101
|
Bai X, Wang P. Relationship between sperm NAD + concentration and reproductive aging in normozoospermia men:A Cohort study. BMC Urol 2022; 22:159. [PMID: 36182928 PMCID: PMC9526896 DOI: 10.1186/s12894-022-01107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mechanisms of age-dependent reproductive decline in men are largely overlooked. An age-dependent reduction in nicotinamide adenine dinucleotide (NAD+) levels has been reported in multiple somatic and female reproductive tissues, including oocytes and ovarian tissue. However, the relationship between NAD + levels and male reproduction has not yet been studied. In the current study, the association between sperm NAD + level and paternal age was investigated. In addition, we also investigated whether sperm NAD + levels were related to semen quality. METHODS In this pilot observational cohort study, semen samples from 51 male subjects who visited a university-affiliated reproductive medical center for preconception consultation (< 30 years: n = 13, 30-40 years: n = 19, > 40 years: n = 19) were recruited. Their anthropometric characteristics were recorded, and semen analysis was performed. Their sperm NAD + levels were evaluated spectrophotometrically. RESULTS There were significant differences among the three age groups in the major parameters of semen quality. The sperm NAD + level was, however, similar among the three groups (< 30 years: 91.61 ± 15.59 nmol/106 sperm, 30-40 years: 125.60 ± 16.28 nmol/106 sperm, > 40 years: 115.59 ± 16.55 nmol/106 sperm). Additionally, linear regression also revealed no correlation between sperm NAD + concentration and the age of the participants (r2 = 0.018, p = 0.35). Noticeably, a negative correlation was found between the sperm NAD + concentrations and the sperm quality parameters, including sperm concentration (r2 = 0.78, p < 0.0001), sperm count (r2 = 0.47, p < 0.0001), mobile sperm number (r2 = 33, p < 0.0001), and DFI (r2 = 0.35, p < 0.0001). The semen volume and mobility rate were not related to the sperm NAD + concentration. CONCLUSION Unlike the age-related decrease of NAD + levels in oocytes and ovarian tissue, the sperm NAD + concentration is not age dependent. Sperm NAD + levels are negatively correlated with sperm quality, suggesting a unique role of NAD + in spermatogenesis, which warrants further study and opens opportunities for pharmaceutical interventions for oligozoospermia.
Collapse
Affiliation(s)
- Xueyan Bai
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China
| | - Peng Wang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
102
|
Abstract
The understanding of the molecular and cellular basis of aging has grown exponentially over recent years, and it is now accepted within the scientific community that aging is a malleable process; just as it can be accelerated, it can also be slowed and even reversed. This has far-reaching implications for our attitude and approach toward aging, presenting the opportunity to enter a new era of cellular regenerative medicine to not only manage the external signs of aging but also to develop therapies that support the body to repair and restore itself back to a state of internal well-being. A wealth of evidence now demonstrates that a decline in cellular nicotinamide adenine dinucleotide (NAD+) is a feature of aging and may play a role in the process. NAD+ plays a pivotal role in cellular metabolism and is a co-substrate for enzymes that play key roles in pathways that modify aging. Thus, interventions that increase NAD+ may slow aspects of the aging trajectory, and there is great interest in methods for cellular NAD+ restoration. Given these recent advancements in understanding the cellular aging process, it is important that there is an integration between the basic scientists who are investigating the underlying mechanisms of cellular aging and the surgeons and aesthetic practitioners who are providing antiaging therapies. This will allow the effective translation of this vastly complex area of biology into clinical practice so that people can continue to not only stay looking younger for longer but also experience improved health and wellness.
Collapse
|
103
|
Li J, Zhang J, Hou W, Yang X, Liu X, Zhang Y, Gao M, Zong M, Dong Z, Liu Z, Shen J, Cong W, Ding C, Gao S, Huang G, Kong Q. Metabolic control of histone acetylation for precise and timely regulation of minor ZGA in early mammalian embryos. Cell Discov 2022; 8:96. [PMID: 36167681 PMCID: PMC9515074 DOI: 10.1038/s41421-022-00440-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Metabolism feeds into the regulation of epigenetics via metabolic enzymes and metabolites. However, metabolic features, and their impact on epigenetic remodeling during mammalian pre-implantation development, remain poorly understood. In this study, we established the metabolic landscape of mouse pre-implantation embryos from zygote to blastocyst, and quantified some absolute carbohydrate metabolites. We integrated these data with transcriptomic and proteomic data, and discovered the metabolic characteristics of the development process, including the activation of methionine cycle from 8-cell embryo to blastocyst, high glutaminolysis metabolism at blastocyst stage, enhanced TCA cycle activity from the 8-cell embryo stage, and active glycolysis in the blastocyst. We further demonstrated that oxidized nicotinamide adenine dinucleotide (NAD+) synthesis is indispensable for mouse pre-implantation development. Mechanistically, in part, NAD+ is required for the exit of minor zygotic gene activation (ZGA) by cooperating with SIRT1 to remove zygotic H3K27ac. In human, NAD+ supplement can promote the removal of zygotic H3K27ac and benefit pre-implantation development. Our findings demonstrate that precise and timely regulation of minor ZGA is controlled by metabolic dynamics, and enhance our understanding of the metabolism of mammalian early embryos.
Collapse
Affiliation(s)
- Jingyu Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaming Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Weibo Hou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xu Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyu Liu
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yan Zhang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meiling Gao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Zong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhixiong Dong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jingling Shen
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunming Ding
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shaorong Gao
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Qingran Kong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
104
|
Lee SH, Liu X, Jimenez-Morales D, Rinaudo PF. Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production. eLife 2022; 11:e79153. [PMID: 36107481 PMCID: PMC9519152 DOI: 10.7554/elife.79153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
In vitro fertilization (IVF) has resulted in the birth of over 8 million children. Although most IVF-conceived children are healthy, several studies suggest an increased risk of altered growth rate, cardiovascular dysfunction, and glucose intolerance in this population compared to naturally conceived children. However, a clear understanding of how embryonic metabolism is affected by culture condition and how embryos reprogram their metabolism is unknown. Here, we studied oxidative stress and metabolic alteration in blastocysts conceived by natural mating or by IVF and cultured in physiologic (5%) or atmospheric (20%) oxygen. We found that IVF-generated blastocysts manifest increased reactive oxygen species, oxidative damage to DNA/lipid/proteins, and reduction in glutathione. Metabolic analysis revealed IVF-generated blastocysts display decreased mitochondria respiration and increased glycolytic activity suggestive of enhanced Warburg metabolism. These findings were corroborated by altered intracellular and extracellular pH and increased intracellular lactate levels in IVF-generated embryos. Comprehensive proteomic analysis and targeted immunofluorescence showed reduction of lactate dehydrogenase-B and monocarboxylate transporter 1, enzymes involved in lactate metabolism. Importantly, these enzymes remained downregulated in the tissues of adult IVF-conceived mice, suggesting that metabolic alterations in IVF-generated embryos may result in alteration in lactate metabolism. These findings suggest that alterations in lactate metabolism are a likely mechanism involved in genomic reprogramming and could be involved in the developmental origin of health and disease.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California, San FranciscoSan FranciscoUnited States
| | - Xiaowei Liu
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California, San FranciscoSan FranciscoUnited States
| | - David Jimenez-Morales
- Division of Cardiovascular Medicine, Department of Medicine, Stanford UniversityStanfordUnited States
| | - Paolo F Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
105
|
Mark PR. NAD+ deficiency in human congenital malformations and miscarriage: A new model of pleiotropy. Am J Med Genet A 2022; 188:2834-2849. [PMID: 35484986 PMCID: PMC9541200 DOI: 10.1002/ajmg.a.62764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
Pleiotropy is defined as the phenomenon of a single gene locus influencing two or more distinct phenotypic traits. However, nicotinamide adenine dinucleotide (NAD+) deficiency through diet alone can cause multiple or single malformations in mice. Additionally, humans with decreased NAD+ production due to changes in pathway genes display similar malformations. Here, I hypothesize NAD+ deficiency as a pleiotropic mechanism for multiple malformation conditions, including limb-body wall complex (LBWC), pentalogy of Cantrell (POC), omphalocele-exstrophy-imperforate anus-spinal defects (OEIS) complex, vertebral-anal-cardiac-tracheoesophageal fistula-renal-limb (VACTERL) association (hereafter VACTERL), oculoauriculovertebral spectrum (OAVS), Mullerian duct aplasia-renal anomalies-cervicothoracic somite dysplasia (MURCS), sirenomelia, and urorectal septum malformation (URSM) sequence, along with miscarriages and other forms of congenital malformation. The term Congenital NAD Deficiency Disorder (CNDD) could be considered for patients with these malformations; however, it is important to emphasize there have been no confirmatory experimental studies in humans to prove this hypothesis. In addition, these multiple malformation conditions should not be considered individual entities for the following reasons: First, there is no uniform consensus of clinical diagnostic criteria and all of them fail to capture cases with partial expression of the phenotype. Second, reports of individuals consistently show overlapping features with other reported conditions in this group. Finally, what is currently defined as VACTERL is what I would refer to as a default label when more striking features such as body wall defects, caudal dysgenesis, or cloacal exstrophy are not present.
Collapse
Affiliation(s)
- Paul R. Mark
- Department of Pediatrics, Division of Medical GeneticsHelen DeVos Children's Hospital, Spectrum HealthGrand RapidsMichiganUSA,Department of Pediatrics and Human DevelopmentCollege of Human Medicine, Michigan State UniversityGrand RapidsMichiganUSA
| |
Collapse
|
106
|
Li X, An Q, Ma Z, Zhang Y, Chen X, Chai Y, Fu M. Bioactive NAD + Regeneration Promoted by Multimetallic Nanoparticles Based on Graphene-Polymer Nanolayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39285-39292. [PMID: 35996209 DOI: 10.1021/acsami.2c12971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The concentration of nicotinamide adenine dinucleotide oxidized form (NAD+) changes during aging, and the production of NAD+ can significantly affect both health span and life span. However, it is still of great challenge to regenerate NAD+ from its precursors. Herein, we introduce a method to prepare multimetallic nanoparticles (including Au, Pt, Cu, and MgO) that can efficiently promote the conversion of NADH to NAD+. The nanoparticles are made by mixing reduced graphene oxide-polyethyleneimine-polyacrylic acid nano-films with metallic salts, where four different metal ions are reduced and grow at the surface of the nanolayers. The morphology, size, and growth rate of nanoparticles can be controlled by adding surfactants, applying an electric field, and so forth. Our multimetallic nanoparticles exhibit excellent catalytic performance that a complete conversion of NADH to NAD+ can be finished in 3 min without introducing additional oxygen. This work presents a way for the preparation of multimetallic nanoparticles to promote NAD+ regeneration, which shows great promise for the future design of high-performance materials for antiaging.
Collapse
Affiliation(s)
- Xiangming Li
- Department of Functional Materials, School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Zequn Ma
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Yi Zhang
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Xingyuan Chen
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yu Chai
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Meng Fu
- Department of Functional Materials, School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
107
|
Fukamizu Y, Uchida Y, Shigekawa A, Sato T, Kosaka H, Sakurai T. Safety evaluation of β-nicotinamide mononucleotide oral administration in healthy adult men and women. Sci Rep 2022; 12:14442. [PMID: 36002548 PMCID: PMC9400576 DOI: 10.1038/s41598-022-18272-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
A decrease in the intracellular level of nicotinamide adenine dinucleotide (NAD+), an essential coenzyme for metabolic activity, causes various age-related diseases and metabolic abnormalities. Both in-vivo and in-vitro studies have shown that increasing certain NAD+ levels in cell or tissue by supplementing nicotinamide mononucleotide (NMN), a precursor of NAD+, alleviates age-related diseases and metabolic disorders. In recent years, several clinical trials have been performed to elucidate NMN efficacy in humans. However, previous clinical studies with NMN have not reported on the safety of repeated daily oral administration of ≥ 1000 mg/shot in healthy adult men and women, and human clinical trials on NMN safety are limited. Therefore, we conducted a randomized, double-blind, placebo-controlled, parallel-group study to evaluate the safety of 1250 mg of β-NMN administered orally once daily for up to 4 weeks in 31 healthy adult men and women aged 20–65 years. Oral administration of β-NMN did not result in changes exceeding physiological variations in multiple clinical trials, including anthropometry, hematological, biochemical, urine, and body composition analyses. Moreover, no severe adverse events were observed during the study period. Our results indicate that β-NMN is safe and well-tolerated in healthy adult men and women an oral dose of 1250 mg once daily for up to 4 weeks. Trial registration Clinicaltrials.gov Identifier: UMIN000043084. Registered 21/01/2021. https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000049188.
Collapse
Affiliation(s)
- Yuichiro Fukamizu
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Yoshiaki Uchida
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Akari Shigekawa
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Toshiya Sato
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Hisayuki Kosaka
- Takaishi Fujii Hospital, 1-14-25 Ayazono, Takaishi-shi, Ōsaka, 592-0014, Japan
| | - Takanobu Sakurai
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan.
| |
Collapse
|
108
|
Valera MÁ, Albert C, Marcos J, Larreategui Z, Bori L, Meseguer M. A propensity score-based, comparative study assessing humid and dry time-lapse incubation, with single-step medium, on embryo development and clinical outcomes. Hum Reprod 2022; 37:1980-1993. [PMID: 35904473 DOI: 10.1093/humrep/deac165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Does culture in a high relative humidity atmosphere improve clinical outcomes when using a time-lapse integrated incubator and single-step culture medium? SUMMARY ANSWER Using an integrated time-lapse system and single-step culture medium, culture in a high relative humidity atmosphere increases the likelihood of embryos, especially those subjected to preimplantation genetic testing for aneuploidies, to achieve a pregnancy compared to those cultured in dry conditions. WHAT IS KNOWN ALREADY The use of a humid atmosphere inside incubators can reduce changes in culture media osmolality, which has been reported to have a significant effect on embryo quality and morphokinetics. Studies assessing the effect of humid culture (HC) in clinical outcomes are, however, scarce and inconclusive, mostly due to a high variability in culture conditions and reduced sample size. STUDY DESIGN, SIZE, DURATION Retrospective cohort study performed over 1627 ICSI cycles performed during 3 consecutive years in which embryo cohorts were cultured in a time-lapse incubator with three dry and three humidified chambers, and using single-step culture medium. Clinical outcomes were compared between treatments in which embryo cohorts were cultured in either humid (n = 833) or dry (n = 794) conditions. PARTICIPANTS/MATERIALS, SETTING, METHODS The study includes autologous treatments, with (N = 492) and without (N = 372) preimplantation genetic testing for aneuploidies (PGT-A) and ovum donation treatments (N = 763), performed in three university-affiliated private IVF centres. Stimulation, oocyte pickup and fertilization were performed according to the standard procedures of the clinic. All embryo cohorts were cultured in the same model of time-lapse incubator, distributed to either a dry or humidified chamber, while the rest of the culture variables remained equal. The population was weighted by the inverse probability of treatment to control for all measured confounders. The association between HC and the main outcome was assessed by logistic regression over the weighted population. The E-value was reported as a way of considering for unmeasured confounders. Differences in embryo development and other secondary outcomes between the study groups were assessed by Pearson Chi-squared test, ANOVA test and Kaplan-Meier survival analysis. MAIN RESULTS AND THE ROLE OF CHANCE An univariable logistic regression analysis, weighted by the inverse probability of treatment, determined that embryos cultured in humid conditions are more likely to achieve a clinical pregnancy than those cultured in dry conditions (odds ratio (OR) = 1.236 (95% CI 1.009-1.515), P = 0.041, E = 1.460). Through stratification, it was determined that said effect is dependent on the type of treatment: no improvement in clinical pregnancy was present in ovum donation or autologous treatments, but a statistically significant positive effect was present in treatments with preimplantation genetic testing (OR = 1.699 (95% CI 1.084-2.663), P = 0.021, E = 1.930). Said increase does not relate with an improvement in later outcomes. Differences were also found in variables related to embryo developmental morphokinetics. LIMITATIONS, REASONS FOR CAUTION The retrospective nature of the study makes it susceptible to some bias linked to the characteristics of the treatments. To lessen the effect of possible biases, cases were weighted by the inverse probability of treatment prior to the evaluation of the outcome, as means to assess for measured confounders. In addition, the E-value of the weighted OR was calculated as a sensitivity analysis for unmeasured confounders. A randomized prospective study could be performed for further assessing the effect of humid conditions in clinical outcome. WIDER IMPLICATIONS OF THE FINDINGS These results support that embryo culture under conditions of high relative humidity contributes to optimize clinical results in undisturbed culture in a time-lapse incubator with single-step medium. To our knowledge, this is the largest study on the matter and the first performing a propensity score-based analysis. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the ''Centro para el Desarrollo Tecnologico Industrial'' from the Spanish Ministry of Science, Innovation, and Universities (CDTI-20170310) and Generalitat Valenciana and European Social Fund (ACIF/2019/264). None of the authors have any competing interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- María Ángeles Valera
- Clinical Research, IVI Foundation, Health Research Institute la Fe, Valencia, Spain.,IVF Laboratory, IVI-RMA Valencia, Valencia, Spain
| | | | | | | | - Lorena Bori
- Clinical Research, IVI Foundation, Health Research Institute la Fe, Valencia, Spain.,IVF Laboratory, IVI-RMA Valencia, Valencia, Spain
| | - Marcos Meseguer
- Clinical Research, IVI Foundation, Health Research Institute la Fe, Valencia, Spain.,IVF Laboratory, IVI-RMA Valencia, Valencia, Spain
| |
Collapse
|
109
|
Mouse oocytes carrying metacentric Robertsonian chromosomes have fewer crossover sites and higher aneuploidy rates than oocytes carrying acrocentric chromosomes alone. Sci Rep 2022; 12:12028. [PMID: 35835815 PMCID: PMC9283534 DOI: 10.1038/s41598-022-16175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Meiotic homologous recombination during fetal development dictates proper chromosome segregation in adult mammalian oocytes. Successful homologous synapsis and recombination during Meiotic Prophase I (MPI) depends on telomere-led chromosome movement along the nuclear envelope. In mice, all chromosomes are acrocentric, while other mammalian species carry a mixture of acrocentric and metacentric chromosomes. Such differences in telomeric structures may explain the exceptionally low aneuploidy rates in mice. Here, we tested whether the presence of metacentric chromosomes carrying Robertsonian translocations (RbT) affects the rate of homologous recombination or aneuploidy. We found a delay in MPI progression in RbT-carrier vs. wild-type (WT) fetal ovaries. Furthermore, resolution of distal telomere clusters, associated with synapsis initiation, was delayed and centromeric telomere clusters persisted until later MPI substages in RbT-carrier oocytes compared to WT oocytes. When chromosomes fully synapsed, higher percentages of RbT-carrier oocytes harbored at least one chromosome pair lacking MLH1 foci, which indicate crossover sites, compared to WT oocytes. Aneuploidy rates in ovulated eggs were also higher in RbT-carrier females than in WT females. In conclusion, the presence of metacentric chromosomes among acrocentric chromosomes in mouse oocytes delays MPI progression and reduces the efficiency of homologous crossover, resulting in a higher frequency of aneuploidy.
Collapse
|
110
|
Ren SC, Chen X, Gong H, Wang H, Wu C, Li PH, Chen XF, Qu JH, Tang X. SIRT6 in Vascular Diseases, from Bench to Bedside. Aging Dis 2022; 13:1015-1029. [PMID: 35855341 PMCID: PMC9286919 DOI: 10.14336/ad.2021.1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/04/2021] [Indexed: 11/12/2022] Open
Abstract
Aging is a key risk factor for angiogenic dysfunction and cardiovascular diseases, including heart failure, hypertension, atherosclerosis, diabetes, and stroke. Members of the NAD+-dependent class III histone deacetylase family, sirtuins, are conserved regulators of aging and cardiovascular and cerebrovascular diseases. The sirtuin SIRT6 is predominantly located in the nucleus and shows deacetylase activity for acetylated histone 3 lysine 56 and lysine 9 as well as for some non-histone proteins. Over the past decade, experimental analyses in rodents and non-human primates have demonstrated the critical role of SIRT6 in extending lifespan. Recent studies highlighted the pleiotropic protective actions of SIRT6 in angiogenesis and cardiovascular diseases, including atherosclerosis, hypertension, heart failure, and stroke. Mechanistically, SIRT6 participates in vascular diseases via epigenetic regulation of endothelial cells, vascular smooth muscle cells, and immune cells. Importantly, SIRT6 activators (e.g., MDL-800/MDL-811) have provided therapeutic value for treating age-related vascular disorders. Here, we summarized the roles of sirtuins in cardiovascular diseases; reviewed recent advances in the understanding of SIRT6 in vascular biology, cardiovascular aging, and diseases; highlighted its therapeutic potential; and discussed future perspectives.
Collapse
Affiliation(s)
- Si-Chong Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Xiangqi Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Hui Gong
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Han Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Chuan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Pei-Heng Li
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiao-Feng Chen
- Department of Biochemistry and Molecular Biology, Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jia-Hua Qu
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
111
|
Wang L, Chen Y, Wei J, Guo F, Li L, Han Z, Wang Z, Zhu H, Zhang X, Li Z, Dai X. Administration of nicotinamide mononucleotide improves oocyte quality of obese mice. Cell Prolif 2022; 55:e13303. [PMID: 35811338 PMCID: PMC9628229 DOI: 10.1111/cpr.13303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Objectives Obesity has become a common health concern around the world. Maternal obesity could cause poor reproductive outcomes due to chronic ovarian inflammation and decreased oocyte quality. However, the strategies to improve the poor reproductive outcomes of obese females have not been fully studied. In this study, we aimed to explore the effects and underlying mechanisms of nicotinamide mononucleotide (NMN) on oocyte quality and reproductive performance of obese mice. Materials and Methods The obese mouse model was established by feeding high‐fat diet which was confirmed by body weight record, fasting blood glucose test and oral glucose tolerance test. The expression of ovary development related genes and inflammation related genes, including Lhx8, Bmp4, Adgre1, Ccl2, TNF‐α, Gal‐3, Clec10a and IL‐10 in ovaries and the expression of Bax and Sod1 in oocytes were detected using quantitative reverse transcription PCR (RT‐qPCR). The adipose size of abdominal fat tissue was determined with haematoxylin and eosin (H&E) staining. Immunofluorescence staining was performed to measure the ROS level, spindle/chromosome structure, mitochondrial function, actin dynamics and DNA damage of oocytes. Results The administration of NMN restored ovarian weight and reduced the adipose size of abdominal fat tissue and ovarian inflammation in high fat diet (HFD) mice. Furthermore, NMN treatment improved the oocytes quality partially by restoring the mitochondrial function and actin dynamics, reducing meiotic defects, DNA damage and ROS level and lipid droplet distribution of oocytes in HFD mice. On the long‐term effect, NMN restored offspring body weight of HFD mice. Conclusion NMN could improve the oocyte quality of HFD‐induced obese mice.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Jiarui Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Leyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Zhen Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Zhengzhu Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Haibo Zhu
- Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
112
|
Wu HHL, Goldys EM, Pollock CA, Saad S. Exfoliated Kidney Cells from Urine for Early Diagnosis and Prognostication of CKD: The Way of the Future? Int J Mol Sci 2022; 23:7610. [PMID: 35886957 PMCID: PMC9324667 DOI: 10.3390/ijms23147610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a global health issue, affecting more than 10% of the worldwide population. The current approach for formal diagnosis and prognostication of CKD typically relies on non-invasive serum and urine biomarkers such as serum creatinine and albuminuria. However, histological evidence of tubulointerstitial fibrosis is the 'gold standard' marker of the likelihood of disease progression. The development of novel biomedical technologies to evaluate exfoliated kidney cells from urine for non-invasive diagnosis and prognostication of CKD presents opportunities to avoid kidney biopsy for the purpose of prognostication. Efforts to apply these technologies more widely in clinical practice are encouraged, given their potential as a cost-effective approach, and no risk of post-biopsy complications such as bleeding, pain and hospitalization. The identification of biomarkers in exfoliated kidney cells from urine via western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence techniques, measurement of cell and protein-specific messenger ribonucleic acid (mRNA)/micro-RNA and other techniques have been reported. Recent innovations such as multispectral autofluorescence imaging and single-cell RNA sequencing (scRNA-seq) have brought additional dimensions to the clinical application of exfoliated kidney cells from urine. In this review, we discuss the current evidence regarding the utility of exfoliated proximal tubule cells (PTC), podocytes, mesangial cells, extracellular vesicles and stem/progenitor cells as surrogate markers for the early diagnosis and prognostication of CKD. Future directions for development within this research area are also identified.
Collapse
Affiliation(s)
- Henry H. L. Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ewa M. Goldys
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
| |
Collapse
|
113
|
Muyayalo KP, Song S, Liu C, Gong GS, Zhang YJ, Zhou H, Shen L, Liao AH. HLA-DR + CD45RA- Tregs and CD28- Treg-like cells: Potential immunologic biomarkers for reproductive aging. Am J Reprod Immunol 2022; 89:e13591. [PMID: 35771647 DOI: 10.1111/aji.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
PROBLEM This study aimed to identify subsets of regulatory T cells (Tregs) associated with ovarian aging and determine whether they can be used as markers of reproductive aging. METHOD This prospective cohort study was conducted among women of reproductive age. Basic physiological characteristics, reproductive hormones, Treg cell subsets, and correlations between these parameters were assessed. The POSEIDON criteria was used to identify women with low reproductive potential. RESULTS The percentages of HLA-DR+ CD45RA- Tregs and CD28- Treg-like cells significantly increased with age. Women between 40 and 49 years had significantly higher percentages of HLA-DR+ CD45RA- Tregs and CD28- Treg-like cells than those at 20-29, 30-34, and 35-39 years old. Age positively correlated with FSH levels and the percentages of HLA-DR+ CD45RA- Tregs and CD28- Treg-like cells, but inversely correlated with antral follicle count (AFC) and AMH levels. Interestingly, a positive correlation was found between the percentages of HLA-DR+ CD45RA- Tregs and FSH levels, whereas an inverse correlation was found between those of HLA-DR+ CD45RA- Tregs and AFC or AMH levels. Furthermore, a significant positive correlation was observed between the percentages of CD28- Treg-like cells and AFC. Based on POSEIDON criteria, women with the percentages of HLA-DR+ CD45RA- Tregs and CD28- Treg-like cells above reference value ranges were assigned to the low prognosis groups. CONCLUSION These findings suggest that HLA-DR+ CD45RA- Tregs and CD28- Treg-like cells can be used as immunologic markers of reproductive aging, which helps clinicians identify women with low reproductive potential and establish individualized therapeutic strategies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Obstetrics and Gynecology, University of Kinshasa, Kinshasa, D. R. Congo
| | - Su Song
- Wuhan Tongji Reproductive Medical Hospital, Wuhan, P.R. China
| | - Chunyan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hui Zhou
- Wuhan Tongji Reproductive Medical Hospital, Wuhan, P.R. China
| | - Li Shen
- Department of Obstetrics and Gynecology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
114
|
Unique Deep Radiomic Signature Shows NMN Treatment Reverses Morphology of Oocytes from Aged Mice. Biomedicines 2022; 10:biomedicines10071544. [PMID: 35884850 PMCID: PMC9313081 DOI: 10.3390/biomedicines10071544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study is to develop a deep radiomic signature based on an artificial intelligence (AI) model. This radiomic signature identifies oocyte morphological changes corresponding to reproductive aging in bright field images captured by optical light microscopy. Oocytes were collected from three mice groups: young (4- to 5-week-old) C57BL/6J female mice, aged (12-month-old) mice, and aged mice treated with the NAD+ precursor nicotinamide mononucleotide (NMN), a treatment recently shown to rejuvenate aspects of fertility in aged mice. We applied deep learning, swarm intelligence, and discriminative analysis to images of mouse oocytes taken by bright field microscopy to identify a highly informative deep radiomic signature (DRS) of oocyte morphology. Predictive DRS accuracy was determined by evaluating sensitivity, specificity, and cross-validation, and was visualized using scatter plots of the data associated with three groups: Young, old and Old + NMN. DRS could successfully distinguish morphological changes in oocytes associated with maternal age with 92% accuracy (AUC~1), reflecting this decline in oocyte quality. We then employed the DRS to evaluate the impact of the treatment of reproductively aged mice with NMN. The DRS signature classified 60% of oocytes from NMN-treated aged mice as having a ‘young’ morphology. In conclusion, the DRS signature developed in this study was successfully able to detect aging-related oocyte morphological changes. The significance of our approach is that DRS applied to bright field oocyte images will allow us to distinguish and select oocytes originally affected by reproductive aging and whose quality has been successfully restored by the NMN therapy.
Collapse
|
115
|
Pollard CL, Younan A, Swegen A, Gibb Z, Grupen CG. Insights into the NAD + biosynthesis pathways involved during meiotic maturation and spindle formation in porcine oocytes. J Reprod Dev 2022; 68:216-224. [PMID: 35342119 PMCID: PMC9184828 DOI: 10.1262/jrd.2021-130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Treatments that elevate NAD+ levels have been found to improve oocyte quality in mice, cattle, and pigs, suggesting that NAD+ is vital during oocyte maturation. This study aimed to examine the influence of different NAD+ biosynthetic pathways on oocyte quality by inhibiting key enzymes. Porcine oocytes from small antral follicles were matured for 44 h in a defined maturation system supplemented with 2-hydroxynicotinic acid [2-HNA, nicotinic acid phosphoribosyltransferase (NAPRT) inhibitor], FK866 [nicotinamide phosphoribosyltransferase (NAMPT) inhibitor], or gallotannin [nicotinamide mononucleotide adenylyltransferase (NMNAT) inhibitor] and their respective NAD+ pathway modulators (nicotinic acid, nicotinamide, and nicotinamide mononucleotide, respectively). Cumulus expansion was assessed after 22 h of maturation. At 44 h, maturation rates were determined and mature oocytes were fixed and stained to assess spindle formation. Each enzyme inhibitor reduced oocyte maturation rate and adversely affected spindle formation, indicating that NAD+ is required for meiotic spindle assembly. Furthermore, NAMPT and NMNAT inhibition reduced cumulus expansion, whereas NAPRT inhibition affected chromosomal segregation. Treating oocytes with gallotannin and nicotinamide mononucleotide together showed improvements in spindle width, while treating oocytes with 2-HNA and nicotinic acid combined showed an improvement in both spindle length and width. These results indicate that the salvage pathway plays a vital role in promoting oocyte meiotic progression, while the Preiss-Handler pathway is essential for spindle assembly.
Collapse
Affiliation(s)
- Charley-Lea Pollard
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Ashleigh Younan
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher G Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
116
|
Pollard CL, Gibb Z, Clulow J, Ruiz A, Sheridan A, Bahrami M, Swegen A, Grupen CG. Supplemental Nicotinic Acid Elevates NAD+ Precursors in the Follicular Fluid of Mares. Animals (Basel) 2022; 12:ani12111383. [PMID: 35681847 PMCID: PMC9179367 DOI: 10.3390/ani12111383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Miscarriage and embryonic death have been associated with a deficiency in NAD+ resulting from a lack of dietary niacin in women and mice. Mares often suffer from high rates of early embryonic loss, but the dietary requirement of niacin in pregnant mares remains unknown. The aim of this study was to determine the effect of supplementing nicotinic acid, a form of niacin often supplemented in horse diets, on the elevation of other NAD+ precursors in the blood and follicular fluid of mares. We orally administered nicotinic acid to mares over consecutive days and collected blood and follicular fluid at the end of the feeding period. The results show that multiple examined NAD+ precursors were elevated in the follicular fluid of mares at the end of the feeding period, which we propose will aid in reducing early embryonic loss in the mare by promoting good quality oocytes. Abstract A deficiency in NAD+ has previously been linked with increased occurrences of congenital abnormalities and embryonic death in humans and mice. Early embryonic death is a major factor involved in pregnancy loss in mares, and very little is known regarding the NAD+ requirements for optimum reproductive function in horses. The aim of this study was to determine the effect of supplementing the diet of mares with nicotinic acid (NA) on the composition of NAD+ metabolites in the blood and follicular fluid. Vehicle alone or NA (3 g per os) were administered to seven mares over a minimum of 3 consecutive days during the follicular phase of the oestrous cycle. Blood samples were collected immediately prior to supplemental feeding and follicular fluid aspiration. Follicular fluid was collected from the dominant follicle through transvaginal ultrasound-guided aspiration. Blood and follicular fluid samples were processed and analysed by mass spectrometry. The concentration of nicotinamide mononucleotide (NMN) in the follicular fluid of NA-fed mares was 4-fold greater than that in the corresponding plasma and 10-fold greater than that in the follicular fluid of vehicle-fed mares. The concentrations of NA, nicotinamide (NAM) and nicotinuric acid (NUR) tended to be greater in the follicular fluid of NA-supplemented mares than in the corresponding plasma. The results show that NA supplementation increased the bioavailability of NAD+ precursors in the follicular fluid of the dominant follicle, which is proposed to better promote the maturation of good quality oocytes, especially in older mares.
Collapse
Affiliation(s)
- Charley-Lea Pollard
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia;
- Correspondence:
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia; (Z.G.); (A.S.); (M.B.); (A.S.)
| | | | - Agustin Ruiz
- Newcastle Equine Rehabilitation and Reproduction Centre, Luskintyre, NSW 2321, Australia;
| | - Alecia Sheridan
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia; (Z.G.); (A.S.); (M.B.); (A.S.)
| | - Mohammad Bahrami
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia; (Z.G.); (A.S.); (M.B.); (A.S.)
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia; (Z.G.); (A.S.); (M.B.); (A.S.)
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK
| | - Christopher G. Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia;
| |
Collapse
|
117
|
Nicotinamide Mononucleotide Administration Amends Protein Acetylome of Aged Mouse Liver. Cells 2022; 11:cells11101654. [PMID: 35626691 PMCID: PMC9139684 DOI: 10.3390/cells11101654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/21/2022] Open
Abstract
It is known that the activities of nicotine adenine dinucleotide (NAD+)-dependent deacetylase decline in the aging mouse liver, and nicotinamide mononucleotide (NMN)-mediated activation of deacetylase has been shown to increase healthspans. However, age-induced changes of the acetylomic landscape and effects of NMN treatment on protein acetylation have not been reported. Here, we performed immunoprecipitation coupled with label-free quantitative LC-MS/MS (IPMS) to identify the acetylome and investigate the effects of aging and NMN on liver protein acetylation. In total, 7773 acetylated peptides assigned to 1997 proteins were commonly identified from young and aged livers treated with vehicle or NMN. The major biological processes associated with proteins exhibiting increased acetylation from aged livers were oxidation-reduction and metabolic processes. Proteins with decreased acetylation from aged livers mostly participated in transport and translation processes. Furthermore, NMN treatment inhibited the aging-related increase of acetylation on proteins regulating fatty acid β oxidation, the tricarboxylic acid (TCA) cycle and valine degradation. In particular, NAD (P) transhydrogenase (NNT) was markedly hyperacetylated at K70 in aged livers, and NMN treatment decreased acetylation intensity without altering protein levels. Acetylation at cytochrome 3a25 (Cyp3a25) at K141 was also greatly increased in aged livers, and NMN treatment totally arrested this increase. Our extensive identification and analysis provide novel insight and potential targets to combat aging and aging-related functional decline.
Collapse
|
118
|
Zhu S, Wang Q. Metabolic control of oocyte development. Biol Reprod 2022; 107:54-61. [PMID: 35470861 DOI: 10.1093/biolre/ioac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Well balanced and timed metabolism is essential for oocyte development. The effects of extrinsic nutrients on oocyte maturation have been widely reported. In contrast, intrinsic control of oogenesis by intracellular metabolites and metabolic enzymes has received little attention. The comprehensive characterization of metabolic patterns could lead to more complete understanding of regulatory mechanisms underlying oocyte development. A cell's metabolic state is integrated with epigenetic regulation. Epigenetic modifications in germ cells are therefore sensitive to parental environmental exposures. Nevertheless, direct genetic evidence for metabolites involvement in epigenetic establishment during oocyte development is still lacking. Moreover, metabolic disorder-induced epigenetic perturbations during oogenesis might mediate the inter/transgenerational effects of environmental insults. The molecular mechanisms responsible for this deserve further investigation. Here, we summarize the findings on metabolic regulation in oocyte maturation, and how it contributes to oocyte epigenetic modification. Finally, we propose a mouse model that metabolic disorder in oocyte serves as a potential factor mediating the maternal environment effects on offspring health.
Collapse
Affiliation(s)
- Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
119
|
Soma M, Lalam SK. The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Mol Biol Rep 2022; 49:9737-9748. [PMID: 35441939 DOI: 10.1007/s11033-022-07459-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022]
Abstract
Biosynthesis and regulation of nicotinamide adenine dinucleotide (NAD+) has recently gained a lot of attention. A systemic decline in NAD+ across many tissues is associated with all the hallmarks of aging. NAD+ can affect a variety of cellular processes, including metabolic pathways, DNA repair, and immune cell activity, both directly and indirectly. These cellular processes play a vital role in maintaining homeostasis, but as people get older, their tissue and cellular NAD+ levels decrease, and this drop in NAD+ levels has been connected to a number of age-related disorders. By restoring NAD+ levels, several of these age-related disorders can be delayed or even reversed. Some of the new studies conducted in mice and humans have targeted the NAD+ metabolism with NAD+ intermediates. Of these, nicotinamide mononucleotide (NMN) has been shown to offer great therapeutic potential with promising results in age-related chronic conditions such as diabetes, cardiovascular issues, cognitive impairment, and many others. Further, human interventions are required to study the long-term effects of supplementing NMN with varying doses. The paper focuses on reviewing the importance of NAD+ on human aging and survival, biosynthesis of NAD+ from its precursors, key clinical trial findings, and the role of NMN on various health conditions.
Collapse
|
120
|
Ferreira AF, Machado-Simões J, Soares M, Sousa AP, Ramalho-Santos J, Almeida-Santos T. Spatiotemporal dynamics of SIRT 1, 2 and 3 during in vitro maturation of bovine oocytes. Theriogenology 2022; 186:60-69. [DOI: 10.1016/j.theriogenology.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
|
121
|
Chromosome Segregation in the Oocyte: What Goes Wrong during Aging. Int J Mol Sci 2022; 23:ijms23052880. [PMID: 35270022 PMCID: PMC8911062 DOI: 10.3390/ijms23052880] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 12/13/2022] Open
Abstract
Human female fertility and reproductive lifespan decrease significantly with age, resulting in an extended post-reproductive period. The central dogma in human female reproduction contains two important aspects. One is the pool of oocytes in the human ovary (the ovarian reserve; approximately 106 at birth), which diminishes throughout life until menopause around the age of 50 (approximately 103 oocytes) in women. The second is the quality of oocytes, including the correctness of meiotic divisions, among other factors. Notably, the increased rate of sub- and infertility, aneuploidy, miscarriages, and birth defects are associated with advanced maternal age, especially in women above 35 years of age. This postponement is also relevant for human evolution; decades ago, the female aging-related fertility drop was not as important as it is today because women were having their children at a younger age. Spindle assembly is crucial for chromosome segregation during each cell division and oocyte maturation, making it an important event for euploidy. Consequently, aberrations in this segregation process, especially during the first meiotic division in human eggs, can lead to implantation failure or spontaneous abortion. Today, human reproductive medicine is also facing a high prevalence of aneuploidy, even in young females. However, the shift in the reproductive phase of humans and the strong increase in errors make the problem much more dramatic at later stages of the female reproductive phase. Aneuploidy in human eggs could be the result of the non-disjunction of entire chromosomes or sister chromatids during oocyte meiosis, but partial or segmental aneuploidies are also relevant. In this review, we intend to describe the relevance of the spindle apparatus during oocyte maturation for proper chromosome segregation in the context of maternal aging and the female reproductive lifespan.
Collapse
|
122
|
NADPH is superior to NADH or edaravone in ameliorating metabolic disturbance and brain injury in ischemic stroke. Acta Pharmacol Sin 2022; 43:529-540. [PMID: 34168317 PMCID: PMC8888674 DOI: 10.1038/s41401-021-00705-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/23/2021] [Indexed: 11/08/2022] Open
Abstract
Our previous studies confirm that exogenous reduced nicotinamide adenine dinucleotide phosphate (NADPH) exerts a neuroprotective effect in animal models of ischemic stroke, and its primary mechanism is related to anti-oxidative stress and improved energy metabolism. However, it is unknown whether nicotinamide adenine dinucleotide (NADH) also plays a neuroprotective role and whether NADPH is superior to NADH against ischemic stroke? In this study we compared the efficacy of NADH, NADPH, and edaravone in ameliorating brain injury and metabolic stress in ischemic stroke. Transient middle cerebral artery occlusion/reperfusion (t-MCAO/R) mouse model and in vitro oxygen glucose deprivation/reoxygenation (OGD/R) model were established. The mice were intravenously administered the optimal dose of NADPH (7.5 mg/kg), NADH (22.5 mg/kg), or edaravone (3 mg/kg) immediately after reperfusion. We showed that the overall efficacy of NADPH in ameliorating ischemic injury was superior to NADH and edaravone. NADPH had a longer therapeutic time window (within 5 h) after reperfusion than NADH and edaravone (within 2 h) for ischemic stroke. In addition, NADPH and edaravone were better in alleviating the brain atrophy, while NADH and NADPH were better in increasing the long-term survival rate. NADPH showed stronger antioxidant effects than NADH and edaravone; but NADH was the best in terms of maintaining energy metabolism. Taken together, this study demonstrates that NADPH exerts better neuroprotective effects against ischemic stroke than NADH and edaravone.
Collapse
|
123
|
Wasserzug‐Pash P, Rothman R, Reich E, Zecharyahu L, Schonberger O, Weiss Y, Srebnik N, Cohen‐Hadad Y, Weintraub A, Ben‐Ami I, Holzer H, Klutstein M. Loss of heterochromatin and retrotransposon silencing as determinants in oocyte aging. Aging Cell 2022; 21:e13568. [PMID: 35166017 PMCID: PMC8920445 DOI: 10.1111/acel.13568] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Mammalian oocyte quality reduces with age. We show that prior to the occurrence of significant aneuploidy (9M in mouse), heterochromatin histone marks are lost, and oocyte maturation is impaired. This loss occurs in both constitutive and facultative heterochromatin marks but not in euchromatic active marks. We show that heterochromatin loss with age also occurs in human prophase I-arrested oocytes. Moreover, heterochromatin loss is accompanied in mouse oocytes by an increase in RNA processing and associated with an elevation in L1 and IAP retrotransposon expression and in DNA damage and DNA repair proteins nuclear localization. Artificial inhibition of the heterochromatin machinery in young oocytes causes an elevation in retrotransposon expression and oocyte maturation defects. Inhibiting retrotransposon reverse-transcriptase through azidothymidine (AZT) treatment in older oocytes partially rescues their maturation defects and activity of the DNA repair machinery. Moreover, activating the heterochromatin machinery via treatment with the SIRT1 activating molecule SRT-1720, or overexpression of Sirt1 or Ezh2 via plasmid electroporation into older oocytes causes an upregulation in constitutive heterochromatin, downregulation of retrotransposon expression, and elevated maturation rates. Collectively, our work demonstrates a significant process in oocyte aging, characterized by the loss of heterochromatin-associated chromatin marks and activation of specific retrotransposons, which cause DNA damage and impair oocyte maturation.
Collapse
Affiliation(s)
- Peera Wasserzug‐Pash
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Rachel Rothman
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Eli Reich
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Lital Zecharyahu
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Oshrat Schonberger
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Yifat Weiss
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Naama Srebnik
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Yaara Cohen‐Hadad
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Amir Weintraub
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Ido Ben‐Ami
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Hananel Holzer
- Department of Obstetrics and GynecologyHadassah‐Hebrew University Medical CenterKiryat HadassahJerusalemIsrael
| | - Michael Klutstein
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
124
|
Secomandi L, Borghesan M, Velarde M, Demaria M. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Hum Reprod Update 2022; 28:172-189. [PMID: 34918084 PMCID: PMC8888999 DOI: 10.1093/humupd/dmab038] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 10/28/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Advanced maternal age is associated with decreased oocyte quantity and quality as well as uterine and placental dysfunctions. These changes lead to infertility, pregnancy complications and birth defects in the offspring. As the mean age of giving birth is increasing worldwide, prevention of age-associated infertility and pregnancy complications, along with the more frequent use of ART, become extremely important. Currently, significant research is being conducted to unravel the mechanisms underlying female reproductive aging. Among the potential mechanisms involved, recent evidence has suggested a contributing role for cellular senescence, a cellular state of irreversible growth arrest characterized by a hypersecretory and pro-inflammatory phenotype. Elucidating the role of senescence in female reproductive aging holds the potential for developing novel and less invasive therapeutic measures to prevent or even reverse female reproductive aging and increase offspring wellbeing. OBJECTIVE AND RATIONALE The review will summarize the positive and negative implications of cellular senescence in the pathophysiology of the female reproductive organs during aging and critically explore the use of novel senotherapeutics aiming to reverse and/or eliminate their detrimental effects. The focus will be on major senescence mechanisms of the ovaries, the uterus, and the placenta, as well as the potential and risks of using senotherapies that have been discovered in recent years. SEARCH METHODS Data for this review were identified by searches of MEDLINE, PubMed and Google Scholar. References from relevant articles using the search terms 'Cellular Senescence', 'Aging', 'Gestational age', 'Maternal Age', 'Anti-aging', 'Uterus', 'Pregnancy', 'Fertility', 'Infertility', 'Reproduction', 'Implant', 'Senolytic', 'Senostatic', 'Senotherapy' and 'Senotherapeutic' where selected. A total of 182 articles published in English between 2005 and 2020 were included, 27 of which focus on potential senotherapies for reproductive aging. Exclusion criteria were inclusion of the terms 'male' and 'plants'. OUTCOMES Aging is a major determinant of reproductive wellbeing. Cellular senescence is a basic aging mechanism, which can be exploited for therapeutic interventions. Within the last decade, several new strategies for the development and repurposing of drugs targeting senescent cells have emerged, such as modulators of the anti-inflammatory response, oxidative stress, DNA damage, and mitochondria and protein dysfunctions. Several studies of female reproductive aging and senotherapies have been discussed that show promising results for future interventions. WIDER IMPLICATIONS In most countries of the Organization for Economic Co-operation and Development, the average age at which women give birth is above 30 years. Currently, in countries such as the Netherlands, Australia, Spain, Finland, Germany and the UK, birth rates among 30- to 34-year-olds are now higher than in any other age groups. This review will provide new knowledge and scientific advancement on the senescence mechanisms during female reproductive aging, and benefit fundamental and clinical scientists and professionals in the areas of reproduction, cancer, immunobiology and fibrosis.
Collapse
Affiliation(s)
- Laura Secomandi
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| | - Michela Borghesan
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| | - Michael Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, PH 1101, Philippines
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| |
Collapse
|
125
|
Campbell JM, Mahbub SB, Bertoldo MJ, Habibalahi A, Goss DM, Ledger WL, Gilchrist RB, Wu LE, Goldys EM. Multispectral autofluorescence characteristics of reproductive aging in old and young mouse oocytes. Biogerontology 2022; 23:237-249. [PMID: 35211812 PMCID: PMC9023381 DOI: 10.1007/s10522-022-09957-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022]
Abstract
Increasing age has a major detrimental impact on female fertility, which, with an ageing population, has major sociological implications. This impact is primarily mediated through deteriorating quality of the oocyte. Deteriorating oocyte quality with biological age is the greatest rate-limiting factor to female fertility. Here we have used label-free, non-invasive multi-spectral imaging to identify unique autofluorescence profiles of oocytes from young and aged animals. Discriminant analysis demonstrated that young oocytes have a distinct autofluorescent profile which accurately distinguishes them from aged oocytes. We recently showed that treatment with the nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide mononucleotide (NMN) restored oocyte quality and fertility in aged animals, and when our analysis was applied to oocytes from aged animals treated with NMN, 85% of these oocytes were classified as having the autofluorescent signature of young animals. Spectral unmixing using the Robust Dependent Component Analysis (RoDECA) algorithm demonstrated that NMN treatment altered the metabolic profile of oocytes, increasing free NAD(P)H, protein bound NAD(P)H, redox ratio and the ratio of bound to free NAD(P)H. The frequency of oocytes with simultaneously high NAD(P)H and flavin content was also significantly increased in mice treated with NMN. Young and Aged + NMN oocytes had a smoother spectral distribution, with the distribution of NAD(P)H in young oocytes specifically differing from that of aged oocytes. Identifying the multispectral profile of oocyte autofluorescence during aging could have utility as a non-invasive and sensitive measure of oocyte quality.
Collapse
Affiliation(s)
- Jared M Campbell
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Kensington, Sydney, NSW, 2052, Australia.
| | - Saabah B Mahbub
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Michael J Bertoldo
- Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
- School of Medical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Dale M Goss
- School of Medical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - William L Ledger
- Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Robert B Gilchrist
- Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Lindsay E Wu
- School of Medical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
126
|
Zhang H, Li C, Wen D, Li R, Lu S, Xu R, Tang Y, Sun Y, Zhao X, Pan M, Ma B. Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply. Redox Biol 2022; 49:102215. [PMID: 34929573 PMCID: PMC8688718 DOI: 10.1016/j.redox.2021.102215] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
In mammalian ovaries, oocytes are physically coupled to somatic granulosa cells, and this coupling is crucial for the growth and development of competent oocytes as it mediates the transfer of metabolic support molecules. However, aging-mediated dysregulation in communication between the oocytes and granulosa cells affects the oocyte quality. In the present study, we examined the defected germline-soma communication and reduced mRNA levels encoding key structural components of transzonal projections (TZPs) in maternally aged oocytes. Oral administration of melatonin to aged mice substantially increased TZPs and maintained the cumulus cells-oocyte communication, which played a central role in the production of adequate oocyte ATP levels and reducing the accumulation of reactive oxygen species (ROS), apoptosis, DNA damage, endoplasmic reticulum (ER) stress and spindle/chromosomal defects. This beneficial effect of melatonin was inhibited by carbenoxolone (CBX), a gap junctional uncoupler, which disrupts bidirectional communications between oocyte and somatic cells. Simultaneously, melatonin significantly increased the mRNA and protein levels corresponding to genes associated with TZPs and prevented TZP retraction in in vitro-cultured cumulus-oocyte complex (COCs). Furthermore, we infused melatonin and CBX into the COCs in vitro culture system and monitored the levels of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH) in cumulus cells and oocytes. Notably, COCs treated with melatonin demonstrated improved NADPH and GSH levels. Of note, CBX was capable of reducing NADPH and GSH levels, aggravated the ROS accumulation and ER stress. Collectively, our data demonstrate the role of melatonin in preventing age-associated germline-soma communication defects, aiding the relay of antioxidant metabolic molecules for the maintenance of oocyte quality from cumulus cells, which have important potential for improving deficient phenotypes of maternally aged oocytes and the treatment of woman infertility.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Chan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Dongxu Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Ruoyu Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Sihai Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yaju Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yidan Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
127
|
Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol 2022; 198:114946. [DOI: 10.1016/j.bcp.2022.114946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
128
|
Sallem A, Denizot AL, Ziyyat A, L'Hostis A, Favier S, Burlet P, Lapierre JM, Dimby SF, Patrat C, Sifer C, Vicaut E, Steffann J, Vaiman D, Romana SP, Wolf JP. A fertilin-derived peptide improves in vitro maturation and ploidy of human oocytes. F&S SCIENCE 2022; 3:21-28. [PMID: 35559993 DOI: 10.1016/j.xfss.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To analyze the effect of a cyclic fertilin-derived peptide (cFEE) on in vitro maturation of human oocytes. DESIGN Randomized study. SETTING Fertility center in an academic hospital. PATIENT(S) Not applicable. INTERVENTION(S) Human immature germinal vesicle-stage oocytes (n = 1,629) donated for research according to French bioethics laws were randomly allocated to groups treated with 1 or 100 μM of cFEE or to a control group. They were incubated at 37 °C in 6% CO2 and 5% O2, and their maturation was assessed using time-lapse microscopy over 24 hours. In vitro maturated metaphase II oocytes were analyzed for chromosomal content using microarray comparative genomic hybridization, and their transcriptomes were analyzed using Affymetrix Clariom D microarrays. MAIN OUTCOME MEASURE(S) The percentage of oocytes undergoing maturation in vitro was observed. Aneuploidy and euploidy were assessed for all chromosomes, and differential gene expression was analyzed in oocytes treated with cFEE compared with the control to obtain insights into its mechanism of action. RESULT(S) cFEE significantly increased the percentage of oocytes that matured in vitro and improved euploidy in meiosis II oocytes by the up-regulation of FMN1 and FLNA genes, both of which encode proteins involved in spindle structure. CONCLUSION(S) cFEE improves human oocyte maturation in vitro and reduces aneuploidy. It may prove useful for treating oocytes before fertilization in assisted reproductive technology and for in vitro maturation in fertility preservation programs to improve oocyte quality and the chances for infertile couples to conceive.
Collapse
Affiliation(s)
- Amira Sallem
- Team "From Gametes to Birth," Département Développement, Reproduction, Cancer, Institut Cochin, Institut de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris, 22 rue Mechain, Paris, France; Laboratoire d'Histologie-Embryologie et Cytogénétique, Faculté de Médecine de Monastir, Tunisie
| | - Anne-Lyse Denizot
- Team "From Gametes to Birth," Département Développement, Reproduction, Cancer, Institut Cochin, Institut de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris, 22 rue Mechain, Paris, France; Service d'Histologie-Embryologie-Biologie de la Reproduction, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ahmed Ziyyat
- Team "From Gametes to Birth," Département Développement, Reproduction, Cancer, Institut Cochin, Institut de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris, 22 rue Mechain, Paris, France; Service d'Histologie-Embryologie-Biologie de la Reproduction, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Audrey L'Hostis
- Team "From Gametes to Birth," Département Développement, Reproduction, Cancer, Institut Cochin, Institut de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris, 22 rue Mechain, Paris, France
| | - Sophie Favier
- Team "From Gametes to Birth," Département Développement, Reproduction, Cancer, Institut Cochin, Institut de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris, 22 rue Mechain, Paris, France
| | - Philippe Burlet
- Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Michel Lapierre
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Solohaja Faniaha Dimby
- Unité de Recherche Clinique, ACTION Study Group, Hôpital Fernand Widal, Assistance Publique-Hôpitaux de Paris, Paris, France; Statistique, Analyse et Modélisation Multidisciplinaire-EA 4543, Université Paris 1 Panthéon Sorbonne, Paris, France
| | - Catherine Patrat
- Team "From Gametes to Birth," Département Développement, Reproduction, Cancer, Institut Cochin, Institut de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris, 22 rue Mechain, Paris, France; Service d'Histologie-Embryologie-Biologie de la Reproduction, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christophe Sifer
- Service d'Histologie-Embryologie-Cytogénétique-Centre d'Etude et de Conservation des Œufs et du Sperme humains, Centre Hospitalo-Universitaire Jean Verdier, Assistance Publique-Hôpitaux de Paris, Bondy, France
| | - Eric Vicaut
- Unité de Recherche Clinique, ACTION Study Group, Hôpital Fernand Widal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Steffann
- Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut Imagine, Université de Paris, Laboratoire des Maladies Génétiques Mitochondriales. Inserm 1163, Paris, France
| | - Daniel Vaiman
- Team "From Gametes to Birth," Département Développement, Reproduction, Cancer, Institut Cochin, Institut de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris, 22 rue Mechain, Paris, France
| | - Serge Pierrick Romana
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut Imagine, Université de Paris, Laboratoire d'Embryologie et de Génétique des Malformations Congénitales, Institut de la Santé et de la Recherche Médicale 1163, Paris, France
| | - Jean-Philippe Wolf
- Team "From Gametes to Birth," Département Développement, Reproduction, Cancer, Institut Cochin, Institut de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris, 22 rue Mechain, Paris, France; Service d'Histologie-Embryologie-Biologie de la Reproduction, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
129
|
Adhikari D, Lee IW, Yuen WS, Carroll J. Oocyte mitochondria – Key regulators of oocyte function and potential therapeutic targets for improving fertility. Biol Reprod 2022; 106:366-377. [DOI: 10.1093/biolre/ioac024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/20/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The development of oocytes and early embryos is dependent on mitochondrial ATP production. This reliance on mitochondrial activity, together with the exclusively maternal inheritance of mitochondria in development, places mitochondria as central regulators of both fertility and transgenerational inheritance mechanisms. Mitochondrial mass and mtDNA content massively increase during oocyte growth. They are highly dynamic organelles and oocyte maturation is accompanied by mitochondrial trafficking around subcellular compartments. Due to their key roles in generation of ATP and reactive oxygen species, oocyte mitochondrial defects have largely been linked with energy deficiency and oxidative stress. Pharmacological treatments and mitochondrial supplementation have been proposed to improve oocyte quality and fertility by enhancing ATP generation and reducing reactive oxygen species levels. More recently, the role of mitochondria-derived metabolites in controlling epigenetic modifiers has provided a mechanistic basis for mitochondria-nuclear crosstalk, allowing adaptation of gene expression to specific metabolic states. Here, we discuss the multi-faceted mechanisms by which mitochondrial function influence oocyte quality, as well as longer-term developmental events within and across generations.
Collapse
Affiliation(s)
| | - In-won Lee
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - John Carroll
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
130
|
Alberico HC, Woods DC. Role of Granulosa Cells in the Aging Ovarian Landscape: A Focus on Mitochondrial and Metabolic Function. Front Physiol 2022; 12:800739. [PMID: 35153812 PMCID: PMC8829508 DOI: 10.3389/fphys.2021.800739] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/29/2021] [Indexed: 01/11/2023] Open
Abstract
Mitochondria are at the intersection of aging and fertility, with research efforts centered largely on the role that these specialized organelles play in the relatively rapid decline in oocyte quality that occurs as females approach reproductive senescence. In addition to various roles in oocyte maturation, fertilization, and embryogenesis, mitochondria are critical to granulosa cell function. Herein, we provide a review of the literature pertaining to the role of mitochondria in granulosa cell function, with emphasis on how mitochondrial aging in granulosa cells may impact reproduction in female mammals.
Collapse
|
131
|
Xu X, Mu L, Li L, Liang J, Zhang S, Jia L, Yang X, Dai Y, Zhang J, Wang Y, Niu S, Xia G, Yang Y, Zhang Y, Cao Y, Zhang H. Imaging and tracing the pattern of adult ovarian angiogenesis implies a strategy against female reproductive aging. SCIENCE ADVANCES 2022; 8:eabi8683. [PMID: 35020427 PMCID: PMC8754302 DOI: 10.1126/sciadv.abi8683] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Robust angiogenesis is continuously active in ovaries to remodel the ovary-body connections in mammals, but understanding of this unique process remains elusive. Here, we performed high-resolution, three-dimensional ovarian vascular imaging and traced the pattern of ovarian angiogenesis and vascular development in the long term. We found that angiogenesis was mainly active on ovarian follicles and corpus luteum and that robust angiogenesis constructs independent but temporary vascular networks for each follicle. Based on the pattern of ovarian angiogenesis, we designed an angiogenesis-blocking strategy by axitinib administration to young females, and we found that the temporary suppression of angiogenesis paused ovarian development and kept the ovarian reserve in the long term, leading to postponed ovarian senescence and an extension of the female reproductive life span. Together, by uncovering the detailed model of physiological ovarian angiogenesis, our experiments suggest a potential approach to delay female reproductive aging through the manipulation of angiogenesis.
Collapse
Affiliation(s)
- Xueqiang Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lingyu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Liang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Longzhong Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuebing Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanli Dai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiawei Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yibo Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Corresponding author.
| |
Collapse
|
132
|
Liu Y, Zhou Z, Guo S, Li K, Wang P, Fan Y, He X, Jiang Y, Lan R, Chen S, Dai S, Hong Q, Chu M. Transcriptome Analysis Reveals Key miRNA-mRNA Pathways in Ovarian Tissues of Yunshang Black Goats With Different Kidding Numbers. Front Endocrinol (Lausanne) 2022; 13:883663. [PMID: 35663314 PMCID: PMC9160789 DOI: 10.3389/fendo.2022.883663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
The granulosa cell (GC) is the basic functional unit of follicles, and it is important for promoting follicle growth and sex hormones, as well as growth factor secretion in the process of reproduction. A variety of factors influence granulocyte proliferation, yet there are still many gaps to be filled in target and non-coding RNA regulation. In our study, the differentially expressed (DE) mRNAs and miRNAs were detected by using RNA-seq, and we constructed a mRNA-miRNA network related to goat prolificacy. Then, the goat primary GCs were isolated from the follicle for the function validation of candidate genes and their regulator miRNAs. A total of 2,968 DE mRNAs and 99 DE miRNAs were identified in the high- and low-prolificacy goat by RNA-seq, of which there were 1,553 upregulated and 1,415 downregulated mRNAs, and 80 upregulated and 19 downregulated miRNAs, respectively. JAK3 was identified as highly expressed in the low-prolificacy goats (3 times higher than high-prolificacy goats), and the integrated analysis showed that chi-miR-493-3p was a potential regulator of JAK3. The analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that JAK3 was involved in the PI3K-Akt signaling pathway, the Jak-STAT signaling pathway, and signaling pathways regulating pluripotency of stem cells. In particular, the PI3K-Akt signaling pathway was a typical pathway for cell proliferation, differentiation, apoptosis, and migration. We found that the chi-miR-493-3p targets JAK3 directly via RT-qPCR, dual fluorescence assays, and Western blot. Furthermore, the expression of JAK3 was significantly decreased by the chi-miR-493-3p mimic and increased by the chi-miR-493-3p inhibitor. The CCK-8 assay showed that overexpression of JAK3 promoted cell proliferation, while inhibiting JAK3 had the opposite effect. The expression of cell proliferation markers CDK4 and cyclin D2 also showed the same results. Moreover, the enzyme-linked immunosorbent assay showed that steroid hormones E2 and PROG were increased by overexpressing JAK3 and decreased by inhibiting JAK3. Therefore, our results identified a chi-miR-439-3p-JAK3 regulatory pathway, which provided a new insight into the GC proliferation and prolificacy of goat.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zuyang Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Siwu Guo
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Kunyu Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Wang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yekai Fan
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | | | - Shenghong Dai
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Mingxing Chu, ; Qionghua Hong,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Mingxing Chu, ; Qionghua Hong,
| |
Collapse
|
133
|
Curry A, White D, Cen Y. Small Molecule Regulators Targeting NAD + Biosynthetic Enzymes. Curr Med Chem 2022; 29:1718-1738. [PMID: 34060996 PMCID: PMC8630097 DOI: 10.2174/0929867328666210531144629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a key player in many metabolic pathways as an activated carrier of electrons. In addition to being the cofactor for redox reactions, NAD+ also serves as the substrate for various enzymatic transformations such as adenylation and ADP-ribosylation. Maintaining cellular NAD+ homeostasis has been suggested as an effective anti-aging strategy. Given the importance of NAD+ in regulating a broad spectrum of cellular events, small molecules targeting NAD+ metabolism have been pursued as therapeutic interventions for the treatment of mitochondrial disorders and agerelated diseases. In this article, small molecule regulators of NAD+ biosynthetic enzymes will be reviewed. The focus will be given to the discovery and development of these molecules, the mechanism of action as well as their therapeutic potentials.
Collapse
Affiliation(s)
- Alyson Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Dawanna White
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA;,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA,Address correspondence to this author at the Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; Tel: 804-828-7405;
| |
Collapse
|
134
|
Buratini J, Dellaqua TT, Dal Canto M, La Marca A, Carone D, Mignini Renzini M, Webb R. The putative roles of FSH and AMH in the regulation of oocyte developmental competence: from fertility prognosis to mechanisms underlying age-related subfertility. Hum Reprod Update 2021; 28:232-254. [PMID: 34969065 DOI: 10.1093/humupd/dmab044] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fertility loss during female ageing is associated with increasing basal FSH and decreasing anti-Müllerian hormone (AMH) concentrations, together with compromised oocyte quality, presumably due to increased oxidative stress (OS) and DNA damage, as well as reduced metabolic and meiotic competences. Basal FSH and AMH circulatory concentrations have been broadly utilized as IVF success predictors, regardless of fluctuations in prognostic accuracy; basal FSH and AMH perform better in pre-advanced maternal age (AMA: >35 years) and AMA patients, respectively. The relationships between FSH and AMH intrafollicular levels and IVF outcomes suggest, nevertheless, that both hormones regulate oocyte competence, supporting the hypothesis that changes in FSH/AMH levels cause, at least in part, oocyte quality degradation during ageing. To understand the reasons behind the fluctuations in FSH and AMH prognostic accuracies and to clarify their participation in mechanisms determining oocyte competence and age-related subfertility, a deeper knowledge of the regulation of FSH and AMH intrafollicular signalling during the female reproductive lifespan, and of their effects on the cumulus-oocyte complex, is required. OBJECTIVE AND RATIONALE An extensive body of information on the regulation of FSH and AMH intrafollicular availability and signalling, as well as on the control of folliculogenesis and oocyte metabolism, has been accumulated. However, these datasets have been explored within the relatively narrow boundaries of their specific subjects. Given the aforementioned gaps in knowledge and their clinical relevance, herein we integrate clinical and basic data, within a wide biological perspective, aiming to shed light on (i) the reasons for the variability in the accuracy of serum FSH and AMH as fertility markers, and on (ii) the potential roles of these hormones in mechanisms regulating oocyte quality, particularly those associated with ageing. SEARCH METHODS The PubMed database encompassing the period between 1960 and 2021 was searched. Principal search terms were FSH, FSH receptor, AMH, oocyte, maternal age, cumulus, transzonal projections (TZPs), actin, OS, redox, reactive oxygen species, mitochondria, DNA damage, DNA repair, aneuploidy, spindle, meiosis, gene expression, transcription, translation, oocyte secreted factors (OSFs), cAMP, cyclic guanosine monophosphate, natriuretic peptide C, growth differentiation factor 9, bone morphogenetic protein 15 and fibroblast growth factor. OUTCOMES Our analysis suggests that variations in the accuracy of fertility prognosis reflect a modest association between circulatory AMH levels and oocyte quality as well as increasing basal FSH inter-cycle variability with age. In addition, the basic and clinical data articulated herein support the hypothesis that increased intrafollicular FSH levels, as maternal age advances, may override the physiological protective influences of AMH and OSFs against excessive FSH signalling in cumulus cells. This would result in the disruption of oocyte homeostasis via reduced TZP-mediated transfer of cumulus-derived molecules essential for meiotic competence, gene expression, redox activity and DNA repair. WIDER IMPLICATIONS In-depth data analysis, encompassing a wide biological perspective has revealed potential causative mechanisms of age-related subfertility triggered by alterations in FSH/AMH signalling during the female reproductive life. Insights from new mechanistic models arising from this analysis should contribute to advancing our comprehension of oocyte biology in humans and serve as a valuable reference for novel AMA subfertility treatments aimed at improving oocyte quality through the modulation of AMH/FSH action.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy.,Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Mariabeatrice Dal Canto
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Antonio La Marca
- Clinica Eugin Modena, Modena, Italy.,Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Robert Webb
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Nottinghamshire, UK
| |
Collapse
|
135
|
Newman H, Catt S, Vining B, Vollenhoven B, Horta F. DNA repair and response to sperm DNA damage in oocytes and embryos, and the potential consequences in ART: a systematic review. Mol Hum Reprod 2021; 28:6483093. [PMID: 34954800 DOI: 10.1093/molehr/gaab071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sperm DNA damage is considered a predictive factor for the clinical outcomes of patients undergoing ART. Laboratory evidence suggests that zygotes and developing embryos have adopted specific response and repair mechanisms to repair DNA damage of paternal origin. We have conducted a systematic review in accordance with guidelines from Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to identify and review the maternal mechanisms used to respond and repair sperm DNA damage during early embryonic development, how these mechanisms operate and their potential clinical implications. The literature search was conducted in Ovid MEDLINE and Embase databases until May 2021. Out of 6297 articles initially identified, 36 studies were found to be relevant through cross referencing and were fully extracted. The collective evidence in human and animal models indicate that the early embryo has the capacity to repair DNA damage within sperm by activating maternally driven mechanisms throughout embryonic development. However, this capacity is limited and likely declines with age. The link between age and decreased DNA repair capacity could explain decreased oocyte quality in older women, poor reproductive outcomes in idiopathic cases, and patients who present high sperm DNA damage. Ultimately, further understanding mechanisms underlying the maternal repair of sperm DNA damage could lead to the development of targeted therapies to decrease sperm DNA damage, improved oocyte quality to combat incoming DNA insults or lead to development of methodologies to identify individual spermatozoa without DNA damage.
Collapse
Affiliation(s)
- H Newman
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - S Catt
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - B Vining
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - B Vollenhoven
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia.,Monash IVF, Melbourne, VIC, 3168, Australia.,Women's and Newborn Program, Monash Health, VIC, 3169, Australia
| | - F Horta
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia.,Monash IVF, Melbourne, VIC, 3168, Australia
| |
Collapse
|
136
|
She J, Sheng R, Qin ZH. Pharmacology and Potential Implications of Nicotinamide Adenine Dinucleotide Precursors. Aging Dis 2021; 12:1879-1897. [PMID: 34881075 PMCID: PMC8612620 DOI: 10.14336/ad.2021.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022] Open
Abstract
Coenzyme I (nicotinamide adenine dinucleotide, NAD+/NADH) and coenzyme II (nicotinamide adenine dinucleotide phosphate, NADP+/NADPH) are involved in various biological processes in mammalian cells. NAD+ is synthesised through the de novo and salvage pathways, whereas coenzyme II cannot be synthesised de novo. NAD+ is a precursor of coenzyme II. Although NAD+ is synthesised in sufficient amounts under normal conditions, shortage in its supply due to over consumption and its decreased synthesis has been observed with increasing age and under certain disease conditions. Several studies have proved that in a wide range of tissues, such as liver, skin, muscle, pancreas, and fat, the level of NAD+ decreases with age. However, in the brain tissue, the level of NADH gradually increases and that of NAD+ decreases in aged people. The ratio of NAD+/NADH indicates the cellular redox state. A decrease in this ratio affects the cellular anaerobic glycolysis and oxidative phosphorylation functions, which reduces the ability of cells to produce ATP. Therefore, increasing the exogenous NAD+ supply under certain disease conditions or in elderly people may be beneficial. Precursors of NAD+ have been extensively explored and have been reported to effectively increase NAD+ levels and possess a broad range of functions. In this review article, we discuss the pharmacokinetics and pharmacodynamics of NAD+ precursors.
Collapse
Affiliation(s)
- Jing She
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
137
|
Lin T, Sun L, Lee JE, Kim SY, Jin DI. DNA damage repair is suppressed in porcine aged oocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:984-997. [PMID: 34796342 PMCID: PMC8564305 DOI: 10.5187/jast.2021.e90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
This study sought to evaluate DNA damage and repair in porcine postovulatory aged
oocytes. The DNA damage response, which was assessed by H2A.X expression,
increased in porcine aged oocytes over time. However, the aged oocytes exhibited
a significant decrease in the expression of RAD51, which reflects the DNA damage
repair capacity. Further experiments suggested that the DNA repair ability was
suppressed by the downregulation of genes involved in the homologous
recombination (HR) and nonhomologous end-joining (NHEJ) pathways. The expression
levels of the cell cycle checkpoint genes, CHEK1 and
CHEK2, were upregulated in porcine aged oocytes in response
to induced DNA damage. Immunofluorescence results revealed that the expression
level of H3K79me2 was significantly lower in porcine aged oocytes than in
control oocytes. In addition, embryo quality was significantly reduced in aged
oocytes, as assessed by measuring the cell proliferation capacity. Our results
provide evidence that DNA damage is increased and the DNA repair ability is
suppressed in porcine aged oocytes. These findings increase our understanding of
the events that occur during postovulatory oocyte aging.
Collapse
Affiliation(s)
- Tao Lin
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China.,Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Ling Sun
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China.,Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jae Eun Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - So Yeon Kim
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Dong Il Jin
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
138
|
Huang P, Zhou Y, Tang W, Ren C, Jiang A, Wang X, Qian X, Zhou Z, Gong A. Long-term treatment of Nicotinamide mononucleotide improved age-related diminished ovary reserve through enhancing the mitophagy level of granulosa cells in mice. J Nutr Biochem 2021; 101:108911. [PMID: 34801690 DOI: 10.1016/j.jnutbio.2021.108911] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/25/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022]
Abstract
Ovarian aging affects the reproductive health of elderly women due to decline in oocyte quality, which is closely related to mitochondrial dysfunction. Nicotinamide mononucleotide (NMN), as a precursor of NAD+, effectively regulate mitochondria metabolism in mice. However, roles of NMN in improving age-related diminished ovary reserve remain to be determined. In present study, 4, 8, 12, 24, 40-week old female ICR mice were collected and a 20-week-long administration of NMN was conducted to 40-week-old mice (60WN), meanwhile the control group is given water (60WC). First, we found that 20-week-long administration of NMN to 40-week-old mice exhibited anti-aging and anti-inflammatory effects on organ structures, along with the improvement of estrus cycle condition and endocrine function. The number of primordial, primary, secondary, antral follicles and corpora luteum of ovaries in 60WN group was significantly increased compared with those in 60WC group. Additionally, the protein and gene expressions of P16 of ovaries were significantly reduced in 60WN group than in 60WC group. the mitochondria biogenesis, autophagy level, and proteases activity enhanced in granulosa cells after 20-week-administration of NMN. Present results indicate that NMN has the potential to save diminished ovary reserve by long-term treatment, providing a basis for exploring the role of NMN in anti-ovarian aging by enhancing the mitophagy level of granulosa cells.
Collapse
Affiliation(s)
- Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yan Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Weihong Tang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Anqi Jiang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xuxin Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xin Qian
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
139
|
Tan TCY, Mahbub SB, Campbell JM, Habibalahi A, Campugan CA, Rose RD, Chow DJX, Mustafa S, Goldys EM, Dunning KR. Non-invasive, label-free optical analysis to detect aneuploidy within the inner cell mass of the preimplantation embryo. Hum Reprod 2021; 37:14-29. [PMID: 34741175 DOI: 10.1093/humrep/deab233] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Can label-free, non-invasive optical imaging by hyperspectral autofluorescence microscopy discern between euploid and aneuploid cells within the inner cell mass (ICM) of the mouse preimplantation embryo? SUMMARY ANSWER Hyperspectral autofluorescence microscopy enables discrimination between euploid and aneuploid ICM in mouse embryos. WHAT IS KNOWN ALREADY Euploid/aneuploid mosaicism affects up to 17.3% of human blastocyst embryos with trophectoderm biopsy or spent media currently utilized to diagnose aneuploidy and mosaicism in clinical in vitro fertilization. Based on their design, these approaches will fail to diagnose the presence or proportion of aneuploid cells within the foetal lineage ICM of some blastocyst embryos. STUDY DESIGN, SIZE, DURATION The impact of aneuploidy on cellular autofluorescence and metabolism of primary human fibroblast cells and mouse embryos was assessed using a fluorescence microscope adapted for imaging with multiple spectral channels (hyperspectral imaging). Primary human fibroblast cells with known ploidy were subjected to hyperspectral imaging to record native cell fluorescence (4-6 independent replicates, euploid n = 467; aneuploid n = 969). For mouse embryos, blastomeres from the eight-cell stage (five independent replicates: control n = 39; reversine n = 44) and chimeric blastocysts (eight independent replicates: control n = 34; reversine n = 34; 1:1 (control:reversine) n = 30 and 1:3 (control:reversine) n = 37) were utilized for hyperspectral imaging. The ICM from control and reversine-treated embryos were mechanically dissected and their karyotype confirmed by whole genome sequencing (n = 13 euploid and n = 9 aneuploid). PARTICIPANTS/MATERIALS, SETTING, METHODS Two models were employed: (i) primary human fibroblasts with known karyotype and (ii) a mouse model of embryo aneuploidy where mouse embryos were treated with reversine, a reversible spindle assembly checkpoint inhibitor, during the four- to eight-cell division. Individual blastomeres were dissociated from control and reversine-treated eight-cell embryos and either imaged directly or used to generate chimeric blastocysts with differing ratios of control:reversine-treated cells. Individual blastomeres and embryos were interrogated by hyperspectral imaging. Changes in cellular metabolism were determined by quantification of metabolic co-factors (inferred from their autofluorescence signature): NAD(P)H and flavins with the subsequent calculation of the optical redox ratio (ORR: flavins/[NAD(P)H + flavins]). Autofluorescence signals obtained from hyperspectral imaging were examined mathematically to extract features from each cell/blastomere/ICM. This was used to discriminate between different cell populations. MAIN RESULTS AND THE ROLE OF CHANCE An increase in the relative abundance of NAD(P)H and decrease in flavins led to a significant reduction in the ORR for aneuploid cells in primary human fibroblasts and reversine-treated mouse blastomeres (P < 0.05). Mathematical analysis of endogenous cell autofluorescence achieved separation between (i) euploid and aneuploid primary human fibroblast cells, (ii) control and reversine-treated mouse blastomeres cells, (iii) control and reversine-treated chimeric blastocysts, (iv) 1:1 and 1:3 chimeric blastocysts and (v) confirmed euploid and aneuploid ICM from mouse blastocysts. The accuracy of these separations was supported by receiver operating characteristic curves with areas under the curve of 0.97, 0.99, 0.87, 0.88 and 0.93, respectively. We believe that the role of chance is low as mathematical features separated euploid from aneuploid in both human fibroblasts and ICM of mouse blastocysts. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although we were able to discriminate between euploid and aneuploid ICM in mouse blastocysts, confirmation of this approach in human embryos is required. While we show this approach is safe in mouse, further validation is required in large animal species prior to implementation in a clinical setting. WIDER IMPLICATIONS OF THE FINDINGS We have developed an original, accurate and non-invasive optical approach to assess aneuploidy within the ICM of mouse embryos in the absence of fluorescent tags. Hyperspectral autofluorescence imaging was able to discriminate between euploid and aneuploid human fibroblast and mouse blastocysts (ICM). This approach may potentially lead to a new diagnostic for embryo analysis. STUDY FUNDING/COMPETING INTEREST(S) K.R.D. is supported by a Mid-Career Fellowship from the Hospital Research Foundation (C-MCF-58-2019). This study was funded by the Australian Research Council Centre of Excellence for Nanoscale Biophotonics (CE140100003) and the National Health and Medical Research Council (APP2003786). The authors declare that there is no conflict of interest.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Saabah B Mahbub
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, Australia.,Australian Research Council Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, NSW, Australia
| | - Jared M Campbell
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, Australia.,Australian Research Council Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, NSW, Australia
| | - Abbas Habibalahi
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, Australia.,Australian Research Council Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, NSW, Australia
| | - Carl A Campugan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Ryan D Rose
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Fertility SA, St. Andrews Hospital, Adelaide, SA, Australia
| | - Darren J X Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Sanam Mustafa
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Ewa M Goldys
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, Australia.,Australian Research Council Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, NSW, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
140
|
Zhu FY, Wang LL, Meng TG, Wang RL, Yang ZX, Cao Y, Zhu GY, Jin Z, Gao LL, Zeng WT, Wang ZB, Sun QY, Zhang D. Inhibiting bridge integrator 2 phosphorylation leads to improved oocyte quality, ovarian health and fertility in aging and after chemotherapy in mice. NATURE AGING 2021; 1:1010-1023. [PMID: 37118338 DOI: 10.1038/s43587-021-00133-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 10/04/2021] [Indexed: 04/30/2023]
Abstract
Female ovaries degenerate about 20 years earlier than testes leading to reduced primordial follicle reserve and a reduction in oocyte quality. Here we found that bridge integrator 2 (BIN2) is enriched in mouse ovaries and oocytes and that global knockout of this protein improves both female fertility and oocyte quality. Quantitative ovarian proteomics and phosphoproteomics showed that Bin2 knockout led to a decrease in phosphorylated ribosomal protein S6 (p-RPS6), a component of the mammalian target of rapamycin pathway and greatly increased nicotinamide nucleotide transhydrogenase (NNT), the free-radical detoxifier. Mechanistically, we find that phosphorylation of BIN2 at Thr423 and Ser424 leads to its translocation from the membrane to the cytoplasm, subsequent phosphorylation of RPS6 and inhibition of Nnt translation. We synthesized a BIN2-penetrating peptide (BPP) designed to inhibit BIN2 phosphorylation and found that a 3-week BPP treatment improved primordial follicle reserve and oocyte quality in aging and after chemotherapy-induced premature ovarian failure without discernible side effects.
Collapse
Affiliation(s)
- Feng-Yu Zhu
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Li-Li Wang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Tie-Gang Meng
- Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- State Key Lab of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ruo-Lei Wang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhi-Xia Yang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Cao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Gang-Yi Zhu
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhen Jin
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei-Lei Gao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wen-Tao Zeng
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Zhen-Bo Wang
- State Key Lab of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Qing-Yuan Sun
- Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Dong Zhang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
- Animal Core Facility, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
141
|
Pollard CL, Gibb Z, Hawdon A, Swegen A, Grupen CG. Supplementing media with NAD + precursors enhances the in vitro maturation of porcine oocytes. J Reprod Dev 2021; 67:319-326. [PMID: 34408103 PMCID: PMC8568614 DOI: 10.1262/jrd.2021-080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023] Open
Abstract
In vitro maturation (IVM) is an important reproductive technology used to produce embryos in vitro. However, the developmental potential of oocytes sourced for IVM is markedly lower than those matured in vivo. Previously, NAD+-elevating treatments have improved oocyte quality and embryo development in cattle and mice, suggesting that NAD+ is important during oocyte maturation. The aim of this study was to examine the effects of nicotinic acid (NA), nicotinamide (NAM) and nicotinamide mononucleotide (NMN) on oocyte maturation and subsequent embryo development. Porcine oocytes from small antral follicles were matured for 44 h in a defined maturation medium supplemented with NA, NAM and resveratrol or NMN. Mature oocytes were artificially activated and presumptive zygotes cultured for 7 days. Additionally, oocytes were matured without treatment then cultured for 7 days with NMN. Supplementing the IVM medium with NA improved maturation and blastocyst formation while NAM supplementation improved cleavage rates compared with untreated controls. Supplementing the IVM or embryo culture media with NMN had no effect on maturation or embryo development. The results show that supplementing the maturation medium with NA and NAM improved maturation and developmental potential of porcine oocytes.
Collapse
Affiliation(s)
- Charley-Lea Pollard
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW 2570, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, NSW 2308, Australia
| | - Azelle Hawdon
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW 2570, Australia
- Present: Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, NSW 2308, Australia
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Christopher G Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW 2570, Australia
| |
Collapse
|
142
|
Zhou X, Du HH, Long X, Pan Y, Hu J, Yu J, Zhao X. β-Nicotinamide Mononucleotide (NMN) Administrated by Intraperitoneal Injection Mediates Protection Against UVB-Induced Skin Damage in Mice. J Inflamm Res 2021; 14:5165-5182. [PMID: 34675595 PMCID: PMC8504657 DOI: 10.2147/jir.s327329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Objective Ultraviolet light is an important environmental factor that induces skin oxidation, inflammation, and other diseases. Nicotinamide mononucleotide (NMN) has the effect of anti-oxidation and improving various physiological processes. This study explores the protective effect of NMN monomers given via intraperitoneal injection on UVB-induced photodamage. Methods We used a murine model of UVB-induced photodamage to evaluate the effect of an NMN monomer on photoaging skin by assessing skin and liver tissue sections, serum and skin oxidative stress levels, inflammatory markers, mRNA expression, and protein expression of skin- and liver-related genes. Results The results showed that NMN treatment blocked UVB-induced photodamage in mice, maintaining normal structure and amount of collagen fibers, normal thickness of epidermis and dermis, reducing the production of mast cells, and maintaining complete organized skin structure. NMN intraperitoneal injection also maintained the normal morphology of the mouse liver after UVB exposure. Meanwhile, NMN intraperitoneal injection was found to increase antioxidant ability and regulate the proinflammatory response of the skin and liver to UVB irradiation by enhancing the activity of antioxidant enzymes, release of anti-inflammatory cytokines, reduction of hydrogen peroxide production (H2O2), and decreased inflammatory cytokines. Furthermore, RT-qPCR results indicated that NMN reduced oxidative stress of skin and liver by promoting the activation of the AMP-activated protein kinase (AMPK) signaling pathway and further increasing the expression of downstream antioxidant genes of AMPK. RT-qPCR results also revealed that NMN treatment could downregulate the mRNA expression of interleukin (IL)-6, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, and upregulate NF-kappa-B inhibitor-α (IκB-α) and interleukin (IL)-10 by inhibiting the activation of nuclear factor-κBp65 (NFκB-p65). Finally, NMN upregulated AMPK, IκB-α, SOD1, and CAT in the skin and downregulated NF-κBp65 protein expression, which is in line with the RT-qPCR results. Conclusion Based on the above results, NMN monomer treatment with intraperitoneal injection also block the photodamage caused by UVB irradiation in mice by regulating the oxidative stress response and inflammatory response.
Collapse
Affiliation(s)
- Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, South Korea
| | - Hang-Hang Du
- Department of Plastic Surgery, Chongqing Huamei Plastic Surgery Hospital, Chongqing, People's Republic of China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Jian Hu
- R&D Department, Effepharm (Shanghai) Co., Ltd, Shanghai, People's Republic of China
| | - Jianjun Yu
- R&D Department, Effepharm (Shanghai) Co., Ltd, Shanghai, People's Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| |
Collapse
|
143
|
Liang A, Huang L, Liu H, He W, Lei X, Li M, Li S, Liang H, Chen G, Tang J, Chen F, Cao X, Wang Y, Shen X, Chen X. Resveratrol Improves Follicular Development of PCOS Rats by Regulating the Glycolytic Pathway. Mol Nutr Food Res 2021; 65:e2100457. [PMID: 34664388 DOI: 10.1002/mnfr.202100457] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/05/2021] [Indexed: 01/23/2023]
Abstract
SCOPE Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder that can cause infertility; however, the underlying mechanisms remain ill-defined, and there are no available drugs or strategies for the treatment of PCOS. This study examined the therapeutic effect of resveratrol in a rat model of PCOS. METHODS AND RESULTS PCOS is induced in rats by administration of letrozole and a high fat diet to determine whether resveratrol has a protective effect. Oral administration of resveratrol significantly decreased body weight, as well as the serum levels of testosterone and follicle stimulating hormone. Resveratrol improved the estrous cycle by restoring the thickness and number of granular cells. Resveratrol increased the levels of lactate and ATP, decreased pyruvate levels, and restored the glycolytic process, upregulating LDHA, HK2, and PKM2. Resveratrol also upregulated SIRT2, thereby modulating the expression of rate-limiting enzymes of glycolysis. CONCLUSION Resveratrol suppressed damage to the ovaries in PCOS rats by restoring glycolytic activity, providing potential targets for the treatment of PCOS.
Collapse
Affiliation(s)
- Aihong Liang
- Hunan Province Innovative Training Base for Medical Postgraduates, Hengyang Medical School, University of South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan, 416000, China.,Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Lan'e Huang
- Hunan Province Innovative Training Base for Medical Postgraduates, Hengyang Medical School, University of South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan, 416000, China.,Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huiqing Liu
- Hunan Province Innovative Training Base for Medical Postgraduates, Hengyang Medical School, University of South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan, 416000, China.,Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Weiguo He
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaocan Lei
- Hunan Province Innovative Training Base for Medical Postgraduates, Hengyang Medical School, University of South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan, 416000, China.,Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meixiang Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Suyun Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hongxing Liang
- Hunan Province Innovative Training Base for Medical Postgraduates, Hengyang Medical School, University of South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan, 416000, China
| | - Gang Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jinru Tang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Fengyu Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiting Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiyao Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaobu Shen
- Hunan Province Innovative Training Base for Medical Postgraduates, Hengyang Medical School, University of South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan, 416000, China
| | - Xi Chen
- Hunan Province Innovative Training Base for Medical Postgraduates, Hengyang Medical School, University of South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan, 416000, China.,Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
144
|
Kordowitzki P, Ho WHJ, Listijono DR. Nicotinamide Adenine Nucleotide-The Fountain of Youth to Prevent Oocyte Aging? Cells 2021; 10:cells10092441. [PMID: 34572089 PMCID: PMC8472622 DOI: 10.3390/cells10092441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
According to the U.S. Special Operations Command (SOCOM), new clinical trials of an anti-aging oral treatment using nicotinamide adenine nucleotide are planned for 2022. All over the globe, the discovery of the fountain of youth is still a great goal to reach, not only among aging researchers, since people desire to stay longer healthy and feel young when reaching old age. Since the 1960s, women delaying pregnancy to pursue higher educational levels and a career path has contributed to drastically diminished overall female fertility rates (e.g., number of born offspring/woman). Consequently, a growing number of advanced-aged women depend on assisted reproductive technologies (ART) to become pregnant. In 2019, the Society for Assisted Reproductive Technology reported 293,672 cycles for oocyte retrieval. This change of demographics influenced women's age of having their first child, which has increased significantly. However, their reproductive tract shows hallmarks of aging very early in life without an effective preventive treatment. Therefore, we will present whether NAD+ could help to prevent oocyte aging.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Street 10, 10-243 Olsztyn, Poland
- Faculty of Biology and Veterinary Medicine, Nicolaus Copernicus University, Gagarina Street 7, 87-100 Torun, Poland
- Correspondence:
| | - Wing-Hong Jonathan Ho
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia;
- St. Vincent’s Clinical School, St. Vincent’s Hospital, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | | |
Collapse
|
145
|
Wei Z, Chai H, Chen Y, Cheng Y, Liu X. Nicotinamide mononucleotide: An emerging nutraceutical against cardiac aging? Curr Opin Pharmacol 2021; 60:291-297. [PMID: 34507029 DOI: 10.1016/j.coph.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is essential for cellular physiological processes, directly or indirectly affecting metabolism and gene expression. The decline of NAD+ levels in the heart is accompanied by aging, causing cardiac pathological remodeling and dysfunction. Niacinamide mononucleotide (NMN) has emerged as a precursor to alleviate age-related cardiac pathophysiological changes by improving cardiac NAD+ homeostasis. Preclinical trials on the efficacy and safety of intaking NMN have shown encouraging results, revealing a cardioprotective effect without significant side effects. Strategies for improving the effectiveness of NMN are also evolving. The present review aimed to summarize the potentials of NMN as a nutraceutical against cardiac aging and highlight the relationship between NMN supplementation and cardiac protection.
Collapse
Affiliation(s)
- Zisong Wei
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Chai
- Department of Academic Affairs, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Chen
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Cheng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
146
|
van der Reest J, Nardini Cecchino G, Haigis MC, Kordowitzki P. Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev 2021; 70:101378. [PMID: 34091076 DOI: 10.1016/j.arr.2021.101378] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
The oocyte is recognised as the largest cell in mammalian species and other multicellular organisms. Mitochondria represent a high proportion of the cytoplasm in oocytes and mitochondrial architecture is different in oocytes than in somatic cells, characterised by a rounder appearance and fragmented network. Although the number of mitochondria per oocyte is higher than in any other mammalian cell, their number and activity decrease with advancing age. Mitochondria integrate numerous processes essential for cellular function, such as metabolic processes related to energy production, biosynthesis, and waste removal, as well as Ca2+ signalling and reactive oxygen species (ROS) homeostasis. Further, mitochondria are responsible for the cellular adaptation to different types of stressors such as oxidative stress or DNA damage. When these stressors outstrip the adaptive capacity of mitochondria to restore homeostasis, it leads to mitochondrial dysfunction. Decades of studies indicate that mitochondrial function is multifaceted, which is reflected in the oocyte, where mitochondria support numerous processes during oocyte maturation, fertilization, and early embryonic development. Dysregulation of mitochondrial processes has been consistently reported in ageing and age-related diseases. In this review, we describe the functions of mitochondria as bioenergetic powerhouses and signal transducers in oocytes, how dysfunction of mitochondrial processes contributes to reproductive ageing, and whether mitochondria could be targeted to promote oocyte rejuvenation.
Collapse
|
147
|
Greaney J, Subramanian GN, Ye Y, Homer H. Isolation and in vitro Culture of Mouse Oocytes. Bio Protoc 2021; 11:e4104. [PMID: 34458398 DOI: 10.21769/bioprotoc.4104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/02/2022] Open
Abstract
Females are endowed at birth with a fixed reserve of oocytes, which declines both in quantity and quality with advancing age. Understanding the molecular mechanisms regulating oocyte quality is crucial for improving the chances of pregnancy success in fertility clinics. In vitro culture systems enable researchers to analyse important molecular and genetic regulators of oocyte maturation and fertilisation. Here, we describe in detail a highly reproducible technique for the isolation and culture of fully grown mouse oocytes. We include the considerations and precautionary measures required for minimising the detrimental effects of in vitro culture conditions. This technique forms the starting point for a wide range of experimental approaches such as post-transcriptional gene silencing, immunocytochemistry, Western blotting, high-resolution 4D time-lapse imaging, and in vitro fertilization, which are instrumental in dissecting the molecular determinants of oocyte quality. Hence, this protocol serves as a useful, practical guide for any oocyte researcher beginning experiments aimed at investigating important oocyte molecular factors. Graphic abstract: A step-by-step protocol for the isolation and in vitro culture of oocytes from mice.
Collapse
Affiliation(s)
- Jessica Greaney
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Goutham Narayanan Subramanian
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Yunan Ye
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Hayden Homer
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
148
|
Del Castillo LM, Buigues A, Rossi V, Soriano MJ, Martinez J, De Felici M, Lamsira HK, Di Rella F, Klinger FG, Pellicer A, Herraiz S. The cyto-protective effects of LH on ovarian reserve and female fertility during exposure to gonadotoxic alkylating agents in an adult mouse model. Hum Reprod 2021; 36:2514-2528. [PMID: 34333622 PMCID: PMC8373474 DOI: 10.1093/humrep/deab165] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Does LH protect mouse oocytes and female fertility from alkylating chemotherapy? SUMMARY ANSWER LH treatment before and during chemotherapy prevents detrimental effects on follicles and reproductive lifespan. WHAT IS KNOWN ALREADY Chemotherapies can damage the ovary, resulting in premature ovarian failure and reduced fertility in cancer survivors. LH was recently suggested to protect prepubertal mouse follicles from chemotoxic effects of cisplatin treatment. STUDY DESIGN, SIZE, DURATION This experimental study investigated LH effects on primordial follicles exposed to chemotherapy. Seven-week-old CD-1 female mice were randomly allocated to four experimental groups: Control (n = 13), chemotherapy (ChT, n = 15), ChT+LH-1x (n = 15), and ChT+LH-5x (n = 8). To induce primary ovarian insufficiency (POI), animals in the ChT and ChT+LH groups were intraperitoneally injected with 120 mg/kg of cyclophosphamide and 12 mg/kg of busulfan, while control mice received vehicle. For LH treatment, the ChT+LH-1x and ChT+LH-5x animals received a 1 or 5 IU LH dose, respectively, before chemotherapy, then a second LH injection administered with chemotherapy 24 h later. Then, two animals/group were euthanized at 12 and 24 h to investigate the early ovarian response to LH, while remaining mice were housed for 30 days to evaluate short- and long-term reproductive outcomes. The effects of LH and chemotherapy on growing-stage follicles were analyzed in a parallel experiment. Seven-week-old NOD-SCID female mice were allocated to control (n = 5), ChT (n = 5), and ChT+LH-1x (n = 6) groups. Animals were treated as described above, but maintained for 7 days before reproductive assessment. PARTICIPANTS/MATERIALS, SETTING, METHODS In the first experiment, follicular damage (phosphorylated H2AX histone (γH2AX) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay), apoptotic biomarkers (western blot), and DNA repair pathways (western blot and RT-qPCR) were assessed in ovaries collected at 12 and 24 h to determine early ovarian responses to LH. Thirty days after treatments, remaining mice were stimulated (10 IU of pregnant mare serum gonadotropin (PMSG) and 10 IU of hCG) and mated to collect ovaries, oocytes, and embryos. Histological analysis was performed on ovarian samples to investigate follicular populations and stromal status, and meiotic spindle and chromosome alignment was measured in oocytes by confocal microscopy. Long-term effects were monitored by assessing pregnancy rate and litter size during six consecutive breeding attempts. In the second experiment, mice were stimulated and mated 7 days after treatments and ovaries, oocytes, and embryos were collected. Follicular numbers, follicular protection (DNA damage and apoptosis by H2AX staining and TUNEL assay, respectively), and ovarian stroma were assessed. Oocyte quality was determined by confocal analysis. MAIN RESULTS AND THE ROLE OF CHANCE LH treatment was sufficient to preserve ovarian reserve and follicular development, avoid atresia, and restore ovulation and meiotic spindle configuration in mature oocytes exposed at the primordial stage. LH improved the cumulative pregnancy rate and litter size in six consecutive breeding rounds, confirming the potential of LH treatment to preserve fertility. This protective effect appeared to be mediated by an enhanced early DNA repair response, via homologous recombination, and generation of anti-apoptotic signals in the ovary a few hours after injury with chemotherapy. This response ameliorated the chemotherapy-induced increase in DNA-damaged oocytes and apoptotic granulosa cells. LH treatment also protected growing follicles from chemotherapy. LH reversed the chemotherapy-induced depletion of primordial and primary follicular subpopulations, reduced oocyte DNA damage and granulosa cell apoptosis, restored mature oocyte cohort size, and improved meiotic spindle properties. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was a preliminary study performed with mouse ovarian samples. Therefore, preclinical research with human samples is required for validation. WIDER IMPLICATIONS OF THE FINDINGS The current study tested if LH could protect the adult mouse ovarian reserve and reproductive lifespan from alkylating chemotherapy. These findings highlight the therapeutic potential of LH as a complementary non-surgical strategy for preserving fertility in female cancer patients. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Regional Valencian Ministry of Education (PROMETEO/2018/137), the Spanish Ministry of Science and Innovation (CP19/00141), and the Spanish Ministry of Education, Culture and Sports (FPU16/05264). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- L M Del Castillo
- IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
| | - A Buigues
- IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Valencia, Spain
| | - V Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - M J Soriano
- IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Valencia, Spain
| | - J Martinez
- IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
| | - M De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - H K Lamsira
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - F Di Rella
- Clinical and Experimental Senology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - F G Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - A Pellicer
- IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Valencia, Spain
- IVI-RMA Rome, Rome, Italy
| | - S Herraiz
- Correspondence address. IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Av. Fernando Abril Martorell, 106-Torre A-Planta1, 46026 Valencia, Spain. Tel: +34-96-390-33-05; E-mail: https://orcid.org/0000-0003-0703-6922
| |
Collapse
|
149
|
Nadeeshani H, Li J, Ying T, Zhang B, Lu J. Nicotinamide mononucleotide (NMN) as an anti-aging health product – Promises and safety concerns. J Adv Res 2021; 37:267-278. [PMID: 35499054 PMCID: PMC9039735 DOI: 10.1016/j.jare.2021.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/07/2023] Open
Abstract
Provides an overview of promises and safety concerns of NMN as an anti-aging product. Shows that NMN’s beneficial effects supported by in vivo studies. Reveals that there is a lack of NMN’s clinical safety and efficacy studies Suggests that proper clinical investigations are urgently needed on the effectiveness and safety of NMN supplementation.
Background Aim of review Key scientific concepts of review
Collapse
Affiliation(s)
- Harshani Nadeeshani
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Auckland 1010, New Zealand
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, Guangdong Province, China
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi Province, China
- Corresponding author at: Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand.
| |
Collapse
|
150
|
Salekeen R, Diaconeasa AG, Billah MM, Islam KMD. Energy Metabolism Focused Analysis of Sexual Dimorphism in Biological Aging and Hypothesized Sex-specificity in Sirtuin Dependency. Mitochondrion 2021; 60:85-100. [PMID: 34332101 DOI: 10.1016/j.mito.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 01/09/2023]
Abstract
The process of biological aging or senescence refers to the gradual loss of homeostasis and subsequent loss of function - leading to higher chances of mortality. Many mechanisms and driving forces have been suggested to facilitate the evolution of a molecular circuit acting as a trade-off between survival and proliferation, resulting in senescence. A major observation on biological aging and longevity in humans and model organisms is the prevalence of significant sexual divergence in the onset, mechanisms and effects of aging associated processes. In the current account, we describe possible mechanisms by which aging, sex and reproduction are evolutionarily intertwined in order to maintain systemic energy homeostasis. We also interrogate existing literature on the sexual dimorphism of genetic, cellular, metabolic, endocrine and epigenetic processes driving cellular and systemic aging. Subsequently, based on available evidence, we propose a hypothetic model of sex-limited decoupling of female longevity from sirtuins, a major family of regulator proteins of the survival-proliferation trade-off. We also provide necessary considerations to be made in order to test the hypothesis and explore the physiological and therapeutic implications of this decoupling event in male and female longevity after reaching reproductive maturity. HYPOTHESIS STATEMENT: Sirtuins provide survival benefits in a sex-nonspecific manner but the dependency on sirtuins in driving metabolic networks after reaching reproductive maturity is evolutionarily decoupled from female longevity.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Amalia Gabriela Diaconeasa
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| |
Collapse
|