101
|
Shi L, Lin X, Liu F, Long Y, Cheng R, Tan C, Yang L, Hu C, Zhao S, Liu D. Geometrically Deformed Iron-Based Single-Atom Catalysts for High-Performance Acidic Proton Exchange Membrane Fuel Cells. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lei Shi
- State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xuanni Lin
- State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Feng Liu
- State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yongde Long
- State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ruyi Cheng
- State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chunhui Tan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Liu Yang
- State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
102
|
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022; 51:3688-3734. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to inherent structural defects, common nanocatalysts always display limited catalytic activity and selectivity, making it practically difficult for them to replace natural enzymes in a broad scope of biologically important applications. By decreasing the size of the nanocatalysts, their catalytic activity and selectivity will be substantially improved. Guided by this concept, the advances of nanocatalysts now enter an era of atomic-level precise control. Single-atom catalysts (denoted as SACs), characterized by atomically dispersed active sites, strikingly show utmost atomic utilization, precisely located metal centers, unique metal-support interactions and identical coordination environments. Such advantages of SACs drastically boost the specific activity per metal atom, and thus provide great potential for achieving superior catalytic activity and selectivity to functionally mimic or even outperform natural enzymes of interest. Although the size of the catalysts does matter, it is not clear whether the guideline of "the smaller, the better" is still correct for developing catalysts at the single-atom scale. Thus, it is clearly a new, urgent issue to address before further extending SACs into biomedical applications, representing an important branch of nanomedicine. This review begins by providing an overview of recent advances of synthesis strategies of SACs, which serve as a basis for the discussion of emerging achievements in improving the enzyme-like catalytic properties at an atomic level. Then, we carefully compare the structures and functions of catalysts at various scales from nanoparticles, nanoclusters, and few-atom clusters to single atoms. Contrary to conventional wisdom, SACs are not the most catalytically active catalysts in specific reactions, especially those requiring multi-site auxiliary activities. After that, we highlight the unique roles of SACs toward biomedical applications. To appreciate these advances, the challenges and prospects in rapidly growing studies of SACs-related catalytic nanomedicine are also discussed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liqin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. .,Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California 94305, USA
| |
Collapse
|
103
|
Zhai W, Huang S, Lu C, Tang X, Li L, Huang B, Hu T, Yuan K, Zhuang X, Chen Y. Simultaneously Integrate Iron Single Atom and Nanocluster Triggered Tandem Effect for Boosting Oxygen Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107225. [PMID: 35218295 DOI: 10.1002/smll.202107225] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Atomically nitrogen-coordinated iron atoms on carbon (FeNC) catalysts are emerging as attractive materials to substitute precious-metal-based catalysts for the oxygen reduction reaction (ORR). However, FeNC usually suffers from unsatisfactory performance due to the symmetrical charge distribution around the iron site. Elaborately regulating the microenvironment of the central Fe atom can substantially improve the catalytic activity of FeNC, which remains challenging. Herein, N/S co-doped porous carbons are rationally prepared and are verified with rich Fe-active sites, including atomically dispersed FeN4 and Fe nanoclusters (FeSA-FeNC@NSC), according to systematically synchrotron X-ray absorption spectroscopy analysis. Theoretical calculation verifies that the contiguous S atoms and Fe nanoclusters can break the symmetric electronic structure of FeN4 and synergistically optimize 3d orbitals of Fe centers, thus accelerating OO bond cleavage in OOH* for improving ORR activity. The FeSA-FeNC @NSC delivers an impressive ORR activity with half-wave-potential of 0.90 V, which exceeds that of state-of-the-art Pt/C (0.87 V). Furthermore, FeSA-FeNC @NSC-based Zn-air batteries deliver excellent power densities of 259.88 and 55.86 mW cm-2 in liquid and all-solid-state flexible configurations, respectively. This work presents an effective strategy to modulate the microenvironment of single atomic centers and boost the catalytic activity of single-atom catalysts by tandem effect.
Collapse
Affiliation(s)
- Weijuan Zhai
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Senhe Huang
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenbao Lu
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiannong Tang
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Longbin Li
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Bingyu Huang
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Kai Yuan
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaodong Zhuang
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Institute of Advanced Scientific Research (iASR), Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
104
|
Barrio J, Pedersen A, Feng J, Sarma SC, Wang M, Li AY, Yadegari H, Luo H, Ryan MP, Titirici MM, Stephens IEL. Metal coordination in C 2N-like materials towards dual atom catalysts for oxygen reduction. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:6023-6030. [PMID: 35401983 PMCID: PMC8922559 DOI: 10.1039/d1ta09560a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/04/2022] [Indexed: 05/29/2023]
Abstract
Single-atom catalysts, in particular the Fe-N-C family of materials, have emerged as a promising alternative to platinum group metals in fuel cells as catalysts for the oxygen reduction reaction. Numerous theoretical studies have suggested that dual atom catalysts can appreciably accelerate catalytic reactions; nevertheless, the synthesis of these materials is highly challenging owing to metal atom clustering and aggregation into nanoparticles during high temperature synthesis treatment. In this work, dual metal atom catalysts are prepared by controlled post synthetic metal-coordination in a C2N-like material. The configuration of the active sites was confirmed by means of X-ray adsorption spectroscopy and scanning transmission electron microscopy. During oxygen reduction, the catalyst exhibited an activity of 2.4 ± 0.3 A gcarbon -1 at 0.8 V versus a reversible hydrogen electrode in acidic media, comparable to the most active in the literature. This work provides a novel approach for the targeted synthesis of catalysts containing dual metal sites in electrocatalysis.
Collapse
Affiliation(s)
- Jesús Barrio
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Angus Pedersen
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Jingyu Feng
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Saurav Ch Sarma
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Mengnan Wang
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
| | - Alain Y Li
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Hossein Yadegari
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
| | - Hui Luo
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Mary P Ryan
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University 2-1-1 Katahira, Aobaku Sendai Miyagi 980-8577 Japan
| | - Ifan E L Stephens
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
| |
Collapse
|
105
|
Jia C, Wang Q, Yang J, Ye K, Li X, Zhong W, Shen H, Sharman E, Luo Y, Jiang J. Toward Rational Design of Dual-Metal-Site Catalysts: Catalytic Descriptor Exploration. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chuanyi Jia
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Helsinki, FI-00014 Finland
| | - Jing Yang
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Ke Ye
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiyu Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenhui Zhong
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
| | - Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
| | - Edward Sharman
- Department of Neurology, University of California, Irvine, California 92697, United States
| | - Yi Luo
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
106
|
Liu H, Shi S, Wang Z, Han Y, Huang W. Recent Advances in Metal-Gas Batteries with Carbon-Based Nonprecious Metal Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103747. [PMID: 34859956 DOI: 10.1002/smll.202103747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Metal-gas batteries draw a lot of attention due to their superiorities in high energy density and stable performance. However, the sluggish electrochemical reactions and associated side reactions in metal-gas batteries require suitable catalysts, which possess high catalytic activity and selectivity. Although precious metal catalysts show a higher catalytic activity, high cost of the precious metal catalysts hinders their commercial applications. In contrast, nonprecious metal catalysts complement the weakness of cost, and the gap in activity can be made up by increasing the amount of the nonprecious metal active centers. Herein, recent work on carbon-based nonprecious metal catalysts for metal-gas batteries is summarized. This review starts with introducing the advantages of carbon-based nonprecious metal catalysts, followed by a discussion of the synthetic strategy of carbon-based nonprecious metal catalysts and classification of active sites, and finally a summary of present metal-gas batteries with the carbon-based nonprecious metal catalysts is presented. The challenges and opportunities for carbon-based nonprecious metal catalysts in metal-gas batteries are also explored.
Collapse
Affiliation(s)
- Haoran Liu
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuangrui Shi
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
107
|
Song Y, Peng Y, Yao S, Zhang P, Wang Y, Gu J, Lu T, Zhang Z. Co-POM@MOF-derivatives with trace cobalt content for highly efficient oxygen reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
108
|
Liu M, Li N, Cao S, Wang X, Lu X, Kong L, Xu Y, Bu XH. A "Pre-Constrained Metal Twins" Strategy to Prepare Efficient Dual-Metal-Atom Catalysts for Cooperative Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107421. [PMID: 34862677 DOI: 10.1002/adma.202107421] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Dual-metal-atom-center catalysts (DACs) are a novel frontier in oxygen electrocatalysis, boasting functional and electronic synergies between contiguous metal centers and higher catalytic activities than single-atom-center catalysts. However, the definition and catalytic mechanism of DACs configurations remain unclear. Here, a "pre-constrained metal twins" strategy is proposed to prepare contiguous FeN4 and CoN4 DACs with homogeneous conformations embedded in a N-doped graphitic carbon (FeCo-DACs/NC). A programmable phthalocyanines dimer is used as a structural moiety to anchor the bimetallic sites (containing Co and Fe) in a metal-organic framework (MOF) to achieve delocalized dispersion before pyrolysis. The resultant FeCo-DACs/NC exhibits excellent electrochemical performance in oxygen electrocatalysis and rechargeable Zn-air batteries. Theoretical calculations demonstrate that the synergetic interaction of adjacent metals optimizes the d-band center position of metal centers and balances the free energy of the *O intermediate, thereby improving the oxygen electrocatalytic activity. This work opens up an avenue for the rational design of DACs with tailored electronic structures and uniform geometric configurations.
Collapse
Affiliation(s)
- Ming Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Na Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Xuemin Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Lingjun Kong
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yunhua Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
109
|
High-ammonia selective metal–organic framework–derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proc Natl Acad Sci U S A 2022; 119:2115504119. [PMID: 35101982 PMCID: PMC8833204 DOI: 10.1073/pnas.2115504119] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Electrochemical reduction of nitrate pollution in water into value-added ammonium is essential for modern agriculture and industry and represents a potentially sustainable strategy to replace the traditional Haber–Bosch process. However, the nitrate reduction reaction (NO3−RR) process under ambient conditions often suffers from low selectivity. Here, we developed a strategy of tuning an electronic structure for preparing cobalt-doped Fe@Fe2O3 electrocatalysts. Cobalt doping tunes the Fe d-band center, thereby modulating the adsorption energies of intermediates and suppressing hydrogen production. Therefore, the electrocatalysts exhibit superior NO3−RR activity with a high nitrate removal capacity (100.8 mg N gcat−1 h−1), NH3 selectivity (99.0 ± 0.1%), and faradaic efficiency (85.2 ± 0.6%). This strategy provides an approach to design advanced materials for NO3−RR. Ammonia (NH3) is an ideal carbon-free power source in the future sustainable hydrogen economy for growing energy demand. The electrochemical nitrate reduction reaction (NO3−RR) is a promising approach for nitrate removal and NH3 production at ambient conditions, but efficient electrocatalysts are lacking. Here, we present a metal–organic framework (MOF)–derived cobalt-doped Fe@Fe2O3 (Co-Fe@Fe2O3) NO3−RR catalyst for electrochemical energy production. This catalyst has a nitrate removal capacity of 100.8 mg N gcat−1 h−1 and an ammonium selectivity of 99.0 ± 0.1%, which was the highest among all reported research. In addition, NH3 was produced at a rate of 1,505.9 μg h−1 cm−2, and the maximum faradaic efficiency was 85.2 ± 0.6%. Experimental and computational results reveal that the high performance of Co-Fe@Fe2O3 results from cobalt doping, which tunes the Fe d-band center, enabling the adsorption energies for intermediates to be modulated and suppressing hydrogen production. Thus, this study provides a strategy in the design of electrocatalysts in electrochemical nitrate reduction.
Collapse
|
110
|
Li X, Xiang Z. Identifying the impact of the covalent-bonded carbon matrix to FeN 4 sites for acidic oxygen reduction. Nat Commun 2022; 13:57. [PMID: 35013260 PMCID: PMC8748808 DOI: 10.1038/s41467-021-27735-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
The atomic configurations of FeNx moieties are the key to affect the activity of oxygen rection reaction (ORR). However, the traditional synthesis relying on high-temperature pyrolysis towards combining sources of Fe, N, and C often results in the plurality of local environments for the FeNx sites. Unveiling the effect of carbon matrix adjacent to FeNx sites towards ORR activity is important but still is a great challenge due to inevitable connection of diverse N as well as random defects. Here, we report a proof-of-concept study on the evaluation of covalent-bonded carbon environment connected to FeN4 sites on their catalytic activity via pyrolysis-free approach. Basing on the closed π conjugated phthalocyanine-based intrinsic covalent organic polymers (COPs) with well-designed structures, we directly synthesized a series of atomically dispersed Fe-N-C catalysts with various pure carbon environments connected to the same FeN4 sites. Experiments combined with density functional theory demonstrates that the catalytic activities of these COPs materials appear a volcano plot with the increasement of delocalized π electrons in their carbon matrix. The delocalized π electrons changed anti-bonding d-state energy level of the single FeN4 moieties, hence tailored the adsorption between active centers and oxygen intermediates and altered the rate-determining step. Unveiling the effect of carbon matrix adjacent to Fe-N towards oxygen reduction reaction is important yet challenging. Here the authors investigate the carbon environment covalent-connected to FeN4 sites on their catalytic activity using models prepared by pyrolysis-free approach.
Collapse
Affiliation(s)
- Xueli Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
111
|
Sun L, Reddu V, Wang X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem Soc Rev 2022; 51:8923-8956. [DOI: 10.1039/d2cs00233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents recent developments in the synthesis, modulation and characterization of multi-atom cluster catalysts for electrochemical energy applications.
Collapse
Affiliation(s)
- Libo Sun
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| | - Vikas Reddu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
112
|
Lv H, Guo W, Chen M, Zhou H, Wu Y. Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63888-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
113
|
Xing N, Liu Z, Wang Z, Gao Y, Li Q, Wang H. The reduction reaction of carbon dioxide on a precise number of Fe atoms anchored on two-dimensional biphenylene. Phys Chem Chem Phys 2022; 24:27474-27482. [DOI: 10.1039/d2cp02911a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The reduction reaction of carbon dioxide on a precise number of Fe atoms anchored on two-dimensional biphenylene.
Collapse
Affiliation(s)
- Na Xing
- Department of Physics, College of Science, Shihezi University, Xinjiang 832003, China
| | - Ziyang Liu
- Department of Physics, College of Science, Shihezi University, Xinjiang 832003, China
| | - Zhongwei Wang
- Department of Physics, College of Science, Shihezi University, Xinjiang 832003, China
| | - Yan Gao
- Department of Physics, College of Science, Shihezi University, Xinjiang 832003, China
| | - Qingfang Li
- School of Physics & Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Haifeng Wang
- Department of Physics, College of Science, Shihezi University, Xinjiang 832003, China
| |
Collapse
|
114
|
Chen G, Zhong H, Feng X. Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chem Sci 2021; 12:15802-15820. [PMID: 35024105 PMCID: PMC8672718 DOI: 10.1039/d1sc05867c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022] Open
Abstract
The electrocatalytic oxygen reduction reaction (ORR) is the vital process at the cathode of next-generation electrochemical storage and conversion technologies, such as metal-air batteries and fuel cells. Single-metal-atom and nitrogen co-doped carbonaceous electrocatalysts (M-N-C) have emerged as attractive alternatives to noble-metal platinum for catalyzing the kinetically sluggish ORR due to their high electrical conductivity, large surface area, and structural tunability at the atomic level, however, their application is limited by the low intrinsic activity of the metal-nitrogen coordination sites (M-N x ) and inferior site density. In this Perspective, we summarize the recent progress and milestones relating to the active site engineering of single atom carbonous electrocatalysts for enhancing the ORR activity. Particular emphasis is placed on the emerging strategies for regulating the electronic structure of the single metal site and populating the site density. In addition, challenges and perspectives are provided regarding the future development of single atom carbonous electrocatalysts for the ORR and their utilization in practical use.
Collapse
Affiliation(s)
- Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics Weinberg 2 Halle (Saale) D-06120 Germany
| |
Collapse
|
115
|
Ma Q, Jin H, Zhu J, Li Z, Xu H, Liu B, Zhang Z, Ma J, Mu S. Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102209. [PMID: 34687174 PMCID: PMC8655191 DOI: 10.1002/advs.202102209] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Indexed: 05/05/2023]
Abstract
The highly efficient energy conversion of the polymer-electrolyte-membrane fuel cell (PEMFC) is extremely limited by the sluggish oxygen reduction reaction (ORR) kinetics and poor electrochemical stability of catalysts. Hitherto, to replace costly Pt-based catalysts, non-noble-metal ORR catalysts are developed, among which transition metal-heteroatoms-carbon (TM-H-C) materials present great potential for industrial applications due to their outstanding catalytic activity and low expense. However, their poor stability during testing in a two-electrode system and their high complexity have become a big barrier for commercial applications. Thus, herein, to simplify the research, the typical Fe-N-C material with the relatively simple constitution and structure, is selected as a model catalyst for TM-H-C to explore and improve the stability of such a kind of catalysts. Then, different types of active sites (centers) and coordination in Fe-N-C are systematically summarized and discussed, and the possible attenuation mechanism and strategies are analyzed. Finally, some challenges faced by such catalysts and their prospects are proposed to shed some light on the future development trend of TM-H-C materials for advanced ORR catalysis.
Collapse
Affiliation(s)
- Qianli Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong LaboratoryXianhu Hydrogen ValleyFoshan528200P. R. China
| | - Huihui Jin
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Zilan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Hanwen Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Bingshuai Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Zhiwei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Jingjing Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong LaboratoryXianhu Hydrogen ValleyFoshan528200P. R. China
| |
Collapse
|
116
|
Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction reaction. iScience 2021; 24:103332. [PMID: 34805792 PMCID: PMC8586809 DOI: 10.1016/j.isci.2021.103332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Deliberately optimizing the d-band position of an active component via electronic and lattice strain tuning is an effective way to boost its catalytic performance. We herein demonstrate this concept by constructing core-shell Au@NiPd nanoparticles with NiPd alloy shells of only three atomic layers through combining an Au catalysis with the galvanic replacement reaction. The Au core with larger electronegativity modulates the Pd electronic configuration, while the Ni atoms alloyed in the ultrathin shells neutralize the lattice stretching in Pd shells exerted by Au cores, equipping the active Pd metal with a favorable d-band position for electrochemical oxygen reduction reaction in an alkaline medium, for which core-shell Au@NiPd nanoparticles with a Ni/Pd atomic ratio of 3/7 exhibit a half-wave potential of 0.92 V, specific activity of 3.7 mA cm-2, and mass activity of 0.65 A mg-1 at 0.9 V, much better than most of the recently reported Pd-even Pt-based electrocatalysts.
Collapse
|
117
|
Zhang T, Bian J, Zhu Y, Sun C. FeCo Nanoparticles Encapsulated in N-Doped Carbon Nanotubes Coupled with Layered Double (Co, Fe) Hydroxide as an Efficient Bifunctional Catalyst for Rechargeable Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103737. [PMID: 34553487 DOI: 10.1002/smll.202103737] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Low-cost bifunctional nonprecious metal catalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical for the commercialization of rechargeable zinc-air batteries (ZABs). However, the preparation of highly active and durable bifunctional catalysts is still challenging. Herein, an efficient catalyst is reported consisting of FeCo nanoparticles embedded in N-doped carbon nanotubes (FeCo NPs-N-CNTs) by an in situ catalytic strategy. Due to the encapsulation and porous structure of N-doped carbon nanotubes, the catalyst shows high activity toward ORR and excellent durability. Furthermore, to enhance the OER activity, CoFe-layer double hydroxide (CoFe-LDH) is coupled with FeCo NPs-N-CNTs by in situ reaction approach. As the air electrode for rechargeable ZABs, the cell with CoFe-LDH@FeCo NPs-N-CNTs catalyst exhibits high open-circuit potential (OCP) of 1.51 V, high power density of 116 mW cm-2 , and remarkable durability up to 100 h, demonstrating its great promise for the practical application of the rechargeable ZABs.
Collapse
Affiliation(s)
- Tongrui Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juanjuan Bian
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Yuanqin Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Chunwen Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
118
|
Zhang K, Shang H, Li B, Wang Z, Lu Y, Wang X. Structural design of metal catalysts based on ZIFs: From nanoscale to atomic level. NANO SELECT 2021. [DOI: 10.1002/nano.202100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kangjie Zhang
- The MOE Key Laboratory of Resources and Environmental System Optimization College of Environmental Science and Engineering North China Electric Power University Beijing P.R. China
| | - Hailin Shang
- The MOE Key Laboratory of Resources and Environmental System Optimization College of Environmental Science and Engineering North China Electric Power University Beijing P.R. China
| | - Bin Li
- The MOE Key Laboratory of Resources and Environmental System Optimization College of Environmental Science and Engineering North China Electric Power University Beijing P.R. China
| | - Zhe Wang
- The MOE Key Laboratory of Resources and Environmental System Optimization College of Environmental Science and Engineering North China Electric Power University Beijing P.R. China
| | - Yuexiang Lu
- Institute of Nuclear and New Energy Technology Tsinghua University, Haidian District Beijing P. R. China
| | - Xiangke Wang
- The MOE Key Laboratory of Resources and Environmental System Optimization College of Environmental Science and Engineering North China Electric Power University Beijing P.R. China
| |
Collapse
|
119
|
|
120
|
Theoretical studies about C2H2 semi-hydrogenation on the carbon material supported metal cluster catalysts: Influences of support type and cluster size on the catalytic performance. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
121
|
Zhang W, Chao Y, Zhang W, Zhou J, Lv F, Wang K, Lin F, Luo H, Li J, Tong M, Wang E, Guo S. Emerging Dual-Atomic-Site Catalysts for Efficient Energy Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102576. [PMID: 34296795 DOI: 10.1002/adma.202102576] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/09/2021] [Indexed: 05/24/2023]
Abstract
Atomically dispersed metal catalysts with well-defined structures have been the research hotspot in heterogeneous catalysis because of their high atomic utilization efficiency, outstanding activity, and selectivity. Dual-atomic-site catalysts (DASCs), as an extension of single-atom catalysts (SACs), have recently drawn surging attention. The DASCs possess higher metal loading, more sophisticated and flexible active sites, offering more chance for achieving better catalytic performance, compared with SACs. In this review, recent advances on how to design new DASCs for enhancing energy catalysis will be highlighted. It will start with the classification of marriage of two kinds of single-atom active sites, homonuclear DASCs and heteronuclear DASCs according to the configuration of active sites. Then, the state-of-the-art characterization techniques for DASCs will be discussed. Different synthetic methods and catalytic applications of the DASCs in various reactions, including oxygen reduction reaction, carbon dioxide reduction reaction, carbon monoxide oxidation reaction, and others will be followed. Finally, the major challenges and perspectives of DASCs will be provided.
Collapse
Affiliation(s)
- Weiyu Zhang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Yuguang Chao
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Wenshu Zhang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Jinhui Zhou
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Lv
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Kai Wang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Fangxu Lin
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Heng Luo
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Jing Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Erkang Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Guo
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
122
|
Zhang S, Wu Y, Zhang YX, Niu Z. Dual-atom catalysts: controllable synthesis and electrocatalytic applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1106-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
123
|
Ding T, Liu X, Tao Z, Liu T, Chen T, Zhang W, Shen X, Liu D, Wang S, Pang B, Wu D, Cao L, Wang L, Liu T, Li Y, Sheng H, Zhu M, Yao T. Atomically Precise Dinuclear Site Active toward Electrocatalytic CO 2 Reduction. J Am Chem Soc 2021; 143:11317-11324. [PMID: 34293258 DOI: 10.1021/jacs.1c05754] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of atomically precise dinuclear heterogeneous catalysts is promising to achieve efficient catalytic performance and is also helpful to the atomic-level understanding on the synergy mechanism under reaction conditions. Here, we report a Ni2(dppm)2Cl3 dinuclear-cluster-derived strategy to a uniform atomically precise Ni2 site, consisting of two Ni1-N4 moieties shared with two nitrogen atoms, anchored on a N-doped carbon. By using operando synchrotron X-ray absorption spectroscopy, we identify the dynamically catalytic dinuclear Ni2 structure under electrochemical CO2 reduction reaction, revealing an oxygen-bridge adsorption on the Ni2-N6 site to form an O-Ni2-N6 structure with enhanced Ni-Ni interaction. Theoretical simulations demonstrate that the key O-Ni2-N6 structure can significantly lower the energy barrier for CO2 activation. As a result, the dinuclear Ni2 catalyst exhibits >94% Faradaic efficiency for efficient carbon monoxide production. This work provides bottom-up target synthesis approaches and evidences the identity of dinuclear sites active toward catalytic reactions.
Collapse
Affiliation(s)
- Tao Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Zhinan Tao
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Tianyang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tao Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China.,School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Wei Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Xinyi Shen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Dong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Sicong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Beibei Pang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Dan Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Lan Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China.,School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Tong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| |
Collapse
|
124
|
Han SG, Ma DD, Zhu QL. Atomically Structural Regulations of Carbon-Based Single-Atom Catalysts for Electrochemical CO 2 Reduction. SMALL METHODS 2021; 5:e2100102. [PMID: 34927867 DOI: 10.1002/smtd.202100102] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/04/2021] [Indexed: 06/14/2023]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2 RR) converting CO2 into value-added chemicals and fuels to realize carbon recycling is a solution to the problem of renewable energy shortage and environmental pollution. Among all the catalysts, the carbon-based single-atom catalysts (SACs) with isolated metal atoms immobilized on conductive carbon substrates have shown significant potential toward CO2 RR, which intrigues researchers to explore high-performance SACs for fuel and chemical production by CO2 RR. Especially, regulating the coordination structures of the metal centers and the microenvironments of the substrates in carbon-based SACs has emerged as an effective strategy for the tailoring of their CO2 RR catalytic performance. In this review, the current in situ/operando study techniques and the fundamental parameters for CO2 RR performance are first briefly presented. Furthermore, the recent advances in synthetic strategies which regulate the atomic structures of the carbon-based SACs, including heteroatom coordination, coordination numbers, diatomic metal centers, and the microenvironments of substrates are summarized. In particular, the structure-performance relationship of the SACs toward CO2 RR is highlighted. Finally, the inevitable challenges for SACs are outlined and further research directions toward CO2 RR are presented from the perspectives.
Collapse
Affiliation(s)
- Shu-Guo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Dong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
125
|
Li H, Chen X, Chen J, Shen K, Li Y. Hierarchically porous Fe,N-doped carbon nanorods derived from 1D Fe-doped MOFs as highly efficient oxygen reduction electrocatalysts in both alkaline and acidic media. NANOSCALE 2021; 13:10500-10508. [PMID: 34085689 DOI: 10.1039/d1nr01603b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rationally designing low-cost yet highly efficient electrocatalysts for the oxygen reduction reaction (ORR) in both alkaline and acidic media remains highly challenging. Herein, we report the facile synthesis of Fe,N-doped carbon nanorods (denoted as Fe-N/C-NR) with abundant hierarchical pores and highly active sites by the pyrolysis of a one-dimensional (1D) Fe-doped zeolitic imidazolate framework (Fe-ZIF-8) as a self-sacrificing template. The unique 1D nanoarchitecture of the resultant Fe-N/C-NR can provide fast electron and electrolyte transport towards exposed active sites, and their hierarchically porous structures with large surface areas can efficiently facilitate mass diffusion and increase the density of exposed active sites. Furthermore, it is demonstrated that the coexistence of highly dispersed Fe-Nx sites and Fe3C/Fe nanoparticles (NPs) in these electrocatalysts can provide a large number of desired catalytic centers with highly intrinsic activity and structural stability. As a result, the optimized 5Fe-N/C-NR exhibits excellent catalytic activity for the ORR, with a high half-wave potential (E1/2) of 0.90 V vs. RHE in alkaline medium, superior to that of commercial Pt/C (0.86 V vs. RHE), and also a high E1/2 of 0.81 V vs. RHE in acidic medium, comparable to that of commercial Pt/C (0.81 V vs. RHE). Moreover, its robust ORR durability can far surpass that of commercial Pt/C in both acidic and alkaline media, further highlighting the merit of this MOF-templated strategy. Our findings might shed light on the rational design of cost-effective and highly efficient ORR electrocatalysts for practical applications.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Junying Chen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kui Shen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yingwei Li
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
126
|
Xie X, Peng L, Yang H, Waterhouse GIN, Shang L, Zhang T. MIL-101-Derived Mesoporous Carbon Supporting Highly Exposed Fe Single-Atom Sites as Efficient Oxygen Reduction Reaction Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101038. [PMID: 33914371 DOI: 10.1002/adma.202101038] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Fe single-atom catalysts (Fe SACs) with atomic FeNx active sites are very promising alternatives to platinum-based catalysts for the oxygen reduction reaction (ORR). The pyrolysis of metal-organic frameworks (MOFs) is a common approach for preparing Fe SACs, though most MOF-derived catalysts reported to date are microporous and thus suffer from poor mass transfer and a high proportion of catalytically inaccessible FeNx active sites. Herein, NH2 -MIL-101(Al), a MOF possessing a mesoporous cage architecture, is used as the precursor to prepare a series of N-doped carbon supports (denoted herein as NC-MIL101-T) with a well-defined mesoporous structure at different pyrolysis temperatures. The NC-MIL101-T supports are then impregnated with a Fe(II)-phenanthroline complex, and heated again to yield Fe SAC-MIL101-T catalysts rich in accessible FeNx single atom sites. The best performing Fe SAC-MIL101-1000 catalyst offers outstanding ORR activity in alkaline media, evidenced by an ORR half-wave potential of 0.94 V (vs RHE) in 0.1 m KOH, as well as excellent performance in both aqueous primary zinc-air batteries (a near maximum theoretical energy density of 984.2 Wh kgZn -1 ) and solid-state zinc-air batteries (a peak power density of 50.6 mW cm-2 and a specific capacity of 724.0 mAh kgZn -1 ).
Collapse
Affiliation(s)
- Xiaoying Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lishan Peng
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Hongzhou Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | | | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
127
|
Tian S, Wang B, Gong W, He Z, Xu Q, Chen W, Zhang Q, Zhu Y, Yang J, Fu Q, Chen C, Bu Y, Gu L, Sun X, Zhao H, Wang D, Li Y. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat Commun 2021; 12:3181. [PMID: 34039986 PMCID: PMC8155026 DOI: 10.1038/s41467-021-23517-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Atomically monodispersed heterogeneous catalysts with uniform active sites and high atom utilization efficiency are ideal heterogeneous catalytic materials. Designing such type of catalysts, however, remains a formidable challenge. Herein, using a wet-chemical method, we successfully achieved a mesoporous graphitic carbon nitride (mpg-C3N4) supported dual-atom Pt2 catalyst, which exhibited excellent catalytic performance for the highly selective hydrogenation of nitrobenzene to aniline. The conversion of ˃99% is significantly superior to the corresponding values of mpg-C3N4-supported single Pt atoms and ultra-small Pt nanoparticles (~2 nm). First-principles calculations revealed that the excellent and unique catalytic performance of the Pt2 species originates from the facile H2 dissociation induced by the diatomic characteristics of Pt and the easy desorption of the aniline product. The produced Pt2/mpg-C3N4 samples are versatile and can be applied in catalyzing other important reactions, such as the selective hydrogenation of benzaldehyde and the epoxidation of styrene.
Collapse
Affiliation(s)
- Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Bingxue Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Wanbing Gong
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, China
| | - Zizhan He
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Qi Xu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Youqi Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| | - Chun Chen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Huijun Zhao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
128
|
Che S, Li C, Wang C, Zaheer W, Ji X, Phillips B, Gurbandurdyyev G, Glynn J, Guo ZH, Al-Hashimi M, Zhou HC, Banerjee S, Fang L. Solution-processable porous graphitic carbon from bottom-up synthesis and low-temperature graphitization. Chem Sci 2021; 12:8438-8444. [PMID: 34221325 PMCID: PMC8221055 DOI: 10.1039/d1sc01902c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
It is urgently desired yet challenging to synthesize porous graphitic carbon (PGC) in a bottom-up manner while circumventing the need for high-temperature pyrolysis. Here we present an effective and scalable strategy to synthesize PGC through acid-mediated aldol triple condensation followed by low-temperature graphitization. The deliberate structural design enables its graphitization in situ in solution and at low pyrolysis temperature. The resulting material features ultramicroporosity characterized by a sharp pore size distribution. In addition, the pristine homogeneous composition of the reaction mixture allows for solution-processability of the material for further characterization and applications. Thin films of this PGC exhibit several orders of magnitude higher electrical conductivity compared to analogous control materials that are carbonized at the same temperatures. The integration of low-temperature graphitization and solution-processability not only allows for an energy-efficient method for the production and fabrication of PGC, but also paves the way for its wider employment in applications such as electrocatalysis, sensing, and energy storage.
Collapse
Affiliation(s)
- Sai Che
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Changping Beijing 102249 China
| | - Chenxuan Li
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Chenxu Wang
- Department of Materials Science & Engineering, Texas A&M University College Station Texas 77843 USA
| | - Wasif Zaheer
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Xiaozhou Ji
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Bailey Phillips
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | | | - Jessica Glynn
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Zi-Hao Guo
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou Guangdong 510640 China
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar P. O. Box 23874 Doha Qatar
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
- Department of Materials Science & Engineering, Texas A&M University College Station Texas 77843 USA
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
- Department of Materials Science & Engineering, Texas A&M University College Station Texas 77843 USA
| | - Lei Fang
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
- Department of Materials Science & Engineering, Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
129
|
Revealing the importance of kinetics in N-coordinated dual-metal sites catalyzed oxygen reduction reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
130
|
Zhang B, Zheng Y, Ma T, Yang C, Peng Y, Zhou Z, Zhou M, Li S, Wang Y, Cheng C. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006042. [PMID: 33749910 PMCID: PMC11468660 DOI: 10.1002/adma.202006042] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/18/2020] [Indexed: 02/05/2023]
Abstract
Electrochemical water splitting has attracted significant attention as a key pathway for the development of renewable energy systems. Fabricating efficient electrocatalysts for these processes is intensely desired to reduce their overpotentials and facilitate practical applications. Recently, metal-organic framework (MOF) nanoarchitectures featuring ultrahigh surface areas, tunable nanostructures, and excellent porosities have emerged as promising materials for the development of highly active catalysts for electrochemical water splitting. Herein, the most pivotal advances in recent research on engineering MOF nanoarchitectures for efficient electrochemical water splitting are presented. First, the design of catalytic centers for MOF-based/derived electrocatalysts is summarized and compared from the aspects of chemical composition optimization and structural functionalization at the atomic and molecular levels. Subsequently, the fast-growing breakthroughs in catalytic activities, identification of highly active sites, and fundamental mechanisms are thoroughly discussed. Finally, a comprehensive commentary on the current primary challenges and future perspectives in water splitting and its commercialization for hydrogen production is provided. Hereby, new insights into the synthetic principles and electrocatalysis for designing MOF nanoarchitectures for the practical utilization of water splitting are offered, thus further promoting their future prosperity for a wide range of applications.
Collapse
Affiliation(s)
- Ben Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yijuan Zheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- West China School of Medicine/West China HospitalSichuan UniversityChengdu610041China
| | - Chengdong Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yifei Peng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhihao Zhou
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Mi Zhou
- College of Biomass Science and EngineeringSichuan UniversityChengdu610065China
| | - Shuang Li
- Functional MaterialsDepartment of ChemistryTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Yinghan Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| |
Collapse
|
131
|
Liu M, Lyu Z, Zhang Y, Chen R, Xie M, Xia Y. Twin-Directed Deposition of Pt on Pd Icosahedral Nanocrystals for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction. NANO LETTERS 2021; 21:2248-2254. [PMID: 33599510 DOI: 10.1021/acs.nanolett.1c00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Platinum nanocrystals featuring a multiply twinned structure and uniform sizes below 5 nm are superb catalytic materials, but it is difficult to synthesize such particles owing to the high twin-boundary energy (166 mJ/m2) of Pt. Here, we report a simple route to the synthesis of such nanocrystals by selectively growing them from the vertices of Pd icosahedral seeds. The success of this synthesis critically depends on the introduction of Br- ions to slow the reduction kinetics of the Pt(II) precursor while limiting the surface diffusion of Pt adatoms by conducting the synthesis at 30 °C. Owing to the small size and multiply twinned structure of Pt dots, the as-obtained Pd-Pt nanocrystals show remarkably enhanced activity and durability toward oxygen reduction, with a mass activity of 1.23 A mg-1Pt and a specific activity of 0.99 mA cm-2Pt, which are 8.2 and 4.5 times as high as those of the commercial Pt/C.
Collapse
Affiliation(s)
- Mingkai Liu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yu Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
132
|
Wang Y, Jia G, Cui X, Zhao X, Zhang Q, Gu L, Zheng L, Li LH, Wu Q, Singh DJ, Matsumura D, Tsuji T, Cui YT, Zhao J, Zheng W. Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity. Chem 2021. [DOI: 10.1016/j.chempr.2020.10.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
133
|
Zhu J, Mu S. Active site engineering of atomically dispersed transition metal-heteroatom-carbon catalysts for oxygen reduction. Chem Commun (Camb) 2021; 57:7869-7881. [PMID: 34286732 DOI: 10.1039/d1cc03076k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Owing to the advantage of atomic utilization, the single-atom catalyst has attracted much attention and been employed in multifarious catalytic reactions. Its definite site configuration is favorable for exploring the actual active centers and corresponding reaction mechanism. At the atomic scale, the tunable site configuration, from central metal atoms, coordinated heteroatoms, peripheral dopants, and feasible polymetallic centers to the synergetic intrinsic carbon defects, can effectively augment the intrinsic activity for oxygen reduction reaction (ORR). From a practical viewpoint, the propagation strategies of single-atom sites, the loading-activity relation and the structural retention during practical tests are crucial for the industrial applications. Furthermore, the activity contribution of multiple additional active centers including the active carbon sites and the pony-size well-wrapped metal species should be acknowledged. From the perspective mentioned above, this paper thoroughly analyses the consensuses, controversies, challenges and possible solutions based on the current research progress, thereby providing inspiration and guidance for the active center engineering of single-atom catalysts.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China. and Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China. and Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, P. R. China
| |
Collapse
|
134
|
Bai Y, Zheng Y, Wang Z, Hong Q, Liu S, Shen Y, Zhang Y. Metal-doped carbon nitrides: synthesis, structure and applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02148f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This perspective provides a comprehensive overview of the latest progress of M–CN, which would promote further development, such as for single-atom catalysis and nanozymatic reactions.
Collapse
Affiliation(s)
- Yuhan Bai
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yongjun Zheng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Zhuang Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| |
Collapse
|
135
|
Wang X, Yang C, Guo P, Li Y, Gao N, Liang HP. Construction of nitrogen-doped porous carbon nanosheets decorated with Fe–N 4 and iron oxides by a biomass coordination strategy for efficient oxygen reduction reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj02769g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient Fe2O3@C/FeNC electrocatalyst with Fe–N4 and iron oxides decorated on nitrogen doped carbon nanosheets has been synthesized by the one-step pyrolysis of Fe-coordinated egg white without acid leaching assistance.
Collapse
Affiliation(s)
- Xilong Wang
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Chen Yang
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Peng Guo
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Yadong Li
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Nannan Gao
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Han-Pu Liang
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| |
Collapse
|
136
|
Ma D, Wang Y, Liu L, Jia Y. Electrocatalytic nitrogen reduction on the transition-metal dimer anchored N-doped graphene: performance prediction and synergetic effect. Phys Chem Chem Phys 2021; 23:4018-4029. [DOI: 10.1039/d0cp04843g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Present studies highlight the important role of the heteronuclear members for the development of the double-atom catalysts, and further provide a strategy to design efficient heteronuclear double-atom catalysts from the large chemical composition space for the electrocatalytic NRR.
Collapse
Affiliation(s)
- Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering
- Henan University
- Kaifeng 475004
- China
| | - Yuanyuan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering
- Henan University
- Kaifeng 475004
- China
| | - Liangliang Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering
- Henan University
- Kaifeng 475004
- China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering
- Henan University
- Kaifeng 475004
- China
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering
| |
Collapse
|
137
|
Liu J, Cao D, Xu H, Cheng D. From double‐atom catalysts to single‐cluster catalysts: A new frontier in heterogeneous catalysis. NANO SELECT 2020. [DOI: 10.1002/nano.202000155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jin Liu
- State Key Laboratory of Organic‐Inorganic Composites Beijing Key Laboratory of Energy Environmental Catalysis Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Dong Cao
- State Key Laboratory of Organic‐Inorganic Composites Beijing Key Laboratory of Energy Environmental Catalysis Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Haoxiang Xu
- State Key Laboratory of Organic‐Inorganic Composites Beijing Key Laboratory of Energy Environmental Catalysis Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic‐Inorganic Composites Beijing Key Laboratory of Energy Environmental Catalysis Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| |
Collapse
|
138
|
Cao X, Shen J, Li XF, Luo Y. Spin Polarization-Induced Facile Dioxygen Activation in Boron-Doped Graphitic Carbon Nitride. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52741-52748. [PMID: 33174426 DOI: 10.1021/acsami.0c16216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dioxygen (O2) activation is a vital step in many oxidation reactions, and a graphitic carbon nitride (g-C3N4) sheet is known as a famous semiconductor catalytic material. Here, we report that the atomic boron (B)-doped g-C3N4 (B/g-C3N4) can be used as a highly efficient catalyst for O2 activation. Our first-principles results show that O2 can be easily chemisorbed at the B site and thus can be highly activated, featured by an elongated O-O bond (∼1.52 Å). Interestingly, the O-O cleavage is almost barrier free at room temperatures, independent of the doping concentration. It is revealed that the B atom can induce considerable spin polarization on B/g-C3N4, which accounts for O2 activation. The doping concentration determines the coupling configuration of net-spin and thus the magnitude of the magnetism. However, the distribution of net-spin at the active site is independent of the doping concentration, giving rise to the doping concentration-independent catalytic capacity. The unique monolayer geometry and the existing multiple active sites may facilitate the adsorption and activation of O2 from two sides, and the newly generated surface oxygen-containing groups can catalyze the oxidation coupling of methane to ethane. The present findings pave a new way to design g-C3N4-based metal-free catalysts for oxidation reactions.
Collapse
Affiliation(s)
- Xinrui Cao
- Institute of Theoretical Physics, Department of Physics, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Jiacai Shen
- Institute of Theoretical Physics, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Xiao-Fei Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yi Luo
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, Stockholm S-106 91, Sweden
| |
Collapse
|
139
|
Jeong H, Shin S, Lee H. Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS NANO 2020; 14:14355-14374. [PMID: 33140947 DOI: 10.1021/acsnano.0c06610] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent advances in heterogeneous single-atom catalysts (SACs), which have isolated metal atoms dispersed on a support, have enabled a more precise control of their surface metal atomic structure. SACs could reduce the amount of metals used for the surface reaction and have often shown distinct selectivity, which the corresponding nanoparticles would not have. However, SACs typically have the limitations of low-metal content, poor stability, oxidic electronic states, and an absence of ensemble sites. In this review, various efforts to overcome these limitations have been discussed: The metal content in the SACs could increase up to over 10 wt %; highly durable SACs could be prepared by anchoring the metal atoms strongly on the defective support; metallic SACs are reported; and the ensemble catalysts, in which all the metal atoms are exposed at the surface like the SACs but the surface metal atoms are located nearby, are also reported. Metal atomic multimers with distinct catalytic properties have been also reported. Surface metal single-atoms could be decorated with organic ligands with interesting catalytic behavior. Heterogeneous atomic catalysts, whose structure is elaborately controlled and the surface reaction is better understood, can be a paradigm with higher catalytic activity, selectivity, and durability and used in industrial applications.
Collapse
Affiliation(s)
- Hojin Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sangyong Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
140
|
Zheng G, Li L, Hao S, Zhang X, Tian Z, Chen L. Double Atom Catalysts: Heteronuclear Transition Metal Dimer Anchored on Nitrogen‐Doped Graphene as Superior Electrocatalyst for Nitrogen Reduction Reaction. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guokui Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Zheda Road 38 Hangzhou 310027 China
- Institute of Zhejiang University‐Quzhou Quzhou 324000 China
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Lei Li
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Shaoyun Hao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Zheda Road 38 Hangzhou 310027 China
- Institute of Zhejiang University‐Quzhou Quzhou 324000 China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Zheda Road 38 Hangzhou 310027 China
- Institute of Zhejiang University‐Quzhou Quzhou 324000 China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- Department of Materials Science and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- Department of Materials Science and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
141
|
Ma DD, Zhu QL. MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213483] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
142
|
Gong L, Zhang D, Shen Y, Wang X, Zhang J, Han X, Zhang L, Xia Z. Enhancing both selectivity and activity of CO2 conversion by breaking scaling relations with bimetallic active sites anchored in covalent organic frameworks. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
143
|
Li Y, Zhang J, Liu Y, Qian Q, Li Z, Zhu Y, Zhang G. Partially exposed RuP 2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis. SCIENCE ADVANCES 2020; 6:eabb4197. [PMID: 33115737 PMCID: PMC7608786 DOI: 10.1126/sciadv.abb4197] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/11/2020] [Indexed: 05/12/2023]
Abstract
Replacing the sluggish anode reaction in water electrolysis with thermodynamically favorable hydrazine oxidation could achieve energy-efficient H2 production, while the shortage of bifunctional catalysts limits its scale development. Here, we presented the scalable one-pot synthesis of partially exposed RuP2 nanoparticle-decorated carbon porous microsheets, which can act as the superior bifunctional catalyst outperforming Pt/C for both hydrazine oxidation reaction and hydrogen evolution reaction, where an ultralow working potential of -70 mV and an ultrasmall overpotential of 24 mV for 10 mA cm-2 can be achieved. The two-electrode electrolyzer can reach 10 mA cm-2 with a record-low cell voltage of 23 mV and an ultrahigh current density of 522 mA cm-2 at 1.0 V. The DFT calculations unravel the notability of partial exposure in the hybrid structure, as the exposed Ru atoms are the active sites for hydrazine dehydrogenation, while the C atoms exhibit a more thermoneutral value for H* adsorption.
Collapse
Affiliation(s)
- Yapeng Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jihua Zhang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, Guizhou, China
| | - Yi Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qizhu Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Ziyun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yin Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Genqiang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
144
|
|
145
|
Guo Y, Feng L, Wu C, Wang X, Zhang X. Confined pyrolysis transformation of ZIF-8 to hierarchically ordered porous Zn-N-C nanoreactor for efficient CO2 photoconversion under mild conditions. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
146
|
Xu Z, Zhang Y, Qin L, Meng Q, Xue Z, Qiu L, Zhang G, Guo X, Li Q. Crystal Facet Induced Single-Atom Pd/Co x O y on a Tunable Metal-Support Interface for Low Temperature Catalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002071. [PMID: 32812377 DOI: 10.1002/smll.202002071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Atomic dispersed metal sites in single-atom catalysts are highly mobile and easily sintered to form large particles, which deteriorates the catalytic performance severely. Moreover, lack of criterion concerning the role of the metal-support interface prevents more efficient and wide application. Here, a general strategy is reported to synthesize stable single atom catalysts by crafting on a variety of cobalt-based nanoarrays with precisely controlled architectures and compositions. The highly uniform, well-aligned, and densely packed nanoarrays provide abundant oxygen vacancies (17.48%) for trapping Pd single atoms and lead to the creation of 3D configured catalysts, which exhibit very competitive activity toward low temperature CO oxidation (100% conversion at 90 °C) and prominent long-term stability (continuous conversion at 60 °C for 118 h). Theoretical calculations show that O vacancies at high-index {112} facet of Cox Oy nanocrystallite are preferential sites for trapping single atoms, which guarantee strong interface adhesion of Pd species to cobalt-based support and play a pivotal role in preventing the decrement of activity, even under moisture-rich conditions (≈2% water vapor). The progress presents a promising opportunity for tailoring catalytic properties consistent with the specific demand on target process, beyond a facile design with a tunable metal-support interface.
Collapse
Affiliation(s)
- Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science & Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Yufan Zhang
- College of Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science & Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Qin Meng
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhen Xue
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science & Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Liqin Qiu
- School of Chemistry & Chemical Engineering, Key Lab for Low Carbon Chemistry & Energy Conservation of Guangdong, Sun Yat Sen University, Guangzhou, 510275, P. R. China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science & Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, Dalian University of Technology, Dalian, 116012, P. R. China
| | - Qingbiao Li
- College of Chemistry and Chemical Engineering, National Laboratory for Green Chemical Productions of Alcohols Ethers and Esters, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
147
|
Han J, Bian J, Sun C. Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction. RESEARCH 2020; 2020:9512763. [PMID: 32864623 PMCID: PMC7443255 DOI: 10.34133/2020/9512763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Oxygen reduction reaction (ORR) plays significant roles in electrochemical energy storage and conversion systems as well as clean synthesis of fine chemicals. However, the ORR process shows sluggish kinetics and requires platinum-group noble metal catalysts to accelerate the reaction. The high cost, rare reservation, and unsatisfied durability significantly impede large-scale commercialization of platinum-based catalysts. Single-atom electrocatalysts (SAECs) featuring with well-defined structure, high intrinsic activity, and maximum atom efficiency have emerged as a novel field in electrocatalytic science since it is promising to substitute expensive platinum-group noble metal catalysts. However, finely fabricating SAECs with uniform and highly dense active sites, fully maximizing the utilization efficiency of active sites, and maintaining the atomically isolated sites as single-atom centers under harsh electrocatalytic conditions remain urgent challenges. In this review, we summarized recent advances of SAECs in synthesis, characterization, oxygen reduction reaction (ORR) performance, and applications in ORR-related H2O2 production, metal-air batteries, and low-temperature fuel cells. Relevant progress on tailoring the coordination structure of isolated metal centers by doping other metals or ligands, enriching the concentration of single-atom sites by increasing metal loadings, and engineering the porosity and electronic structure of the support by optimizing the mass and electron transport are also reviewed. Moreover, general strategies to synthesize SAECs with high metal loadings on practical scale are highlighted, the deep learning algorithm for rational design of SAECs is introduced, and theoretical understanding of active-site structures of SAECs is discussed as well. Perspectives on future directions and remaining challenges of SAECs are presented.
Collapse
Affiliation(s)
- Junxing Han
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Bian
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwen Sun
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
148
|
Xi Y, Heyden A. Highly Efficient Deoxydehydration and Hydrodeoxygenation on MoS 2-Supported Transition-Metal Atoms through a C–H Activation Mechanism. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongjie Xi
- Department of Chemical Engineering, University of South Carolina, 301 South Main Street, Columbia, South Carolina 29208, United States
| | - Andreas Heyden
- Department of Chemical Engineering, University of South Carolina, 301 South Main Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
149
|
Wei Y, Sun L, Wang M, Hong J, Zou L, Liu H, Wang Y, Zhang M, Liu Z, Li Y, Horike S, Suenaga K, Xu Q. Fabricating Dual‐Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angew Chem Int Ed Engl 2020; 59:16013-16022. [DOI: 10.1002/anie.202007221] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Yong‐Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Liming Sun
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Department of Chemistry School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Miao Wang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Jinhua Hong
- Nanomaterials Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba 305-8565 Japan
| | - Lianli Zou
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Hongwen Liu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Yu Wang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Zheng Liu
- Innovative Functional Materials Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 2266-98 Anagahora, Shimoshidami, Moriyamaku Nagoya Aichi 463-8560 Japan
| | - Yinwei Li
- Laboratory of Quantum Materials Design and Application School of Physics and Electronic Engineering Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Satoshi Horike
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Institute for Advanced Study Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Kazu Suenaga
- Nanomaterials Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba 305-8565 Japan
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
- Research Institute of Electrochemical Energy National Institute of Advanced Industrial Science and Technology (AIST) Ikeda Osaka 563-8577 Japan
| |
Collapse
|
150
|
Wei Y, Sun L, Wang M, Hong J, Zou L, Liu H, Wang Y, Zhang M, Liu Z, Li Y, Horike S, Suenaga K, Xu Q. Fabricating Dual‐Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yong‐Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Liming Sun
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Department of Chemistry School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Miao Wang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Jinhua Hong
- Nanomaterials Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba 305-8565 Japan
| | - Lianli Zou
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Hongwen Liu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Yu Wang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
| | - Zheng Liu
- Innovative Functional Materials Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 2266-98 Anagahora, Shimoshidami, Moriyamaku Nagoya Aichi 463-8560 Japan
| | - Yinwei Li
- Laboratory of Quantum Materials Design and Application School of Physics and Electronic Engineering Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Satoshi Horike
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Institute for Advanced Study Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Kazu Suenaga
- Nanomaterials Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba 305-8565 Japan
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Sakyo-ku Kyoto 606-8501 Japan
- Research Institute of Electrochemical Energy National Institute of Advanced Industrial Science and Technology (AIST) Ikeda Osaka 563-8577 Japan
| |
Collapse
|