemia 2022; 36:2605-2620. [PMID: 36229594 PMCID: PMC9613458 DOI: 10.1038/s41375-022-01708-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Myeloid malignancies with DDX41 mutations are often associated with bone marrow failure and cytopenia before overt disease manifestation. However, the mechanisms underlying these specific conditions remain elusive. Here, we demonstrate that loss of DDX41 function impairs efficient RNA splicing, resulting in DNA replication stress with excess R-loop formation. Mechanistically, DDX41 binds to the 5' splice site (5'SS) of coding RNA and coordinates RNA splicing and transcriptional elongation; loss of DDX41 prevents splicing-coupled transient pausing of RNA polymerase II at 5'SS, causing aberrant R-loop formation and transcription-replication collisions. Although the degree of DNA replication stress acquired in S phase is small, cells undergo mitosis with under-replicated DNA being remained, resulting in micronuclei formation and significant DNA damage, thus leading to impaired cell proliferation and genomic instability. These processes may be responsible for disease phenotypes associated with DDX41 mutations.
Collapse
Affiliation(s)
- Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Mayumi Hirayama
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Nagamachi
- grid.257022.00000 0000 8711 3200Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akihiko Yokoyama
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Takeshi Kawamura
- grid.26999.3d0000 0001 2151 536XIsotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Akinori Kanai
- grid.26999.3d0000 0001 2151 536XLaboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hidehiko Kawai
- grid.257022.00000 0000 8711 3200Department of Nucleic Acids Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junichi Iwakiri
- grid.26999.3d0000 0001 2151 536XLaboratory of Genome Informatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Rin Liu
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Maeshiro
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Saruul Tungalag
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayoshi Tasaki
- grid.274841.c0000 0001 0660 6749Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuharu Ueda
- grid.274841.c0000 0001 0660 6749Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- grid.274841.c0000 0001 0660 6749Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoyuki Kataoka
- grid.26999.3d0000 0001 2151 536XLaboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Ideue
- grid.274841.c0000 0001 0660 6749Department of Biological Sciences, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yutaka Suzuki
- grid.26999.3d0000 0001 2151 536XLaboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kiyoshi Asai
- grid.26999.3d0000 0001 2151 536XLaboratory of Genome Informatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tokio Tani
- grid.274841.c0000 0001 0660 6749Department of Biological Sciences, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Toshiya Inaba
- grid.257022.00000 0000 8711 3200Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
142
|
Alagia A, Ketley RF, Gullerova M. Proximity Ligation Assay for Detection of R-Loop Complexes upon DNA Damage. Methods Mol Biol 2022; 2528:289-303. [PMID: 35704199 DOI: 10.1007/978-1-0716-2477-7_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In situ Proximity Ligation Assay (PLA ) can be used to detect the close proximity (less than ~40 nm) of two biological molecules of interest in cells. Here we report the application of this method for the specific detection of R-loop interacting proteins and RNA modifications in close proximity to R-loops in non-damage and ionizing radiation (IR) induced DNA damage conditions.
Collapse
Affiliation(s)
- Adele Alagia
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ruth F Ketley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
143
|
Dutta A, Kwon Y, Sung P. Biochemical Analysis of RNA-DNA Hybrid and R-Loop Unwinding Via Motor Proteins. Methods Mol Biol 2022; 2528:305-316. [PMID: 35704200 DOI: 10.1007/978-1-0716-2477-7_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
R-loops, three-stranded RNA-DNA hybrids that arise mostly during transcription, could cause genomic instability via distinct routes. Detection of genomic RNA-DNA hybrids via immunofluorescence and RNA-DNA hybrid immunoprecipitation techniques have facilitated the discovery of many cellular factors that maintain R-loop homeostasis. One of multiple R-loop avoidance mechanisms is mediated by several nucleic acid motor proteins that utilize the energy from ATP hydrolysis to dissociate the R-loop structure. The biochemical activity of such motor proteins can be interrogated using synthetic R-loop substrates. Here, we describe methods to generate R-loop and RNA-DNA substrates for studying the activity of R-loop processing motor proteins such as human DHX9 and S. cerevisiae Pif1. Such studies provide valuable information regarding the directionality, nucleic acid strand preference, and processivity of these enzymes. Moreover, these substrates and companion biochemical assays provide the requisite tool for understanding the action of physiologically relevant regulators of these motor proteins.
Collapse
Affiliation(s)
- Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
144
|
Beghè C, Gromak N. R-Loop Immunoprecipitation: A Method to Detect R-Loop Interacting Factors. Methods Mol Biol 2022; 2528:215-237. [PMID: 35704194 DOI: 10.1007/978-1-0716-2477-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
R-loops are non-B-DNA structures consisting of an RNA/DNA hybrid and a displaced single-stranded DNA. They arise during transcription and play important biological roles. However, perturbation of R-loop levels represents a source of DNA damage and genome instability resulting in human diseases, including cancer and neurodegeneration. In this chapter, we describe a protocol which allows detection of R-loop interactors using affinity purification with S9.6 antibody, specific for RNA/DNA hybrids, followed by Western blotting or mass spectrometry. Multiple specificity controls including addition of synthetic competitors and RNase H treatment are described to verify the specificity of identified R-loop-binding factors. The identification of new R-loop interacting factors and the characterization of their involvement in R-loop biology provides a powerful resource to study the role of these important structures in health and disease.
Collapse
Affiliation(s)
- Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
145
|
Bhattacharjee S, Rehman I, Nandy S, Das BB. Post-translational regulation of Tyrosyl-DNA phosphodiesterase (TDP1 and TDP2) for the repair of the trapped topoisomerase-DNA covalent complex. DNA Repair (Amst) 2022; 111:103277. [DOI: 10.1016/j.dnarep.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
|
146
|
Wu W, He JN, Lan M, Zhang P, Chu WK. Transcription-Replication Collisions and Chromosome Fragility. Front Genet 2021; 12:804547. [PMID: 34956339 PMCID: PMC8703014 DOI: 10.3389/fgene.2021.804547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate replication of the entire genome is critical for cell division and propagation. Certain regions in the genome, such as fragile sites (common fragile sites, rare fragile sites, early replicating fragile sites), rDNA and telomeres, are intrinsically difficult to replicate, especially in the presence of replication stress caused by, for example, oncogene activation during tumor development. Therefore, these regions are particularly prone to deletions and chromosome rearrangements during tumorigenesis, rendering chromosome fragility. Although, the mechanism underlying their “difficult-to-replicate” nature and genomic instability is still not fully understood, accumulating evidence suggests transcription might be a major source of endogenous replication stress (RS) leading to chromosome fragility. Here, we provide an updated overview of how transcription affects chromosome fragility. Furthermore, we will use the well characterized common fragile sites (CFSs) as a model to discuss pathways involved in offsetting transcription-induced RS at these loci with a focus on the recently discovered atypical DNA synthesis repair pathway Mitotic DNA Synthesis (MiDAS).
Collapse
Affiliation(s)
- Wei Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Mengjiao Lan
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| |
Collapse
|
147
|
AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity. Int J Mol Sci 2021; 23:ijms23010096. [PMID: 35008519 PMCID: PMC8744917 DOI: 10.3390/ijms23010096] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Genome integrity must be tightly preserved to ensure cellular survival and to deter the genesis of disease. Endogenous and exogenous stressors that impose threats to genomic stability through DNA damage are counteracted by a tightly regulated DNA damage response (DDR). RNA binding proteins (RBPs) are emerging as regulators and mediators of diverse biological processes. Specifically, RBPs that bind to adenine uridine (AU)-rich elements (AREs) in the 3' untranslated region (UTR) of mRNAs (AU-RBPs) have emerged as key players in regulating the DDR and preserving genome integrity. Here we review eight established AU-RBPs (AUF1, HuR, KHSRP, TIA-1, TIAR, ZFP36, ZFP36L1, ZFP36L2) and their ability to maintain genome integrity through various interactions. We have reviewed canonical roles of AU-RBPs in regulating the fate of mRNA transcripts encoding DDR genes at multiple post-transcriptional levels. We have also attempted to shed light on non-canonical roles of AU-RBPs exploring their post-translational modifications (PTMs) and sub-cellular localization in response to genotoxic stresses by various factors involved in DDR and genome maintenance. Dysfunctional AU-RBPs have been increasingly found to be associated with many human cancers. Further understanding of the roles of AU-RBPS in maintaining genomic integrity may uncover novel therapeutic strategies for cancer.
Collapse
|
148
|
Histone H3 deacetylation promotes host cell viability for efficient infection by Listeria monocytogenes. PLoS Pathog 2021; 17:e1010173. [PMID: 34929015 PMCID: PMC8722725 DOI: 10.1371/journal.ppat.1010173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/03/2022] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
For many intracellular bacterial pathogens manipulating host cell survival is essential for maintaining their replicative niche, and is a common strategy used to promote infection. The bacterial pathogen Listeria monocytogenes is well known to hijack host machinery for its own benefit, such as targeting the host histone H3 for modification by SIRT2. However, by what means this modification benefits infection, as well as the molecular players involved, were unknown. Here we show that SIRT2 activity supports Listeria intracellular survival by maintaining genome integrity and host cell viability. This protective effect is dependent on H3K18 deacetylation, which safeguards the host genome by counteracting infection-induced DNA damage. Mechanistically, infection causes SIRT2 to interact with the nucleic acid binding protein TDP-43 and localise to genomic R-loops, where H3K18 deacetylation occurs. This work highlights novel functions of TDP-43 and R-loops during bacterial infection and identifies the mechanism through which L. monocytogenes co-opts SIRT2 to allow efficient infection. To cause systemic disease Listeria monocytogenes assumes an intracellular lifestyle which supports its growth and dissemination during infection. In order to maintain the intracellular niche L. monocytogenes manipulates various host cell processes thereby promoting its own survival and infection. One such example is the hijacking of a host deacetylase called SIRT2 which upon infection localises to chromatin, specifically modifies lysine 18 of histone H3 and promotes intracellular bacterial growth. Here we identify how SIRT2 promotes infection. We show that SIRT2-mediated H3K18 deacetylation counteracts infection-induced DNA damage and identify the molecular complex at play. Such SIRT2 activity has a crucial role in promoting host cell viability during infection, allowing for better survival upon heavy intracellular bacterial burden, and resulting in enhanced infection by L. monocytogenes.
Collapse
|
149
|
R-loop proximity proteomics identifies a role of DDX41 in transcription-associated genomic instability. Nat Commun 2021; 12:7314. [PMID: 34916496 PMCID: PMC8677849 DOI: 10.1038/s41467-021-27530-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription poses a threat to genomic stability through the formation of R-loops that can obstruct progression of replication forks. R-loops are three-stranded nucleic acid structures formed by an RNA-DNA hybrid with a displaced non-template DNA strand. We developed RNA-DNA Proximity Proteomics to map the R-loop proximal proteome of human cells using quantitative mass spectrometry. We implicate different cellular proteins in R-loop regulation and identify a role of the tumor suppressor DDX41 in opposing R-loop and double strand DNA break accumulation in promoters. DDX41 is enriched in promoter regions in vivo, and can unwind RNA-DNA hybrids in vitro. R-loop accumulation upon loss of DDX41 is accompanied with replication stress, an increase in the formation of double strand DNA breaks and transcriptome changes associated with the inflammatory response. Germline loss-of-function mutations in DDX41 lead to predisposition to acute myeloid leukemia in adulthood. We propose that R-loop accumulation and genomic instability-associated inflammatory response may contribute to the development of familial AML with mutated DDX41.
Collapse
|
150
|
Chatzidoukaki O, Stratigi K, Goulielmaki E, Niotis G, Akalestou-Clocher A, Gkirtzimanaki K, Zafeiropoulos A, Altmüller J, Topalis P, Garinis GA. R-loops trigger the release of cytoplasmic ssDNAs leading to chronic inflammation upon DNA damage. SCIENCE ADVANCES 2021; 7:eabj5769. [PMID: 34797720 PMCID: PMC8604417 DOI: 10.1126/sciadv.abj5769] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
How DNA damage leads to chronic inflammation and tissue degeneration with aging remains to be fully resolved. Here, we show that DNA damage leads to cellular senescence, fibrosis, loss-of-tissue architecture, and chronic pancreatitis in mice with an inborn defect in the excision repair cross complementation group 1 (Ercc1) gene. We find that DNA damage-driven R-loops causally contribute to the active release and buildup of single-stranded DNAs (ssDNAs) in the cytoplasm of cells triggering a viral-like immune response in progeroid and naturally aged pancreata. To reduce the proinflammatory load, we developed an extracellular vesicle (EV)-based strategy to deliver recombinant S1 or ribonuclease H nucleases in inflamed Ercc1−/− pancreatic cells. Treatment of Ercc1−/− animals with the EV-delivered nuclease cargo eliminates DNA damage-induced R-loops and cytoplasmic ssDNAs alleviating chronic inflammation. Thus, DNA damage-driven ssDNAs causally contribute to tissue degeneration, Ercc1−/− paving the way for novel rationalized intervention strategies against age-related chronic inflammation.
Collapse
Affiliation(s)
- Ourania Chatzidoukaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - George Niotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Alexia Akalestou-Clocher
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Katerina Gkirtzimanaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | | | - Janine Altmüller
- Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Corresponding author.
| |
Collapse
|