101
|
Meidan E, Li H, Pan W, Kono M, Yu S, Kyttaris VC, Ioannidis C, Rodriguez Rodriguez N, Crispin JC, Apostolidis SA, Lee P, Manis J, Sharabi A, Tsokos MG, Tsokos GC. Serine/threonine phosphatase PP2A is essential for optimal B cell function. JCI Insight 2020; 5:130655. [PMID: 32161189 PMCID: PMC7141385 DOI: 10.1172/jci.insight.130655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/12/2020] [Indexed: 12/28/2022] Open
Abstract
Protein phosphatase 2A (PP2A), a serine/threonine phosphatase, has been shown to control T cell function. We found that in vitro-activated B cells and B cells from various lupus-prone mice and patients with systemic lupus erythematosus display increased PP2A activity. To understand the contribution of PP2A to B cell function, we generated a Cd19CrePpp2r1afl/fl (flox/flox) mouse which lacks functional PP2A only in B cells. Flox/flox mice displayed reduced spontaneous germinal center formation and decreased responses to T cell-dependent and T-independent antigens, while their B cells responded poorly in vitro to stimulation with an anti-CD40 antibody or CpG in the presence of IL-4. Transcriptome and metabolome studies revealed altered nicotinamide adenine dinucleotide (NAD) and purine/pyrimidine metabolism and increased expression of purine nucleoside phosphorylase in PP2A-deficient B cells. Our results demonstrate that PP2A is required for optimal B cell function and may contribute to increased B cell activity in systemic autoimmunity.
Collapse
Affiliation(s)
- Esra Meidan
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Michihito Kono
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Shuilian Yu
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Vasileios C. Kyttaris
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Christina Ioannidis
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Noe Rodriguez Rodriguez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Jose C. Crispin
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Sokratis A. Apostolidis
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Pui Lee
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - John Manis
- Division of Transfusion Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Amir Sharabi
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Maria G. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| |
Collapse
|
102
|
mTORC1 coordinates an immediate unfolded protein response-related transcriptome in activated B cells preceding antibody secretion. Nat Commun 2020; 11:723. [PMID: 32024827 PMCID: PMC7002553 DOI: 10.1038/s41467-019-14032-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
How activated B cells build biosynthetic pathways and organelle structures necessary for subsequent robust antibody secretion is still unclear. The dominant model holds that nascent plasma cells adapt to increased antibody synthesis by activating the unfolded protein response (UPR) under the control of the transcription factor Xbp1. Here, by analyzing gene expression in activated B cells with or without plasma cell-inductive signals, we find that follicular B cells up-regulate a wide array of UPR-affiliated genes before initiating antibody secretion; furthermore, initial transcription of these loci requires the mTORC1 kinase adaptor, Raptor, but not Xbp1. Transcriptomic analyses of resting marginal zone B cells, which generate plasma cells with exceptionally rapid kinetics, reinforce these results by revealing the basal expression of UPR-affiliated mRNA networks without detectable Xbp1 activity. We thus conclude that B cells utilize mTORC1 to prepare for subsequent plasma cell function, before the onset of antibody synthesis. Antibody production in plasma cells involves the unfold protein response (UPR), but how this is regulated is not clear. Here the authors show that mTORC1 signalling but not Xbp1-mediated transcription regulation in activated B cells is important for the induction of a UPR-related transcriptome that precedes full plasma cell functions.
Collapse
|
103
|
Michaud E, Mastrandrea C, Rochereau N, Paul S. Human Secretory IgM: An Elusive Player in Mucosal Immunity. Trends Immunol 2020; 41:141-156. [PMID: 31928913 DOI: 10.1016/j.it.2019.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022]
Abstract
Secretory IgMs (SIgMs) were amongst the first identified immunoglobulins. However, their importance was not fully understood and recent advances have shown they play a key role in establishing and promoting commensal gut tolerance in mice and humans. The true interactions between SIgMs and the microbiota remain controversial and we aim to consolidate current knowledge in this review. Through comprehensive examination of SIgMs and their corresponding B cell secretors in several different pathological immunological contexts, we review the presumed role of these molecules in gut tolerance, inflammatory bowel diseases, and lung immunity. As SIgMs harbor a mostly tolerogenic function, we posit that their inclusion in further immunological research is paramount.
Collapse
Affiliation(s)
- Eva Michaud
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | | | - Nicolas Rochereau
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Stéphane Paul
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France.
| |
Collapse
|
104
|
Wang Y, Liu J, Burrows PD, Wang JY. B Cell Development and Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1254:1-22. [PMID: 32323265 DOI: 10.1007/978-981-15-3532-1_1] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the identification of B cells in 1965 (Cooper et al. 1965), three has been tremendous progress in our understanding of B cell development, maturation and function. A number of B cell subpopulations, including B-1, B-2 and regulatory B cells, have been identified. B-1 cells mainly originate from the fetal liver and contain B-1a and B-1b subsets. B-2 cells are derived from the bone marrow (BM) and can be further classified into follicular B (FOB) and marginal zone B (MZB) cells. Regulatory B cells (Bregs) function to suppress immune responses, primarily by production of the anti-inflammatory cytokine IL-10. B cell tolerance is established at several checkpoints, during B cell development in the BM (central tolerance) as well as during B cell maturation and activation in the periphery (peripheral tolerance). This chapter will focus on the regulation of important processes during the development and maturation of B-1 and B-2 cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
105
|
Mohib K, Cherukuri A, Zhou Y, Ding Q, Watkins SC, Rothstein DM. Antigen-dependent interactions between regulatory B cells and T cells at the T:B border inhibit subsequent T cell interactions with DCs. Am J Transplant 2020; 20:52-63. [PMID: 31355483 PMCID: PMC8117747 DOI: 10.1111/ajt.15546] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/20/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023]
Abstract
IL-10+ regulatory B cells (Bregs) inhibit immune responses in various settings. While Bregs appear to inhibit inflammatory cytokine expression by CD4+ T cells and innate immune cells, their reported impact on CD8+ T cells is contradictory. Moreover, it remains unclear which effects of Bregs are direct versus indirect. Finally, the subanatomical localization of Breg suppressive function and the nature of their intercellular interactions remain unknown. Using novel tamoxifen-inducible B cell-specific IL-10 knockout mice, we found that Bregs inhibit CD8+ T cell proliferation and inhibit inflammatory cytokine expression by both CD4+ and CD8+ T cells. Sort-purified Bregs from IL-10-reporter mice were adoptively transferred into wild-type hosts and examined by live-cell imaging. Bregs localized to the T:B border, specifically entered the T cell zone, and made more frequent and longer contacts with both CD4+ and CD8+ T cells than did non-Bregs. These Breg:T cell interactions were antigen-specific and reduced subsequent T:DC contacts. Thus, Bregs inhibit T cells through direct cognate interactions that subsequently reduce DC:T cell interactions.
Collapse
Affiliation(s)
- Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yu Zhou
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Tsinghua University, Bejing Shi, China
| | - Qing Ding
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David M. Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
106
|
D'Souza L, Bhattacharya D. Plasma cells: You are what you eat. Immunol Rev 2019; 288:161-177. [PMID: 30874356 DOI: 10.1111/imr.12732] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022]
Abstract
Plasma cells are terminally differentiated B lymphocytes that constitutively secrete antibodies. These antibodies can provide protection against pathogens, and their quantity and quality are the best clinical correlates of vaccine efficacy. As such, plasma cell lifespan is the primary determinant of the duration of humoral immunity. Yet dysregulation of plasma cell function can cause autoimmunity or multiple myeloma. The longevity of plasma cells is primarily dictated by nutrient uptake and non-transcriptionally regulated metabolic pathways. We have previously shown a positive effect of glucose uptake and catabolism on plasma cell longevity and function. In this review, we discuss these findings with an emphasis on nutrient uptake and its effects on respiratory capacity, lifespan, endoplasmic reticulum stress, and antibody secretion in plasma cells. We further discuss how some of these pathways may be dysregulated in multiple myeloma, potentially providing new therapeutic targets. Finally, we speculate on the connection between plasma cell intrinsic metabolism and systemic changes in nutrient availability and metabolic diseases.
Collapse
Affiliation(s)
- Lucas D'Souza
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
107
|
Raybuck AL, Lee K, Cho SH, Li J, Thomas JW, Boothby MR. mTORC1 as a cell-intrinsic rheostat that shapes development, preimmune repertoire, and function of B lymphocytes. FASEB J 2019; 33:13202-13215. [PMID: 31533002 PMCID: PMC6894075 DOI: 10.1096/fj.201900069r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/19/2019] [Indexed: 11/11/2022]
Abstract
Ample evidence indicates that nutrient concentrations in extracellular milieux affect signaling mediated by environmental sensor proteins. For instance, the mechanistic target of rapamycin (mTOR) is reduced during protein malnutrition and is known to be modulated by concentrations of several amino acids when in a multiprotein signaling complex that contains regulatory-associated protein of mTOR. We hypothesized that a partial decrease in mTOR complex 1 (mTORC1) activity intrinsic to B-lineage cells would perturb lymphocyte development or function, or both. We show that a cell-intrinsic decrease in mTORC1 activity impacted developmental progression, antigen receptor repertoire, and function along the B lineage. Thus, preimmune repertoires of B-lineage cells were altered in the marrow and periphery in a genetic model of regulatory-associated protein of mTOR haplo-insufficiency. An additional role for mTORC1 was revealed when a B-cell antigen receptor transgene was found to circumvent the abnormal B-cell development: haploinsufficient B cells were profoundly impaired in responses to antigen in vivo. Collectively, our findings indicate that mTORC1 serves as a rheostat that shapes differentiation along the B lineage, the preimmune repertoire, and antigen-driven selection of mature B cells. The findings also reveal a range in the impact of this nutrient sensor on activity-response relationships for distinct endpoints.-Raybuck, A. L., Lee, K., Cho, S. H., Li, J., Thomas, J. W., Boothby, M. R. mTORC1 as a cell-intrinsic rheostat that shapes development, preimmune repertoire, and function of B lymphocytes.
Collapse
Affiliation(s)
- Ariel L. Raybuck
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keunwook Lee
- Department of Biomedical Science, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Sung Hoon Cho
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jingxin Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James W. Thomas
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark R. Boothby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
108
|
Zhu M, Li C, Song Z, Mu S, Wang J, Wei W, Han Y, Qiu D, Chu X, Tong C. The increased marginal zone B cells attenuates early inflammatory responses during sepsis in Gpr174 deficient mice. Int Immunopharmacol 2019; 81:106034. [PMID: 31786099 DOI: 10.1016/j.intimp.2019.106034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
GPR174 plays a crucial role in immune responses, but the role of GPR174 in the pathological progress of sepsis remains incompletely understood. In this study, we generated a sepsis model by cecal ligation and puncture (CLP) to investigate the role of GPR174 in regulating functions and underlying mechanism of marginal zone B (MZ B) cells in sepsis. We found that in Gpr174 deficient mice, the number of splenic MZ B cells was increased. Moreover, Gpr174-/- MZ B cells exhibited an enhanced response to LPS stimulation in vitro. By using the CLP-induced sepsis model, we demonstrated that the increased MZ B cells attenuated early inflammatory responses during sepsis. RNA sequencing results revealed that the expression of c-fos in splenic B lymphocytes was upregulated in Gpr174 deficient mice. However, the protective role of increased MZ B cells in Gpr174 deficient mice was weakened by a c-fos-specific inhibitor. Collectively, these findings suggested that GPR174 plays an immunomodulatory role in early immune responses during sepsis through the regulation of MZ B cells.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chong Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Zhenju Song
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sucheng Mu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianli Wang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Wei
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Han
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongze Qiu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xun Chu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chaoyang Tong
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
109
|
B1 and Marginal Zone B Cells but Not Follicular B2 Cells Require Gpx4 to Prevent Lipid Peroxidation and Ferroptosis. Cell Rep 2019; 29:2731-2744.e4. [DOI: 10.1016/j.celrep.2019.10.070] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
|
110
|
Bath NM, Ding X, Verhoven BM, Wilson NA, Coons L, Sukhwal A, Zhong W, Redfield III RR. Autoantibody production significantly decreased with APRIL/BLyS blockade in murine chronic rejection kidney transplant model. PLoS One 2019; 14:e0223889. [PMID: 31647850 PMCID: PMC6812745 DOI: 10.1371/journal.pone.0223889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic antibody mediated rejection (cAMR) remains a significant barrier to achieving long-term graft survival in kidney transplantation, which results from alloantibody production from B lymphocytes and plasma cells. APRIL (A proliferation-inducing ligand) and BLyS (B lymphocyte stimulator) are critical survival factors for B lymphocytes and plasma cells. Here we describe the results of APRIL/BLyS blockade in a murine cAMR kidney transplant model. c57/B6 mice underwent kidney transplantation with Bm12 kidneys (minor MHC mismatch), a well-described model for chronic rejection where animals cannot make donor specific antibody but rather make antinuclear antibody (ANA). Following transplantation, animals received TACI-Ig (to block APRIL and BLyS) or no treatment. Animals were continued on treatment until harvest 4 weeks following transplant. Serum was analyzed for circulating anti-nuclear autoantibodies using HEp-2 indirect immunofluorescence. Spleen and transplanted kidneys were analyzed via H&E. ANA production was significantly decreased in APRIL/BLyS blockade treated animals (p<0.0001). No significant difference in autoantibody production was found between syngeneic transplant control (B6 to B6) and APRIL/BLyS blockade treated animals (p = 0.90). Additionally, disruption of splenic germinal center architecture was noted in the APRIL/BLyS blockade treated animals. Despite the significant decrease in autoantibody production and germinal center disruption, no significant difference in lymphocyte infiltration was noted in the transplanted kidney. APRIL/BLyS blockade resulted in a significant decrease of autoantibody production and disrupted splenic germinal center formation in a chronic kidney transplant model, however in this model no difference in kidney transplant pathology was seen, which may have to do with the absence of any T cell centric immunosuppression. Regardless, these findings suggest that APRIL/BLyS blockade may play a role in decreasing antibody formation long-term in kidney transplantation. Future investigations will use APRIL/BLyS blockade in conjunction with T lymphocyte depleting agents to determine its efficacy in chronic rejection.
Collapse
Affiliation(s)
- Natalie M. Bath
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiang Ding
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bret M. Verhoven
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy A. Wilson
- Department of Medicine, Division of Nephrology, University of Wisconsin-Madison, Madison, Wisconsin, Unites States of America
| | - Lauren Coons
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Adarsh Sukhwal
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Robert R. Redfield III
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
111
|
Wu L, Dalal R, Cao CD, Postoak JL, Yang G, Zhang Q, Wang Z, Lal H, Van Kaer L. IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc Natl Acad Sci U S A 2019; 116:21673-21684. [PMID: 31591231 PMCID: PMC6815157 DOI: 10.1073/pnas.1911464116] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute myocardial infarction (MI) provokes an inflammatory response in the heart that removes damaged tissues to facilitate tissue repair/regeneration. However, overactive and prolonged inflammation compromises healing, which may be counteracted by antiinflammatory mechanisms. A key regulatory factor in an inflammatory response is the antiinflammatory cytokine IL-10, which can be produced by a number of immune cells, including subsets of B lymphocytes. Here, we investigated IL-10-producing B cells in pericardial adipose tissues (PATs) and their role in the healing process following acute MI in mice. We found that IL-10-producing B cells were enriched in PATs compared to other adipose depots throughout the body, with the majority of them bearing a surface phenotype consistent with CD5+ B-1a cells (CD5+ B cells). These cells were detected early in life, maintained a steady presence during adulthood, and resided in fat-associated lymphoid clusters. The cytokine IL-33 and the chemokine CXCL13 were preferentially expressed in PATs and contributed to the enrichment of IL-10-producing CD5+ B cells. Following acute MI, the pool of CD5+ B cells was expanded in PATs. These cells accumulated in the infarcted heart during the resolution of MI-induced inflammation. B cell-specific deletion of IL-10 worsened cardiac function, exacerbated myocardial injury, and delayed resolution of inflammation following acute MI. These results revealed enrichment of IL-10-producing B cells in PATs and a significant contribution of these cells to the antiinflammatory processes that terminate MI-induced inflammation. Together, these findings have identified IL-10-producing B cells as therapeutic targets to improve the outcome of MI.
Collapse
Affiliation(s)
- Lan Wu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
| | - Rajeev Dalal
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Connie D Cao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - J Luke Postoak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Guan Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Qinkun Zhang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Zhizhang Wang
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Hind Lal
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
| |
Collapse
|
112
|
Sanz I, Wei C, Jenks SA, Cashman KS, Tipton C, Woodruff MC, Hom J, Lee FEH. Challenges and Opportunities for Consistent Classification of Human B Cell and Plasma Cell Populations. Front Immunol 2019; 10:2458. [PMID: 31681331 PMCID: PMC6813733 DOI: 10.3389/fimmu.2019.02458] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
The increasingly recognized role of different types of B cells and plasma cells in protective and pathogenic immune responses combined with technological advances have generated a plethora of information regarding the heterogeneity of this human immune compartment. Unfortunately, the lack of a consistent classification of human B cells also creates significant imprecision on the adjudication of different phenotypes to well-defined populations. Additional confusion in the field stems from: the use of non-discriminatory, overlapping markers to define some populations, the extrapolation of mouse concepts to humans, and the assignation of functional significance to populations often defined by insufficient surface markers. In this review, we shall discuss the current understanding of human B cell heterogeneity and define major parental populations and associated subsets while discussing their functional significance. We shall also identify current challenges and opportunities. It stands to reason that a unified approach will not only permit comparison of separate studies but also improve our ability to define deviations from normative values and to create a clean framework for the identification, functional significance, and disease association with new populations.
Collapse
Affiliation(s)
- Ignacio Sanz
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Chungwen Wei
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Scott A Jenks
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Kevin S Cashman
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Christopher Tipton
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Matthew C Woodruff
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Jennifer Hom
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - F Eun-Hyung Lee
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
113
|
Lucas F, Rogers KA, Harrington BK, Pan A, Yu L, Breitbach J, Bundschuh R, Goettl VM, Hing ZA, Kanga P, Mantel R, Sampath D, Smith LL, Wasmuth R, White DK, Yan P, Byrd JC, Lapalombella R, Woyach JA. Eμ-TCL1xMyc: A Novel Mouse Model for Concurrent CLL and B-Cell Lymphoma. Clin Cancer Res 2019; 25:6260-6273. [PMID: 31296529 PMCID: PMC6801062 DOI: 10.1158/1078-0432.ccr-19-0273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/23/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Aberrant Myc expression is a major factor in the pathogenesis of aggressive lymphoma, and these lymphomas, while clinically heterogeneous, often are resistant to currently available treatments and have poor survival. Myc expression can also be seen in aggressive lymphomas that are observed in the context of CLL, and we sought to develop a mouse model that could be used to study therapeutic strategies for aggressive lymphoma in the context of CLL. EXPERIMENTAL DESIGN We crossed the Eμ-TCL1 mouse model with the Eμ-Myc mouse model to investigate the clinical phenotype associated with B-cell-restricted expression of these oncogenes. The resulting malignancy was then extensively characterized, from both a clinical and biologic perspective. RESULTS Eμ-TCL1xMyc mice uniformly developed highly aggressive lymphoid disease with histologically, immunophenotypically, and molecularly distinct concurrent CLL and B-cell lymphoma, leading to a significantly reduced lifespan. Injection of cells from diseased Eμ-TCL1xMyc into WT mice established a disease similar to that in the double-transgenic mice. Both Eμ-TCL1xMyc mice and mice with disease after adoptive transfer failed to respond to ibrutinib. Effective and durable disease control was, however, observed by selective inhibition of nuclear export protein exportin-1 (XPO1) using a compound currently in clinical development for relapsed/refractory malignancies, including CLL and lymphoma. CONCLUSIONS The Eμ-TCL1xMyc mouse is a new preclinical tool for testing experimental drugs for aggressive B-cell lymphoma, including in the context of CLL.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor/methods
- Female
- Humans
- Karyopherins/antagonists & inhibitors
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Male
- Mice
- Mice, Transgenic
- Neoplasms, Multiple Primary/genetics
- Neoplasms, Multiple Primary/pathology
- Proof of Concept Study
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-myc/genetics
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Tumor Cells, Cultured/transplantation
- Exportin 1 Protein
Collapse
Affiliation(s)
- Fabienne Lucas
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Kerry A Rogers
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Bonnie K Harrington
- Division of Hematology, The Ohio State University, Columbus, Ohio
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Alexander Pan
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, Department of Bioinformatics, The Ohio State University, Columbus, Ohio
| | - Justin Breitbach
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Ralf Bundschuh
- Division of Hematology, The Ohio State University, Columbus, Ohio
- Department of Physics, Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio
| | | | - Zachary A Hing
- Division of Hematology, The Ohio State University, Columbus, Ohio
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio
| | - Parviz Kanga
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Rose Mantel
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Deepa Sampath
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Lisa L Smith
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Ronni Wasmuth
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Danielle K White
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Pearlly Yan
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - John C Byrd
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | | | | |
Collapse
|
114
|
Teng Y, Young JL, Edwards B, Hayes P, Thompson L, Johnston C, Edwards C, Sanders Y, Writer M, Pinto D, Zhang Y, Roode M, Chovanec P, Matheson L, Corcoran AE, Fernandez A, Montoliu L, Rossi B, Tosato V, Gjuracic K, Nikitin D, Bruschi C, McGuinness B, Sandal T, Romanos M. Diverse human V H antibody fragments with bio-therapeutic properties from the Crescendo Mouse. N Biotechnol 2019; 55:65-76. [PMID: 31600579 DOI: 10.1016/j.nbt.2019.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/04/2019] [Accepted: 10/04/2019] [Indexed: 01/26/2023]
Abstract
We describe the 'Crescendo Mouse', a human VH transgenic platform combining an engineered heavy chain locus with diverse human heavy chain V, D and J genes, a modified mouse Cγ1 gene and complete 3' regulatory region, in a triple knock-out (TKO) mouse background devoid of endogenous immunoglobulin expression. The addition of the engineered heavy chain locus to the TKO mouse restored B cell development, giving rise to functional B cells that responded to immunization with a diverse response that comprised entirely 'heavy chain only' antibodies. Heavy chain variable (VH) domain libraries were rapidly mined using phage display technology, yielding diverse high-affinity human VH that had undergone somatic hypermutation, lacked aggregation and showed enhanced expression in E. coli. The Crescendo Mouse produces human VH fragments, or Humabody® VH, with excellent bio-therapeutic potential, as exemplified here by the generation of antagonistic Humabody® VH specific for human IL17A and IL17RA.
Collapse
Affiliation(s)
- Yumin Teng
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Joyce L Young
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Bryan Edwards
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Philip Hayes
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Lorraine Thompson
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Colette Johnston
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Carolyn Edwards
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Yun Sanders
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Michele Writer
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Debora Pinto
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Yanjing Zhang
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Mila Roode
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Peter Chovanec
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Louise Matheson
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Anne E Corcoran
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Almudena Fernandez
- Centro Nacional de Biotecnologia (CNB-CSIC) & CIBER de Enfermedades Raras (CIBERER-ISCIII), Darwin 3, 28049, Madrid, Spain
| | - Lluis Montoliu
- Centro Nacional de Biotecnologia (CNB-CSIC) & CIBER de Enfermedades Raras (CIBERER-ISCIII), Darwin 3, 28049, Madrid, Spain
| | - Beatrice Rossi
- International Centre for Genetic Engineering and Biotechnology, Yeast Molecular Genetics Laboratory, Padriciano 99, 34149, Trieste, Italy
| | - Valentina Tosato
- International Centre for Genetic Engineering and Biotechnology, Yeast Molecular Genetics Laboratory, Padriciano 99, 34149, Trieste, Italy
| | - Kresimir Gjuracic
- International Centre for Genetic Engineering and Biotechnology, Yeast Molecular Genetics Laboratory, Padriciano 99, 34149, Trieste, Italy
| | - Dmitri Nikitin
- International Centre for Genetic Engineering and Biotechnology, Yeast Molecular Genetics Laboratory, Padriciano 99, 34149, Trieste, Italy
| | - Carlo Bruschi
- International Centre for Genetic Engineering and Biotechnology, Yeast Molecular Genetics Laboratory, Padriciano 99, 34149, Trieste, Italy
| | - Brian McGuinness
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Thomas Sandal
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Mike Romanos
- Crescendo Biologics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| |
Collapse
|
115
|
Hagen M, Derudder E. Inflammation and the Alteration of B-Cell Physiology in Aging. Gerontology 2019; 66:105-113. [PMID: 31553969 DOI: 10.1159/000501963] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Aging results for the immune system in a departure from the optimal homeostatic state seen in young organisms. This divergence regrettably contributes to a higher frequency of compromised responses to infections and inefficient classical vaccination in aged populations. In B cells, the cornerstone of humoral immunity, the development and distribution of the various mature B cell subsets are impacted by aging in both humans and mice. In addition, aged mature B cells demonstrate limited capacity to mount efficient antibody responses. An expected culprit for the decline in effective immunity is the rise of the systemic levels of pro-inflammatory molecules during aging, establishing a chronic low-grade inflammation. Indeed, numerous alterations affecting directly or indirectly B cells in old people and mice are reminiscent of various effects of acute inflammation on this cell type in young adults. The present mini-review will highlight the possible adverse contributions of the persistent low-level inflammation observed in susceptible older organisms to the inadequate B-cell physiology.
Collapse
Affiliation(s)
- Magdalena Hagen
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria,
| |
Collapse
|
116
|
Albus A, Jördens M, Möller M, Dodel R. Encoding the Sequence of Specific Autoantibodies Against beta-Amyloid and alpha-Synuclein in Neurodegenerative Diseases. Front Immunol 2019; 10:2033. [PMID: 31507618 PMCID: PMC6718452 DOI: 10.3389/fimmu.2019.02033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023] Open
Abstract
There is no effective disease-modifying therapy for Alzheimer's or Parkinson's disease. As pathological hallmarks, the specific peptide amyloid-β and the specific protein α-Synuclein aggregate and deposit in and destabilize neurons, which lead to their degeneration. Within the context of a potential immunization strategy for these diseases, naturally occurring autoantibodies could play a crucial role in treatment due to their ability to inhibit peptide/protein aggregation and mediate their phagocytosis. We developed a procedure to extract the genetic information of such amyloid-β- and α-Synuclein- specific naturally occurring autoantibodies for future passive immunization strategies. We performed FACS-based single-cell sorting on whole blood donated from healthy individuals and performed single-cell RT-PCR analysis to amplify the coding sequences of antigen-binding regions of each antibody-secreting B1 cell. Sequences were further analyzed to determine CDR sequences and germline expression. Therefore, only low percentages of B1 cells obtained were amyloid-β+/α-Synuclein+. After cell sorting, the variable regions of full IgGs were sequenced, demonstrating preferred usage of IGVH3 and IGKV1. The study we present herein describes an approaching for extracting and amplifying the sequence information of autoantibodies based on single-cell analysis of donated blood and producing a recombinant antibody pool for potential passive immunization against neurodegenerative diseases. We sorted a small pool of CD20+ CD27+ CD43+ CD69− IgG+ and Aβ+/α-Syn+ B cells.
Collapse
Affiliation(s)
- Alexandra Albus
- Chair of Geriatric Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Neurology, Philipps-University, Marburg, Germany
| | - Marit Jördens
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Moritz Möller
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Richard Dodel
- Chair of Geriatric Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Neurology, Philipps-University, Marburg, Germany
| |
Collapse
|
117
|
Li S, Liu J, Min Q, Ikawa T, Yasuda S, Yang Y, Wang YQ, Tsubata T, Zhao Y, Wang JY. Kelch-like protein 14 promotes B-1a but suppresses B-1b cell development. Int Immunol 2019; 30:311-318. [PMID: 29939266 DOI: 10.1093/intimm/dxy033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/12/2018] [Indexed: 11/14/2022] Open
Abstract
B-1 cells are innate-like B-cell population and produce natural antibodies that contribute to the first line of host defense. There are two subsets of B-1 cells: B-1a and B-1b. B-1a cells are the main producer of poly-reactive and autoreactive natural IgM antibodies, whereas B-1b cells can respond specifically to T-cell-independent antigens. Despite the functional significance of B-1a and B-1b cells, little information is available about what regulates the development of these two subsets. We found that Kelch-like protein 14 (KLHL14) was expressed at high levels in B cells but only at low levels in a few non-lymphoid tissues. Although mice lacking KLHL14 died right after birth, the heterozygotes developed normally with no gross abnormalities by appearance. B-cell development in the bone marrow and maturation and activation in the spleen were not affected in the heterozygous mice. However, the number of peritoneal B-1a cells was significantly reduced while B-1b cells were increased in Klhl14 heterozygous mice compared with wild-type (WT) mice. Consistently, Rag1-/- mice reconstituted with Klhl14-/- fetal liver cells had a more severe reduction of B-1a and an increase of B-1b cells in the peritoneal cavity. KLHL14 did not affect the turnover or apoptosis of B-1a and B-1b cells in vivo. Moreover, Klhl14-/- fetal liver contained a similar proportion and absolute numbers of the B-1 progenitor cells as did WT fetal liver. These results suggest that KLHL14 promotes B-1a development in mice.
Collapse
Affiliation(s)
- Shuyin Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Min
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tomokatsu Ikawa
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shoya Yasuda
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Yang Yang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yaofeng Zhao
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
118
|
Fasting-Refeeding Impacts Immune Cell Dynamics and Mucosal Immune Responses. Cell 2019; 178:1072-1087.e14. [DOI: 10.1016/j.cell.2019.07.047] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/30/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
|
119
|
Xiong Y, Cheng S, Wu X, Ren Y, Xie X. Changes of B cell subsets in central pathological process of autoimmune encephalomyelitis in mice. BMC Immunol 2019; 20:24. [PMID: 31286875 PMCID: PMC6613246 DOI: 10.1186/s12865-019-0301-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/06/2019] [Indexed: 11/23/2022] Open
Abstract
Background Multiple sclerosis is a demyelinating and autoimmune disease and its immune response is not fully elucidated. This study was conducted to examine the pathological changes and B cell subsets in experimental autoimmune encephalomyelitis (EAE) mice, and analyze the expression of triosephosphate isomerase (TPI) and GADPH to define the role of B cell subsets in the disease. Results Female C57BL/6 mice were randomly divided into EAE group (n = 18) and control (n = 18). During the experiments, the weight and nerve function scores were determined. The proportions of B cell subsets in the peripheral blood were measured by flow cytometry. Seven, 18 and 30 days after immunization, the brain and spinal cord tissues were examined for the infiltration of inflammatory cells using hematoxylin-eosin (HE) HE staining and the demyelination using Luxol fast blue staining. The expression of B cell-related proteins was detected immunohistochemistrially and the expression of antigenic TPI and GADPH was analyzed using enzyme-linked immunosorbent assay (ELISA). HE staining showed that mice had more severe EAE 18 d than 7 d after modelling, while the symptoms were significantly relieved at 30 d. The results were consistent with the weight measurements and neural function scores. Immunohistochemistry studies showed that B cells aggregated in the spinal cord, but not much in the brain. Flow cytometry studies showed that there were more B cells in control than in EAE models from day 7 and the difference was narrowed at day 30. The level of plasma cells increased continuously, reached the top at day 21 and obviously declined at day 30. On other hand, the numbers of memory B cells increased gradually over the experimental period. The numbers of plasma and memory B cells were similar between the control and EAE mice. ELISA data revealed that the brain contents of TPI and GAPDH were higher in EAE mice than in control at day 7, while at day 18, the levels were reversed. Conclusions In the central pathological process of EAE mice, B cells exert role through the mechanism other than producing antibodies and the levels of brain TPI and GADPH are related to the severity of autoimmune induced-damage.
Collapse
Affiliation(s)
- Yingqiong Xiong
- Graduate School, Nanchang University, Nanchang, China.,Department of Neurology, Jiangxi People's Hospital, 153 Aiguo road, Nanchang, China.,Institute of Neurology, Jiangxi People's Hospital, Nanchang, China.,Key Laboratory, Department of Neurology, Jiangxi People's Hospital, Nanchang, China
| | - Shaomin Cheng
- School of Basic Medical Sciences, Jiangxi University of traditional Chinese Medicine, Nanchang, China
| | - Xiaomu Wu
- Department of Neurology, Jiangxi People's Hospital, 153 Aiguo road, Nanchang, China.,Institute of Neurology, Jiangxi People's Hospital, Nanchang, China.,Key Laboratory, Department of Neurology, Jiangxi People's Hospital, Nanchang, China
| | - Yue Ren
- Department of Neurology, Jiangxi People's Hospital, 153 Aiguo road, Nanchang, China.,Institute of Neurology, Jiangxi People's Hospital, Nanchang, China.,Key Laboratory, Department of Neurology, Jiangxi People's Hospital, Nanchang, China
| | - Xufang Xie
- Department of Neurology, Jiangxi People's Hospital, 153 Aiguo road, Nanchang, China. .,Institute of Neurology, Jiangxi People's Hospital, Nanchang, China. .,Key Laboratory, Department of Neurology, Jiangxi People's Hospital, Nanchang, China.
| |
Collapse
|
120
|
Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun 2019; 10:2935. [PMID: 31270335 PMCID: PMC6610088 DOI: 10.1038/s41467-019-11002-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/10/2019] [Indexed: 12/24/2022] Open
Abstract
Trace elements play important roles in human health, but little is known about their functions in humoral immunity. Here, we show an important role for iron in inducing cyclin E and B cell proliferation. We find that iron-deficient individuals exhibit a significantly reduced antibody response to the measles vaccine when compared to iron-normal controls. Mice with iron deficiency also exhibit attenuated T-dependent or T-independent antigen-specific antibody responses. We show that iron is essential for B cell proliferation; both iron deficiency and α-ketoglutarate inhibition could suppress cyclin E1 induction and S phase entry of B cells upon activation. Finally, we demonstrate that three demethylases, KDM2B, KDM3B and KDM4C, are responsible for histone 3 lysine 9 (H3K9) demethylation at the cyclin E1 promoter, cyclin E1 induction and B cell proliferation. Thus, our data reveal a crucial role of H3K9 demethylation in B cell proliferation, and the importance of iron in humoral immunity.
Collapse
|
121
|
Wilson NA, Bath NM, Verhoven BM, Ding X, Boldt BA, Sukhwal A, Zhong W, Panzer SE, Redfield RR. APRIL/BLyS Blockade Reduces Donor-specific Antibodies in Allosensitized Mice. Transplantation 2019; 103:1372-1384. [PMID: 30830041 PMCID: PMC6594891 DOI: 10.1097/tp.0000000000002686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Highly sensitized candidates on the transplant waitlist remain a significant challenge, as current desensitization protocols have variable success rates of donor-specific antibody (DSA) reduction. Therefore, improved therapies are needed. A proliferation-inducing ligand (APRIL) and B-lymphocyte stimulator (BLyS) are critical survival factors for B-lymphocytes and plasma cells, which are the primary sources of alloantibody production. We examined the effect of APRIL/BLyS blockade on DSA in a murine kidney transplant model as a possible novel desensitization strategy. METHODS C57BL/6 mice were sensitized with intraperitoneal (IP) injections of 2 × 10 BALB/c splenocytes. Twenty-one days following sensitization, animals were treated with 100 μg of BLyS blockade (B-cell activating factor receptor-immunoglobulin) or APRIL/BLyS blockade (transmembrane activator and calcium modulator and cyclophilin ligand interactor-immunoglobulin), administered thrice weekly for an additional 21 days. Animals were then euthanized or randomized to kidney transplant with Control Ig, BLyS blockade, or APRIL/BLyS blockade. Animals were euthanized 7 days posttransplant. B-lymphocytes and DSA of BLyS blockade only or APRIL/BLyS blockade-treated mice were assessed by flow cytometry, immunohistochemistry, and enzyme-linked immunospot. RESULTS APRIL/BLyS inhibition resulted in a significant reduction of DSA by flow crossmatch compared with controls (P < 0.01). APRIL/BLyS blockade also significantly depleted IgM- and IgG-secreting cells and B-lymphocyte populations compared to controls (P < 0.0001). APRIL/BLyS blockade in transplanted mice also resulted in decreased B-lymphocyte populations; however, no difference in rejection rates were seen between groups. CONCLUSIONS APRIL/BLyS blockade with transmembrane activator and calcium modulator and cyclophilin ligand interactor-immunoglobulin significantly depleted B-lymphocytes and reduced DSA in this sensitized murine model. APRIL/BLyS inhibition may be a clinically useful desensitization strategy for sensitized transplant candidates.
Collapse
Affiliation(s)
- Nancy A Wilson
- Division of Nephrology, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Natalie M Bath
- Division of Transplant, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Bret M Verhoven
- Division of Transplant, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Xiang Ding
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Brittney A Boldt
- Division of Transplant, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Adarsh Sukhwal
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin-Madison, Madison, WI
| | - Sarah E Panzer
- Division of Nephrology, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Robert R Redfield
- Division of Transplant, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
122
|
Inflammatory signal induced IL-10 production of marginal zone B-cells depends on CREB. Immunol Lett 2019; 212:14-21. [PMID: 31216428 DOI: 10.1016/j.imlet.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/04/2019] [Accepted: 06/14/2019] [Indexed: 11/20/2022]
Abstract
IL-10 is a suppressive cytokine that has been implicated in the pathophysiology of autoimmune disorders and can be produced by different cell types such as regulatory B-cells. Our previous work showed that under inflammatory condition MZ B-cells differentiated into IL-10 producing cells and contributed to the downregulation of collagen-induced arthritis, while follicular B-cells failed to do so. Based on these observations, we aimed to investigate how inflammatory signals mediated through the BCR, TLR9 and IFN-γ receptors trigger IL-10 production in MZ B-cells but leave FO B-cells unresponsive. We particularly focused on the CREB transcription factor as it is involved in all three signalling cascades and analysed its contribution to IL-10 production. Our results demonstrate that the IL-10 production of MZ B-cells induced by the BCR, TLR9 and IFN-γ receptors is mediated by CREB. We showed that the activation of CREB is prolonged in MZ B-cells while the transcription factor only transiently phosphorylated in FO B-cells. The sustained phosphorylation of CREB is clearly associated with its prolonged binding to molecular partner CBP, whereas inhibition of their association decreased IL-10 production. We assume that sustained activation of CREB is required for IL-10 production by B-cells under inflammatory conditions.
Collapse
|
123
|
Willis SN, Nutt SL. New players in the gene regulatory network controlling late B cell differentiation. Curr Opin Immunol 2019; 58:68-74. [DOI: 10.1016/j.coi.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
|
124
|
Erez A, Mukherjee R, Altan-Bonnet G. Quantifying the Dynamics of Hematopoiesis by In Vivo IdU Pulse-Chase, Mass Cytometry, and Mathematical Modeling. Cytometry A 2019; 95:1075-1084. [PMID: 31150166 DOI: 10.1002/cyto.a.23799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/09/2022]
Abstract
We present a new method to directly quantify the dynamics of differentiation of multiple cellular subsets in unperturbed mice. We combine a pulse-chase protocol of 5-iodo-2'-deoxyuridine (IdU) injections with subsequent analysis by mass cytometry (CyTOF) and mathematical modeling of the IdU dynamics. Measurements by CyTOF allow for a wide range of cells to be analyzed at once, due to the availability of a large staining panel without the complication of fluorescence spillover. These are also compatible with direct detection of integrated iodine signal, with minimal impact on immunophenotyping based on the surface markers. Mathematical modeling beyond a binary classification of surface marker abundance allows for a continuum of cellular states as the cells transition from one state to another. Thus, we present a complete and robust method for directly quantifying differentiation at the systemic level, allowing for system-wide comparisons between different mouse strains and/or experimental conditions. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Amir Erez
- Immunodynamics Group, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ratnadeep Mukherjee
- Immunodynamics Group, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
125
|
Largeot A, Pagano G, Gonder S, Moussay E, Paggetti J. The B-side of Cancer Immunity: The Underrated Tune. Cells 2019; 8:cells8050449. [PMID: 31086070 PMCID: PMC6562515 DOI: 10.3390/cells8050449] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Tumor-infiltrating lymphocytes are known to be critical in controlling tumor progression. While the role of T lymphocytes has been extensively studied, the function of B cells in this context is still ill-defined. In this review, we propose to explore the role of B cells in tumor immunity. First of all we define their dual role in promoting and inhibiting cancer progression depending on their phenotype. To continue, we describe the influence of different tumor microenvironment factors such as hypoxia on B cells functions and differentiation. Finally, the role of B cells in response to therapy and as potential target is examined. In accordance with the importance of B cells in immuno-oncology, we conclude that more studies are required to throw light on the precise role of B cells in the tumor microenvironment in order to have a better understanding of their functions, and to design new strategies that efficiently target these cells by immunotherapy.
Collapse
Affiliation(s)
- Anne Largeot
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Giulia Pagano
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Susanne Gonder
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Jerome Paggetti
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| |
Collapse
|
126
|
Loxton AG. Bcells and their regulatory functions during Tuberculosis: Latency and active disease. Mol Immunol 2019; 111:145-151. [PMID: 31054408 DOI: 10.1016/j.molimm.2019.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/20/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a global epidemic with devastating consequences. Emerging evidence suggests that B-cells have the ability to modulate the immune response and understanding these roles during Mycobacterium tuberculosis (M.tb) infection can help to find new strategies to treat TB. The immune system of individuals with pulmonary TB form granulomas in the lung which controls the infection by inhibiting the M.tb growth and acts as a physical barrier. Thereafter, surviving M.tb become dormant and in most cases the host's immunity prevents TB reactivation. B-cells execute several immunological functions and are regarded as protective regulators of immune responses by antibody and cytokine production, as well as presenting antigen. Some of these B-cells, or regulatory B-cells, have been shown to express death-inducing ligands, such as Fas ligand (FasL). This expression and binding to the Fas receptor leads to apoptosis, a major immune regulation mechanism, in addition to the ability to induce T-cell tolerance. Here, I discuss the relevance of B-cells, in particular their non-humoral functions by addressing their regulatory properties during M.tb infection.
Collapse
Affiliation(s)
- Andre G Loxton
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241 Cape Town, 8000, South Africa.
| |
Collapse
|
127
|
Transcription factors IRF8 and PU.1 are required for follicular B cell development and BCL6-driven germinal center responses. Proc Natl Acad Sci U S A 2019; 116:9511-9520. [PMID: 31000603 DOI: 10.1073/pnas.1901258116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The IRF and Ets families of transcription factors regulate the expression of a range of genes involved in immune cell development and function. However, the understanding of the molecular mechanisms of each family member has been limited due to their redundancy and broad effects on multiple lineages of cells. Here, we report that double deletion of floxed Irf8 and Spi1 (encoding PU.1) by Mb1-Cre (designated DKO mice) in the B cell lineage resulted in severe defects in the development of follicular and germinal center (GC) B cells. Class-switch recombination and antibody affinity maturation were also compromised in DKO mice. RNA-seq (sequencing) and ChIP-seq analyses revealed distinct IRF8 and PU.1 target genes in follicular and activated B cells. DKO B cells had diminished expression of target genes vital for maintaining follicular B cell identity and GC development. Moreover, our findings reveal that expression of B-cell lymphoma protein 6 (BCL6), which is critical for development of germinal center B cells, is dependent on IRF8 and PU.1 in vivo, providing a mechanism for the critical role for IRF8 and PU.1 in the development of GC B cells.
Collapse
|
128
|
Galindo-Campos MA, Bedora-Faure M, Farrés J, Lescale C, Moreno-Lama L, Martínez C, Martín-Caballero J, Ampurdanés C, Aparicio P, Dantzer F, Cerutti A, Deriano L, Yélamos J. Coordinated signals from the DNA repair enzymes PARP-1 and PARP-2 promotes B-cell development and function. Cell Death Differ 2019; 26:2667-2681. [PMID: 30996287 DOI: 10.1038/s41418-019-0326-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP)-1 and PARP-2 regulate the function of various DNA-interacting proteins by transferring ADP-ribose emerging from catalytic cleavage of cellular β-NAD+. Hence, mice lacking PARP-1 or PARP-2 show DNA perturbations ranging from altered DNA integrity to impaired DNA repair. These effects stem from the central role that PARP-1 and PARP-2 have on the cellular response to DNA damage. Failure to mount a proper response culminates in cell death. Accordingly, PARP inhibitors are emerging as promising drugs in cancer therapy. However, the full impact of these inhibitors on immunity, including B-cell antibody production, remains elusive. Given that mice carrying dual PARP-1 and PARP-2 deficiency develop early embryonic lethality, we crossed PARP-1-deficient mice with mice carrying a B-cell-conditional PARP-2 gene deletion. We found that the resulting dually PARP-1 and PARP-2-deficient mice had perturbed bone-marrow B-cell development as well as profound peripheral depletion of transitional and follicular but not marginal zone B-cells. Of note, bone-marrow B-cell progenitors and peripheral mature B-cells were conserved in mice carrying either PARP-1 or PARP-2 deficiency. In dually PARP-1 and PARP-2-deficient mice, B-cell lymphopenia was associated with increased DNA damage and accentuated death in actively proliferating B-cells. Moreover, dual PARP-1 and PARP-2 deficiency impaired antibody responses to T-independent carbohydrate but not to T-dependent protein antigens. Notwithstanding the pivotal role of PARP-1 and PARP-2 in DNA repair, combined PARP-1 and PARP-2 deficiency did not perturb the DNA-editing processes required for the generation of a protective antibody repertoire, including Ig V(D)J gene recombination and IgM-to-IgG class switching. These findings provide key information as to the potential impact of PARP inhibitors on humoral immunity, which will facilitate the development of safer PARP-targeting regimens against cancer.
Collapse
Affiliation(s)
- Miguel A Galindo-Campos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marie Bedora-Faure
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015, Paris, France
| | - Jordi Farrés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Chloé Lescale
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015, Paris, France
| | - Lucia Moreno-Lama
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carlos Martínez
- Experimental Pathology Unit, IMIB-LAIB-Arrixaca, Murcia, Spain
| | | | - Coral Ampurdanés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Pedro Aparicio
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, Murcia, Spain
| | - Françoise Dantzer
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Andrea Cerutti
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain.,Inflammatory and Cardiovascular Disorders Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015, Paris, France.
| | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. .,Department of Immunology, Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
129
|
McManigle W, Youssef A, Sarantopoulos S. B cells in chronic graft-versus-host disease. Hum Immunol 2019; 80:393-399. [PMID: 30849450 DOI: 10.1016/j.humimm.2019.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHCT) is the definitive therapy for numerous otherwise incurable hematologic malignancies and non-malignant diseases. The genetic disparity between donor and recipient both underpins therapeutic effects and confers donor immune system-mediated damage in the recipient, called graft-versus-host disease (GVHD). Chronic GVHD (cGVHD) is a major cause of late post-transplant morbidity and mortality. B cells have a substantiated role in cGVHD pathogenesis, as first demonstrated by clinical response to the anti-CD20 monoclonal antibody, rituximab. Initiation of CD20 blockade is met at times with limited therapeutic success that has been associated with altered peripheral B cell homeostasis and excess B Cell Activating Factor of the TNF family (BAFF). Increased BAFF to B cell ratios are associated with the presence of circulating, constitutively activated B cells in patients with cGVHD. These cGVHD patient B cells have increased survival capacity and signal through both BAFF-associated and B Cell Receptor (BCR) signaling pathways. Proximal BCR signaling molecules, Syk and BTK, appear to be hyper-activated in cGVHD B cells and can be targeted with small molecule inhibitors. Murine studies have confirmed roles for Syk and BTK in development of cGVHD. Emerging evidence has prompted investigation of several small molecule inhibitors in an attempt to restore B cell homeostasis and potentially target rare, pathologic B cell populations.
Collapse
Affiliation(s)
- William McManigle
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - Ayman Youssef
- Adult Hematology and Bone Marrow Transplantation, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Stefanie Sarantopoulos
- Department of Medicine, Duke University, Durham, NC, USA; Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC, USA; Duke Cancer Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
130
|
Montecino-Rodriguez E, Kong Y, Casero D, Rouault A, Dorshkind K, Pioli PD. Lymphoid-Biased Hematopoietic Stem Cells Are Maintained with Age and Efficiently Generate Lymphoid Progeny. Stem Cell Reports 2019; 12:584-596. [PMID: 30799276 PMCID: PMC6409485 DOI: 10.1016/j.stemcr.2019.01.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Current models propose that reductions in the number of lymphoid-biased hematopoietic stem cells (Ly-HSCs) underlie age-related declines in lymphopoiesis. We show that Ly-HSCs do not decline in number with age. Old Ly-HSCs exhibit changes in gene expression and a myeloid-biased genetic profile, but we demonstrate that they retain normal lymphoid potential when removed from the old in vivo environment. Additional studies showing that interleukin-1 inhibits Ly-HSC lymphoid potential provide support for the hypothesis that increased production of inflammatory cytokines during aging underlies declines in lymphocyte production. These results indicate that current models proposing that lymphopoiesis declines with age due to loss of Ly-HSCs require revision and provide an additional perspective on why lymphocyte development in the elderly is attenuated. Ly-HSCs do not decline in number with age Transcriptome changes in old Ly-HSCs result in the acquisition of a myeloid signature Ly-HSCs efficiently generate lymphocytes when removed from the old environment IL-1 blocks lymphoid potential from Ly-HSCs and My-HSCs
Collapse
Affiliation(s)
| | - Ying Kong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Adrien Rouault
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Peter D Pioli
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
131
|
Infection of B Cell Follicle-Resident Cells by Friend Retrovirus Occurs during Acute Infection and Is Maintained during Viral Persistence. mBio 2019; 10:mBio.00004-19. [PMID: 30782653 PMCID: PMC6381274 DOI: 10.1128/mbio.00004-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B cell follicles of the spleen and lymph nodes are immune privileged sites and serve as sanctuaries for infected CD4+ cells in HIV infection. It is assumed that CD8+ T cell responses promote the establishment of the reservoir, as B cell follicles do not permit CD8+ T cell entry. Here we analyzed the infected cell population in the Friend retrovirus (FV) infection and investigated whether FV can similarly infect follicular cells. For analysis of FV-infected cells, we constructed a recombinant FV encoding the bright fluorescent protein mWasabi and performed flow cytometry with cells isolated from spleens, lymph nodes and bone marrow of FV-mWasabi-infected mice. Using t-stochastic neighbor embedding for data exploration, we demonstrate how the target cell population changes during the course of infection. While FV was widely distributed in erythrocytes, myeloid cells, B cells, and CD4+ T cells in the acute phase of infection, the bulk viral load in the late phase was carried by macrophages and follicular B and CD4+ T cells, suggesting that FV persists in cells that are protected from CD8+ T cell killing. Importantly, seeding into follicular cells was equally observed in CD8+ T cell-depleted mice and in highly FV-susceptible mice that mount a very weak immune response, demonstrating that infection of follicular cells is not driven by immune pressure. Our data demonstrate that infection of cells in the B cell follicle is a characteristic of the FV infection, making this murine retrovirus an even more valuable model for development of retrovirus immunotherapy approaches.IMPORTANCE Human immunodeficiency virus is notorious for its ability to avoid clearance by therapeutic interventions, which is partly attributed to the establishment of reservoirs in latently infected cells and cells that reside in immunologically privileged B cell follicles. In the work presented here, we show that cells of the B cell follicle are equally infected by a simple mouse gammaretrovirus. Using fluorescently labeled Friend retrovirus, we found that B cells and T cells in the B cell follicle, while not carrying the bulk of the virus load, were indeed infected by Friend virus in the early acute phase of the infection and persisted in the chronic infection. Our results suggest that infection of follicular cells may be a shared property of lymphotropic viruses and propose the FV infection of mice as a useful model to study strategies for follicular reservoir elimination.
Collapse
|
132
|
Abstract
In this review, Boothby et al. summarize some salient advances toward elucidation of the molecular programming of the fate choices and function of B cells in the periphery. They also note unanswered questions that pertain to differences among subsets of B lymphocytes and plasma cells. Mature B lymphocytes are crucial components of adaptive immunity, a system essential for the evolutionary fitness of mammals. Adaptive lymphocyte function requires an initially naïve cell to proliferate extensively and its progeny to have the capacity to assume a variety of fates. These include either terminal differentiation (the long-lived plasma cell) or metastable transcriptional reprogramming (germinal center and memory B cells). In this review, we focus principally on the regulation of differentiation and functional diversification of the “B2” subset. An overview is combined with an account of more recent advances, including initial work on mechanisms that eliminate DNA methylation and potential links between intracellular metabolites and chromatin editing.
Collapse
|
133
|
Mature IgD low/- B cells maintain tolerance by promoting regulatory T cell homeostasis. Nat Commun 2019; 10:190. [PMID: 30643147 PMCID: PMC6331566 DOI: 10.1038/s41467-018-08122-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022] Open
Abstract
A number of different B cell subsets have been shown to exhibit regulatory activity using a variety of mechanisms to attenuate inflammatory diseases. Here we show, using anti-CD20-mediated partial B cell depletion in mice, that a population of mature B cells distinguishable by IgDlow/- expression maintains tolerance by, at least in part, promoting CD4+Foxp3+ regulatory T cell homeostatic expansion via glucocorticoid-induced tumor necrosis factor receptor ligand, or GITRL. Cell surface phenotyping, transcriptome analysis and developmental study data show that B cells expressing IgD at a low level (BDL) are a novel population of mature B cells that emerge in the spleen from the transitional-2 stage paralleling the differentiation of follicular B cells. The cell surface phenotype and regulatory function of BDL are highly suggestive that they are a new B cell subset. Human splenic and peripheral blood IgDlow/- B cells also exhibit BDL regulatory activity, rendering them of therapeutic interest.
Collapse
|
134
|
Passos LSA, Magalhães LMD, Soares RP, Marques AF, Alves MLR, Giunchetti RC, Nunes MDCP, Gollob KJ, Dutra WO. Activation of Human CD11b + B1 B-Cells by Trypanosoma cruzi-Derived Proteins Is Associated With Protective Immune Response in Human Chagas Disease. Front Immunol 2019; 9:3015. [PMID: 30662439 PMCID: PMC6328447 DOI: 10.3389/fimmu.2018.03015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023] Open
Abstract
B-cells mediate humoral adaptive immune response via the production of antibodies and cytokines, and by inducing T-cell activation. These functions can be attributed to distinct B-cell subpopulations. Infection with Trypanosoma cruzi, the causative agent of Chagas disease, induces a polyclonal B-cell activation and lytic antibody production, critical for controlling parasitemia. Individuals within the chronic phase of Chagas disease may remain in an asymptomatic form (indeterminate), or develop severe cardiomyopathy (cardiac form) that can lead to death. Currently, there is no effective vaccine to prevent Chagas disease, and no treatment to halt the development of the cardiomyopathy once it is installed. The pathology associated with cardiac Chagas disease is a result of an inflammatory reaction. Thus, discovering characteristics of the host's immune response that favor the maintenance of favorable heart function may unveil important immunotherapeutic targets. Given the importance of B cells in antibody production and parasite control, we investigated T. cruzi-derived antigenic fractions responsible for B-cell activation and whether frequencies and functional characteristics of B-cell subpopulations are associated with different clinical outcomes of human Chagas disease. We stimulated cells from indeterminate (I) and cardiac (C) Chagas patients, as well as non-infected individuals (NI), with T. cruzi-derived protein- (PRO), glycolipid- (GCL) and lipid (LIP)-enriched fractions and determined functional characteristics of B-cell subpopulations. Our results showed that the frequency of B-cells was similar amongst groups. PRO, but not GCL nor LIP, led to an increased frequency of B1 B-cells in I, but not C nor NI. Although stimulation with PRO induced higher TNF expression by B1 B-cells from C and I, as compared to NI, it induced expression of IL-10 in cells from I, but not C. Stimulation with PRO induced an increased frequency of the CD11b+ B1 B-cell subpopulation, which was associated with better cardiac function. Chagas patients displayed increased IgM production, and activation of gamma-delta T-cells, which have been associated with B1 B-cell function. Our data showed that PRO activates CD11b+ B1 B-cells, and that this activation is associated with a beneficial clinical status. These findings may have implications in designing new strategies focusing on B-cell activation to prevent Chagas disease cardiomyopathy.
Collapse
Affiliation(s)
- Livia Silva Araújo Passos
- Laboratory of Cell-Cell Interactions, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte, Brazil.,Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luísa Mourão Dias Magalhães
- Laboratory of Cell-Cell Interactions, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte, Brazil.,Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Pinto Soares
- Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Cellular and Molecular Parasitology, Instituto René Rachou, Fundação Oswaldo Cruz, FIOCRUZ, Belo Horizonte, Brazil
| | - Alexandre F Marques
- Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina Luiza Rodrigues Alves
- Laboratory of Cell-Cell Interactions, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte, Brazil.,Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria do Carmo Pereira Nunes
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kenneth J Gollob
- Center for International Research, A.C.Camargo Cancer Center, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Doenças Tropicais, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte, Brazil.,Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia Doenças Tropicais, Belo Horizonte, Brazil
| |
Collapse
|
135
|
de Candia P, Prattichizzo F, Garavelli S, De Rosa V, Galgani M, Di Rella F, Spagnuolo MI, Colamatteo A, Fusco C, Micillo T, Bruzzaniti S, Ceriello A, Puca AA, Matarese G. Type 2 Diabetes: How Much of an Autoimmune Disease? Front Endocrinol (Lausanne) 2019; 10:451. [PMID: 31333589 PMCID: PMC6620611 DOI: 10.3389/fendo.2019.00451] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/21/2019] [Indexed: 01/12/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by a progressive status of chronic, low-grade inflammation (LGI) that accompanies the whole trajectory of the disease, from its inception to complication development. Accumulating evidence is disclosing a long list of possible "triggers" of inflammatory responses, many of which are promoted by unhealthy lifestyle choices and advanced age. Diabetic patients show an altered number and function of immune cells, of both innate and acquired immunity. Reactive autoantibodies against islet antigens can be detected in a subpopulation of patients, while emerging data are also suggesting an altered function of specific T lymphocyte populations, including T regulatory (Treg) cells. These observations led to the hypothesis that part of the inflammatory response mounting in T2D is attributable to an autoimmune phenomenon. Here, we review recent data supporting this framework, with a specific focus on both tissue resident and circulating Treg populations. We also propose that selective interception (or expansion) of T cell subsets could be an alternative avenue to dampen inappropriate inflammatory responses without compromising immune responses.
Collapse
Affiliation(s)
- Paola de Candia
- IRCCS MultiMedica, Milan, Italy
- *Correspondence: Paola de Candia
| | | | - Silvia Garavelli
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
- Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Francesca Di Rella
- Dipartimento di Senologia, Oncologia Medica, IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Maria Immacolata Spagnuolo
- Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Alessandra Colamatteo
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Clorinda Fusco
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Teresa Micillo
- Dipartimento di Biologia, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Antonio Ceriello
- IRCCS MultiMedica, Milan, Italy
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Annibale A. Puca
- IRCCS MultiMedica, Milan, Italy
- Dipartimento di Medicina e Chirurgia, Università di Salerno, Baronissi, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- Giuseppe Matarese
| |
Collapse
|
136
|
Vonberg AD, Acevedo-Calado M, Cox AR, Pietropaolo SL, Gianani R, Lundy SK, Pietropaolo M. CD19+IgM+ cells demonstrate enhanced therapeutic efficacy in type 1 diabetes mellitus. JCI Insight 2018; 3:99860. [PMID: 30518692 DOI: 10.1172/jci.insight.99860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
We describe a protective effect on autoimmune diabetes and reduced destructive insulitis in NOD.scid recipients following splenocyte injections from diabetic NOD donors and sorted CD19+ cells compared with NOD.scid recipients receiving splenocytes alone. This protective effect was age specific (only CD19+ cells from young NOD donors exerted this effect; P < 0.001). We found that the CD19+IgM+ cell is the primary subpopulation of B cells that delayed transfer of diabetes mediated by diabetogenic T cells from NOD mice (P = 0.002). Removal of IgM+ cells from the CD19+ pool did not result in protection. Notably, protection conferred by CD19+IgM+ cotransfers were not dependent on the presence of Tregs, as their depletion did not affect their ability to delay onset of diabetes. Blockade of IL-10 with neutralizing antibodies at the time of CD19+ cell cotransfers also abrogated the therapeutic effect, suggesting that IL-10 secretion was an important component of protection. These results were strengthened by ex vivo incubation of CD19+ cells with IL-5, resulting in enhanced proliferation and IL-10 production and equivalently delayed diabetes progression (P = 0.0005). The potential to expand CD19+IgM+ cells, especially in response to IL-5 stimulation or by pharmacologic agents, may be a new therapeutic option for type 1 diabetes.
Collapse
Affiliation(s)
- Andrew D Vonberg
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Maria Acevedo-Calado
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Aaron R Cox
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Susan L Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Roberto Gianani
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| |
Collapse
|
137
|
Brennecke AM, Düber S, Roy B, Thomsen I, Garbe AI, Klawonn F, Pabst O, Kretschmer K, Weiss S. Induced B Cell Development in Adult Mice. Front Immunol 2018; 9:2483. [PMID: 30429851 PMCID: PMC6220648 DOI: 10.3389/fimmu.2018.02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022] Open
Abstract
We employed the B-Indu-Rag1 model in which the coding exon of recombination-activating gene 1 (Rag1) is inactivated by inversion. It is flanked by inverted loxP sites. Accordingly, B cell development is stopped at the pro/pre B-I cell precursor stage. A B cell-specific Cre recombinase fused to a mutated estrogen receptor allows the induction of RAG1 function and B cell development by application of Tamoxifen. Since Rag1 function is recovered in a non-self-renewing precursor cell, only single waves of development can be induced. Using this system, we could determine that B cells minimally require 5 days to undergo development from pro/preB-I cells to the large and 6 days to the small preB-II cell stage. First immature transitional (T) 1 and T2 B cells could be detected in the bone marrow at day 6 and day 7, respectively, while their appearance in the spleen took one additional day. We also tested a contribution of adult bone marrow to the pool of B-1 cells. Sublethally irradiated syngeneic WT mice were adoptively transferred with bone marrow of B-Indu-Rag1 mice and B cell development was induced after 6 weeks. A significant portion of donor derived B-1 cells could be detected in such adult mice. Finally, early VH gene usage was tested after induction of B cell development. During the earliest time points the VH genes proximal to D/J were found to be predominantly rearranged. At later time points, the large family of the most distal VH prevailed.
Collapse
Affiliation(s)
| | - Sandra Düber
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bishnudeo Roy
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Irene Thomsen
- Medical School Hannover, Institute of Immunology, Hannover, Germany
| | - Annette I Garbe
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Osteoimmunology, DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver Pabst
- Medical School Hannover, Institute of Immunology, Hannover, Germany.,Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Karsten Kretschmer
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Siegfried Weiss
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Medical School Hannover, Institute of Immunology, Hannover, Germany
| |
Collapse
|
138
|
Cross-talk between signal transduction and metabolism in B cells. Immunol Lett 2018; 201:1-13. [PMID: 30439477 DOI: 10.1016/j.imlet.2018.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Mounting evidence demonstrates that specific metabolic adaptations are needed to support B cell development and differentiation and to enable B cells to thrive in different environments. Mitogen induced activation of intracellular signaling pathways triggers nutrient uptake and metabolic remodeling to meet the cells' current needs. Reciprocally, changes in the metabolic composition of the environment, or in intracellular metabolite levels, can modulate signal transduction and thus shape cell fate and function. In summary, signal transduction and metabolic pathways operate within an integrated network to cooperatively define cellular outcomes.
Collapse
|
139
|
Ehlers AM, Blankestijn MA, Knulst AC, Klinge M, Otten HG. Can alternative epitope mapping approaches increase the impact of B-cell epitopes in food allergy diagnostics? Clin Exp Allergy 2018; 49:17-26. [PMID: 30294841 PMCID: PMC7380004 DOI: 10.1111/cea.13291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023]
Abstract
In vitro allergy diagnostics are currently based on the detection of specific IgE binding on intact allergens or a mixture thereof. This approach has drawbacks as it may yield false‐negative and/or false‐positive results. Thus, we reviewed the impact of known B‐cell epitopes of food allergens to predict transience or persistence, tolerance or allergy and the severity of an allergic reaction and to examine new epitope mapping strategies meant to improve serum‐based allergy diagnostics. Recent epitope mapping approaches have been worthwhile in epitope identification and may increase the specificity of allergy diagnostics by using epitopes predominately recognized by allergic patients in some cases. However, these approaches did not lead to discrimination between clinically relevant and irrelevant epitopes so far, since the polyclonal serum IgE‐binding epitope spectrum seems to be too individual, independent of the disease status of the patients. New epitope mapping strategies are necessary to overcome these obstacles. The use of patient‐derived monoclonal antibodies instead of patient sera for functional characterization of clinically relevant and irrelevant epitope combinations, distinguished by their ability to induce degranulation, might be a promising approach to gain more insight into the allergic reaction and to improve serum‐based allergy diagnostics.
Collapse
Affiliation(s)
- Anna M Ehlers
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mark A Blankestijn
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andre C Knulst
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
140
|
Alsufyani F, Mattoo H, Zhou D, Cariappa A, Van Buren D, Hock H, Avruch J, Pillai S. The Mst1 Kinase Is Required for Follicular B Cell Homing and B-1 B Cell Development. Front Immunol 2018; 9:2393. [PMID: 30386341 PMCID: PMC6199389 DOI: 10.3389/fimmu.2018.02393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022] Open
Abstract
The Mst1 and 2 cytosolic serine/threonine protein kinases are the mammalian orthologs of the Drosophila Hippo protein. Mst1 has been shown previously to participate in T-cell and B-cell trafficking and the migration of lymphocytes into secondary lymphoid organs in a cell intrinsic manner. We show here that the absence of Mst1 alone only modestly impacts B cell homing to lymph nodes. The absence of both Mst1 and 2 in hematopoietic cells results in relatively normal B cell development in the bone marrow and does not impact migration of immature B cells to the spleen. However, follicular B cells lacking both Mst1 and Mst2 mature in the splenic white pulp but are unable to recirculate to lymph nodes or to the bone marrow. These cells also cannot traffic efficiently to the splenic red pulp. The inability of late transitional and follicular B cells lacking Mst 1 and 2 to migrate to the red pulp explains their failure to differentiate into marginal zone B cell precursors and marginal zone B cells. Mst1 and Mst2 are therefore required for follicular B cells to acquire the ability to recirculate and also to migrate to the splenic red pulp in order to generate marginal zone B cells. In addition B-1 a B cell development is defective in the absence of Mst1.
Collapse
Affiliation(s)
- Faisal Alsufyani
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hamid Mattoo
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Dawang Zhou
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Annaiah Cariappa
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Denille Van Buren
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hanno Hock
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
141
|
Farhat K, Bodart G, Charlet-Renard C, Desmet CJ, Moutschen M, Beguin Y, Baron F, Melin P, Quatresooz P, Parent AS, Desmecht D, Sirard JC, Salvatori R, Martens H, Geenen VG. Growth Hormone (GH) Deficient Mice With GHRH Gene Ablation Are Severely Deficient in Vaccine and Immune Responses Against Streptococcus pneumoniae. Front Immunol 2018; 9:2175. [PMID: 30333823 PMCID: PMC6176084 DOI: 10.3389/fimmu.2018.02175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
The precise impact of the somatotrope axis upon the immune system is still highly debated. We have previously shown that mice with generalized ablation of growth hormone (GH) releasing hormone (GHRH) gene (Ghrh−/−) have normal thymus and T-cell development, but present a marked spleen atrophy and B-cell lymphopenia. Therefore, in this paper we have investigated vaccinal and anti-infectious responses of Ghrh−/− mice against S. pneumoniae, a pathogen carrying T-independent antigens. Ghrh−/− mice were unable to trigger production of specific IgM after vaccination with either native pneumococcal polysaccharides (PPS, PPV23) or protein-PPS conjugate (PCV13). GH supplementation of Ghrh−/− mice restored IgM response to PPV23 vaccine but not to PCV13 suggesting that GH could exert a specific impact on the spleen marginal zone that is strongly implicated in T-independent response against pneumococcal polysaccharides. As expected, after administration of low dose of S. pneumoniae, wild type (WT) completely cleared bacteria after 24 h. In marked contrast, Ghrh−/− mice exhibited a dramatic susceptibility to S. pneumoniae infection with a time-dependent increase in lung bacterial load and a lethal bacteraemia already after 24 h. Lungs of infected Ghrh−/− mice were massively infiltrated by inflammatory macrophages and neutrophils, while lung B cells were markedly decreased. The inflammatory transcripts signature was significantly elevated in Ghrh−/− mice. In this animal model, the somatotrope GHRH/GH/IGF1 axis plays a vital and unsuspected role in vaccine and immunological defense against S. pneumoniae.
Collapse
Affiliation(s)
- Khalil Farhat
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | - Gwennaëlle Bodart
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | | | - Christophe J Desmet
- GIGA-I3 Cellular and Molecular Immunology, University of Liège, Liège, Belgium
| | - Michel Moutschen
- GIGA-I3 Infectious diseases, University of Liège, Liège, Belgium
| | - Yves Beguin
- GIGA-I3 Hematology, University of Liège, Liège, Belgium
| | | | - Pierrette Melin
- Department of Clinical Microbiology, University Hospital of Liège, University of Liège, Liège, Belgium
| | | | - Anne-Simone Parent
- Division of Pediatric Endocrinology, University Hospital of Liège, Liège, Belgium
| | - Daniel Desmecht
- Department of Veterinary Pathology, University of Liège, Liège, Belgium
| | - Jean-Claude Sirard
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-Center for Infection and Immunity of Lille, University of Lille, Lille, France
| | - Roberto Salvatori
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Henri Martens
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | - Vincent G Geenen
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| |
Collapse
|
142
|
Cochaperone Mzb1 is a key effector of Blimp1 in plasma cell differentiation and β1-integrin function. Proc Natl Acad Sci U S A 2018; 115:E9630-E9639. [PMID: 30257949 PMCID: PMC6187189 DOI: 10.1073/pnas.1809739115] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Antibody-secreting plasma cells are effectors of the humoral immune response. Transcription factor Blimp1 (Prdm1) is essential for the generation and function of plasma cells, and it regulates many genes, including Mzb1 (pERp1). Mzb1 protein is localized in the endoplasmic reticulum and acts as a cochaperone for the substrate-specific chaperone Grp94 (gp96). By the analysis of Mzb1−/−Prdm1+/gfp mice, we find that Mzb1 is required for T cell-independent immune responses and differentiation of plasma cells. In Mzb1−/−Prdm1+/gfp mice, we also observe impaired β1-integrin activation and trafficking of plasma cells to the bone marrow. Notably, we show that Mzb1 accounts for many of the Blimp1-associated downstream functions, suggesting that Mzb1 is a key effector of the Blimp1 regulatory network in plasma cells. Plasma cell differentiation involves coordinated changes in gene expression and functional properties of B cells. Here, we study the role of Mzb1, a Grp94 cochaperone that is expressed in marginal zone (MZ) B cells and during the terminal differentiation of B cells to antibody-secreting cells. By analyzing Mzb1−/−Prdm1+/gfp mice, we find that Mzb1 is specifically required for the differentiation and function of antibody-secreting cells in a T cell-independent immune response. We find that Mzb1-deficiency mimics, in part, the phenotype of Blimp1 deficiency, including the impaired secretion of IgM and the deregulation of Blimp1 target genes. In addition, we find that Mzb1−/− plasmablasts show a reduced activation of β1-integrin, which contributes to the impaired plasmablast differentiation and migration of antibody-secreting cells to the bone marrow. Thus, Mzb1 function is required for multiple aspects of plasma cell differentiation.
Collapse
|
143
|
Irons EE, Lau JTY. Systemic ST6Gal-1 Is a Pro-survival Factor for Murine Transitional B Cells. Front Immunol 2018; 9:2150. [PMID: 30294329 PMCID: PMC6159744 DOI: 10.3389/fimmu.2018.02150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/31/2018] [Indexed: 11/13/2022] Open
Abstract
Humoral immunity depends on intrinsic B cell developmental programs guided by systemic signals that convey physiologic needs. Aberrant cues or their improper interpretation can lead to immune insufficiency or a failure of tolerance and autoimmunity. The means by which such systemic signals are conveyed remain poorly understood. Hence, further insight is essential to understanding and treating autoimmune diseases and to the development of improved vaccines. ST6Gal-1 is a sialyltransferase that constructs the α2,6-sialyl linkage on cell surface and extracellular glycans. The requirement for functional ST6Gal-1 in the development of humoral immunity is well documented. Canonically, ST6Gal-1 resides within the intracellular ER-Golgi secretory apparatus and participates in cell-autonomous glycosylation. However, a significant pool of extracellular ST6Gal-1 exists in circulation. Here, we segregate the contributions of B cell intrinsic and extrinsic ST6Gal-1 to B cell development. We observed that B cell-intrinsic ST6Gal-1 is required for marginal zone B cell development, while B cell non-autonomous ST6Gal-1 modulates B cell development and survival at the early transitional stages of the marrow and spleen. Exposure to extracellular ST6Gal-1 ex vivo enhanced the formation of IgM-high B cells from immature precursors, and increased CD23 and IgM expression. Extrinsic sialylation by extracellular ST6Gal-1 augmented BAFF-mediated activation of the non-canonical NF-kB, p38 MAPK, and PI3K/AKT pathways, and accelerated tyrosine phosphorylation after B cell receptor stimulation. in vivo, systemic ST6Gal-1 did not influence homing of B cells to the spleen but was critical for their long-term survival and systemic IgG levels. Circulatory ST6Gal-1 levels respond to inflammation, infection, and malignancy in mammals, including humans. In turn, we have shown previously that systemic ST6Gal-1 regulates inflammatory cell production by modifying bone marrow myeloid progenitors. Our data here point to an additional role of systemic ST6Gal-1 in guiding B cell development, which supports the concept that circulating ST6Gal-1 is a conveyor of systemic cues to guide the development of multiple branches of immune cells.
Collapse
Affiliation(s)
- Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
144
|
Johnson MJ, Laoharawee K, Lahr WS, Webber BR, Moriarity BS. Engineering of Primary Human B cells with CRISPR/Cas9 Targeted Nuclease. Sci Rep 2018; 8:12144. [PMID: 30108345 PMCID: PMC6092381 DOI: 10.1038/s41598-018-30358-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/23/2018] [Indexed: 01/14/2023] Open
Abstract
B cells offer unique opportunities for gene therapy because of their ability to secrete large amounts of protein in the form of antibody and persist for the life of the organism as plasma cells. Here, we report optimized CRISPR/Cas9 based genome engineering of primary human B cells. Our procedure involves enrichment of CD19+ B cells from PBMCs followed by activation, expansion, and electroporation of CRISPR/Cas9 reagents. We are able expand total B cells in culture 10-fold and outgrow the IgD+ IgM+ CD27- naïve subset from 35% to over 80% of the culture. B cells are receptive to nucleic acid delivery via electroporation 3 days after stimulation, peaking at Day 7 post stimulation. We tested chemically modified sgRNAs and Alt-R gRNAs targeting CD19 with Cas9 mRNA or Cas9 protein. Using this system, we achieved genetic and protein knockout of CD19 at rates over 70%. Finally, we tested sgRNAs targeting the AAVS1 safe harbor site using Cas9 protein in combination with AAV6 to deliver donor template encoding a splice acceptor-EGFP cassette, which yielded site-specific integration frequencies up to 25%. The development of methods for genetically engineered B cells opens the door to a myriad of applications in basic research, antibody production, and cellular therapeutics.
Collapse
Affiliation(s)
- Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
145
|
Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, Ji Y, Wang J, Yang XF, Wang H. Immune cell subset differentiation and tissue inflammation. J Hematol Oncol 2018; 11:97. [PMID: 30064449 PMCID: PMC6069866 DOI: 10.1186/s13045-018-0637-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Immune cells were traditionally considered as major pro-inflammatory contributors. Recent advances in molecular immunology prove that immune cell lineages are composed of different subsets capable of a vast array of specialized functions. These immune cell subsets share distinct duties in regulating innate and adaptive immune functions and contribute to both immune activation and immune suppression responses in peripheral tissue. Here, we summarized current understanding of the different subsets of major immune cells, including T cells, B cells, dendritic cells, monocytes, and macrophages. We highlighted molecular characterization, frequency, and tissue distribution of these immune cell subsets in human and mice. In addition, we described specific cytokine production, molecular signaling, biological functions, and tissue population changes of these immune cell subsets in both cardiovascular diseases and cancers. Finally, we presented a working model of the differentiation of inflammatory mononuclear cells, their interaction with endothelial cells, and their contribution to tissue inflammation. In summary, this review offers an updated and comprehensive guideline for immune cell development and subset differentiation, including subset characterization, signaling, modulation, and disease associations. We propose that immune cell subset differentiation and its complex interaction within the internal biological milieu compose a “pathophysiological network,” an interactive cross-talking complex, which plays a critical role in the development of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Pu Fang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Dai
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Lauren Cole
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Javier Andres Camacho
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Yuling Zhang
- Cardiovascular Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jingfeng Wang
- Cardiovascular Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
146
|
Esteve-Solé A, Luo Y, Vlagea A, Deyà-Martínez Á, Yagüe J, Plaza-Martín AM, Juan M, Alsina L. B Regulatory Cells: Players in Pregnancy and Early Life. Int J Mol Sci 2018; 19:ijms19072099. [PMID: 30029515 PMCID: PMC6073150 DOI: 10.3390/ijms19072099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Pregnancy and early infancy represent two very particular immunological states. During pregnancy, the haploidentical fetus and the pregnant women develop tolerance mechanisms to avoid rejection; then, just after birth, the neonatal immune system must modulate the transition from the virtually sterile but haploidentical uterus to a world full of antigens and the rapid microbial colonization of the mucosa. B regulatory (Breg) cells are a recently discovered B cell subset thought to play a pivotal role in different conditions such as chronic infections, autoimmunity, cancer, and transplantation among others in addition to pregnancy. This review focuses on the role of Breg cells in pregnancy and early infancy, two special stages of life in which recent studies have positioned Breg cells as important players.
Collapse
Affiliation(s)
- Ana Esteve-Solé
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Yiyi Luo
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Alexandru Vlagea
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Immunology Service, Biomedic Diagnostic Center, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, 08036 Barcelona, Spain.
| | - Ángela Deyà-Martínez
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Jordi Yagüe
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Immunology Service, Biomedic Diagnostic Center, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, 08036 Barcelona, Spain.
| | - Ana María Plaza-Martín
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
| | - Manel Juan
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Immunology Service, Biomedic Diagnostic Center, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, 08036 Barcelona, Spain.
| | - Laia Alsina
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| |
Collapse
|
147
|
STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium 2018; 74:131-143. [PMID: 30048879 DOI: 10.1016/j.ceca.2018.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
The central role of Ca2+ signaling in the development of functional immunity and tolerance is well established. These signals are initiated by antigen binding to cognate receptors on lymphocytes that trigger store operated Ca2+ entry (SOCE). The underlying mechanism of SOCE in lymphocytes involves TCR and BCR mediated activation of Stromal Interaction Molecule 1 and 2 (STIM1/2) molecules embedded in the ER membrane leading to their activation of Orai channels in the plasma membrane. STIM/Orai dependent Ca2+ signals guide key antigen induced lymphocyte development and function principally through direct regulation of Ca2+ dependent transcription factors. The role of Ca2+ signaling in NFAT activation and signaling is well known and has been studied extensively, but a wide appreciation and mechanistic understanding of how Ca2+ signals also shape the activation and specificity of NF-κB dependent gene expression has lagged. Here we discuss and interpret what is known about Ca2+ dependent mechanisms of NF-kB activation, including what is known and the gaps in our understanding of how these signals control lymphocyte development and function.
Collapse
|
148
|
Hofmann K, Clauder AK, Manz RA. Targeting B Cells and Plasma Cells in Autoimmune Diseases. Front Immunol 2018; 9:835. [PMID: 29740441 PMCID: PMC5924791 DOI: 10.3389/fimmu.2018.00835] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/05/2018] [Indexed: 12/29/2022] Open
Abstract
Success with B cell depletion using rituximab has proven the concept that B lineage cells represent a valid target for the treatment of autoimmune diseases, and has promoted the development of other B cell targeting agents. Present data confirm that B cell depletion is beneficial in various autoimmune disorders and also show that it can worsen the disease course in some patients. These findings suggest that B lineage cells not only produce pathogenic autoantibodies, but also significantly contribute to the regulation of inflammation. In this review, we will discuss the multiple pro- and anti-inflammatory roles of B lineage cells play in autoimmune diseases, in the context of recent findings using B lineage targeting therapies.
Collapse
Affiliation(s)
- Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| |
Collapse
|
149
|
Abstract
There are three different marginal zone lymphomas (MZLs): the extranodal MZL of mucosa-associated lymphoid tissue (MALT) type (MALT lymphoma), the splenic MZL, and the nodal MZL. The three MZLs share common lesions and deregulated pathways but also present specific alterations that can be used for their differential diagnosis. Although trisomies of chromosomes 3 and 18, deletions at 6q23, deregulation of nuclear factor kappa B, and chromatin remodeling genes are frequent events in all of them, the three MZLs differ in the presence of recurrent translocations, mutations affecting the NOTCH pathway, and the transcription factor Kruppel like factor 2 ( KLF2) or the receptor-type protein tyrosine phosphatase delta ( PTPRD). Since a better understanding of the molecular events underlying each subtype may have practical relevance, this review summarizes the most recent and main advances in our understanding of the genetics and biology of MZLs.
Collapse
Affiliation(s)
- Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Davide Rossi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Emanuele Zucca
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| |
Collapse
|
150
|
Choi SC, Xu Z, Li W, Yang H, Roopenian DC, Morse HC, Morel L. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4 + T Cell Polarization. THE JOURNAL OF IMMUNOLOGY 2018; 200:3087-3099. [PMID: 29563177 DOI: 10.4049/jimmunol.1701179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/28/2018] [Indexed: 11/19/2022]
Abstract
Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4+ T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4+ T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4+ T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4+ T cells were introduced into Rag1-/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4+ T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4+ T cells in a nonredundant manner with myeloid/stromal cells.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Hong Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | | | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610;
| |
Collapse
|