101
|
Chen M, Mao X, Huang D, Jing J, Zou W, Mao P, Xue M, Yin W, Cheng R, Gao Y, Hu Y, Yuan S, Liu Q. Somatostatin signalling promotes the differentiation of rod photoreceptors in human pluripotent stem cell-derived retinal organoid. Cell Prolif 2022; 55:e13254. [PMID: 35633292 PMCID: PMC9251046 DOI: 10.1111/cpr.13254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Stem cell‐derived photoreceptor replacement therapy is a promising strategy for the treatment of retinal degenerative disease. The development of 3D retinal organoids has permitted the production of photoreceptors. However, there is no strategy to enrich a specific photoreceptor subtype due to inadequate knowledge of the molecular mechanism underlying the photoreceptor fate determination. Hence, our aim is to explore the uncharacterized function of somatostatin signalling in human pluripotent stem cell‐derived photoreceptor differentiation. Materials and Methods 3D retinal organoids were achieved from human embryonic stem cell. The published single‐cell RNA‐sequencing datasets of human retinal development were utilized to further investigate the transcriptional regulation of photoreceptor differentiation. The assays of immunofluorescence staining, lentivirus transfection, real‐time quantitative polymerase chain reaction and western blotting were performed. Results We identified that the somatostatin receptor 2 (SSTR2)‐mediated signalling was essential for rod photoreceptor differentiation at the precursor stage. The addition of the cognate ligand somatostatin in human 3D retinal organoids promoted rod photoreceptor differentiation and inhibited cone photoreceptor production. Furthermore, we found that the genesis of rod photoreceptors was modulated by endogenous somatostatin specifically secreted by developing retinal ganglion cells. Conclusions Our study identified SSTR2 signalling as a novel extrinsic regulator for rod photoreceptor fate determination in photoreceptor precursors, which expands the repertoire of functional signalling pathways in photoreceptor development and sheds light on the optimization of the photoreceptor enrichment strategy.
Collapse
Affiliation(s)
- Mingkang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiying Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Darui Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Jiaona Jing
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Zou
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Ophthalmology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Peiyao Mao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mengting Xue
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Yin
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruiwen Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Gao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Youjin Hu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
102
|
Vinsland E, Linnarsson S. Single-cell RNA-sequencing of mammalian brain development: insights and future directions. Development 2022; 149:275457. [DOI: 10.1242/dev.200180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Understanding human brain development is of fundamental interest but is also very challenging. Single-cell RNA-sequencing studies in mammals have revealed that brain development is a highly dynamic process with tremendous, previously concealed, cellular heterogeneity. This Spotlight discusses key insights from these studies and their implications for experimental models. We survey published single-cell RNA-sequencing studies of mouse and human brain development, organized by anatomical regions and developmental time points. We highlight remaining gaps in the field, predominantly concerning human brain development. We propose future directions to fill the remaining gaps, and necessary complementary techniques to create an atlas integrated in space and time of human brain development.
Collapse
Affiliation(s)
- Elin Vinsland
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| |
Collapse
|
103
|
Hussey KA, Hadyniak SE, Johnston RJ. Patterning and Development of Photoreceptors in the Human Retina. Front Cell Dev Biol 2022; 10:878350. [PMID: 35493094 PMCID: PMC9049932 DOI: 10.3389/fcell.2022.878350] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/04/2023] Open
Abstract
Humans rely on visual cues to navigate the world around them. Vision begins with the detection of light by photoreceptor cells in the retina, a light-sensitive tissue located at the back of the eye. Photoreceptor types are defined by morphology, gene expression, light sensitivity, and function. Rod photoreceptors function in low-light vision and motion detection, and cone photoreceptors are responsible for high-acuity daytime and trichromatic color vision. In this review, we discuss the generation, development, and patterning of photoreceptors in the human retina. We describe our current understanding of how photoreceptors are patterned in concentric regions. We conclude with insights into mechanisms of photoreceptor differentiation drawn from studies of model organisms and human retinal organoids.
Collapse
|
104
|
Hu F, Ma Y, Xu Z, Zhang S, Li J, Sun X, Wu J. Single-Cell RNA-Seq Reveals the Cellular Diversity and Developmental Characteristics of the Retinas of an Infant and a Young Child. Front Cell Dev Biol 2022; 10:803466. [PMID: 35386199 PMCID: PMC8979067 DOI: 10.3389/fcell.2022.803466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The human retina, located in the innermost layer of the eye, plays a decisive role in visual perception. Dissecting the heterogeneity of retinal cells is essential for understanding the mechanism of visual development. Here, we performed single-cell RNA-seq to analyze 194,967 cells from the donors of infants and young children, resulting in 17 distinct clusters representing major cell types in the retina: rod photoreceptors (PRs), cone PRs, bipolar cells (BCs), horizontal cells (HCs), amacrine cells (ACs), retinal ganglion cells (RGCs), Müller glial cells (MGs), microglia, and astrocytes (ASTs). Through reclustering, we identified known subtypes of cone PRs as well as additional unreported subpopulations and corresponding markers in BCs. Additionally, we linked inherited retinal diseases (IRDs) to certain cell subtypes or subpopulations through enrichment analysis. We next constructed extensive intercellular communication networks and identified ligand-receptor interactions that play crucial roles in regulating neural cell development and immune homeostasis in the retina. Intriguingly, we found that the status and functions of PRs changed drastically between the young children and adult retina. Overall, our study offers the first retinal cell atlas in infants and young children dissecting the heterogeneity of the retina and identifying the key molecules in the developmental process, which provides an important resource that will pave the way for research on retinal development mechanisms and advancements in regenerative medicine concerning retinal biology.
Collapse
Affiliation(s)
- Fangyuan Hu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yuting Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zaoxu Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shenghai Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | | | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
105
|
Hu Z, Mao X, Chen M, Wu X, Zhu T, Liu Y, Zhang Z, Fan W, Xie P, Yuan S, Liu Q. Single-Cell Transcriptomics Reveals Novel Role of Microglia in Fibrovascular Membrane of Proliferative Diabetic Retinopathy. Diabetes 2022; 71:762-773. [PMID: 35061025 DOI: 10.2337/db21-0551] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022]
Abstract
Vitreous fibrovascular membranes (FVMs), the hallmark of proliferative diabetic retinopathy (PDR), cause retinal hemorrhage, detachment, and eventually blindness. However, little is known about the pathophysiology of FVM. In this study, we used single-cell RNA sequencing on surgically harvested PDR-FVMs and generated a comprehensive cell atlas of FVM. Eight cellular compositions were identified, with microglia as the major cell population. We identified a GPNMB+ subpopulation of microglia, which presented both profibrotic and fibrogenic properties. Pseudotime analysis further revealed the profibrotic microglia was uniquely differentiated from retina-resident microglia and expanded in the PDR setting. Ligand-receptor interactions between the profibrotic microglia and cytokines upregulated in PDR vitreous implicated the involvement of several pathways, including CCR5, IFNGR1, and CD44 signaling, in the microglial activation within the PDR microenvironment. Collectively, our description of the novel microglia phenotypes in PDR-FVM may offer new insight into the cellular and molecular mechanism underlying the pathogenesis of DR, as well as potential signaling pathways amenable to disease-specific intervention.
Collapse
|
106
|
Xiang L, Zhang J, Rao FQ, Yang QL, Zeng HY, Huang SH, Xie ZX, Lv JN, Lin D, Chen XJ, Wu KC, Lu F, Huang XF, Chen Q. Depletion of miR-96 Delays, But Does Not Arrest, Photoreceptor Development in Mice. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35481839 PMCID: PMC9055555 DOI: 10.1167/iovs.63.4.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Abundant retinal microRNA-183 cluster (miR-183C) has been reported to be a key player in photoreceptor development and functionality in mice. However, whether there is a protagonist in this cluster remains unclear. Here, we used a mutant mouse model to study the role of miR-96, a member of miR-183C, in photoreceptor development and functionality. Methods The mature miR-96 sequence was removed using the CRISPR/Cas9 genome-editing system. Electroretinogram (ERG) and optical coherence tomography (OCT) investigated the changes in structure and function in mouse retinas. Immunostaining determined the localization and morphology of the retinal cells. RNA sequencing was conducted to observe retinal transcription alterations. Results The miR-96 mutant mice exhibited cone developmental delay, as occurs in miR-183/96 double knockout mice. Immunostaining of cone-specific marker genes revealed cone nucleus mislocalization and exiguous Opn1mw/Opn1sw in the mutant (MT) mouse outer segments at postnatal day 10. Interestingly, this phenomenon could be relieved in the adult stages. Transcriptome analysis revealed activation of microtubule-, actin filament–, and cilia-related pathways, further supporting the findings. Based on ERG and OCT results at different ages, the MT mice displayed developmental delay not only in cones but also in rods. In addition, a group of miR-96 potential direct and indirect target genes was summarized for interpretation and further studies of miR-96–related retinal developmental defects. Conclusions Depletion of miR-96 delayed but did not arrest photoreceptor development in mice. This miRNA is indispensable for mouse photoreceptor maturation, especially for cones.
Collapse
Affiliation(s)
- Lue Xiang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Juan Zhang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng-Qin Rao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| | - Qiao-Li Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui-Yi Zeng
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Sheng-Hai Huang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhen-Xiang Xie
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ji-Neng Lv
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Dan Lin
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xue-Jiao Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Kun-Chao Wu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Xiu-Feng Huang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| |
Collapse
|
107
|
Thomas ED, Timms AE, Giles S, Harkins-Perry S, Lyu P, Hoang T, Qian J, Jackson VE, Bahlo M, Blackshaw S, Friedlander M, Eade K, Cherry TJ. Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids. Dev Cell 2022; 57:820-836.e6. [PMID: 35303433 PMCID: PMC9126240 DOI: 10.1016/j.devcel.2022.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/06/2021] [Accepted: 02/18/2022] [Indexed: 01/05/2023]
Abstract
Cis-regulatory elements (CREs) play a critical role in the development and disease-states of all human cell types. In the retina, CREs have been implicated in several inherited disorders. To better characterize human retinal CREs, we performed single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) and single-nucleus RNA sequencing (snRNA-seq) on the developing and adult human retina and on induced pluripotent stem cell (iPSC)-derived retinal organoids. These analyses identified developmentally dynamic, cell-class-specific CREs, enriched transcription-factor-binding motifs, and putative target genes. CREs in the retina and organoids are highly correlated at the single-cell level, and this supports the use of organoids as a model for studying disease-associated CREs. As a proof of concept, we disrupted a disease-associated CRE at 5q14.3, confirming its principal target gene as the miR-9-2 primary transcript and demonstrating its role in neurogenesis and gene regulation in mature glia. This study provides a resource for characterizing human retinal CREs and showcases organoids as a model to study the function of CREs that influence development and disease.
Collapse
Affiliation(s)
- Eric D Thomas
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sarah Giles
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah Harkins-Perry
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pin Lyu
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Victoria E Jackson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Seth Blackshaw
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kevin Eade
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA.
| |
Collapse
|
108
|
Chen YC, Konstantinides N. Integration of Spatial and Temporal Patterning in the Invertebrate and Vertebrate Nervous System. Front Neurosci 2022; 16:854422. [PMID: 35392413 PMCID: PMC8981590 DOI: 10.3389/fnins.2022.854422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
The nervous system is one of the most sophisticated animal tissues, consisting of thousands of interconnected cell types. How the nervous system develops its diversity from a few neural stem cells remains a challenging question. Spatial and temporal patterning mechanisms provide an efficient model through which diversity can be generated. The molecular mechanism of spatiotemporal patterning has been studied extensively in Drosophila melanogaster, where distinct sets of transcription factors define the spatial domains and temporal windows that give rise to different cell types. Similarly, in vertebrates, spatial domains defined by transcription factors produce different types of neurons in the brain and neural tube. At the same time, different cortical neuronal types are generated within the same cell lineage with a specific birth order. However, we still do not understand how the orthogonal information of spatial and temporal patterning is integrated into the progenitor and post-mitotic cells to combinatorially give rise to different neurons. In this review, after introducing spatial and temporal patterning in Drosophila and mice, we discuss possible mechanisms that neural progenitors may use to integrate spatial and temporal information. We finally review the functional implications of spatial and temporal patterning and conclude envisaging how small alterations of these mechanisms can lead to the evolution of new neuronal cell types.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Nikolaos Konstantinides
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| |
Collapse
|
109
|
Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre AL, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, Calkins DJ. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener 2022; 17:23. [PMID: 35313950 PMCID: PMC8935795 DOI: 10.1186/s13024-022-00524-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Across neurodegenerative diseases, common mechanisms may reveal novel therapeutic targets based on neuronal protection, repair, or regeneration, independent of etiology or site of disease pathology. To address these mechanisms and discuss emerging treatments, in April, 2021, Glaucoma Research Foundation, BrightFocus Foundation, and the Melza M. and Frank Theodore Barr Foundation collaborated to bring together key opinion leaders and experts in the field of neurodegenerative disease for a virtual meeting titled "Solving Neurodegeneration". This "think-tank" style meeting focused on uncovering common mechanistic roots of neurodegenerative disease and promising targets for new treatments, catalyzed by the goal of finding new treatments for glaucoma, the world's leading cause of irreversible blindness and the common interest of the three hosting foundations. Glaucoma, which causes vision loss through degeneration of the optic nerve, likely shares early cellular and molecular events with other neurodegenerative diseases of the central nervous system. Here we discuss major areas of mechanistic overlap between neurodegenerative diseases of the central nervous system: neuroinflammation, bioenergetics and metabolism, genetic contributions, and neurovascular interactions. We summarize important discussion points with emphasis on the research areas that are most innovative and promising in the treatment of neurodegeneration yet require further development. The research that is highlighted provides unique opportunities for collaboration that will lead to efforts in preventing neurodegeneration and ultimately vision loss.
Collapse
Affiliation(s)
- Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Sally Temple
- Neural Stem Cell Institute, NY, 12144, Rensselaer, USA
| | - Larry I Benowitz
- Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, CA, Palo Alto, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, MA, Boston, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Albert A Davis
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, CA, 91125, Pasadena, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, Aurora, CO, USA
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | | | | | | | | | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
110
|
Shah SH, Schiapparelli LM, Ma Y, Yokota S, Atkins M, Xia X, Cameron EG, Huang T, Saturday S, Sun CB, Knasel C, Blackshaw S, Yates Iii JR, Cline HT, Goldberg JL. Quantitative transportomics identifies Kif5a as a major regulator of neurodegeneration. eLife 2022; 11:68148. [PMID: 35259089 PMCID: PMC8947766 DOI: 10.7554/elife.68148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Many neurons in the adult central nervous system, including retinal ganglion cells (RGCs), degenerate and die after injury. Early axon protein and organelle trafficking failure is a key component in many neurodegenerative disorders yet changes to axoplasmic transport in disease models have not been quantified. We analyzed early changes in the protein ‘transportome’ from RGC somas to their axons after optic nerve injury and identified transport failure of an anterograde motor protein Kif5a early in RGC degeneration. We demonstrated that manipulating Kif5a expression affects anterograde mitochondrial trafficking in RGCs and characterized axon transport in Kif5a knockout mice to identify proteins whose axon localization was Kif5a-dependent. Finally, we found that knockout of Kif5a in RGCs resulted in progressive RGC degeneration in the absence of injury. Together with expression data localizing Kif5a to human RGCs, these data identify Kif5a transport failure as a cause of RGC neurodegeneration and point to a mechanism for future therapeutics.
Collapse
Affiliation(s)
- Sahil H Shah
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | | | - Yuanhui Ma
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Satoshi Yokota
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Melissa Atkins
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Xin Xia
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Evan G Cameron
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Thanh Huang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sarah Saturday
- Neuroscience Department, The Scripps Research Institute, La Jolla, United States
| | - Catalin B Sun
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Cara Knasel
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - John R Yates Iii
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Hollis T Cline
- Neuroscience Department, The Scripps Research Institute, La Jolla, United States
| | - Jeffrey L Goldberg
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| |
Collapse
|
111
|
Salbaum KA, Shelton ER, Serwane F. Retina organoids: Window into the biophysics of neuronal systems. BIOPHYSICS REVIEWS 2022; 3:011302. [PMID: 38505227 PMCID: PMC10903499 DOI: 10.1063/5.0077014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 03/21/2024]
Abstract
With a kind of magnetism, the human retina draws the eye of neuroscientist and physicist alike. It is attractive as a self-organizing system, which forms as a part of the central nervous system via biochemical and mechanical cues. The retina is also intriguing as an electro-optical device, converting photons into voltages to perform on-the-fly filtering before the signals are sent to our brain. Here, we consider how the advent of stem cell derived in vitro analogs of the retina, termed retina organoids, opens up an exploration of the interplay between optics, electrics, and mechanics in a complex neuronal network, all in a Petri dish. This review presents state-of-the-art retina organoid protocols by emphasizing links to the biochemical and mechanical signals of in vivo retinogenesis. Electrophysiological recording of active signal processing becomes possible as retina organoids generate light sensitive and synaptically connected photoreceptors. Experimental biophysical tools provide data to steer the development of mathematical models operating at different levels of coarse-graining. In concert, they provide a means to study how mechanical factors guide retina self-assembly. In turn, this understanding informs the engineering of mechanical signals required to tailor the growth of neuronal network morphology. Tackling the complex developmental and computational processes in the retina requires an interdisciplinary endeavor combining experiment and theory, physics, and biology. The reward is enticing: in the next few years, retina organoids could offer a glimpse inside the machinery of simultaneous cellular self-assembly and signal processing, all in an in vitro setting.
Collapse
Affiliation(s)
| | - Elijah R. Shelton
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
112
|
Zibetti C. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells 2022; 11:cells11050806. [PMID: 35269428 PMCID: PMC8908986 DOI: 10.3390/cells11050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal neurogenesis is driven by concerted actions of transcription factors, some of which are expressed in a continuum and across several cell subtypes throughout development. While seemingly redundant, many factors diversify their regulatory outcome on gene expression, by coordinating variations in chromatin landscapes to drive divergent retinal specification programs. Recent studies have furthered the understanding of the epigenetic contribution to the progression of age-related macular degeneration, a leading cause of blindness in the elderly. The knowledge of the epigenomic mechanisms that control the acquisition and stabilization of retinal cell fates and are evoked upon damage, holds the potential for the treatment of retinal degeneration. Herein, this review presents the state-of-the-art approaches to investigate the retinal epigenome during development, disease, and reprogramming. A pipeline is then reviewed to functionally interrogate the epigenetic and transcriptional networks underlying cell fate specification, relying on a truly unbiased screening of open chromatin states. The related work proposes an inferential model to identify gene regulatory networks, features the first footprinting analysis and the first tentative, systematic query of candidate pioneer factors in the retina ever conducted in any model organism, leading to the identification of previously uncharacterized master regulators of retinal cell identity, such as the nuclear factor I, NFI. This pipeline is virtually applicable to the study of genetic programs and candidate pioneer factors in any developmental context. Finally, challenges and limitations intrinsic to the current next-generation sequencing techniques are discussed, as well as recent advances in super-resolution imaging, enabling spatio-temporal resolution of the genome.
Collapse
Affiliation(s)
- Cristina Zibetti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Building 36, 0455 Oslo, Norway
| |
Collapse
|
113
|
Sun C, Zhang X, Ruzycki PA, Chen S. Essential Functions of MLL1 and MLL2 in Retinal Development and Cone Cell Maintenance. Front Cell Dev Biol 2022; 10:829536. [PMID: 35223853 PMCID: PMC8864151 DOI: 10.3389/fcell.2022.829536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
MLL1 (KMT2A) and MLL2 (KMT2B) are homologous members of the mixed-lineage leukemia (MLL) family of histone methyltransferases involved in epigenomic transcriptional regulation. Their sequence variants have been associated with neurological and psychological disorders, but little is known about their roles and mechanism of action in CNS development. Using mouse retina as a model, we previously reported MLL1’s role in retinal neurogenesis and horizontal cell maintenance. Here we determine roles of MLL2 and MLL1/MLL2 together in retinal development using conditional knockout (CKO) mice. Deleting Mll2 from Chx10+ retinal progenitors resulted in a similar phenotype as Mll1 CKO, but removal of both alleles produced much more severe deficits than each single CKO: 1-month double CKO mutants displayed null light responses in electroretinogram; thin retinal layers, including shorter photoreceptor outer segments with impaired phototransduction gene expression; and reduced numbers of M-cones, horizontal and amacrine neurons, followed by fast retinal degeneration. Despite moderately reduced progenitor cell proliferation at P0, the neurogenic capacity was largely maintained in double CKO mutants. However, upregulated apoptosis and reactive gliosis were detected during postnatal retinal development. Finally, the removal of both MLLs in fated rods produced a normal phenotype, but the CKO in M-cones impaired M-cone function and survival, indicating both cell non-autonomous and autonomous mechanisms. Altogether, our results suggest that MLL1/MLL2 play redundant roles in maintaining specific retinal neurons after cell fate specification and are essential for establishing functional neural networks.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, St. Louis, MO, United States
| | - Xiaodong Zhang
- Department of Ophthalmology and Visual Sciences, St. Louis, MO, United States
| | - Philip A. Ruzycki
- Department of Ophthalmology and Visual Sciences, St. Louis, MO, United States
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, St. Louis, MO, United States
- Department of Developmental Biology, Washington University, St. Louis, MO, United States
- *Correspondence: Shiming Chen,
| |
Collapse
|
114
|
Finkbeiner C, Ortuño-Lizarán I, Sridhar A, Hooper M, Petter S, Reh TA. Single-cell ATAC-seq of fetal human retina and stem-cell-derived retinal organoids shows changing chromatin landscapes during cell fate acquisition. Cell Rep 2022; 38:110294. [DOI: 10.1016/j.celrep.2021.110294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
|
115
|
Deciphering the spatial-temporal transcriptional landscape of human hypothalamus development. Cell Stem Cell 2021; 29:328-343.e5. [PMID: 34879244 DOI: 10.1016/j.stem.2021.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022]
Abstract
The hypothalamus comprises various nuclei and neuronal subpopulations that control fundamental homeostasis and behaviors. However, spatiotemporal molecular characterization of hypothalamus development in humans is largely unexplored. Here, we revealed spatiotemporal transcriptome profiles and cell-type characteristics of human hypothalamus development and illustrated the molecular diversity of neural progenitors and the cell-fate decision, which is programmed by a combination of transcription factors. Different neuronal and glial fates are sequentially produced and showed spatial developmental asynchrony. Moreover, human hypothalamic gliogenesis occurs at an earlier stage of gestation and displays distinctive transcription profiles compared with those in mouse. Notably, early oligodendrocyte cells in humans exhibit different gene patterns and interact with neuronal cells to regulate neuronal maturation by Wnt, Hippo, and integrin signals. Overall, our study provides a comprehensive molecular landscape of human hypothalamus development at early- and mid-embryonic stages and a foundation for understanding its spatial and functional complexity.
Collapse
|
116
|
Yang J, Li Y, Han Y, Feng Y, Zhou M, Zong C, He X, Jia R, Xu X, Fan J. Single-cell transcriptome profiling reveals intratumoural heterogeneity and malignant progression in retinoblastoma. Cell Death Dis 2021; 12:1100. [PMID: 34815392 PMCID: PMC8611004 DOI: 10.1038/s41419-021-04390-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
Retinoblastoma is a childhood retinal tumour that is the most common primary malignant intraocular tumour. However, it has been challenging to identify the cell types associated with genetic complexity. Here, we performed single-cell RNA sequencing on 14,739 cells from two retinoblastoma samples to delineate the heterogeneity and the underlying mechanism of retinoblastoma progression. Using a multiresolution network-based analysis, we identified two major cell types in human retinoblastoma. Cell trajectory analysis yielded a total of 5 cell states organized into two main branches, and the cell cycle-associated cone precursors were the cells of origin of retinoblastoma that were required for initiating the differentiation and malignancy process of retinoblastoma. Tumour cells differentiation reprogramming trajectory analysis revealed that cell-type components of multiple tumour-related pathways and predominantly expressed UBE2C were associated with an activation state in the malignant progression of the tumour, providing a potential novel "switch gene" marker during early critical stages in human retinoblastoma development. Thus, our findings improve our current understanding of the mechanism of retinoblastoma progression and are potentially valuable in providing novel prognostic markers for retinoblastoma.
Collapse
Affiliation(s)
- Jie Yang
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Yongyun Li
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Yanping Han
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Yiyi Feng
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Min Zhou
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Chunyan Zong
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Xiaoyu He
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China.
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China.
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China.
| |
Collapse
|
117
|
Lyu P, Hoang T, Santiago CP, Thomas ED, Timms AE, Appel H, Gimmen M, Le N, Jiang L, Kim DW, Chen S, Espinoza DF, Telger AE, Weir K, Clark BS, Cherry TJ, Qian J, Blackshaw S. Gene regulatory networks controlling temporal patterning, neurogenesis, and cell-fate specification in mammalian retina. Cell Rep 2021; 37:109994. [PMID: 34788628 PMCID: PMC8642835 DOI: 10.1016/j.celrep.2021.109994] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Gene regulatory networks (GRNs), consisting of transcription factors and their target sites, control neurogenesis and cell-fate specification in the developing central nervous system. In this study, we use integrated single-cell RNA and single-cell ATAC sequencing (scATAC-seq) analysis in developing mouse and human retina to identify multiple interconnected, evolutionarily conserved GRNs composed of cell-type-specific transcription factors that both activate genes within their own network and inhibit genes in other networks. These GRNs control temporal patterning in primary progenitors, regulate transition from primary to neurogenic progenitors, and drive specification of each major retinal cell type. We confirm that NFI transcription factors selectively activate expression of genes promoting late-stage temporal identity in primary retinal progenitors and identify other transcription factors that regulate rod photoreceptor specification in postnatal retina. This study inventories cis- and trans-acting factors that control retinal development and can guide cell-based therapies aimed at replacing retinal neurons lost to disease.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric D Thomas
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Megan Gimmen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nguyet Le
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Siqi Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David F Espinoza
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ariel E Telger
- Department of Ophthalmology and Visual Sciences, Brotman Baty Institute, Seattle, WA 98195, USA
| | - Kurt Weir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brian S Clark
- Department of Ophthalmology and Visual Sciences, Brotman Baty Institute, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Brotman Baty Institute, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Seth Blackshaw
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
118
|
Daghsni M, Aldiri I. Building a Mammalian Retina: An Eye on Chromatin Structure. Front Genet 2021; 12:775205. [PMID: 34764989 PMCID: PMC8576187 DOI: 10.3389/fgene.2021.775205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression by chromatin structure has been under intensive investigation, establishing nuclear organization and genome architecture as a potent and effective means of regulating developmental processes. The substantial growth in our knowledge of the molecular mechanisms underlying retinogenesis has been powered by several genome-wide based tools that mapped chromatin organization at multiple cellular and biochemical levels. Studies profiling the retinal epigenome and transcriptome have allowed the systematic annotation of putative cis-regulatory elements associated with transcriptional programs that drive retinal neural differentiation, laying the groundwork to understand spatiotemporal retinal gene regulation at a mechanistic level. In this review, we outline recent advances in our understanding of the chromatin architecture in the mammalian retina during development and disease. We focus on the emerging roles of non-coding regulatory elements in controlling retinal cell-type specific transcriptional programs, and discuss potential implications in untangling the etiology of eye-related disorders.
Collapse
Affiliation(s)
- Marwa Daghsni
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Issam Aldiri
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
119
|
Transcriptional and epigenetic regulation of temporal patterning in neural progenitors. Dev Biol 2021; 481:116-128. [PMID: 34666024 DOI: 10.1016/j.ydbio.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
During development, neural progenitors undergo temporal patterning as they age to sequentially generate differently fated progeny. Temporal patterning of neural progenitors is relatively well-studied in Drosophila. Temporal cascades of transcription factors or opposing temporal gradients of RNA-binding proteins are expressed in neural progenitors as they age to control the fates of the progeny. The temporal progression is mostly driven by intrinsic mechanisms including cross-regulations between temporal genes, but environmental cues also play important roles in certain transitions. Vertebrate neural progenitors demonstrate greater plasticity in response to extrinsic cues. Recent studies suggest that vertebrate neural progenitors are also temporally patterned by a combination of transcriptional and post-transcriptional mechanisms in response to extracellular signaling to regulate neural fate specification. In this review, we summarize recent advances in the study of temporal patterning of neural progenitors in Drosophila and vertebrates. We also discuss the involvement of epigenetic mechanisms, specifically the Polycomb group complexes and ATP-dependent chromatin remodeling complexes, in the temporal patterning of neural progenitors.
Collapse
|
120
|
Swamy VS, Fufa TD, Hufnagel RB, McGaughey DM. Building the mega single-cell transcriptome ocular meta-atlas. Gigascience 2021; 10:giab061. [PMID: 34651173 PMCID: PMC8514335 DOI: 10.1093/gigascience/giab061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The development of highly scalable single-cell transcriptome technology has resulted in the creation of thousands of datasets, >30 in the retina alone. Analyzing the transcriptomes between different projects is highly desirable because this would allow for better assessment of which biological effects are consistent across independent studies. However it is difficult to compare and contrast data across different projects because there are substantial batch effects from computational processing, single-cell technology utilized, and the natural biological variation. While many single-cell transcriptome-specific batch correction methods purport to remove the technical noise, it is difficult to ascertain which method functions best. RESULTS We developed a lightweight R package (scPOP, single-cell Pick Optimal Parameters) that brings in batch integration methods and uses a simple heuristic to balance batch merging and cell type/cluster purity. We use this package along with a Snakefile-based workflow system to demonstrate how to optimally merge 766,615 cells from 33 retina datsets and 3 species to create a massive ocular single-cell transcriptome meta-atlas. CONCLUSIONS This provides a model for how to efficiently create meta-atlases for tissues and cells of interest.
Collapse
Affiliation(s)
- Vinay S Swamy
- Bioinformatics Group, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, 20892, Bethesda, Maryland, USA
| | - Temesgen D Fufa
- Medical Genetics and Ophthalmic Genomics Unit, National Eye Institute, National Institutes of Health, 20892, Bethesda, Maryland, USA
| | - Robert B Hufnagel
- Medical Genetics and Ophthalmic Genomics Unit, National Eye Institute, National Institutes of Health, 20892, Bethesda, Maryland, USA
| | - David M McGaughey
- Bioinformatics Group, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, 20892, Bethesda, Maryland, USA
| |
Collapse
|
121
|
Gabriel E, Albanna W, Pasquini G, Ramani A, Josipovic N, Mariappan A, Schinzel F, Karch CM, Bao G, Gottardo M, Suren AA, Hescheler J, Nagel-Wolfrum K, Persico V, Rizzoli SO, Altmüller J, Riparbelli MG, Callaini G, Goureau O, Papantonis A, Busskamp V, Schneider T, Gopalakrishnan J. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell 2021; 28:1740-1757.e8. [PMID: 34407456 DOI: 10.1016/j.stem.2021.07.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/23/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. OVB-organoids also display synapsin-1, CTIP-positive myelinated cortical neurons, and microglia. Interestingly, various light intensities could trigger photosensitive activity of OVB-organoids, and light sensitivities could be reset after transient photobleaching. Thus, brain organoids have the intrinsic ability to self-organize forebrain-associated primitive sensory structures in a topographically restricted manner and can allow interorgan interaction studies within a single organoid.
Collapse
Affiliation(s)
- Elke Gabriel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Walid Albanna
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany; Department of Neurosurgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anand Ramani
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, 37075 Göttingen, Germany; Center for molecular medicine, Cologne, Universität zu Köln, 50931 Köln, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Friedrich Schinzel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63116, USA
| | - Guobin Bao
- Institute of Neurophysiology and Cellular Biophysics, University Medicine Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Marco Gottardo
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Ata Alp Suren
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Veronica Persico
- Department of Life Sciences and Medical Biotechnology University of Siena, Siena 53100, Italy
| | - Silvio O Rizzoli
- Institute of Neurophysiology and Cellular Biophysics, University Medicine Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Universität zu Köln, Köln, Germany; Center for molecular medicine, Cologne, Universität zu Köln, 50931 Köln, Germany
| | | | - Giuliano Callaini
- Department of Life Sciences and Medical Biotechnology University of Siena, Siena 53100, Italy
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Argyris Papantonis
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.
| |
Collapse
|
122
|
Afanasyeva TAV, Corral-Serrano JC, Garanto A, Roepman R, Cheetham ME, Collin RWJ. A look into retinal organoids: methods, analytical techniques, and applications. Cell Mol Life Sci 2021; 78:6505-6532. [PMID: 34420069 PMCID: PMC8558279 DOI: 10.1007/s00018-021-03917-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
Inherited retinal diseases (IRDs) cause progressive loss of light-sensitive photoreceptors in the eye and can lead to blindness. Gene-based therapies for IRDs have shown remarkable progress in the past decade, but the vast majority of forms remain untreatable. In the era of personalised medicine, induced pluripotent stem cells (iPSCs) emerge as a valuable system for cell replacement and to model IRD because they retain the specific patient genome and can differentiate into any adult cell type. Three-dimensional (3D) iPSCs-derived retina-like tissue called retinal organoid contains all major retina-specific cell types: amacrine, bipolar, horizontal, retinal ganglion cells, Müller glia, as well as rod and cone photoreceptors. Here, we describe the main applications of retinal organoids and provide a comprehensive overview of the state-of-art analysis methods that apply to this model system. Finally, we will discuss the outlook for improvements that would bring the cellular model a step closer to become an established system in research and treatment development of IRDs.
Collapse
Affiliation(s)
- Tess A V Afanasyeva
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | | | - Alejandro Garanto
- Department of Pediatrics, Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael E Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
123
|
Shiau F, Ruzycki PA, Clark BS. A single-cell guide to retinal development: Cell fate decisions of multipotent retinal progenitors in scRNA-seq. Dev Biol 2021; 478:41-58. [PMID: 34146533 PMCID: PMC8386138 DOI: 10.1016/j.ydbio.2021.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
Recent advances in high throughput single-cell RNA sequencing (scRNA-seq) technology have enabled the simultaneous transcriptomic profiling of thousands of individual cells in a single experiment. To investigate the intrinsic process of retinal development, researchers have leveraged this technology to quantify gene expression in retinal cells across development, in multiple species, and from numerous important models of human disease. In this review, we summarize recent applications of scRNA-seq and discuss how these datasets have complemented and advanced our understanding of retinal progenitor cell competence, cell fate specification, and differentiation. Finally, we also highlight the outstanding questions in the field that advances in single-cell data generation and analysis will soon be able to answer.
Collapse
Affiliation(s)
- Fion Shiau
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip A Ruzycki
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
124
|
Stone NE, Voigt AP, Mullins RF, Sulchek T, Tucker BA. Microfluidic processing of stem cells for autologous cell replacement. Stem Cells Transl Med 2021; 10:1384-1393. [PMID: 34156760 PMCID: PMC8459636 DOI: 10.1002/sctm.21-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autologous photoreceptor cell replacement is one of the most promising approaches currently under development for the treatment of inherited retinal degenerative blindness. Unlike endogenous stem cell populations, induced pluripotent stem cells (iPSCs) can be differentiated into both rod and cone photoreceptors in high numbers, making them ideal for this application. That said, in addition to photoreceptor cells, state of the art retinal differentiation protocols give rise to all of the different cell types of the normal retina, the majority of which are not required and may in fact hinder successful photoreceptor cell replacement. As such, following differentiation photoreceptor cell enrichment will likely be required. In addition, to prevent the newly generated photoreceptor cells from suffering the same fate as the patient's original cells, correction of the patient's disease-causing genetic mutations will be necessary. In this review we discuss literature pertaining to the use of different cell sorting and transfection approaches with a focus on the development and use of novel next generation microfluidic devices. We will discuss how gold standard strategies have been used, the advantages and disadvantages of each, and how novel microfluidic platforms can be incorporated into the clinical manufacturing pipeline to reduce the complexity, cost, and regulatory burden associated with clinical grade production of photoreceptor cells for autologous cell replacement.
Collapse
Affiliation(s)
- Nicholas E. Stone
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrew P. Voigt
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Todd Sulchek
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
125
|
Chen K, Chen C, Li H, Yang J, Xiang M, Wang H, Xie Z. Widespread translational control regulates retinal development in mouse. Nucleic Acids Res 2021; 49:9648-9664. [PMID: 34469513 PMCID: PMC8464051 DOI: 10.1093/nar/gkab749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Retinal development is tightly regulated to ensure the generation of appropriate cell types and the assembly of functional neuronal circuitry. Despite remarkable advances have been made in understanding regulation of gene expression during retinal development, how translational regulation guides retinogenesis is less understood. Here, we conduct a comprehensive translatome and transcriptome survey to the mouse retinogenesis from the embryonic to the adult stages. We discover thousands of genes that have dynamic changes at the translational level and pervasive translational regulation in a developmental stage-specific manner with specific biological functions. We further identify genes whose translational efficiencies are frequently controlled by changing usage in upstream open reading frame during retinal development. These genes are enriched for biological functions highly important to neurons, such as neuron projection organization and microtubule-based protein transport. Surprisingly, we discover hundreds of previously uncharacterized micropeptides, translated from putative long non-coding RNAs and circular RNAs. We validate their protein products in vitro and in vivo and demonstrate their potentials in regulating retinal development. Together, our study presents a rich and complex landscape of translational regulation and provides novel insights into their roles during retinogenesis.
Collapse
Affiliation(s)
- Kaining Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Congying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huihui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
126
|
Liu J, Ottaviani D, Sefta M, Desbrousses C, Chapeaublanc E, Aschero R, Sirab N, Lubieniecki F, Lamas G, Tonon L, Dehainault C, Hua C, Fréneaux P, Reichman S, Karboul N, Biton A, Mirabal-Ortega L, Larcher M, Brulard C, Arrufat S, Nicolas A, Elarouci N, Popova T, Némati F, Decaudin D, Gentien D, Baulande S, Mariani O, Dufour F, Guibert S, Vallot C, Rouic LLL, Matet A, Desjardins L, Pascual-Pasto G, Suñol M, Catala-Mora J, Llano GC, Couturier J, Barillot E, Schaiquevich P, Gauthier-Villars M, Stoppa-Lyonnet D, Golmard L, Houdayer C, Brisse H, Bernard-Pierrot I, Letouzé E, Viari A, Saule S, Sastre-Garau X, Doz F, Carcaboso AM, Cassoux N, Pouponnot C, Goureau O, Chantada G, de Reyniès A, Aerts I, Radvanyi F. A high-risk retinoblastoma subtype with stemness features, dedifferentiated cone states and neuronal/ganglion cell gene expression. Nat Commun 2021; 12:5578. [PMID: 34552068 PMCID: PMC8458383 DOI: 10.1038/s41467-021-25792-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma is the most frequent intraocular malignancy in children, originating from a maturing cone precursor in the developing retina. Little is known on the molecular basis underlying the biological and clinical behavior of this cancer. Here, using multi-omics data, we demonstrate the existence of two retinoblastoma subtypes. Subtype 1, of earlier onset, includes most of the heritable forms. It harbors few genetic alterations other than the initiating RB1 inactivation and corresponds to differentiated tumors expressing mature cone markers. By contrast, subtype 2 tumors harbor frequent recurrent genetic alterations including MYCN-amplification. They express markers of less differentiated cone together with neuronal/ganglion cell markers with marked inter- and intra-tumor heterogeneity. The cone dedifferentiation in subtype 2 is associated with stemness features including low immune and interferon response, E2F and MYC/MYCN activation and a higher propensity for metastasis. The recognition of these two subtypes, one maintaining a cone-differentiated state, and the other, more aggressive, associated with cone dedifferentiation and expression of neuronal markers, opens up important biological and clinical perspectives for retinoblastomas.
Collapse
Affiliation(s)
- Jing Liu
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Daniela Ottaviani
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.414531.60000 0001 0695 6255Precision Medicine, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Meriem Sefta
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Céline Desbrousses
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Elodie Chapeaublanc
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Rosario Aschero
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Nanor Sirab
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Fabiana Lubieniecki
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Gabriela Lamas
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Laurie Tonon
- grid.418116.b0000 0001 0200 3174Synergie Lyon Cancer, Plateforme de Bioinformatique “Gilles Thomas”, Centre Léon Bérard, 69008 Lyon, France
| | - Catherine Dehainault
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France
| | - Clément Hua
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Paul Fréneaux
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Sacha Reichman
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Narjesse Karboul
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Anne Biton
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U900, 75005 Paris, France ,Ecole des Mines ParisTech, 77305 Fontainebleau, France ,grid.428999.70000 0001 2353 6535Present Address: Institut Pasteur – Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, 75015 Paris, France
| | - Liliana Mirabal-Ortega
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Magalie Larcher
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Céline Brulard
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.411777.30000 0004 1765 1563Present Address: INSERM U930, CHU Bretonneau, 37000 Tours, France
| | - Sandrine Arrufat
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - André Nicolas
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Nabila Elarouci
- grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Tatiana Popova
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Fariba Némati
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - Didier Decaudin
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - David Gentien
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - Sylvain Baulande
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, NGS Platform, 75005 Paris, France
| | - Odette Mariani
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Florent Dufour
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Sylvain Guibert
- grid.425132.3GeCo Genomics Consulting, Integragen, 91000 Evry, France
| | - Céline Vallot
- grid.425132.3GeCo Genomics Consulting, Integragen, 91000 Evry, France
| | - Livia Lumbroso-Le Rouic
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France
| | - Alexandre Matet
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Laurence Desjardins
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France
| | - Guillem Pascual-Pasto
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Mariona Suñol
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Department of Pathology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jaume Catala-Mora
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Department of Ophthalmology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Genoveva Correa Llano
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jérôme Couturier
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Emmanuel Barillot
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U900, 75005 Paris, France ,Ecole des Mines ParisTech, 77305 Fontainebleau, France
| | - Paula Schaiquevich
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Marion Gauthier-Villars
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Dominique Stoppa-Lyonnet
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Lisa Golmard
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Claude Houdayer
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France ,grid.41724.34Present Address: Department of Genetics, Rouen University Hospital, 76000 Rouen, France
| | - Hervé Brisse
- grid.418596.70000 0004 0639 6384Département d’Imagerie Médicale, Institut Curie, 75005 Paris, France
| | - Isabelle Bernard-Pierrot
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Eric Letouzé
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Universités, INSERM, 75006 Paris, France ,grid.508487.60000 0004 7885 7602Functional Genomics of Solid Tumors, équipe labellisée Ligue Contre le Cancer, Université de Paris, Université Paris 13, Paris, France
| | - Alain Viari
- grid.418116.b0000 0001 0200 3174Synergie Lyon Cancer, Plateforme de Bioinformatique “Gilles Thomas”, Centre Léon Bérard, 69008 Lyon, France
| | - Simon Saule
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Xavier Sastre-Garau
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.414145.10000 0004 1765 2136Present Address: Department of Pathology, Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France
| | - François Doz
- grid.508487.60000 0004 7885 7602Université de Paris, Paris, France ,grid.418596.70000 0004 0639 6384SIREDO Center (Care, Innovation and Research in Pediatric Adolescent and Young Adult Oncology), Institut Curie, 75005 Paris, France
| | - Angel M. Carcaboso
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Nathalie Cassoux
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Celio Pouponnot
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Guillermo Chantada
- grid.414531.60000 0001 0695 6255Precision Medicine, Hospital J.P. Garrahan, Buenos Aires, Argentina ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain ,grid.423606.50000 0001 1945 2152National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Aurélien de Reyniès
- grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Isabelle Aerts
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.418596.70000 0004 0639 6384SIREDO Center (Care, Innovation and Research in Pediatric Adolescent and Young Adult Oncology), Institut Curie, 75005 Paris, France
| | - François Radvanyi
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| |
Collapse
|
127
|
Pérez-Dones D, Ledesma-Terrón M, Míguez DG. Quantitative Approaches to Study Retinal Neurogenesis. Biomedicines 2021; 9:1222. [PMID: 34572408 PMCID: PMC8471905 DOI: 10.3390/biomedicines9091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the development of the vertebrate retina can be addressed from several perspectives: from a purely qualitative to a more quantitative approach that takes into account its spatio-temporal features, its three-dimensional structure and also the regulation and properties at the systems level. Here, we review the ongoing transition toward a full four-dimensional characterization of the developing vertebrate retina, focusing on the challenges at the experimental, image acquisition, image processing and quantification. Using the developing zebrafish retina, we illustrate how quantitative data extracted from these type of highly dense, three-dimensional tissues depend strongly on the image quality, image processing and algorithms used to segment and quantify. Therefore, we propose that the scientific community that focuses on developmental systems could strongly benefit from a more detailed disclosure of the tools and pipelines used to process and analyze images from biological samples.
Collapse
Affiliation(s)
- Diego Pérez-Dones
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mario Ledesma-Terrón
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David G Míguez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
128
|
Haniffa M, Taylor D, Linnarsson S, Aronow BJ, Bader GD, Barker RA, Camara PG, Camp JG, Chédotal A, Copp A, Etchevers HC, Giacobini P, Göttgens B, Guo G, Hupalowska A, James KR, Kirby E, Kriegstein A, Lundeberg J, Marioni JC, Meyer KB, Niakan KK, Nilsson M, Olabi B, Pe'er D, Regev A, Rood J, Rozenblatt-Rosen O, Satija R, Teichmann SA, Treutlein B, Vento-Tormo R, Webb S. A roadmap for the Human Developmental Cell Atlas. Nature 2021; 597:196-205. [PMID: 34497388 PMCID: PMC10337595 DOI: 10.1038/s41586-021-03620-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Deanne Taylor
- Department of Biomedical and Health Informatics (DBHi), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bruce J Aronow
- Division of Developmental Biology and Biomedical Informatics, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Pablo G Camara
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), University of Basel, Basel, Switzerland
| | - Alain Chédotal
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Andrew Copp
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, CHU Lille, Lille Neuroscience and Cognition, UMR-S 1172, Université Lille, Lille, France
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ania Hupalowska
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Emily Kirby
- Centre of Genomics and Policy, McGill University, Montreal, Quebec, Canada
| | - Arnold Kriegstein
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Joakim Lundeberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - John C Marioni
- Cancer Research Institute UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Kathy K Niakan
- Francis Crick Institute, London, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Jennifer Rood
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Rahul Satija
- New York Genome Center, New York University, New York, NY, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | - Simone Webb
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
129
|
Davis-Marcisak EF, Fitzgerald AA, Kessler MD, Danilova L, Jaffee EM, Zaidi N, Weiner LM, Fertig EJ. Transfer learning between preclinical models and human tumors identifies a conserved NK cell activation signature in anti-CTLA-4 responsive tumors. Genome Med 2021; 13:129. [PMID: 34376232 PMCID: PMC8356429 DOI: 10.1186/s13073-021-00944-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tumor response to therapy is affected by both the cell types and the cell states present in the tumor microenvironment. This is true for many cancer treatments, including immune checkpoint inhibitors (ICIs). While it is well-established that ICIs promote T cell activation, their broader impact on other intratumoral immune cells is unclear; this information is needed to identify new mechanisms of action and improve ICI efficacy. Many preclinical studies have begun using single-cell analysis to delineate therapeutic responses in individual immune cell types within tumors. One major limitation to this approach is that therapeutic mechanisms identified in preclinical models have failed to fully translate to human disease, restraining efforts to improve ICI efficacy in translational research. METHOD We previously developed a computational transfer learning approach called projectR to identify shared biology between independent high-throughput single-cell RNA-sequencing (scRNA-seq) datasets. In the present study, we test this algorithm's ability to identify conserved and clinically relevant transcriptional changes in complex tumor scRNA-seq data and expand its application to the comparison of scRNA-seq datasets with additional data types such as bulk RNA-seq and mass cytometry. RESULTS We found a conserved signature of NK cell activation in anti-CTLA-4 responsive mouse and human tumors. In human metastatic melanoma, we found that the NK cell activation signature associates with longer overall survival and is predictive of anti-CTLA-4 (ipilimumab) response. Additional molecular approaches to confirm the computational findings demonstrated that human NK cells express CTLA-4 and bind anti-CTLA-4 antibodies independent of the antibody binding receptor (FcR) and that similar to T cells, CTLA-4 expression by NK cells is modified by cytokine-mediated and target cell-mediated NK cell activation. CONCLUSIONS These data demonstrate a novel application of our transfer learning approach, which was able to identify cell state transitions conserved in preclinical models and human tumors. This approach can be adapted to explore many questions in cancer therapeutics, enhance translational research, and enable better understanding and treatment of disease.
Collapse
Affiliation(s)
- Emily F Davis-Marcisak
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Allison A Fitzgerald
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael D Kessler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ludmila Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
130
|
Regulatory Mechanisms of Retinal Photoreceptors Development at Single Cell Resolution. Int J Mol Sci 2021; 22:ijms22168357. [PMID: 34445064 PMCID: PMC8395061 DOI: 10.3390/ijms22168357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/18/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Photoreceptors are critical components of the retina and play a role in the first step of the conversion of light to electric signals. With the discovery of the intrinsically photosensitive retinal ganglion cells, which regulate non-image-forming visual processes, our knowledge of the photosensitive cell family in the retina has deepened. Photoreceptor development is regulated by specific genes and proteins and involves a series of molecular processes including DNA transcription, post-transcriptional modification, protein translation, and post-translational modification. Single-cell sequencing is a promising technology for the study of photoreceptor development. This review presents an overview of the types of human photoreceptors, summarizes recent discoveries in the regulatory mechanisms underlying their development at single-cell resolution, and outlines the prospects in this field.
Collapse
|
131
|
Retinoblastoma from human stem cell-derived retinal organoids. Nat Commun 2021; 12:4535. [PMID: 34315877 PMCID: PMC8316454 DOI: 10.1038/s41467-021-24781-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma is a childhood cancer of the developing retina that initiates with biallelic inactivation of the RB1 gene. Children with germline mutations in RB1 have a high likelihood of developing retinoblastoma and other malignancies later in life. Genetically engineered mouse models of retinoblastoma share some similarities with human retinoblastoma but there are differences in their cellular differentiation. To develop a laboratory model of human retinoblastoma formation, we make induced pluripotent stem cells (iPSCs) from 15 participants with germline RB1 mutations. Each of the stem cell lines is validated, characterized and then differentiated into retina using a 3-dimensional organoid culture system. After 45 days in culture, the retinal organoids are dissociated and injected into the vitreous of eyes of immunocompromised mice to support retinoblastoma tumor growth. Retinoblastomas formed from retinal organoids made from patient-derived iPSCs have molecular, cellular and genomic features indistinguishable from human retinoblastomas. This model of human cancer based on patient-derived iPSCs with germline cancer predisposing mutations provides valuable insights into the cellular origins of this debilitating childhood disease as well as the mechanism of tumorigenesis following RB1 gene inactivation. Retinoblastoma is a heritable pediatric cancer driven by mutations in RB1. Here, the authors demonstrate the first patient derived model of retinoblastoma using iPSCs from patients with germline mutations in RB1.
Collapse
|
132
|
Chen X, Emerson MM. Notch signaling represses cone photoreceptor formation through the regulation of retinal progenitor cell states. Sci Rep 2021; 11:14525. [PMID: 34267251 PMCID: PMC8282820 DOI: 10.1038/s41598-021-93692-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022] Open
Abstract
Notch signaling is required to repress the formation of vertebrate cone photoreceptors and to maintain the proliferative potential of multipotent retinal progenitor cells. However, the mechanism by which Notch signaling controls these processes is unknown. Recently, restricted retinal progenitor cells with limited proliferation capacity and that preferentially generate cone photoreceptors have been identified. Thus, there are several potential steps during cone genesis that Notch signaling could act. Here we use cell type specific cis-regulatory elements to localize the primary role of Notch signaling in cone genesis to the formation of restricted retinal progenitor cells from multipotent retinal progenitor cells. Localized inhibition of Notch signaling in restricted progenitor cells does not alter the number of cones derived from these cells. Cell cycle promotion is not a primary effect of Notch signaling but an indirect effect on progenitor cell state transitions that leads to depletion of the multipotent progenitor cell population. Taken together, this suggests that the role of Notch signaling in cone photoreceptor formation and proliferation are both mediated by a localized function of Notch in multipotent retinal progenitor cells to repress the formation of restricted progenitor cells.
Collapse
Affiliation(s)
- Xueqing Chen
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, 10016, USA
- Department of Biology, The City College of New York, The City University of New York, New York, NY, 10031, USA
| | - Mark M Emerson
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, 10016, USA.
- Department of Biology, The City College of New York, The City University of New York, New York, NY, 10031, USA.
- Biochemistry PhD Program, The Graduate Center, The City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
133
|
Masri RA, Weltzien F, Purushothuman S, Lee SCS, Martin PR, Grünert U. Composition of the Inner Nuclear Layer in Human Retina. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34259817 PMCID: PMC8288061 DOI: 10.1167/iovs.62.9.22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to measure the composition of the inner nuclear layer (INL) in the central and peripheral human retina as foundation data for interpreting INL function and dysfunction. Methods Six postmortem human donor retinas (male and female, aged 31–56 years) were sectioned along the temporal horizontal meridian. Sections were processed with immunofluorescent markers and imaged using high-resolution, multichannel fluorescence microscopy. The density of horizontal, bipolar, amacrine, and Müller cells was quantified between 1 and 12 mm eccentricity with appropriate adjustments for postreceptoral spatial displacements near the fovea. Results Cone bipolar cells dominate the INL a with density near 50,000 cells/mm2 at 1 mm eccentricity and integrated total ∼10 million cells up to 10 mm eccentricity. Outside central retina the spatial density of all cell populations falls but the neuronal makeup of the INL remains relatively constant: a decrease in the proportion of cone bipolar cells (from 52% at 1 mm to 37% at 10 mm) is balanced by an increasing proportion of rod bipolar cells (from 9% to 15%). The proportion of Müller cells near the fovea (17%) is lower than in the peripheral retina (27%). Conclusions Despite large changes in the absolute density of INL cell populations across the retina, their proportions remain relatively constant. These data may have relevance for interpreting diagnostic signals such as the electroretinogram and optical coherence tomogram.
Collapse
Affiliation(s)
- Rania A Masri
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, Australia
| | - Felix Weltzien
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia
| | - Sivaraman Purushothuman
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia
| | - Sammy C S Lee
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, Australia
| | - Paul R Martin
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, Australia
| | - Ulrike Grünert
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, Australia
| |
Collapse
|
134
|
Abstract
It has been known for over a century that the basic organization of the retina is conserved across vertebrates. It has been equally clear that retinal cells can be classified into numerous types, but only recently have methods been devised to explore this diversity in unbiased, scalable, and comprehensive ways. Advances in high-throughput single-cell RNA-sequencing (scRNA-seq) have played a pivotal role in this effort. In this article, we outline the experimental and computational components of scRNA-seq and review studies that have used them to generate retinal atlases of cell types in several vertebrate species. These atlases have enabled studies of retinal development, responses of retinal cells to injury, expression patterns of genes implicated in retinal disease, and the evolution of cell types. Recently, the inquiry has expanded to include the entire eye and visual centers in the brain. These studies have enhanced our understanding of retinal function and dysfunction and provided tools and insights for exploring neural diversity throughout the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; and California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, USA;
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
135
|
Mullin NK, Voigt AP, Cooke JA, Bohrer LR, Burnight ER, Stone EM, Mullins RF, Tucker BA. Patient derived stem cells for discovery and validation of novel pathogenic variants in inherited retinal disease. Prog Retin Eye Res 2021; 83:100918. [PMID: 33130253 PMCID: PMC8559964 DOI: 10.1016/j.preteyeres.2020.100918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of inherited retinal disease has benefited immensely from molecular genetic analysis over the past several decades. New technologies that allow for increasingly detailed examination of a patient's DNA have expanded the catalog of genes and specific variants that cause retinal disease. In turn, the identification of pathogenic variants has allowed the development of gene therapies and low-cost, clinically focused genetic testing. Despite this progress, a relatively large fraction (at least 20%) of patients with clinical features suggestive of an inherited retinal disease still do not have a molecular diagnosis today. Variants that are not obviously disruptive to the codon sequence of exons can be difficult to distinguish from the background of benign human genetic variations. Some of these variants exert their pathogenic effect not by altering the primary amino acid sequence, but by modulating gene expression, isoform splicing, or other transcript-level mechanisms. While not discoverable by DNA sequencing methods alone, these variants are excellent targets for studies of the retinal transcriptome. In this review, we present an overview of the current state of pathogenic variant discovery in retinal disease and identify some of the remaining barriers. We also explore the utility of new technologies, specifically patient-derived induced pluripotent stem cell (iPSC)-based modeling, in further expanding the catalog of disease-causing variants using transcriptome-focused methods. Finally, we outline bioinformatic analysis techniques that will allow this new method of variant discovery in retinal disease. As the knowledge gleaned from previous technologies is informing targets for therapies today, we believe that integrating new technologies, such as iPSC-based modeling, into the molecular diagnosis pipeline will enable a new wave of variant discovery and expanded treatment of inherited retinal disease.
Collapse
Affiliation(s)
- Nathaniel K Mullin
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew P Voigt
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica A Cooke
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Laura R Bohrer
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erin R Burnight
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
136
|
Cardona-Alberich A, Tourbez M, Pearce SF, Sibley CR. Elucidating the cellular dynamics of the brain with single-cell RNA sequencing. RNA Biol 2021; 18:1063-1084. [PMID: 33499699 PMCID: PMC8216183 DOI: 10.1080/15476286.2020.1870362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) has emerged in recent years as a breakthrough technology to understand RNA metabolism at cellular resolution. In addition to allowing new cell types and states to be identified, scRNA-seq can permit cell-type specific differential gene expression changes, pre-mRNA processing events, gene regulatory networks and single-cell developmental trajectories to be uncovered. More recently, a new wave of multi-omic adaptations and complementary spatial transcriptomics workflows have been developed that facilitate the collection of even more holistic information from individual cells. These developments have unprecedented potential to provide penetrating new insights into the basic neural cell dynamics and molecular mechanisms relevant to the nervous system in both health and disease. In this review we discuss this maturation of single-cell RNA-sequencing over the past decade, and review the different adaptations of the technology that can now be applied both at different scales and for different purposes. We conclude by highlighting how these methods have already led to many exciting discoveries across neuroscience that have furthered our cellular understanding of the neurological disease.
Collapse
Affiliation(s)
- Aida Cardona-Alberich
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, Edinburgh University, Edinburgh, UK
| | - Manon Tourbez
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Sarah F. Pearce
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Christopher R. Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, Edinburgh University, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
137
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
138
|
Weir K, Kim DW, Blackshaw S. A potential role for somatostatin signaling in regulating retinal neurogenesis. Sci Rep 2021; 11:10962. [PMID: 34040115 PMCID: PMC8155210 DOI: 10.1038/s41598-021-90554-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides have been reported to regulate progenitor proliferation and neurogenesis in the central nervous system. However, these studies have typically been conducted using pharmacological agents in ex vivo preparations, and in vivo evidence for their developmental function is generally lacking. Recent scRNA-Seq studies have identified multiple neuropeptides and their receptors as being selectively expressed in neurogenic progenitors of the embryonic mouse and human retina. This includes Sstr2, whose ligand somatostatin is transiently expressed by immature retinal ganglion cells. By analyzing retinal explants treated with selective ligands that target these receptors, we found that Sstr2-dependent somatostatin signaling induces a modest, dose-dependent inhibition of photoreceptor generation, while correspondingly increasing the relative fraction of primary progenitor cells. These effects were confirmed by scRNA-Seq analysis of retinal explants but abolished in Sstr2-deficient retinas. Although no changes in the relative fraction of primary progenitors or photoreceptor precursors were observed in Sstr2-deficient retinas in vivo, scRNA-Seq analysis demonstrated accelerated differentiation of neurogenic progenitors. We conclude that, while Sstr2 signaling may act to negatively regulate retinal neurogenesis in combination with other retinal ganglion cell-derived secreted factors such as Shh, it is dispensable for normal retinal development.
Collapse
Affiliation(s)
- Kurt Weir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
139
|
Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D, Hou Y, Munz M, Rodrigues TM, Krol J, Szikra T, Cuttat R, Waldt A, Papasaikas P, Diggelmann R, Patino-Alvarez CP, Galliker P, Spirig SE, Pavlinic D, Gerber-Hollbach N, Schuierer S, Srdanovic A, Balogh M, Panero R, Kusnyerik A, Szabo A, Stadler MB, Orgül S, Picelli S, Hasler PW, Hierlemann A, Scholl HPN, Roma G, Nigsch F, Roska B. Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell 2021; 182:1623-1640.e34. [PMID: 32946783 PMCID: PMC7505495 DOI: 10.1016/j.cell.2020.08.013] [Citation(s) in RCA: 333] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/14/2020] [Accepted: 08/06/2020] [Indexed: 01/05/2023]
Abstract
Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable "developed" state at a rate similar to human retina development in vivo. Transcriptomes of organoid cell types converged toward the transcriptomes of adult peripheral retinal cell types. Expression of disease-associated genes was cell-type-specific in adult retina, and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in human retinas.
Collapse
Affiliation(s)
- Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Magdalena Renner
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Martina De Gennaro
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Brigitte Gross-Scherf
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - David Goldblum
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Yanyan Hou
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Martin Munz
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tiago M Rodrigues
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Jacek Krol
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tamas Szikra
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Rachel Cuttat
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Annick Waldt
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Roland Diggelmann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland
| | - Claudia P Patino-Alvarez
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Patricia Galliker
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Stefan E Spirig
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Dinko Pavlinic
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | | | - Sven Schuierer
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Aldin Srdanovic
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Marton Balogh
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Riccardo Panero
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Akos Kusnyerik
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Arnold Szabo
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Selim Orgül
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Pascal W Hasler
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland; Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
140
|
Running the full human developmental clock in interspecies chimeras using alternative human stem cells with expanded embryonic potential. NPJ Regen Med 2021; 6:25. [PMID: 34001907 PMCID: PMC8128894 DOI: 10.1038/s41536-021-00135-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) can generate specialized cell lineages that have great potential for regenerative therapies and disease modeling. However, the developmental stage of the lineages generated from conventional hPSC cultures in vitro are embryonic in phenotype, and may not possess the cellular maturity necessary for corrective regenerative function in vivo in adult recipients. Here, we present the scientific evidence for how adult human tissues could generate human–animal interspecific chimeras to solve this problem. First, we review the phenotypes of the embryonic lineages differentiated from conventional hPSC in vitro and through organoid technologies and compare their functional relevance to the tissues generated during normal human in utero fetal and adult development. We hypothesize that the developmental incongruence of embryo-stage hPSC-differentiated cells transplanted into a recipient adult host niche is an important mechanism ultimately limiting their utility in cell therapies and adult disease modeling. We propose that this developmental obstacle can be overcome with optimized interspecies chimeras that permit the generation of adult-staged, patient-specific whole organs within animal hosts with human-compatible gestational time-frames. We suggest that achieving this goal may ultimately have to await the derivation of alternative, primitive totipotent-like stem cells with improved embryonic chimera capacities. We review the scientific challenges of deriving alternative human stem cell states with expanded embryonic potential, outline a path forward for conducting this emerging research with appropriate ethical and regulatory oversight, and defend the case of why current federal funding restrictions on this important category of biomedical research should be liberalized.
Collapse
|
141
|
Zhang X, Mandric I, Nguyen KH, Nguyen TTT, Pellegrini M, Grove JCR, Barnes S, Yang XJ. Single Cell Transcriptomic Analyses Reveal the Impact of bHLH Factors on Human Retinal Organoid Development. Front Cell Dev Biol 2021; 9:653305. [PMID: 34055784 PMCID: PMC8155690 DOI: 10.3389/fcell.2021.653305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The developing retina expresses multiple bHLH transcription factors. Their precise functions and interactions in uncommitted retinal progenitors remain to be fully elucidated. Here, we investigate the roles of bHLH factors ATOH7 and Neurog2 in human ES cell-derived retinal organoids. Single cell transcriptome analyses identify three states of proliferating retinal progenitors: pre-neurogenic, neurogenic, and cell cycle-exiting progenitors. Each shows different expression profile of bHLH factors. The cell cycle-exiting progenitors feed into a postmitotic heterozygous neuroblast pool that gives rise to early born neuronal lineages. Elevating ATOH7 or Neurog2 expression accelerates the transition from the pre-neurogenic to the neurogenic state, and expands the exiting progenitor and neuroblast populations. In addition, ATOH7 and Neurog2 significantly, yet differentially, enhance retinal ganglion cell and cone photoreceptor production. Moreover, single cell transcriptome analyses reveal that ATOH7 and Neurog2 each assert positive autoregulation, and both suppress key bHLH factors associated with the pre-neurogenic and states and elevate bHLH factors expressed by exiting progenitors and differentiating neuroblasts. This study thus provides novel insight regarding how ATOH7 and Neurog2 impact human retinal progenitor behaviors and neuroblast fate choices.
Collapse
Affiliation(s)
- Xiangmei Zhang
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Igor Mandric
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin H Nguyen
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Thao T T Nguyen
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - James C R Grove
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Barnes
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xian-Jie Yang
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
142
|
Ho WJ, Erbe R, Danilova L, Phyo Z, Bigelow E, Stein-O'Brien G, Thomas DL, Charmsaz S, Gross N, Woolman S, Cruz K, Munday RM, Zaidi N, Armstrong TD, Sztein MB, Yarchoan M, Thompson ED, Jaffee EM, Fertig EJ. Multi-omic profiling of lung and liver tumor microenvironments of metastatic pancreatic cancer reveals site-specific immune regulatory pathways. Genome Biol 2021; 22:154. [PMID: 33985562 PMCID: PMC8118107 DOI: 10.1186/s13059-021-02363-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The majority of pancreatic ductal adenocarcinomas (PDAC) are diagnosed at the metastatic stage, and standard therapies have limited activity with a dismal 5-year survival rate of only 8%. The liver and lung are the most common sites of PDAC metastasis, and each have been differentially associated with prognoses and responses to systemic therapies. A deeper understanding of the molecular and cellular landscape within the tumor microenvironment (TME) metastasis at these different sites is critical to informing future therapeutic strategies against metastatic PDAC. RESULTS By leveraging combined mass cytometry, immunohistochemistry, and RNA sequencing, we identify key regulatory pathways that distinguish the liver and lung TMEs in a preclinical mouse model of metastatic PDAC. We demonstrate that the lung TME generally exhibits higher levels of immune infiltration, immune activation, and pro-immune signaling pathways, whereas multiple immune-suppressive pathways are emphasized in the liver TME. We then perform further validation of these preclinical findings in paired human lung and liver metastatic samples using immunohistochemistry from PDAC rapid autopsy specimens. Finally, in silico validation with transfer learning between our mouse model and TCGA datasets further demonstrates that many of the site-associated features are detectable even in the context of different primary tumors. CONCLUSIONS Determining the distinctive immune-suppressive features in multiple liver and lung TME datasets provides further insight into the tissue specificity of molecular and cellular pathways, suggesting a potential mechanism underlying the discordant clinical responses that are often observed in metastatic diseases.
Collapse
Affiliation(s)
- Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
- The Johns Hopkins Cancer Convergence Institute, Baltimore, USA
- Skip Viragh Center for Pancreatic Cancer, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 4M07 Bunting Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - Rossin Erbe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, USA
| | - Ludmila Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
| | - Zaw Phyo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
| | - Emma Bigelow
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
| | | | - Dwayne L Thomas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Soren Charmsaz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
| | - Nicole Gross
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
| | - Skylar Woolman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
| | - Kayla Cruz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
| | - Rebecca M Munday
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
- Skip Viragh Center for Pancreatic Cancer, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 4M07 Bunting Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - Todd D Armstrong
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
| | - Elizabeth D Thompson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA
- Skip Viragh Center for Pancreatic Cancer, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 4M07 Bunting Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD, 21287, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA.
- The Johns Hopkins Cancer Convergence Institute, Baltimore, USA.
- Skip Viragh Center for Pancreatic Cancer, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 4M07 Bunting Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD, 21287, USA.
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 550 N Broadway Suite 1101E, Baltimore, MD, 21209, USA.
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, USA.
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
143
|
Vigouroux RJ, Duroure K, Vougny J, Albadri S, Kozulin P, Herrera E, Nguyen-Ba-Charvet K, Braasch I, Suárez R, Del Bene F, Chédotal A. Bilateral visual projections exist in non-teleost bony fish and predate the emergence of tetrapods. Science 2021; 372:150-156. [PMID: 33833117 DOI: 10.1126/science.abe7790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
In most vertebrates, camera-style eyes contain retinal ganglion cell neurons that project to visual centers on both sides of the brain. However, in fish, ganglion cells were thought to innervate only the contralateral side, suggesting that bilateral visual projections appeared in tetrapods. Here we show that bilateral visual projections exist in non-teleost fishes and that the appearance of ipsilateral projections does not correlate with terrestrial transition or predatory behavior. We also report that the developmental program that specifies visual system laterality differs between fishes and mammals, as the Zic2 transcription factor, which specifies ipsilateral retinal ganglion cells in tetrapods, appears to be absent from fish ganglion cells. However, overexpression of human ZIC2 induces ipsilateral visual projections in zebrafish. Therefore, the existence of bilateral visual projections likely preceded the emergence of binocular vision in tetrapods.
Collapse
Affiliation(s)
- Robin J Vigouroux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Karine Duroure
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Juliette Vougny
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Peter Kozulin
- Queensland Brain Institute, The University of Queensland, Building 79, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Eloisa Herrera
- Instituto de Neurociencias, Av. Ramón y Cajal s/n, San Juan de Alicante, 03550 Spain
| | - Kim Nguyen-Ba-Charvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Ingo Braasch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
| | - Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, Building 79, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France.
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France.
| |
Collapse
|
144
|
Fishman ES, Louie M, Miltner AM, Cheema SK, Wong J, Schlaeger NM, Moshiri A, Simó S, Tarantal AF, La Torre A. MicroRNA Signatures of the Developing Primate Fovea. Front Cell Dev Biol 2021; 9:654385. [PMID: 33898453 PMCID: PMC8060505 DOI: 10.3389/fcell.2021.654385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
Rod and cone photoreceptors differ in their shape, photopigment expression, synaptic connection patterns, light sensitivity, and distribution across the retina. Although rods greatly outnumber cones, human vision is mostly dependent on cone photoreceptors since cones are essential for our sharp visual acuity and color discrimination. In humans and other primates, the fovea centralis (fovea), a specialized region of the central retina, contains the highest density of cones. Despite the vast importance of the fovea for human vision, the molecular mechanisms guiding the development of this region are largely unknown. MicroRNAs (miRNAs) are small post-transcriptional regulators known to orchestrate developmental transitions and cell fate specification in the retina. Here, we have characterized the transcriptional landscape of the developing rhesus monkey retina. Our data indicates that non-human primate fovea development is significantly accelerated compared to the equivalent retinal region at the other side of the optic nerve head, as described previously. Notably, we also identify several miRNAs differentially expressed in the presumptive fovea, including miR-15b-5p, miR-342-5p, miR-30b-5p, miR-103-3p, miR-93-5p as well as the miRNA cluster miR-183/-96/-182. Interestingly, miR-342-5p is enriched in the nasal primate retina and in the peripheral developing mouse retina, while miR-15b is enriched in the temporal primate retina and increases over time in the mouse retina in a central-to-periphery gradient. Together our data constitutes the first characterization of the developing rhesus monkey retinal miRNome and provides novel datasets to attain a more comprehensive understanding of foveal development.
Collapse
Affiliation(s)
- Elizabeth S Fishman
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Mikaela Louie
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Adam M Miltner
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Simranjeet K Cheema
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Joanna Wong
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Nicholas M Schlaeger
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Ala Moshiri
- Department of Ophthalmology, University of California, Davis, Davis, CA, United States
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Alice F Tarantal
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States.,Department of Pediatrics, University of California, Davis, Davis, CA, United States.,California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
145
|
Identification of a novel GPR143 mutation in a large Chinese family with isolated foveal hypoplasia. BMC Ophthalmol 2021; 21:156. [PMID: 33785018 PMCID: PMC8011130 DOI: 10.1186/s12886-021-01905-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pathogenic variants of G-protein coupled receptor 143 (GPR143) gene often leads to ocular albinism type I (OA1) characterized by nystagmus, iris and fundus hypopigmentation, and foveal hypoplasia. In this study, we identified a novel hemizygous nonsense mutation in GPR143 that caused an atypical manifestation of OA1. Case presentation We reported a large Chinese family in which all affected individuals are afflicted with poor visual acuity and foveal hypoplasia without signs of nystagmus. Fundus examination of patients showed an absent foveal reflex and mild hypopigmentation. The fourth grade of foveal hypoplasia and the reduced area of blocked fluorescence at foveal region was detected in OCT. OCTA imaging showed the absence of foveal avascular zone. In addition, the amplitude of multifocal ERG was reduced in the central ring. Gene sequencing results revealed a novel hemizygous mutation (c.939G > A) in GPR143 gene, which triggered p.W313X. However, no iris depigmentation and nystagmus were observed among both patients and carriers. Conclusions In this study, we reported a novel nonsense mutation of GPR143 in a large family with poor visual acuity and isolated foveal hypoplasia without nystagmus, which further expanded the genetic mutation spectrum of GPR143.
Collapse
|
146
|
You M, Rong R, Zeng Z, Li H, Xia X, Ji D. Single-cell RNA sequencing: A new opportunity for retinal research. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1652. [PMID: 33754496 DOI: 10.1002/wrna.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/08/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a technology for single-cell transcriptome analysis that can be used to characterize complex dynamics of various retinal cell types. It provides deep scrutiny into the gene expression character of diverse cell types, lending insight into all the biological processes being carried out. The scRNA-seq is an alternative to regular RNA-seq, which does not achieve cellular heterogeneity. The retina, is a part of the central nervous system (CNS) and consists of six types of neurons and several types of glial cells. Studying retinal cell heterogeneity is important for understanding retinal diseases. Currently, scRNA-seq is employed to assess retina development and retinal disease pathogenesis and has improved our understanding of the relationship between the retina, its visual pathways, and the brain. Moreover, this technology provides new ideas on the sensitivity and molecular mechanisms of cell subtypes involved in retinal-related diseases. The application of scRNA-seq technology has given us a deeper understanding of the latest advancements and challenges in retinal development and diseases. We advocate scRNA-seq as one of the important tools for developing novel therapies for retinal diseases. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Development RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Mengling You
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Rong Rong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Zhou Zeng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Haibo Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
147
|
Wu F, Bard JE, Kann J, Yergeau D, Sapkota D, Ge Y, Hu Z, Wang J, Liu T, Mu X. Single cell transcriptomics reveals lineage trajectory of retinal ganglion cells in wild-type and Atoh7-null retinas. Nat Commun 2021; 12:1465. [PMID: 33674582 PMCID: PMC7935890 DOI: 10.1038/s41467-021-21704-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Atoh7 has been believed to be essential for establishing the retinal ganglion cell (RGC) lineage, and Pou4f2 and Isl1 are known to regulate RGC specification and differentiation. Here we report our further study of the roles of these transcription factors. Using bulk RNA-seq, we identify genes regulated by the three transcription factors, which expand our understanding of the scope of downstream events. Using scRNA-seq on wild-type and mutant retinal cells, we reveal a transitional cell state of retinal progenitor cells (RPCs) co-marked by Atoh7 and other genes for different lineages and shared by all early retinal lineages. We further discover the unexpected emergence of the RGC lineage in the absence of Atoh7. We conclude that competence of RPCs for different retinal fates is defined by lineage-specific genes co-expressed in the transitional state and that Atoh7 defines the RGC competence and collaborates with other factors to shepherd transitional RPCs to the RGC lineage.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jonathan E Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Julien Kann
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Donald Yergeau
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zihua Hu
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA.
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
148
|
Brodie-Kommit J, Clark BS, Shi Q, Shiau F, Kim DW, Langel J, Sheely C, Ruzycki PA, Fries M, Javed A, Cayouette M, Schmidt T, Badea T, Glaser T, Zhao H, Singer J, Blackshaw S, Hattar S. Atoh7-independent specification of retinal ganglion cell identity. SCIENCE ADVANCES 2021; 7:7/11/eabe4983. [PMID: 33712461 PMCID: PMC7954457 DOI: 10.1126/sciadv.abe4983] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/29/2021] [Indexed: 06/11/2023]
Abstract
Retinal ganglion cells (RGCs) relay visual information from the eye to the brain. RGCs are the first cell type generated during retinal neurogenesis. Loss of function of the transcription factor Atoh7, expressed in multipotent early neurogenic retinal progenitors leads to a selective and essentially complete loss of RGCs. Therefore, Atoh7 is considered essential for conferring competence on progenitors to generate RGCs. Despite the importance of Atoh7 in RGC specification, we find that inhibiting apoptosis in Atoh7-deficient mice by loss of function of Bax only modestly reduces RGC numbers. Single-cell RNA sequencing of Atoh7;Bax-deficient retinas shows that RGC differentiation is delayed but that the gene expression profile of RGC precursors is grossly normal. Atoh7;Bax-deficient RGCs eventually mature, fire action potentials, and incorporate into retinal circuitry but exhibit severe axonal guidance defects. This study reveals an essential role for Atoh7 in RGC survival and demonstrates Atoh7-dependent and Atoh7-independent mechanisms for RGC specification.
Collapse
Affiliation(s)
| | - Brian S Clark
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qing Shi
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Fion Shiau
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Dong Won Kim
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Langel
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Catherine Sheely
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Michel Fries
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, QC H3C 3J7, Canada
| | - Awais Javed
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, QC H3C 3J7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, QC H3C 3J7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Tiffany Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tudor Badea
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Research and Development Institute, Transylvania University of Brasov, School of Medicine, Brasov, Romania
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, CA, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua Singer
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Samer Hattar
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
149
|
Yamagata M, Yan W, Sanes JR. A cell atlas of the chick retina based on single-cell transcriptomics. eLife 2021; 10:e63907. [PMID: 33393903 PMCID: PMC7837701 DOI: 10.7554/elife.63907] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal structure and function have been studied in many vertebrate orders, but molecular characterization has been largely confined to mammals. We used single-cell RNA sequencing (scRNA-seq) to generate a cell atlas of the chick retina. We identified 136 cell types plus 14 positional or developmental intermediates distributed among the six classes conserved across vertebrates - photoreceptor, horizontal, bipolar, amacrine, retinal ganglion, and glial cells. To assess morphology of molecularly defined types, we adapted a method for CRISPR-based integration of reporters into selectively expressed genes. For Müller glia, we found that transcriptionally distinct cells were regionally localized along the anterior-posterior, dorsal-ventral, and central-peripheral retinal axes. We also identified immature photoreceptor, horizontal cell, and oligodendrocyte types that persist into late embryonic stages. Finally, we analyzed relationships among chick, mouse, and primate retinal cell classes and types. Our results provide a foundation for anatomical, physiological, evolutionary, and developmental studies of the avian visual system.
Collapse
Affiliation(s)
- Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
150
|
Single-cell RNA sequencing in vision research: Insights into human retinal health and disease. Prog Retin Eye Res 2020; 83:100934. [PMID: 33383180 DOI: 10.1016/j.preteyeres.2020.100934] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023]
Abstract
Gene expression provides valuable insight into cell function. As such, vision researchers have frequently employed gene expression studies to better understand retinal physiology and disease. With the advent of single-cell RNA sequencing, expression experiments provide an unparalleled resolution of information. Instead of studying aggregated gene expression across all cells in a heterogenous tissue, single-cell technology maps RNA to an individual cell, which facilitates grouping of retinal and choroidal cell types for further study. Single-cell RNA sequencing has been quickly adopted by both basic and translational vision researchers, and single-cell level gene expression has been studied in the visual systems of animal models, retinal organoids, and primary human retina, RPE, and choroid. These experiments have generated detailed atlases of gene expression and identified new retinal cell types. Likewise, single-cell RNA sequencing investigations have characterized how gene expression changes in the setting of many retinal diseases, including how choroidal endothelial cells are altered in age-related macular degeneration. In addition, this technology has allowed vision researchers to discover drivers of retinal development and model rare retinal diseases with induced pluripotent stem cells. In this review, we will overview the growing number of single-cell RNA sequencing studies in the field of vision research. We will summarize experimental considerations for designing single-cell RNA sequencing experiments and highlight important advancements in retinal, RPE, choroidal, and retinal organoid biology driven by this technology. Finally, we generalize these findings to genes involved in retinal degeneration and outline the future of single-cell expression experiments in studying retinal disease.
Collapse
|