101
|
Renedo M, Amouroux D, Albert C, Bérail S, Bråthen VS, Gavrilo M, Grémillet D, Helgason HH, Jakubas D, Mosbech A, Strøm H, Tessier E, Wojczulanis-Jakubas K, Bustamante P, Fort J. Contrasting Spatial and Seasonal Trends of Methylmercury Exposure Pathways of Arctic Seabirds: Combination of Large-Scale Tracking and Stable Isotopic Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13619-13629. [PMID: 33063513 DOI: 10.1021/acs.est.0c03285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Despite the limited direct anthropogenic mercury (Hg) inputs in the circumpolar Arctic, elevated concentrations of methylmercury (MeHg) are accumulated in Arctic marine biota. However, the MeHg production and bioaccumulation pathways in these ecosystems have not been completely unraveled. We measured Hg concentrations and stable isotope ratios of Hg, carbon, and nitrogen in the feathers and blood of geolocator-tracked little auk Alle alle from five Arctic breeding colonies. The wide-range spatial mobility and tissue-specific Hg integration times of this planktivorous seabird allowed the exploration of their spatial (wintering quarters/breeding grounds) and seasonal (nonbreeding/breeding periods) MeHg exposures. An east-to-west increase of head feather Hg concentrations (1.74-3.48 μg·g-1) was accompanied by significant spatial trends of Hg isotope (particularly Δ199Hg: 0.96-1.13‰) and carbon isotope (δ13C: -20.6 to -19.4‰) ratios. These trends suggest a distinct mixing/proportion of MeHg sources between western North Atlantic and eastern Arctic regions. Higher Δ199Hg values (+0.4‰) in northern colonies indicate an accumulation of more photochemically impacted MeHg, supporting shallow MeHg production and bioaccumulation in high Arctic waters. The combination of seabird tissue isotopic analysis and spatial tracking helps in tracing the MeHg sources at various spatio-temporal scales.
Collapse
Affiliation(s)
- Marina Renedo
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | - Céline Albert
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Sylvain Bérail
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | | | - Maria Gavrilo
- Association of Maritime Heritage: Sustain and Explore, 199106 Saint Petersburg, Russia
| | - David Grémillet
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois, France
- Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | | | - Dariusz Jakubas
- Faculty of Biology, Gdańsk University, 80-308 Gdańsk, Poland
| | - Anders Mosbech
- Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark
| | | | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | | | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
102
|
Sources and Toxicity of Mercury in the San Francisco Bay Area, Spanning California and Beyond. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2020; 2020:8184614. [PMID: 33014081 PMCID: PMC7519205 DOI: 10.1155/2020/8184614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 07/13/2020] [Accepted: 08/19/2020] [Indexed: 12/23/2022]
Abstract
This report synthesizes and evaluates published scientific literature on the environmental occurrence and biomagnification of mercury with emphasis on the San Francisco Bay Area (SFBA), California. Mercury forms various compounds, well known for their toxicity in humans and environmental ecosystems. Elemental mercury is transported and distributed by air, water, and sediments. Through the metabolic processes of algae and bacteria, mercury is converted into organic compounds, such as methylmercury (MeHg), which then bioaccumulates up through trophic levels. In fish, it is found primarily in skeletal muscle, while in humans, the primary target organs are the brain and kidneys. Health concerns exist regarding bioaccumulation of mercury in humans. This paper reviews the known anthropogenic sources of mercury contamination, including atmospheric deposition through aerial transport from coal burning power plants, cement production, and residual contaminants of mercury from gold mining, as well as mercury-containing waste from silver amalgams emitted from dental offices into waterways. Although tools exist for measuring mercury levels in hair, breast milk, urine, blood, and feces in humans, current diagnostic tools are inadequate in measuring total mercury load, including deposited mercury in tissues. Additionally, insufficient attention is being paid to potential synergistic impacts of mercury interaction with multipliers such as lead, cadmium, and aluminum. We provide specific data on methylmercury concentrations at different trophic levels, followed by recommendations for reducing the level of mercury in the SFBA in order to protect the health of humans and other species.
Collapse
|
103
|
Tang Z, Fan F, Deng S, Wang D. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - A critical review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110950. [PMID: 32800226 DOI: 10.1016/j.ecoenv.2020.110950] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to methylmercury (MeHg) through rice consumption is raising health concerns. It has long been recognized that MeHg found in rice grain predominately originated from paddy soil. Anaerobic conditions in paddy fields promote Hg methylation, potentially leading to high MeHg concentrations in rice grain. Understanding the transformation and migration of Hg in the rice paddy system, as well as the effects of farming activities, are keys to assessing risks and developing potential mitigation strategies. Therefore, this review examines the current state of knowledge on: 1) sources of Hg in paddy fields; 2) how MeHg and inorganic Hg (IHg) are transformed (including abiotic and biotic processes); 3) how IHg and MeHg enter and translocate in rice plants; and 4) how regular farming activities (including the application of fertilizer, cultivation methods, choice of cultivar), affect Hg cycling in the paddy field system. Current issues and controversies on Hg transformation and migration in the paddy field system are also discussed.
Collapse
Affiliation(s)
- Zhenya Tang
- Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China.
| | - Fangling Fan
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China.
| | - Shiping Deng
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA.
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, College of Resources and Environment, Southwest University, Chongqing, China.
| |
Collapse
|
104
|
Queirós JP, Bustamante P, Cherel Y, Coelho JP, Seco J, Roberts J, Pereira E, Xavier JC. Cephalopod beak sections used to trace mercury levels throughout the life of cephalopods: The giant warty squid Moroteuthopsis longimana as a case study. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105049. [PMID: 33070930 DOI: 10.1016/j.marenvres.2020.105049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Cephalopods represent an important pathway for mercury transfer through food webs. Due to the general difficulties in capturing oceanic squid, beaks found in the diet of top predators can be used to study their life-cycles and ecological role. Using upper beaks of the giant warty squid Moroteuthopsis longimana (major prey in the Southern Ocean), we describe a method to assess mercury concentrations along the life of cephalopods through the segmentary analysis of beak sections (i.e. tip of the rostrum and subsections along the hood). Distinct total mercury concentrations in the different subsections support that beaks can be used to study mercury levels in different periods of cephalopods' life-cycle. Mercury values in the anterior (1.3-7.9 μg kg-1 dw) and posterior (7.8-12.5 μg kg-1 dw) subsections of the hood reflect juvenile and adult stages, respectively. Furthermore, these results confirm that mercury bioaccumulates continuously throughout the individuals' life, with adults doubling their mercury concentrations to juveniles.
Collapse
Affiliation(s)
- José P Queirós
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000-456, Coimbra, Portugal.
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - João P Coelho
- Departamento de Biologia & CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - José Seco
- Departamento de Química & CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Pelagic Ecology Research Group, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, United Kingdom
| | - Jim Roberts
- NIWA - National Institute for Water and Atmospheric Research, 301 Evans Bay Parade, Hataitai, Wellington, 6021, New Zealand
| | - Eduarda Pereira
- Departamento de Química & CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000-456, Coimbra, Portugal; British Antarctic Survey, NERC, High Cross, Madingley Road, CB3 0ET, Cambridge, UK
| |
Collapse
|
105
|
Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, Andersson AF, Buck M, Björn E. Deltaproteobacteria and Spirochaetes-Like Bacteria Are Abundant Putative Mercury Methylators in Oxygen-Deficient Water and Marine Particles in the Baltic Sea. Front Microbiol 2020; 11:574080. [PMID: 33072037 PMCID: PMC7536318 DOI: 10.3389/fmicb.2020.574080] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg), a neurotoxic compound biomagnifying in aquatic food webs, can be a threat to human health via fish consumption. However, the composition and distribution of the microbial communities mediating the methylation of mercury (Hg) to MeHg in marine systems remain largely unknown. In order to fill this knowledge gap, we used the Baltic Sea Reference Metagenome (BARM) dataset to study the abundance and distribution of the genes involved in Hg methylation (the hgcAB gene cluster). We determined the relative abundance of the hgcAB genes and their taxonomic identity in 81 brackish metagenomes that cover spatial, seasonal and redox variability in the Baltic Sea water column. The hgcAB genes were predominantly detected in anoxic water, but some hgcAB genes were also detected in hypoxic and normoxic waters. Phylogenetic analysis identified putative Hg methylators within Deltaproteobacteria, in oxygen-deficient water layers, but also Spirochaetes-like and Kiritimatiellaeota-like bacteria. Higher relative quantities of hgcAB genes were found in metagenomes from marine particles compared to free-living communities in anoxic water, suggesting that such particles are hotspot habitats for Hg methylators in oxygen-depleted seawater. Altogether, our work unveils the diversity of the microorganisms with the potential to mediate MeHg production in the Baltic Sea and pinpoint the important ecological niches for these microorganisms within the marine water column.
Collapse
Affiliation(s)
- Eric Capo
- Department of Chemistry, Umeå University, Umeå, Sweden.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Andrea G Bravo
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Caiyan Feng
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders F Andersson
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
106
|
Wang CH, Gulmann LK, Zhang T, Farfan GA, Hansel CM, Sievert SM. Microbial colonization of metal sulfide minerals at a diffuse-flow deep-sea hydrothermal vent at 9°50'N on the East Pacific Rise. GEOBIOLOGY 2020; 18:594-605. [PMID: 32336020 DOI: 10.1111/gbi.12396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Metal sulfide minerals, including mercury sulfides (HgS), are widespread in hydrothermal vent systems where sulfur-oxidizing microbes are prevalent. Questions remain as to the impact of mineral composition and structure on sulfur-oxidizing microbial populations at deep-sea hydrothermal vents, including the possible role of microbial activity in remobilizing elemental Hg from HgS. In the present study, metal sulfides varying in metal composition, structure, and surface area were incubated for 13 days on and near a diffuse-flow hydrothermal vent at 9°50'N on the East Pacific Rise. Upon retrieval, incubated minerals were examined by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and epifluorescence microscopy (EFM). DNA was extracted from mineral samples, and the 16S ribosomal RNA gene sequenced to characterize colonizing microbes. Sulfur-oxidizing genera common to newly exposed surfaces (Sulfurimonas, Sulfurovum, and Arcobacter) were present on all samples. Differences in their relative abundance between and within incubation sites point to constraining effects of the immediate environment and the minerals themselves. Greater variability in colonizing community composition on off-vent samples suggests that the bioavailability of mineral-derived sulfide (as influenced by surface area, crystal structure, and reactivity) exerted greater control on microbial colonization in the ambient environment than in the vent environment, where dissolved sulfide is more abundant. The availability of mineral-derived sulfide as an electron donor may thus be a key control on the activity and proliferation of deep-sea chemosynthetic communities, and this interpretation supports the potential for microbial dissolution of HgS at hydrothermal vents.
Collapse
Affiliation(s)
- Chloe H Wang
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Chemistry, Haverford College, Haverford, PA, USA
| | - Lara K Gulmann
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Tong Zhang
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, China
| | - Gabriela A Farfan
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Mineral Sciences, Smithsonian Institution, Washington, DC, USA
| | - Colleen M Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Stefan M Sievert
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
107
|
Teixeira G, Raimundo J, Goulart J, Costa V, Menezes GM, Caetano M, Pacheco M, Martins I. Hg and Se composition in demersal deep-sea fish from the North-East Atlantic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33649-33657. [PMID: 32358755 DOI: 10.1007/s11356-020-08970-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
It has been emphasized that seafood consumers may have a higher risk of mercury (Hg) exposure. Nevertheless, the co-occurrence of selenium (Se) in organisms may affect the toxicity and bioavailability of Hg. In this work, we aim to demonstrate the possible role of Se as a potential protective element against Hg in muscle and liver tissues of three demersal deep-sea fish species: common mora Mora moro, birdbeak dogfish Deania calcea, and smooth lanternshark Etmopterus pusillus. Comparing species, the birdbeak dogfish D. calcea showed the highest Hg concentrations, the lowest Se levels, the lowest mean Se:Hg molar ratio, a negative HBV-Se index, and no correlation between total length. On the other hand, smooth lanternshark E. pusillus showed the lowest Hg concentrations, the highest Se concentrations, the highest mean Se:Hg molar ratio, a positive HBV-Se index, and a significant positive correlation between total length and Se concentrations in muscle. Comparing tissues, the common mora Mora moro seems to accumulate more Hg and Se in liver than shark species D. calcea and E. pusillus that showed to accumulate Hg and Se preferentially in muscle. Our results indicate that these three species for having Hg concentrations near and above the EU regulatory thresholds and for presenting low Se:Hg ratios, and negative (or low positive) HBV-Se index may pose a real risk of Hg toxicity for the consumer.
Collapse
Affiliation(s)
- Guilherme Teixeira
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Raimundo
- IPMA- Portuguese Institute for Sea and Atmosphere, Av. Brasília, 1449-006, Lisbon, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Joana Goulart
- IMAR- Department of Oceanography and Fisheries, University of Azores, 9901-862, Horta, Portugal
- OKEANOS- Research Unit- Faculty of Science and Technology, University of the Azores, 9901-862, Horta, Portugal
| | - Valentina Costa
- IMAR- Department of Oceanography and Fisheries, University of Azores, 9901-862, Horta, Portugal
- OKEANOS- Research Unit- Faculty of Science and Technology, University of the Azores, 9901-862, Horta, Portugal
| | - Gui M Menezes
- OKEANOS- Research Unit- Faculty of Science and Technology, University of the Azores, 9901-862, Horta, Portugal
| | - Miguel Caetano
- IPMA- Portuguese Institute for Sea and Atmosphere, Av. Brasília, 1449-006, Lisbon, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Inês Martins
- IMAR- Department of Oceanography and Fisheries, University of Azores, 9901-862, Horta, Portugal.
- OKEANOS- Research Unit- Faculty of Science and Technology, University of the Azores, 9901-862, Horta, Portugal.
| |
Collapse
|
108
|
Garnero PL, Bistoni MDLA, Monferran MV. Trace element concentrations in six fish species from freshwater lentic environments and evaluation of possible health risks according to international standards of consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27598-27608. [PMID: 32394256 DOI: 10.1007/s11356-020-08756-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Multi-element concentrations (Al, As, Cd, Cr, Hg, Ni, Pb, Se, and Sr) were analyzed in the muscle of six fish species (Hoplias malabaricus, Oligosarcus jenynsii, Rhamdia quelen, Bryconamericus iheringii, Astyanax fasciatus, and Odontesthes bonariensis) with different diets and habits from the Río Tercero Reservoir (RTR) in Córdoba, Argentina, during the wet and dry seasons. Besides, potential human health risks, associated with the consumption of these elements, have been assessed considering the average daily intake (EDI) in children and adults. Additionally, the target hazard quotient (THQ) and carcinogenic risk (CR) were evaluated taking into account the intake by the general population, fishermen, and consumption frequency recommended by the American Heart Association (AHA), the maximum scientific reference in cardiology in the USA and worldwide. All species presented quantifiable values in muscle for all the analyzed elements (Al, As, Cr, Hg, Ni, Se, and Sr), except for Cd and Pb, being Al and Sr the most accumulated elements in all species in both seasons. The consumption of edible muscles of the species studied in this reservoir represents a toxicological risk to humans. Mercury and As were the main elements that presented a health risk through the consumption of fish. Their concentrations in most fish species were above the maximum daily allowable concentrations, and THQ values were several times greater than 1. In addition, according to AHA recommendations, the cancer risk caused by As was greater than the acceptable value of 10-4 in all species studied, and in both seasons, with the exception of A. fasciatus, in the rainy season. These results indicate that the consumption of fish from the RTR exposes the inhabitants to possible health risks, especially when considering the consumption frequency recommended by the AHA. Therefore, fish intake from this reservoir should be limited to minimize potential risks to the health of consumers. Finally, the results of this study are useful for controlling pollution and developing preventive and palliative policies to protect populations in contact not only with the reservoir but also with other areas of the world with similar conditions.
Collapse
Affiliation(s)
- Paola L Garnero
- Instituto de Diversidad y Ecología Animal (IDEA) (CONICET) and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina
| | - María de Los Angeles Bistoni
- Instituto de Diversidad y Ecología Animal (IDEA) (CONICET) and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina
| | - Magdalena V Monferran
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba (5000), Córdoba, Argentina.
| |
Collapse
|
109
|
Queirós JP, Hill SL, Pinkerton M, Vacchi M, Coelho JP, Pereira E, Ramos JA, Seco J, Stevens DW, Xavier JC. High mercury levels in Antarctic toothfish Dissostichus mawsoni from the Southwest Pacific sector of the Southern Ocean. ENVIRONMENTAL RESEARCH 2020; 187:109680. [PMID: 32460095 DOI: 10.1016/j.envres.2020.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Mercury is a bioaccumulating toxic pollutant which can reach humans through the consumption of contaminated food (e.g. marine fish). Although the Southern Ocean is often portrayed as a pristine ecosystem, its fishery products are not immune to mercury contamination. We analysed mercury concentration (organic and inorganic forms - T-Hg) in the muscle of Antarctic toothfish, Dissostichus mawsoni, a long-lived top predator which supports a highly profitable fishery. Our samples were collected in three fishing areas (one seamount and two on the continental slope) in the Southwest Pacific Sector of the Southern Ocean during the 2016/2017 fishing season. Mercury levels and the size range of fish varied between fishing areas, with the highest levels (0.68 ± 0.45 mg kg-1 wwt) occurring on the Amundsen Sea seamount where catches were dominated by larger, older fish. The most parsimonious model of mercury concentration included both age and habitat (seamount vs continental slope) as explanatory variables. Mean mercury levels for each fishing area were higher than those in all previous studies of D. mawsoni, with mean values for the Amundsen Sea seamount exceeding the 0.5 mg kg-1 food safety threshold for the first time. It might therefore be appropriate to add D. mawsoni to the list of taxa, such as swordfish and sharks, which are known to exceed this threshold. This apparent increase in mercury levels suggests a recent contamination event which affected the Southwest Pacific sector, including both the Amundsen and Dumont D'Urville seas.
Collapse
Affiliation(s)
- José P Queirós
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000-456, Coimbra, Portugal.
| | - Simeon L Hill
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, CB3 0ET, Cambridge, UK
| | - Matt Pinkerton
- NIWA - National Institute for Water and Atmospheric Research, 301 Evans Bay Parade, Hataitai, Wellington, 6021, New Zealand
| | - Marino Vacchi
- ISMAR - Institute of Marine Science, CNR Genova, 16149, Genova, Italy
| | - João P Coelho
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Quimica & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000-456, Coimbra, Portugal
| | - José Seco
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; School of Biology, University of St Andrews KY16 9ST, Scotland, UK
| | - Darren W Stevens
- NIWA - National Institute for Water and Atmospheric Research, 301 Evans Bay Parade, Hataitai, Wellington, 6021, New Zealand
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000-456, Coimbra, Portugal; British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, CB3 0ET, Cambridge, UK
| |
Collapse
|
110
|
Traceable Determination of Atmospheric Mercury Using Iodinated Activated Carbon Traps. ATMOSPHERE 2020. [DOI: 10.3390/atmos11080780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Traceable determination of atmospheric mercury (Hg) represents a major analytical problem due to low environmental concentrations. Although Hg pre-concentration on activated carbon (AC) traps is a simple method for sample collection, Hg determination is difficult due to a complex matrix that cannot be easily digested using wet chemistry. Two approaches for Hg loading on iodinated AC, the purging of elemental mercury (Hg0) and the spiking a solution of standard reference material (SRM), were used to test whether spiking SRM solution on AC can be used for the traceable determination of atmospheric mercury collected as Hg0. Mercury on AC was determined using atomic absorption spectrometry after sample combustion. The detector’s response for both loading methods was identical in a wide concentration range, indicating that the spiking of SRM on AC can, indeed, be used for the calibration of analytical systems used for the determination of atmospheric mercury. This was confirmed by the determination of Hg in a real atmospheric sample collected on an iodinated AC trap and using an SRM spiking calibration. Different ACs were compared regarding their ability to quantitatively capture Hg while having the lowest breakthrough. Use of a specific impregnating solution probably converted Hg on AC to Millon’s iodide, as estimated from the fractionation thermogram.
Collapse
|
111
|
Tada Y, Marumoto K, Takeuchi A. Nitrospina-Like Bacteria Are Potential Mercury Methylators in the Mesopelagic Zone in the East China Sea. Front Microbiol 2020; 11:1369. [PMID: 32719662 PMCID: PMC7347909 DOI: 10.3389/fmicb.2020.01369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
In natural environments, the production of neurotoxic and bioaccumulative methylmercury (MeHg) is mediated by microorganisms carrying the genes hgcA and hgcB. However, the contribution of these microorganisms to mercury (Hg) methylation or MeHg accumulation in the ocean is poorly understood. Here we determined the total Hg (THg) and MeHg concentrations in seawater samples and conducted a metagenomic survey of the hgcAB genes and functional modules involved in metabolic pathways in the East China Sea (ECS). In the metagenomic analyses, we used paired-end reads and assembled contigs for hgcAB enumeration and phylogenetic analyses in the seawater column. To evaluate the relative abundance of hgcAB in the metagenomic data, we estimated the abundance of recA (single-copy gene of bacteria) as well and then compared them. Moreover, the profiles of prokaryotic community composition were analyzed by 16S rRNA gene (V4 region) deep-sequencing. In the mesopelagic layers, the hgcA sequences were detected, and there was a positive correlation between hgcA abundance relative to the recA and MeHg concentrations. Thus, the quantification of the hgcA sequences could provide valuable information to evaluate the potential environments of microbial MeHg accumulation in the seawater column. A phylogenetic analysis using the assembled contigs revealed that all of the hgcA sequences in the mesopelagic layers were affiliated with Nitrospina-like sequences. The 16S rRNA gene analysis revealed that Nitrospinae were abundant in the mesopelagic layers. Although the lineages of Deltaproteobacteria, Firmicutes, and Spirochaetes were detected in the seawater column, their hgcAB sequences were not detected in our metagenomes, despite the fact that they are closely related to previously identified Hg methylators. The metabolic pathway analysis revealed that the modules related to sulfur and methane metabolism were prominent in the mesopelagic layers. However, no hgcA sequences affiliated with sulfate-reducing bacteria (SRB) or methanogens were detected in these layers, suggesting that these bacteria could not be strongly involved in the Hg accumulation in the seawater column. Our results indicate that Nitrospina-like bacteria with hgcAB genes could play a critical role in microbial Hg accumulation in the oxygenated mesopelagic layers of the ECS.
Collapse
Affiliation(s)
- Yuya Tada
- Department of Environment and Public Health, National Institute for Minamata Disease, Kumamoto, Japan
| | - Kohji Marumoto
- Department of Environment and Public Health, National Institute for Minamata Disease, Kumamoto, Japan
| | - Akinori Takeuchi
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Ibaraki, Japan
| |
Collapse
|
112
|
Sommar J, Osterwalder S, Zhu W. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg 0). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137648. [PMID: 32182462 DOI: 10.1016/j.scitotenv.2020.137648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 05/26/2023]
Abstract
The atmosphere is the major transport pathway for distribution of mercury (Hg) globally. Gaseous elemental mercury (GEM, hereafter Hg0) is the predominant form in both anthropogenic and natural emissions. Evaluation of the efficacy of reductions in emissions set by the UN's Minamata Convention (UN-MC) is critically dependent on the knowledge of the dynamics of the global Hg cycle. Of these dynamics including e.g. red-ox reactions, methylation-demethylation and dry-wet deposition, poorly constrained atmosphere-surface Hg0 fluxes especially limit predictability of the timescales of its global biogeochemical cycle. This review focuses on Hg0 flux field observational studies, namely the theory, applications, strengths, and limitations of the various experimental methodologies applied to gauge the exchange flux and decipher active sub-processes. We present an in-depth review, a comprehensive literature synthesis, and methodological and instrumentation advances for terrestrial and marine Hg0 flux studies in recent years. In particular, we outline the theory of a wide range of measurement techniques and detail the operational protocols. Today, the most frequently used measurement techniques to determine the net Hg0 flux (>95% of the published flux data) are dynamic flux chambers for small-scale and micrometeorological approaches for large-scale measurements. Furthermore, top-down approaches based on Hg0 concentration measurements have been applied as tools to better constrain Hg emissions as an independent way to e.g. challenge emission inventories. This review is an up-dated, thoroughly revised edition of Sommar et al. 2013 (DOI: 10.1080/10643389.2012.671733). To the tabulation of >100 cited flux studies 1988-2009 given in the former publication, we have here listed corresponding studies published during the last decade with a few exceptions (2008-2019). During that decade, Hg stable isotope ratios of samples involved in atmosphere-terrestrial interaction is at hand and provide in combination with concentration and/or flux measurements novel constraints to quantitatively and qualitatively assess the bi-directional Hg0 flux. Recent efforts in the development of relaxed eddy accumulation and eddy covariance Hg0 flux methods bear the potential to facilitate long-term, ecosystem-scale flux measurements to reduce the prevailing large uncertainties in Hg0 flux estimates. Standardization of methods for Hg0 flux measurements is crucial to investigate how land-use change and how climate warming impact ecosystem-specific Hg0 sink-source characteristics and to validate frequently applied model parameterizations describing the regional and global scale Hg cycle.
Collapse
Affiliation(s)
- Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
113
|
Villar E, Cabrol L, Heimbürger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020. [PMID: 32090489 DOI: 10.1101/648329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Methylmercury is a neurotoxin that bioaccumulates from seawater to high concentrations in marine fish, putting human and ecosystem health at risk. High methylmercury levels have been found in the oxic subsurface waters of all oceans, but only anaerobic microorganisms have been shown to efficiently produce methylmercury in anoxic environments. The microaerophilic nitrite-oxidizing bacteria Nitrospina have previously been suggested as possible mercury methylating bacteria in Antarctic sea ice. However, the microorganisms responsible for processing inorganic mercury into methylmercury in oxic seawater remain unknown. Here, we show metagenomic and metatranscriptomic evidence that the genetic potential for microbial methylmercury production is widespread in oxic seawater. We find high abundance and expression of the key mercury methylating genes hgcAB across all ocean basins, corresponding to the taxonomic relatives of known mercury methylating bacteria from Deltaproteobacteria, Firmicutes and Chloroflexi. Our results identify Nitrospina as the predominant and widespread microorganism carrying and actively expressing hgcAB. The highest hgcAB abundance and expression occurs in the oxic subsurface waters of the global ocean where the highest MeHg concentrations are typically observed.
Collapse
Affiliation(s)
- Emilie Villar
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Sorbonne Université, Université Pierre et Marie Curie - Paris 6, CNRS, UMR 7144 (AD2M), Station Biologique de Roscoff, Place Georges Teissier, CS90074, Roscoff, 29688, France
| | - Léa Cabrol
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Instituto de Ecologia y Biodiversidad, Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| |
Collapse
|
114
|
Villar E, Cabrol L, Heimbürger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:277-287. [PMID: 32090489 DOI: 10.1111/1758-2229.12829] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 05/16/2023]
Abstract
Methylmercury is a neurotoxin that bioaccumulates from seawater to high concentrations in marine fish, putting human and ecosystem health at risk. High methylmercury levels have been found in the oxic subsurface waters of all oceans, but only anaerobic microorganisms have been shown to efficiently produce methylmercury in anoxic environments. The microaerophilic nitrite-oxidizing bacteria Nitrospina have previously been suggested as possible mercury methylating bacteria in Antarctic sea ice. However, the microorganisms responsible for processing inorganic mercury into methylmercury in oxic seawater remain unknown. Here, we show metagenomic and metatranscriptomic evidence that the genetic potential for microbial methylmercury production is widespread in oxic seawater. We find high abundance and expression of the key mercury methylating genes hgcAB across all ocean basins, corresponding to the taxonomic relatives of known mercury methylating bacteria from Deltaproteobacteria, Firmicutes and Chloroflexi. Our results identify Nitrospina as the predominant and widespread microorganism carrying and actively expressing hgcAB. The highest hgcAB abundance and expression occurs in the oxic subsurface waters of the global ocean where the highest MeHg concentrations are typically observed.
Collapse
Affiliation(s)
- Emilie Villar
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Sorbonne Université, Université Pierre et Marie Curie - Paris 6, CNRS, UMR 7144 (AD2M), Station Biologique de Roscoff, Place Georges Teissier, CS90074, Roscoff, 29688, France
| | - Léa Cabrol
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Instituto de Ecologia y Biodiversidad, Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| |
Collapse
|
115
|
Ci Z, Peng F, Xue X, Zhang X. Permafrost Thaw Dominates Mercury Emission in Tibetan Thermokarst Ponds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5456-5466. [PMID: 32294379 DOI: 10.1021/acs.est.9b06712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Increasing evidence shows that warming is driving Hg release from the cryosphere. However, Hg cycling in thawing permafrost is less understood to date. Here we show that permafrost thaw dominantly supplied no-run thermokarst ponds by permafrost melt waters (PMWs) with high concentration of photoreducible Hg (PRHg) and subsequently controlled Hg(0) emissions in the Tibetan Plateau. This study was motivated by field survey suggesting that thermokarst ponds as recipient aquatic systems of PMWs could be an active converter of PRHg to Hg(0). Annual Hg mass balance in three seasonally ice-covered thermokarst ponds suggests that PMWs were the dominant input (81.2% to 91.2%) of PRHg in all three thermokarst ponds, and PRHg input would be a constraint of Hg(0) emission owing to the fast photoreduction of PRHg to Hg(0) in the water column. Annual Hg(0) emission in the thermokarst ponds of study region was conservatively estimated to increase by 15% over the past half century. Our findings highlight that climate-induced landscape disturbances and changes in hydrogeochemical processes in climate-sensitive permafrost will quickly and in situ drive Hg stored in permafrost for a very long time into the modern day Hg cycle, which potentially offsets the anthropogenic Hg mitigation policies.
Collapse
Affiliation(s)
- Zhijia Ci
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fei Peng
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- International Platform for Dryland Research and Education, Tottori University, Tottori 680-0001, Japan
| | - Xian Xue
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
116
|
Bravo AG, Cosio C. Biotic formation of methylmercury: A bio-physico-chemical conundrum. LIMNOLOGY AND OCEANOGRAPHY 2020; 65:1010-1027. [PMID: 32612306 PMCID: PMC7319479 DOI: 10.1002/lno.11366] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 05/11/2023]
Abstract
Mercury (Hg) is a natural and widespread trace metal, but is considered a priority pollutant, particularly its organic form methylmercury (MMHg), because of human's exposure to MMHg through fish consumption. Pioneering studies showed the methylation of divalent Hg (HgII) to MMHg to occur under oxygen-limited conditions and to depend on the activity of anaerobic microorganisms. Recent studies identified the hgcAB gene cluster in microorganisms with the capacity to methylate HgII and unveiled a much wider range of species and environmental conditions producing MMHg than previously expected. Here, we review the recent knowledge and approaches used to understand HgII-methylation, microbial biodiversity and activity involved in these processes, and we highlight the current limits for predicting MMHg concentrations in the environment. The available data unveil the fact that HgII methylation is a bio-physico-chemical conundrum in which the efficiency of biological HgII methylation appears to depend chiefly on HgII and nutrients availability, the abundance of electron acceptors such as sulfate or iron, the abundance and composition of organic matter as well as the activity and structure of the microbial community. An increased knowledge of the relationship between microbial community composition, physico-chemical conditions, MMHg production, and demethylation is necessary to predict variability in MMHg concentrations across environments.
Collapse
Affiliation(s)
- Andrea G. Bravo
- Department of Marine Biology and Oceanography, Institute of Marine SciencesSpanish National Research Council (CSIC)BarcelonaSpain
| | - Claudia Cosio
- Université de Reims Champagne Ardennes, UMR‐I 02 INERIS‐URCA‐ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiquesReimsFrance
| |
Collapse
|
117
|
Shoham-Frider E, Gertner Y, Guy-Haim T, Herut B, Kress N, Shefer E, Silverman J. Legacy groundwater pollution as a source of mercury enrichment in marine food web, Haifa Bay, Israel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136711. [PMID: 31981872 DOI: 10.1016/j.scitotenv.2020.136711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Haifa Bay (HB), located along the northern Mediterranean shore of Israel was polluted with Hg from a chlor-alkali plant (ECI) and from the Qishon River industries, for decades. From the mid-1980s industrial Hg loads into HB decreased dramatically until their complete cessation in 2000. Consequently, concentrations in marine biota and sediments decreased almost to reference levels. However, during 2006-2014, an unexpected increase of total Hg (THg) concentrations was observed in three commercial fish species collected at northern HB (N.HB). To determine the cause of this increase, THg and methyl Hg (MeHg) were measured in seawater, coastal groundwater, suspended particulate matter, plankton, macroalgae, benthic fauna, and in marine and beach sediments. THg in groundwater and sediments from the vicinity of ECI were extremely high (up to 251 μg L-1 and 2200 ng g-1, respectively). MeHg concentrations in groundwater were low and constituted <0.1% of THg, except in the surf zone opposite the ECI, where MeHg constituted 0.2% of the THg. THg and MeHg concentrations were consistently higher in benthic biota and plankton from N.HB and northwards, compared to corresponding samples from southern HB (S.HB) and the reference site (RS). MeHg in bivalves and sponges from N.HB and SZ was higher than from S.HB and RS, despite having similar THg concentrations, which suggests a stronger source of MeHg in N.HB. Our findings suggest that the discharge into N.HB of Hg polluted groundwater under the ECI increased during the period 2006-2014. The Hg was assimilated by plankton or adsorbed onto inorganic particles, which were further ingested by benthic and pelagic consumers, as well as transported northward with the alongshore current. These findings demonstrate for the first time the potential of relic pollution in groundwater to increase heavy metal burdens in local marine food webs.
Collapse
Affiliation(s)
- E Shoham-Frider
- Israel Oceanographic and Limnological Research, The National Institute of Oceanography, Haifa 31080, Israel.
| | - Y Gertner
- Israel Oceanographic and Limnological Research, The National Institute of Oceanography, Haifa 31080, Israel
| | - T Guy-Haim
- Israel Oceanographic and Limnological Research, The National Institute of Oceanography, Haifa 31080, Israel
| | - B Herut
- Israel Oceanographic and Limnological Research, The National Institute of Oceanography, Haifa 31080, Israel
| | - N Kress
- Israel Oceanographic and Limnological Research, The National Institute of Oceanography, Haifa 31080, Israel
| | - E Shefer
- Israel Oceanographic and Limnological Research, The National Institute of Oceanography, Haifa 31080, Israel
| | - J Silverman
- Israel Oceanographic and Limnological Research, The National Institute of Oceanography, Haifa 31080, Israel
| |
Collapse
|
118
|
Hu H, Wang B, Bravo AG, Björn E, Skyllberg U, Amouroux D, Tessier E, Zopfi J, Feng X, Bishop K, Nilsson MB, Bertilsson S. Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121967. [PMID: 31901845 DOI: 10.1016/j.jhazmat.2019.121967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Peatlands are globally important ecosystems where inorganic mercury is converted to bioaccumulating and highly toxic methylmercury, resulting in high risks of methylmercury exposure in adjacent aquatic ecosystems. Although biological mercury methylation has been known for decades, there is still a lack of knowledge about the organisms involved in mercury methylation and the drivers controlling their methylating capacity. In order to investigate the metabolisms responsible for mercury methylation and methylmercury degradation as well as the controls of both processes, we studied a chronosequence of boreal peatlands covering fundamentally different biogeochemical conditions. Potential mercury methylation rates decreased with peatland age, being up to 53 times higher in the youngest peatland compared to the oldest. Methylation in young mires was driven by sulfate reduction, while methanogenic and syntrophic metabolisms became more important in older systems. Demethylation rates were also highest in young wetlands, with a gradual shift from biotic to abiotic methylmercury degradation along the chronosequence. Our findings reveal how metabolic shifts drive mercury methylation and its ratio to demethylation as peatlands age.
Collapse
Affiliation(s)
- Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236 Uppsala, Sweden.
| | - Baolin Wang
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - David Amouroux
- CNRS/Univ Pau & Pays Adour/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Materiaux-mira, UMR5254, 64000, Pau, France
| | - Emmanuel Tessier
- CNRS/Univ Pau & Pays Adour/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Materiaux-mira, UMR5254, 64000, Pau, France
| | - Jakob Zopfi
- Department of Environmental Sciences, Biogeochemistry, University of Basel, CH-4056 Basel, Switzerland
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236 Uppsala, Sweden; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| |
Collapse
|
119
|
Rodríguez-Gutiérrez J, Galván-Magaña F, Jacobo-Estrada T, Arreola-Mendoza L, Sujitha SB, Jonathan MP. Mercury-selenium concentrations in silky sharks (Carcharhinus falciformis) and their toxicological concerns in the southern Mexican Pacific. MARINE POLLUTION BULLETIN 2020; 153:111011. [PMID: 32275557 DOI: 10.1016/j.marpolbul.2020.111011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Mercury- Selenium concentrations were determined in 136 samples of Carcharhinus falciformis (Silky shark) sampled from the Chiapas coast, Gulf of Tehuantepec, Mexico during August 2014 - January 2015. Average Hg concentrations in neonates and juveniles (all values in μg g-1 w.w.) were found to be 0.115 and 0.129 respectively, below the maximum permissible limit of 1 μg g-1 set by the Mexican government. However, excess Se values (all values in μg g-1 d.w.) observed in neonates (5.366) and juveniles (2.815) prove to maintain antioxidant ability by inducing Hg excretion and reducing its toxicity. Calculated Biomagnification Factor (BMFTL) denoted high values for the prey C.hippurus, signifying absolute magnification of Hg and Se along the food chain. This study provides key toxicological evidences of Hg- Se interaction and their effects in marine systems and human health.
Collapse
Affiliation(s)
- Juanita Rodríguez-Gutiérrez
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Avenida IPN, s/n Colonia Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Avenida IPN, s/n Colonia Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico
| | - Tania Jacobo-Estrada
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, 07340 Ciudad de México, Mexico
| | - Laura Arreola-Mendoza
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, 07340 Ciudad de México, Mexico.
| | - S B Sujitha
- Instituto Politécnico Nacional (IPN), Centro Mexicano para la Producción más Limpia (CMP+L), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Gustavo A. Madero, 07340 Ciudad de México, Mexico
| | - M P Jonathan
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, 07340 Ciudad de México, Mexico
| |
Collapse
|
120
|
Yu X, Khan S, Khan A, Tang Y, Nunes LM, Yan J, Ye X, Li G. Methyl mercury concentrations in seafood collected from Zhoushan Islands, Zhejiang, China, and their potential health risk for the fishing community: Capsule: Methyl mercury in seafood causes potential health risk. ENVIRONMENT INTERNATIONAL 2020; 137:105420. [PMID: 32070806 DOI: 10.1016/j.envint.2019.105420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Seafood is an important exposure route for mercury, especially methyl mercury (MeHg). Therefore, we quantified MeHg concentrations in 69 species of seafood including fish, crustaceans and mollusks collected from Zhoushan Islands, China. MeHg concentrations ranged from <0.0020-0.2098 µg/g and did not exceed the threshold limit of 1 µg/g in all sampled species, However, MeHg concentrations significantly differed among fish species (0.0085-0.2098 mg kg-1), crustaceans (<0.002-0.0221 mg kg-1) and mollusks (<0.002-0.1389 mg kg-1). The trophic magnification factor (TMF) was determined on the basis of the trophic level (TL). The TL values for fish, crustaceans and mollusks were above 3 when the TMF values were >1. The daily dietary intake and hazard quotient for MeHg were calculated to estimate exposure and health risk through seafood consumption by local inhabitants. The calculated HQ was lower than 1, thus indicating that the exposure was below the risk threshold of related chronic diseases. However, higher MeHg concentrations in fish species such as Scoliodon sorrakowah and Auxis thazard are concerning and may pose health risk through continuous consumption by local inhabitants.
Collapse
Affiliation(s)
- Xinwei Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center For Disease Control and Prevention, Zhoushan 316021, China
| | - Sardar Khan
- CAS Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China; Department of Environmental Science, University of Peshawar, Peshawar 25120, Pakistan.
| | - Anwarzeb Khan
- Department of Environmental Science, University of Peshawar, Peshawar 25120, Pakistan; Department of Environmental and Conservation Sciences, University of Swat, Swat 19130, Pakistan
| | - Yuting Tang
- School of Geographical Sciences, Faculty of Science and Engineering, The University of Nottingham, Ningbo 315100, China
| | - Luis M Nunes
- CAS Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China; Faculty of Sciences and Technology, Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Jianbo Yan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center For Disease Control and Prevention, Zhoushan 316021, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | - Gang Li
- CAS Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China.
| |
Collapse
|
121
|
Meng M, Sun RY, Liu HW, Yu B, Yin YG, Hu LG, Chen JB, Shi JB, Jiang GB. Mercury isotope variations within the marine food web of Chinese Bohai Sea: Implications for mercury sources and biogeochemical cycling. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121379. [PMID: 31611019 DOI: 10.1016/j.jhazmat.2019.121379] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) speciation and isotopic compositions in a large-scale food web and seawater from Chinese Bohai Sea were analyzed to investigate methylmercury (MeHg) sources and Hg cycling. The biota showed ∼5‰ variation in mass dependent fractionation (MDF, -4.57 to 0.53‰ in δ202Hg) and mostly positive odd-isotope mass independent fractionation (odd-MIF, -0.01 to 1.21‰ in Δ199Hg). Both MDF and odd-MIF in coastal biota showed significant correlations with their trophic levels and MeHg fractions, likely reflecting a preferential trophic transfer of MeHg with higher δ202Hg and Δ199Hg than inorganic Hg. The MDF and odd-MIF of biota were largely affected by their feeding habits and living territories, and MeHg in pelagic food web was more photodegraded than in coastal food web (21-31% vs. 9-11%). From the Hg isotope signatures of pelagic biota and extrapolated coastal MeHg, we suggest that MeHg in the food webs was likely derived from sediments. Interestingly, we observed complementary even-MIF (mainly negative Δ200Hg of -0.36 to 0.08‰ and positive Δ204Hg of -0.05 to 0.82‰) in the biota and a significant linear slope of -0.5 for Δ200Hg/Δ204Hg. This leads us to speculate that atmospheric Hg0 is an important source to bioaccumulated MeHg, although the exact source-receptor relationships need further investigation.
Collapse
Affiliation(s)
- Mei Meng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruo-Yu Sun
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Hong-Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong-Guang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiu-Bin Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Jian-Bo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
122
|
Cao L, Liu J, Dou S, Huang W. Biomagnification of methylmercury in a marine food web in Laizhou Bay (North China) and associated potential risks to public health. MARINE POLLUTION BULLETIN 2020; 150:110762. [PMID: 31784261 DOI: 10.1016/j.marpolbul.2019.110762] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The concentrations of total mercury (THg) and methylmercury (MeHg) were assessed in water, sediment and biota (54 species) samples from the coast of Laizhou Bay, to evaluate MeHg biomagnification in Laizhou Bay food web. The trophic web structure was determined with stable isotope ratios. The MeHg concentrations were highly variable among species ranged from 4.8 ng g-1 in primary producers to 411.2 ng g-1 in spotted sea bass. Weight and ecotype were the principal parameters related to the mercury concentrations for most species. The trophic magnification factors (TMFs) for MeHg and THg were 2.09 and 1.69, respectively, indicating that mercury biomagnification is occurring in this marine food web. The estimated weekly intake (EWI) and target hazard quotient (THQ) values demonstrated that consuming predatory fishes from the bay could cause potential health risks to humans.
Collapse
Affiliation(s)
- Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinhu Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.
| |
Collapse
|
123
|
Gygax S, Gfeller L, Wilcke W, Mestrot A. Emerging investigator series: mercury mobility and methylmercury formation in a contaminated agricultural flood plain: influence of flooding and manure addition. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:2008-2019. [PMID: 31617529 DOI: 10.1039/c9em00257j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fate and the methylation of mercury (Hg) in the terrestrial environment are still poorly understood and although the main drivers of release and methylation of mercury in soils are known (low redox potential and microbial carbon availability) their interactions are not well understood. This is of concern since many agriculturally used floodplains, where the recurring flooding and agricultural practices (e.g. manure amendments) may have an impact on the fate and the biomethylation of Hg, are at the same time Hg-contaminated. In this study, we modified and validated existing methods to extract and analyze methylmercury (MeHg) by HPLC-ICP-MS in soils and we assessed the Hg and MeHg concentrations in three fields situated in a Hg polluted agricultural floodplain. Further, we incubated the top soil from the three studied fields for 11 days under flooded conditions in presence or absence of 2 mass% of cow manure, a common agricultural amendment in the area. Total Hg and MeHg concentrations ranged from <limit of detection (LOD, 0.012 mg kg-1) to 28.2 mg kg-1 and from 1.2 to 7.8 μg kg-1 respectively. Hg was released to the soil solution after 12 hours with a maximum between day 2 and day 7. MeHg levels in the soil solution were <LOD although it was found in the soil before and after the incubation. The addition of cow manure to saturated soils led to an increase in the MeHg concentrations of the soil solid phase by up to fivefold to a maximum of 26.4 ± 1.1 μg kg-1 (n = 3). Our study demonstrates that the combination of low redox potential because of flooding with common agricultural practices such as the amendment of manures enhances the formation of toxic MeHg.
Collapse
Affiliation(s)
- Sebastian Gygax
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | | | | | | |
Collapse
|
124
|
Pinzone M, Damseaux F, Michel LN, Das K. Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. CHEMOSPHERE 2019; 237:124448. [PMID: 31398606 DOI: 10.1016/j.chemosphere.2019.124448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The Mediterranean Sea remains a complex system for mercury (Hg) cycling and accumulation in marine vertebrates. The extremely high levels these animals present demand for an urgent understanding of such processes and the development of new analytical techniques that go beyond the simple contamination monitoring. It was often proposed that prey selection or habitat use may affect Hg contamination in animals; however, it was never possible to measure which factor influences more rates and pathways of contamination. In this paper, we directly integrate toxicological information (Hg levels) and ecological tracers (stable isotopes of C, N and S) into a common data analysis framework (isotopic niches), with the aim of quantifying the influence of species' trophic behaviour on Hg contamination. The analysis was conducted on skin biopsies of fin whales Balaenoptera physalus, long-finned pilot whales Globicephala melas and sperm whales Physeter microcephalus. Their different trophic modes and residency in the area make them model species for the analysis of Hg accumulation along NWMS food webs. We measured Total Hg (T-Hg) concentrations through absorbance spectrometry with the DMA80 Milestone. Carbon, nitrogen and sulphur isotope compositions were measured via mass spectrometry in an IRMS coupled to an Elemental Analyser (EA) Isoprime. Comparison of ecological and contamination niches allowed to explain Hg accumulation in Mediterranean marine predators. Factors such as food web complexity, trophic position, hunting distribution or habitat use (e.g., foraging depth) did not influence Hg exposure. It is rather the selection of prey type, which determines the range of potential Hg sources and as a consequence the rates of accumulation in whales' tissues. A generalist piscivorous species such as the pilot whales will bioaccumulate more Hg than specialised sperm whales feeding mostly on cephalopods.
Collapse
Affiliation(s)
- Marianna Pinzone
- Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium.
| | - France Damseaux
- Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium.
| | - Loïc N Michel
- Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Krishna Das
- Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium.
| |
Collapse
|
125
|
Kim J, Lee H, Park G, Choi H, Ji S, Kil D. Determination of the Toxic Level of Dietary Mercury and Prediction of Mercury Intake and Tissue Mercury Concentrations in Broiler Chickens Using Feather Mercury Concentrations. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
126
|
Xue W, Kwon SY, Grasby SE, Sunderland EM, Pan X, Sun R, Zhou T, Yan H, Yin R. Anthropogenic influences on mercury in Chinese soil and sediment revealed by relationships with total organic carbon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113186. [PMID: 31520907 DOI: 10.1016/j.envpol.2019.113186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/24/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Rapid industrialization has led to high levels of mercury (Hg) releases from anthropogenic sources in China. When deposited to terrestrial ecosystems, Hg has a high affinity for natural organic carbon. This means that Hg concentrations will vary naturally as a function of the total organic carbon (TOC) content of different soils and sediment. Thus, Hg to TOC ratios in topsoil and surface sediment provides a useful normalized tracer of the anthropogenic impact on Hg contamination. We compiled literature-documented Hg and total organic carbon (TOC) data for topsoil (n = 957) and surface sediment (n = 1142) in China. Topsoil samples (n = 100) were also collected in this study to broaden the spatial coverage. We found large differences in Hg:TOC ratios among topsoil from background sites, agricultural and urban areas, and mining sites and surface sediment from fluvial, coastal, and marine environments. Specifically, a significant increase in Hg:TOC ratios occurred between soils from background sites (median: Hg:TOC = 21.1; Inter-Quartile Range (IQR): 9.67 to 40.7) and agricultural areas (median: 34.1; IQR: 22.1 to 58.7), urban areas (median: 62.1 ng g-1; IQR: 34.2 to 154) and mining sites (median: 2780; range: 181 to 43500). Urban and mining sites show the largest increase in Hg:TOC ratios, reflecting elevated anthropogenic Hg inputs in these areas. Fluvial sediment showed higher Hg:TOC ratios (median: 197; IQR: 109 to 389) than coastal (median: 88.3; IQR: 46.8 to 168) and marine sediment (median: 89.7; IQR: 53 to 138), indicating decreased anthropogenic Hg input from rivers to coastal and marine regions. Results of our study suggest Hg:TOC ratios are a useful normalized indicator of the influence of anthropogenic Hg releases on Hg enrichment in topsoil and surface sediment.
Collapse
Affiliation(s)
- Wen Xue
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Sae Yun Kwon
- Division of Environmental Science & Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang, 37673, South Korea
| | - Stephan E Grasby
- Geological Survey of Canada, Natural Resources Canada, Calgary, Alberta, T2L 2A7, Canada
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138, United States
| | - Xin Pan
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ruiyang Sun
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ting Zhou
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haiyu Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China.
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China.
| |
Collapse
|
127
|
Liu M, Xie H, He Y, Zhang Q, Sun X, Yu C, Chen L, Zhang W, Zhang Q, Wang X. Sources and transport of methylmercury in the Yangtze River and the impact of the Three Gorges Dam. WATER RESEARCH 2019; 166:115042. [PMID: 31520812 DOI: 10.1016/j.watres.2019.115042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 05/22/2023]
Abstract
The magnitude of environmental change due to anthropogenic impacts might greatly exceed that of natural disturbances. In this work, we quantitatively examine the impacts of river damming, soil erosion, and point-source release on the transport of methylmercury (MeHg) throughout the Yangtze River, the third longest river in the world. Based on seasonal observations and the subsequent material flow analysis, we found that in 2016, the Yangtze River discharged 470 ± 200 kg MeHg to the coastal and shelf areas, a value at least ten-fold larger than existing observations in other large rivers around the world. The construction of the Three Gorges Dam (TGD), the world's largest hydropower dam, induced a substantial amount of MeHg (at least 250 ± 220 kg) accumulation in the reservoir and a relatively small amount of MeHg (150 ± 37 kg) discharge to the downstream region in 2016. The reservoir itself is not expected to be more contaminated by MeHg than the downstream areas of the river after the TGD, and the TGD has an additive effect on downstream MeHg transport. The riverine MeHg flux in the river mouth was 3-fold that discharged from the TGD mainly due to TGD-induced resuspension of MeHg from the downstream riverbed, as well as MeHg imports to the downstream area from tributaries, soil erosion, municipal wastewater, and in situ production. Our analysis offers new evidence that in future decades, the increase in estuarine MeHg contamination resulting from the increasing construction of large dams might pose a challenge for global coastal fisheries.
Collapse
Affiliation(s)
- Maodian Liu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Han Xie
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Yipeng He
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd., Groton, CT, 06340, USA
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Xuejun Sun
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenghao Yu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Wei Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing, 100871, China.
| |
Collapse
|
128
|
Weiss-Penzias PS, Bank MS, Clifford DL, Torregrosa A, Zheng B, Lin W, Wilmers CC. Marine fog inputs appear to increase methylmercury bioaccumulation in a coastal terrestrial food web. Sci Rep 2019; 9:17611. [PMID: 31772229 PMCID: PMC6879473 DOI: 10.1038/s41598-019-54056-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022] Open
Abstract
Coastal marine atmospheric fog has recently been implicated as a potential source of ocean-derived monomethylmercury (MMHg) to coastal terrestrial ecosystems through the process of sea-to-land advection of foggy air masses followed by wet deposition. This study examined whether pumas (Puma concolor) in coastal central California, USA, and their associated food web, have elevated concentrations of MMHg, which could be indicative of their habitat being in a region that is regularly inundated with marine fog. We found that adult puma fur and fur-normalized whiskers in our marine fog-influenced study region had a mean (±SE) total Hg (THg) (a convenient surrogate for MMHg) concentration of 1544 ± 151 ng g-1 (N = 94), which was three times higher (P < 0.01) than mean THg in comparable samples from inland areas of California (492 ± 119 ng g-1, N = 18). Pumas in California eat primarily black-tailed and/or mule deer (Odocoileus hemionus), and THg in deer fur from the two regions was also significantly different (coastal 28.1 ± 2.9, N = 55, vs. inland 15.5 ± 1.5 ng g-1, N = 40). We suggest that atmospheric deposition of MMHg through fog may be contributing to this pattern, as we also observed significantly higher MMHg concentrations in lace lichen (Ramalina menziesii), a deer food and a bioindicator of atmospheric deposition, at sites with the highest fog frequencies. At these ocean-facing sites, deer samples had significantly higher THg concentrations compared to those from more inland bay-facing sites. Our results suggest that fog-borne MMHg, while likely a small fraction of Hg in all atmospheric deposition, may contribute, disproportionately, to the bioaccumulation of Hg to levels that approach toxicological thresholds in at least one apex predator. As global mercury levels increase, coastal food webs may be at risk to the toxicological effects of increased methylmercury burdens.
Collapse
Affiliation(s)
- Peter S Weiss-Penzias
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA.
| | - Michael S Bank
- Institute of Marine Research, Department of Contaminants and Biohazards, Bergen, Norway
- University of Massachusetts, Department of Environmental Conservation, Amherst, MA, USA
| | - Deana L Clifford
- Wildlife Investigations Lab, California Department of Fish and Wildlife, Rancho Cordova, CA, USA
- University of California, School of Veterinary Medicine, Department of Medicine and Epidemiology, Davis, CA, USA
| | - Alicia Torregrosa
- United States Geological Survey, Western Geographic Science Center, Menlo Park, CA, USA
| | - Belle Zheng
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Wendy Lin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
129
|
Gilmour ME, Hudson SAT, Lamborg C, Fleishman AB, Young HS, Shaffer SA. Tropical seabirds sample broadscale patterns of marine contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:631-643. [PMID: 31325863 DOI: 10.1016/j.scitotenv.2019.07.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Contaminants in the marine environment are widespread, but ship-based sampling routines are much narrower. We evaluated the utility of seabirds, highly-mobile marine predators, as broad samplers of contaminants throughout three tropical ocean regions. Our aim was to fill a knowledge gap in the distributions of, and processes that contribute to, tropical marine contaminants; and explore how species-specific foraging ecologies could inform or bias our understanding of contaminant distributions. Mercury and persistent organic pollutant (POPs) concentrations were measured in adults of five seabird species from four colonies in the central Pacific (Laysan and Tern Islands, Hawaii; Palmyra Atoll) and the eastern Caribbean (Barbuda). Blood-based total mercury (THg) and 89 POPs were measured in two seabird families: surface-foraging frigatebirds (Fregata spp.) and plunge-diving boobies (Sula spp.). Overall, largescale contaminant differences between colonies were more informative of contaminant distributions than inter-specific foraging ecology. Model selection results indicated that proximity to human populations was the best predictor of THg and POPs. Regional differences in contaminants were distinct: Barbudan Magnificent Frigatebirds had more compounds (n=52/89 POP detected) and higher concentrations (geometric mean THg=0.97μgg-1; mean ΣPOP53=26.6ngmL-1) than the remote colonies (34-42/89 POP detected; range of THg geometric means=0.33-0.93μgg-1; range of mean ΣPOP53:7.3-17.0ngmL-1) and had the most recently-synthesized POPs. Moderate differences in foraging ecologies were somewhat informative of inter-specific differences in contaminant types and concentrations between nearshore and offshore foragers. Across species, contaminant concentrations were higher in frigatebirds (THg=0.87μgg-1; ΣPOP53=17.5ngmL-1) compared to boobies (THg=0.48μgg-1; ΣPOP53=9.8). Ocean currents and contaminants' physiochemical properties provided additional insight into the scales of spatial and temporal contaminant exposure. Seabirds are excellent, broad samplers with which we can understand contaminant distributions in the marine environment. This is especially important for tropical remote regions that are under-sampled.
Collapse
Affiliation(s)
- M E Gilmour
- Ocean Sciences Department, University of California, Santa Cruz, CA 95060, USA.
| | - S A Trefry Hudson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - C Lamborg
- Ocean Sciences Department, University of California, Santa Cruz, CA 95060, USA
| | - A B Fleishman
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA; Conservation Metrics, Inc., 145 McAllister Way, Santa Cruz, CA 95060, USA
| | - H S Young
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - S A Shaffer
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| |
Collapse
|
130
|
Li JB, Liu Y, Zheng XJ, Wang D. An off-on chemosensor for Hg2+ based on the excimer emission of anthracene. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
131
|
Xie H, Liu M, He Y, Lin H, Yu C, Deng C, Wang X. An experimental study of the impacts of solar radiation and temperature on mercury emission from different natural soils across China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:545. [PMID: 31392424 DOI: 10.1007/s10661-019-7717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) emission from natural soil is one of the most important contributors to global Hg cycles. Research on Hg emission from soil to air has been carried out in China. Currently, most of the research focuses on contaminated sites in China, while research in other regions is rare. To provide more accurate information on Hg emissions from soil to air in China and obtain additional laboratory data to verify the role of solar radiation and temperature in this process, we sampled and measured Hg emission fluxes from various natural soils (range, 48-240 ng/g) across mainland China under different solar radiation (0-900 W·m-2) and temperature (15-45 °C) conditions in a laboratory. We found that in different places in China, Hg emissions from natural soils occurred more easily when the soil Hg concentration, temperature, and solar radiation were high, but the impacts were different among the regions due to different soil types. Hg emissions from natural soils (0.071-24 ng·m2·h-1) were typically lower than those from contaminated sites, suggesting that additional measurements in natural soils are desirable. The results of this study could provide more accurate information on Hg emission from natural soil to air and help establish a nationwide natural soil Hg emission inventory in China.
Collapse
Affiliation(s)
- Han Xie
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Yipeng He
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Huiming Lin
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chenghao Yu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chunyan Deng
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
132
|
Azaroff A, Tessier E, Deborde J, Guyoneaud R, Monperrus M. Mercury and methylmercury concentrations, sources and distribution in submarine canyon sediments (Capbreton, SW France): Implications for the net methylmercury production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:511-521. [PMID: 30995585 DOI: 10.1016/j.scitotenv.2019.04.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Submarine canyons are important stocks of commercial interest fish, whose consumption is one of the main monomethymercury (MeHg) exposure to humans. Currently, biogeochemistry of mercury in those biologically productive system is unknown. In this work, inorganic mercury (Hg(II)) and organic mercury (MeHg) distributions were measured in sedimentary accumulative zones (slopes and terraces) against adjacent continental shelf sediments. Hg compound concentrations in these sediments show a huge range of concentrations (Hg(II) ranging from 18 to 973 ng g-1 and MeHg ranging from 0.07 to 2.03 ng g-1) exhibiting factors 50 and 20 fold, respectively. Higher values of mercury compounds were observed in canyon locations suggesting a high accumulation of mercury associated with higher values of clay fraction and organic matter content. The reactivity of mercury was investigated in sediment of three locations along Capbreton submarine canyon axis using slurry incubations experiments and isotopic tracers. Specific methylation and demethylation rate constants (kM and kD) were calculated. Results clearly showed that MeHg concentrations in these sediments are controlled by competing and simultaneous methylation and demethylation reactions mainly mediated by biotic process. Mercury reactivity was found higher in coastal stations compared to the offshore station due to more labile organic matter which may stimulate microbial activities. However, higher net MeHg production was estimated for the offshore station due to high Hg(II) concentrations suggesting a potential MeHg source for such marine environments.
Collapse
Affiliation(s)
- Alyssa Azaroff
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64600 Anglet, France
| | - Emmanuel Tessier
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64000 Pau, France
| | - Jonathan Deborde
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64600 Anglet, France
| | - Rémy Guyoneaud
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64000 Pau, France
| | - Mathilde Monperrus
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64600 Anglet, France.
| |
Collapse
|
133
|
Liu H, Yu B, Fu J, Li Y, Yang R, Zhang Q, Liang Y, Yin Y, Hu L, Shi J, Jiang G. Different circulation history of mercury in aquatic biota from King George Island of the Antarctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:892-897. [PMID: 31085475 DOI: 10.1016/j.envpol.2019.04.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/24/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
To trace the circulation history of aquatic bioavailable Hg in the Antarctic, the species and isotopic compositions of Hg in sediment, Archaeogastropoda (Agas), Neogastropoda (Ngas), and fish collected from King George Island were studied in detail. Positive mass independent fractionation (MIF) was observed and positively correlated with the percentages of methylmercury (MeHg%) in Agas and Ngas, suggesting an effect of MeHg accumulation during trophic transfer on MIF signatures. However, both the ratios of Δ199Hg/δ202Hg and Δ199Hg/Δ201Hg indicated different circulation histories of Hg in Agas, Ngas, and fish. The microbial methylation in sediment was the primary source of MeHg in Agas and Ngas (Δ199Hg/δ202Hg ∼0, Δ199Hg/Δ201Hg ∼1.00). In contrast, the MeHg in fish (Δ199Hg/δ202Hg = 0.55 ± 0.06, Δ199Hg/Δ201Hg = 1.19 ± 0.17) came from the combined sources of residual MeHg which had sunk from the surface water and microbial-methylated MeHg in sediments, and the bioavailable Hg in the sediments contributed to approximately 44% of the total Hg in fish. Subsequently, the Δ199Hg values of bioavailable MeHg and IHg in sediments were quantitatively calculated, which provided key end-member information for future source apportionment in the Antarctic and other pelagic regions. It was also found that the Hg accumulated in Agas and Ngas had no history of MeHg photo-degradation, indicating that the methylated Hg in benthic zones suffered little photo-degradation and thus presented high bioavailability and environmental risk.
Collapse
Affiliation(s)
- Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
134
|
Castaño A, Pedraza-Díaz S, Cañas AI, Pérez-Gómez B, Ramos JJ, Bartolomé M, Pärt P, Soto EP, Motas M, Navarro C, Calvo E, Esteban M. Mercury levels in blood, urine and hair in a nation-wide sample of Spanish adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:262-270. [PMID: 30903899 DOI: 10.1016/j.scitotenv.2019.03.174] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 05/27/2023]
Abstract
Mercury (Hg) is among the top 10 environmental chemicals of major public health concern (WHO). The Minamata Convention on Mercury (United Nations Environment Program, 2017), commits signing countries to control anthropogenic mercury emissions and reduce human exposure. Human biomonitoring (HBM) programs, are the most straight-forward approaches to get information on the actual exposure levels in the population and assess over time. We report here the results of a HBM study in a nationwide cross-section of Spanish adults (18-65y) as baseline values obtained before the Minamata Convention entered into force. Subsequent follow-ups will show if the Convention has been successful. The study includes 1880 blood samples, 1704 urine samples and 577 hair samples from all Spanish regions collected and analysed under a strictly quality controlled and quality assured protocol. The EU-DEMOCOPHES project demonstrated that fish and seafood are the major sources of mercury exposure and that the Spanish as well as the Portuguese populations have higher levels than other European countries. The data from the present study confirms this pattern at national level and that inhabitants in coastal regions have higher values than from inland regions. The geometric mean (GM) for blood is 6.35 μg Hg/l, in urine is 1.11 μg Hg/l and for hair is 1.91 μg Hg/g. In an international comparison these values are not exceptional. Spanish concentrations fall into the group of Easter Mediterranean populations. Although information on gender, age, occupational sector, geographical area, sampling period and frequency of fish consumption is reported in the tables, the purpose of this paper has not been to analyse the determinants of exposure in detail but to provide baseline data for future assessments and for regional authorities.
Collapse
Affiliation(s)
- A Castaño
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, Madrid, Spain.
| | - S Pedraza-Díaz
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, Madrid, Spain
| | - A I Cañas
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, Madrid, Spain
| | - B Pérez-Gómez
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - J J Ramos
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, Madrid, Spain
| | - M Bartolomé
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, Madrid, Spain
| | - P Pärt
- Department of Biomedical Sciences and Veterinary Public Health, Swedish Agricultural University, Sweden
| | - E P Soto
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, Madrid, Spain
| | - M Motas
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, Madrid, Spain
| | - C Navarro
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, Madrid, Spain
| | - E Calvo
- Ibermutuamur, Ramirez de Arellano 27, Madrid, Spain
| | - M Esteban
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
135
|
Azad AM, Frantzen S, Bank MS, Johnsen IA, Tessier E, Amouroux D, Madsen L, Maage A. Spatial distribution of mercury in seawater, sediment, and seafood from the Hardangerfjord ecosystem, Norway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:622-637. [PMID: 30833261 DOI: 10.1016/j.scitotenv.2019.02.352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Hardangerfjord is one of the longest fjords in the world and has historical mercury (Hg) contamination from a zinc plant in its inner sector. In order to investigate the extent of Hg transferred to abiotic and biotic ecosystem compartments, Hg and monomethylmercury (MeHg) concentrations were measured in seawater, sediment, and seafood commonly consumed by humans. Although total mercury in seawater has been described previously, this investigation reports novel MeHg data for seawater from Norwegian fjords. Total Hg and MeHg concentrations in seawater, sediment, and biota increased towards the point source of pollution (PSP) and multiple lines of evidence show a clear PSP effect in seawater and sediment concentrations. In fish, however, similar high concentrations were found in the inner part of another branch adjacent to the PSP. We postulate that, in addition to PSP, atmospheric Hg, terrestrial run-off and hydroelectric power stations are also important sources of Hg in this fjord ecosystem. Hg contamination gradually increased towards the inner part of the fjord for most fish species and crustaceans. Since the PSP and the atmospheric Hg pools were greater towards the inner part of the fjord, it is not entirely possible to discriminate the full extent of the PSP and the atmospheric Hg contribution to the fjord food web. The European Union (EU) Hg maximum level for consumption was exceeded in demersal fish species including tusk (Brosme brosme), blue ling (Molva dypterygia) and common ling (Molva molva) from the inner fjord (1.08 to 1.89 mg kg-1 ww) and from the outer fjord (0.49 to 1.07 mg kg-1 ww). Crustaceans were less contaminated and only European lobster (Homarus gammarus) from inner fjord exceeded the EU limit (0.62 mg kg-1 ww). Selenium (Se) concentrations were also measured in seafood species and Se-Hg co-exposure dynamics are also discussed.
Collapse
Affiliation(s)
- Atabak M Azad
- Institute of Marine Research, Bergen, Norway; Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway.
| | | | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; Department of Environmental Conservation, University of Massachusetts, Amherst, USA.
| | | | - Emmanuel Tessier
- CNRS/ Univ Pau & Pays Adour/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR5254, 64000 Pau, France
| | - David Amouroux
- CNRS/ Univ Pau & Pays Adour/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR5254, 64000 Pau, France
| | - Lise Madsen
- Institute of Marine Research, Bergen, Norway; Department of Biology, University of Copenhagen, Denmark
| | - Amund Maage
- Institute of Marine Research, Bergen, Norway; Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
136
|
Sung JH, Back SK, Lee ES, Jang HN, Seo YC, Kang YS, Lee MH. Application of powdered activated carbon coating to fabrics in a hybrid filter to enhance mercury removal. J Environ Sci (China) 2019; 80:58-65. [PMID: 30952353 DOI: 10.1016/j.jes.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Elemental mercury (Hg0) is predominant constituent of flue gas emitted from coal-fired power plants. Adsorption has been considered the best available technology for removal of Hg0 from flue gas. However, adsorbent injection increases the amount of ash generated. In the present study, powdered activated carbon (PAC) was coated on polytetrafluoroethylene/glass fiber filters to increase Hg0 removal while concurrently reducing the amount of ash generated. The optimal PAC coating rate was determined in laboratory experiments to ensure better Hg0 removal with low pressure drop. When PAC of particle size less than 45 μm was used, and the areal density was 50 g/m2, the pressure drop remained under 30 Pa while the Hg0 removal efficiency increased to 15.8% from 4.3%. The Hg0 removal efficiency also increased with decrease in filtration velocity. The optimal PAC coating rate was applied on a hybrid filter (HF), which was combined with a bag filter and an electrostatic precipitator in a single chamber. Originally designed to remove fine particulates matter, it was retrofitted to the flue gas control device for simultaneous Hg0 removal. By employing the PAC coating, the Hg removal efficiency of the HF increased to 79.79% from 66.35%. Also, a temporary reduction in Hg removal was seen but this was resolved following a cleaning cycle in which the dust layer was removed.
Collapse
Affiliation(s)
- Jin-Ho Sung
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Seung-Ki Back
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Eun-Song Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ha-Na Jang
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Yong-Chil Seo
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | | | - Myong-Hwa Lee
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
137
|
Chen L, Li Y. A Review on the Distribution and Cycling of Mercury in the Pacific Ocean. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:665-671. [PMID: 30725129 DOI: 10.1007/s00128-019-02560-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
With the rapid development of economy in surrounding land, the Pacific Ocean is facing a number of serious environmental challenges, including mercury (Hg) pollution. Over the past several decades, a number of studies have been conducted on investigating the cycling of Hg in this ecosystem. This review summarizes recent studies on the distribution of Hg species in the water, sediment, and biota and the important processes controlling Hg cycling in the Pacific Ocean. Although a lot of studies have been conducted in this system, more efforts should be made on Hg speciation and cycling in the Pacific Ocean, especially some areas that have rarely studied so far. There is a need to measure the rates of important biogeochemical processes in this ecosystem. Application of multiple methods expected to give a better estimation of the sources and sinks of Hg species in the Pacific Ocean in future studies.
Collapse
Affiliation(s)
- Lufeng Chen
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
138
|
Beau F, Bustamante P, Michaud B, Brischoux F. Environmental causes and reproductive correlates of mercury contamination in European pond turtles (Emys orbicularis). ENVIRONMENTAL RESEARCH 2019; 172:338-344. [PMID: 30825684 DOI: 10.1016/j.envres.2019.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Assessing Hg contamination in aquatic ecosystems is difficult because wetlands are part of large and complex networks, and potential sources of Hg contamination are highly diverse. To investigate environmental determinants of Hg contamination, we studied one of the largest continental French wetlands structured as a dense network of artificial ponds. Such context allows to investigate the influence of pond characteristics on Hg contamination in an area relatively disconnected from direct sources of pollution. We relied on a bioindicator organism, the European pond turtle (Emys orbicularis) to assess Hg contamination in a relatively large number of sites (N > 255 turtles from 15 ponds sampled in 2016 and 2017). Non-invasive sampling in the claws of turtles show that Hg concentrations were not related to their sex or size, but we found an effect of age (1.62 ± 0.20 in juveniles and 2.21 ± 0.06 µg g-1 dw in adults), suggesting that turtles do bioaccumulate Hg through their life. Turtle Hg was different between ponds, and we found that pond age and pond usage (draining events linked to pond maintenance) were the main environmental determinants of Hg concentrations in turtles. Finally, and more importantly, our dataset allowed us to highlight potential negative effect of Hg concentrations on the proportion of reproductive females, suggesting an influence of Hg on reproductive mechanisms in this species. This result indicates that Hg contamination, even in absence of direct and strong sources of pollution, may have a critical impact on reproduction and thus the persistence of a long-lived vertebrate.
Collapse
Affiliation(s)
- Frédéric Beau
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers en Bois, France; Réserve Naturelle Nationale de Chérine, Maison de la Nature et de la Réserve, 36290 Saint-Michel-en-Brenne, France.
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Bruno Michaud
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers en Bois, France
| |
Collapse
|
139
|
Saniewska D, Gębka K, Bełdowska M, Siedlewicz G, Bełdowski J, Wilman B. Impact of hydrotechnical works on outflow of mercury from the riparian zone to a river and input to the sea. MARINE POLLUTION BULLETIN 2019; 142:361-376. [PMID: 31232314 DOI: 10.1016/j.marpolbul.2019.03.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
The aim of this research was to assess the impact of hydrotechnical works within the riverbed and riparian zone on the mobility of mercury in soil and its outflow to the river and the sea. Deepening and reconstruction of the riverbed or the cutting of reeds, influenced the fate of mercury in the river system. However, only activitis that disturbed the riperian zone increased mobilization of Hg in soils. Hg transformations in these places were controled by inflow of fresh organic matter in soil and sediments as well as by oxidation-reduction potential. In areas where reducing conditions occurred, mercury released from the soil was incorporated into the sediment. However, in areas where oxidizing conditions prevailed in the sediment, mercury flowing out of the soil occurred mainly in dissolved form and most of it was transported downstream from where it could reach the sea.
Collapse
Affiliation(s)
- Dominika Saniewska
- University of Gdansk, Faculty of Oceanography and Geography, Institute of Oceanography, Al. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Karolina Gębka
- University of Gdansk, Faculty of Oceanography and Geography, Institute of Oceanography, Al. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Magdalena Bełdowska
- University of Gdansk, Faculty of Oceanography and Geography, Institute of Oceanography, Al. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Grzegorz Siedlewicz
- Institute of Oceanology, Polish Academy of Sciences, Marine Chemistry and Biochemistry Department, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Jacek Bełdowski
- Institute of Oceanology, Polish Academy of Sciences, Marine Chemistry and Biochemistry Department, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Bartłomiej Wilman
- University of Gdansk, Faculty of Oceanography and Geography, Institute of Oceanography, Al. Pilsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
140
|
Gilmour ME, Holmes ND, Fleishman AB, Kriwoken LK. Temporal and interspecific variation in feather mercury in four penguin species from Macquarie Island, Australia. MARINE POLLUTION BULLETIN 2019; 142:282-289. [PMID: 31232305 DOI: 10.1016/j.marpolbul.2019.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
We measured mercury (Hg) concentrations in feathers from four penguin species collected on Macquarie Island, Southern Ocean, to 1) establish baseline Hg concentrations; and 2) compare Hg from samples collected in 2002 ("modern") and from museum specimens collected between 1937 and 1976 ("historic"). Inter-specific differences in feather Hg reflected known differences in habitats and diversity of diets: benthic-foraging Gentoo penguins and Rockhopper penguins that foraged both inshore and offshore had significantly higher feather mercury than the more pelagic, specialist foraging King and Royal penguins. Hg significantly decreased between historic and modern samples in King and Royal penguins. This decrease could be due to changes in either diet, foodwebs, or atmospheric Hg input and sources in the Southern Hemisphere. Because Macquarie Island is home to 2.8 million marine animals, these data may indicate that other species that forage and breed in this region are also exposed to low Hg concentrations in this environment.
Collapse
Affiliation(s)
- M E Gilmour
- Ocean Sciences Dept., University of California, Santa Cruz, Santa Cruz 95060, CA, USA.
| | - N D Holmes
- School of Geography and Environmental Studies, University of Tasmania, Hobart, TAS, Australia 7001; Island Conservation, 2100 Delaware Ave., Santa Cruz 95060, CA, USA
| | - A B Fleishman
- Conservation Metrics, Inc., 145 McAllister Way, Santa Cruz 95060, CA, USA
| | - L K Kriwoken
- School of Geography and Environmental Studies, University of Tasmania, Hobart, TAS, Australia 7001
| |
Collapse
|
141
|
Bezerra MF, Lacerda LD, Lai CT. Trace metals and persistent organic pollutants contamination in batoids (Chondrichthyes: Batoidea): A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:684-695. [PMID: 30849586 DOI: 10.1016/j.envpol.2019.02.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/09/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Batoids (Chondrichthyes: Batoidea; e.g. stingrays, skates, and guitarfish) comprise more than 55% of elasmobranch taxa and represent ecologically important predators in benthic and pelagic habitats. Although overexploitation and habitat degradation are the two biggest threats to batoid populations, coastal and oceanic pollution is also a pervasive potential threat. In this systematic review, we compile published scientific literature on trace metals and persistent organic pollutants (POPs) contamination in elasmobranch species of the Batoidea superorder and present contamination patterns, exposure effects, and potential human exposure risks to most reported contaminants. We found batoids to accumulate a wide range of trace metals, including mercury (Hg), arsenic (As), lead (Pb), copper (Cu), cadmium (Cd) and zinc (Zn). Accumulation of POPs is reported for chlordanes, dichlorodiphenyltrichloroethane (DDT), polychlorinated biphenyl (PCB), dieldrin, Heptachlor epoxide, hexachlorobenzene and perfluoroalkyl substances (PFAS). Hg levels in muscle tissue were significantly different among oceanic basins and habitats, consistent with previous global assessments of Hg oceanic background levels. Some batoid species presented Hg levels higher than large pelagic teleost fishes and comparable to sharks. Ecological traits such as, bottom feeding, upper trophic position and elasmobranch-specific physiology and metabolism are discussed as potential factors associated with Hg uptake and accumulation in batoids. Some species exceeded USEPA's maximum contamination safety limits in edible tissues for Hg, As and ΣPCBs. For most trace metals and POPs, there is a lack of studies focusing on contamination levels in batoids. We recommend future research increasing reporting on POPs and trace metals besides Hg in batoids to further investigate the role of Elasmobranch as a bioindicator for marine pollution.
Collapse
Affiliation(s)
- Moises F Bezerra
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA; Graduate Group in Ecology, University of California Davis, Davis, CA, 95616, USA.
| | - Luiz D Lacerda
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, CE, 60165-081, Brazil.
| | - Chun-Ta Lai
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| |
Collapse
|
142
|
Guédron S, Tolu J, Brisset E, Sabatier P, Perrot V, Bouchet S, Develle AL, Bindler R, Cossa D, Fritz SC, Baker PA. Late Holocene volcanic and anthropogenic mercury deposition in the western Central Andes (Lake Chungará, Chile). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:903-914. [PMID: 30708305 DOI: 10.1016/j.scitotenv.2019.01.294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Volcanism is one of the major natural processes emitting mercury (Hg) to the atmosphere, representing a significant component of the global Hg budget. The importance of volcanic eruptions for local-scale Hg deposition was investigated using analyses of Hg, inorganic elemental tracers, and organic biomarkers in a sediment sequence from Lake Chungará (4520 m a.s.l.). Environmental change and Hg deposition in the immediate vicinity of the Parinacota volcano were reconstructed over the last 2700 years, encompassing the pre-anthropogenic and anthropogenic periods. Twenty eruptions delivering large amounts of Hg (1 to 457 μg Hg m-2 yr-1 deposited at the timescale of the event) were locally recorded. Peaks of Hg concentration recorded after most of the eruptions were attributed to a decrease in sedimentation rate together with the rapid re-oxidation of gaseous elemental Hg and deposition with fine particles and incorporation into lake primary producers. Over the study period, the contribution of volcanic emissions has been estimated as 32% of the total Hg input to the lake. Sharp depletions in primary production occurred at each eruption, likely resulting from massive volcaniclastic inputs and changes in the lake-water physico-chemistry. Excluding the volcanic deposition periods, Hg accumulation rates rose from natural background values (1.9 ± 0.5 μg m-2 yr-1) by a factor of 2.3 during the pre-colonial mining period (1400-900 yr cal. BP), and by a factor of 6 and 7.6, respectively, during the Hispanic colonial epoch (400-150 yr cal. BP) and the industrial era (~140 yr cal. BP to present). Altogether, the dataset indicates that lake primary production has been the main, but not limiting, carrier for Hg to the sediment. Volcanic activity and climate change are only secondary drivers of local Hg deposition relative to the magnitude of regional and global anthropogenic emissions.
Collapse
Affiliation(s)
- S Guédron
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France; Laboratorio de Hidroquímica, Instituto de Investigaciones Químicas, Universidad Mayor de San Andres, Campus Universitario de Cota Cota, casilla 3161, La Paz, Bolivia.
| | - J Tolu
- Department of Ecology and Environmental Science, Umeå University, Sweden; Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland and ETH Zürich, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| | - E Brisset
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France; IPHES, Institut Català de Paleoecologia Humana i Evolució Social, Tarragona, Spain; Àrea de Prehistòria, Universitat Rovira i Virgili, Tarragona, Spain
| | - P Sabatier
- Environnement, Dynamique et Territoires de Montagne (EDYTEM), Université Savoie Mont Blanc, CNRS, 73373 Le Bourget du Lac, France
| | - V Perrot
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - S Bouchet
- LCABIE - Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM UMR 5254, CNRS et Université de Pau et des Pays de l'Adour, Hélioparc, F-64053 Pau, France; Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland and ETH Zürich, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| | - A L Develle
- Environnement, Dynamique et Territoires de Montagne (EDYTEM), Université Savoie Mont Blanc, CNRS, 73373 Le Bourget du Lac, France
| | - R Bindler
- Department of Ecology and Environmental Science, Umeå University, Sweden
| | - D Cossa
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - S C Fritz
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - P A Baker
- Division of Earth and Ocean Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
143
|
Zhang L, Wu S, Zhao L, Lu X, Pierce EM, Gu B. Mercury Sorption and Desorption on Organo-Mineral Particulates as a Source for Microbial Methylation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2426-2433. [PMID: 30702880 DOI: 10.1021/acs.est.8b06020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In natural freshwater and sediments, mercuric mercury (Hg(II)) is largely associated with particulate minerals and organics, but it remains unclear under what conditions particulates may become a sink or a source for Hg(II) and whether the particulate-bound Hg(II) is bioavailable for microbial uptake and methylation. In this study, we investigated Hg(II) sorption-desorption characteristics on three organo-coated hematite particulates and a Hg-contaminated natural sediment and evaluated the potential of particulate-bound Hg(II) for microbial methylation. Mercury rapidly sorbed onto particulates, especially the cysteine-coated hematite and sediment, with little desorption observed (0.1-4%). However, the presence of Hg-binding ligands, such as low-molecular-weight thiols and humic acids, resulted in up to 60% of Hg(II) desorption from the Hg-laden hematite particulates but <6% from the sediment. Importantly, the particulate-bound Hg(II) was bioavailable for uptake and methylation by a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under anaerobic incubations, and the methylation rate was 4-10 times higher than the desorption rate of Hg(II). These observations suggest direct contacts and interactions between bacterial cells and the particulate-bound Hg(II), resulting in rapid exchange or uptake of Hg(II) by the bacteria. The results highlight the importance of Hg(II) partitioning at particulate-water interfaces and the role of particulates as a significant source of Hg(II) for methylation in the environment.
Collapse
Affiliation(s)
- Lijie Zhang
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Shan Wu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- School of Resource, Environmental and Chemical Engineering , Nanchang University , Nanchang 330031 , China
| | - Linduo Zhao
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Xia Lu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Eric M Pierce
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Baohua Gu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
144
|
La Colla NS, Botté SE, Marcovecchio JE. Mercury cycling and bioaccumulation in a changing coastal system: From water to aquatic organisms. MARINE POLLUTION BULLETIN 2019; 140:40-50. [PMID: 30803660 DOI: 10.1016/j.marpolbul.2018.12.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
This study evaluated -for the first time- the occurrence and distribution of total Hg in abiotic (dissolved and particulate water fractions) and biotic (gills and muscle tissues of six commercial fish species) compartments within a South American coastal environment with anthropogenic pressure. This study dealt with environmental issues on developing countries which, as they are in continuous growth, face the highest rate of coastal transformation. Total Hg content was determined by acid digestion and measured using a cold vapor atomic absorption spectrophotometer. Results revealed that dissolved Hg exceeded the recommended levels for superficial saline waters in 67% of the cases. Hg concentrations varied among fish species and its tissues. The results suggested that metal burden in fishes achieved a mean maximum accumulation towards the muscle, with concentrations below the international maximum permitted values. The estimated daily intakes calculated suggest that people would not experience significant health risks through fish consumption.
Collapse
Affiliation(s)
- Noelia S La Colla
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina.
| | - Sandra E Botté
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca 8000, Argentina.
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino, Gascón 3145, Mar del Plata 7600, Argentina; Universidad Tecnológica Nacional - FRBB, 11 de Abril 445, Bahía Blanca 8000, Argentina.
| |
Collapse
|
145
|
El Aouni A, Daoudi K, Yahia H, Minaoui K, Benazzouz A. Surface mixing and biological activity in the North-West African upwelling. CHAOS (WOODBURY, N.Y.) 2019; 29:011104. [PMID: 30709139 DOI: 10.1063/1.5067253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Near-shore water along the North-West African margin is one of the world's major upwelling regions. It is associated with physical structures of oceanic fronts which influence the biological productivity. The study of these coherent structures in connection with chlorophyll concentration data is of fundamental importance for understanding the spatial distributions of the plankton. In this work, we study the horizontal stirring and mixing in different upwelling areas using Lagrangian coherent structures (LCSs). These LCSs are calculated using the recent geodesic theory of LCSs. We use these LCSs to study the link between the chlorophyll fronts concentrations and surface mixing, based on 10 years of satellite data. These LCSs move with the flow as material lines, thus the horizontal mixing is calculated from the intersection of these LCSs with the finite time Lyapunov exponent maps. We compare our results with those of a recent study conducted over the same area, but based on finite size Lyapunov exponents (FSLEs), whose output is a plot of scalar distributions. We discuss the differences between FSLE and geodesic theory of LCS. The latter yields analytical solutions of LCSs, while FSLEs can only provide LCSs for sharp enough ridges of nearly constant height.
Collapse
Affiliation(s)
- Anass El Aouni
- Geostat Team, INRIA Bordeaux Sud-Ouest, 33400 Talence, France
| | - Khalid Daoudi
- Geostat Team, INRIA Bordeaux Sud-Ouest, 33400 Talence, France
| | - Hussein Yahia
- Geostat Team, INRIA Bordeaux Sud-Ouest, 33400 Talence, France
| | - Khalid Minaoui
- University Mohammed V, Faculty of Sciences, LRIT, 10106 Rabat, Morocco
| | - Aïssa Benazzouz
- The Higher Institute of Maritime Studies, 20000 Casablanca, Morocco
| |
Collapse
|
146
|
Wu P, Kainz MJ, Bravo AG, Åkerblom S, Sonesten L, Bishop K. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:357-367. [PMID: 30055496 DOI: 10.1016/j.scitotenv.2018.07.328] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Methylmercury (MeHg) transfer from water into the base of the food web (bioconcentration) and subsequent biomagnification in the aquatic food web leads to most of the MeHg in fish. But how important is bioconcentration compared to biomagnification in predicting MeHg in fish? To answer this question we reviewed articles in which MeHg concentrations in water, plankton (seston and/or zooplankton), as well as fish (planktivorous and small omnivorous fish) were reported. This yielded 32 journal articles with data from 59 aquatic ecosystems at 22 sites around the world. Although there are many case studies of particular aquatic habitats and specific geographic areas that have examined MeHg bioconcentration and biomagnification, we performed a meta-analysis of such studies. Aqueous MeHg was not a significant predictor of MeHg in fish, but MeHg in seston i.e., the base of the aquatic food web, predicted 63% of the variability in fish MeHg. The MeHg bioconcentration factors (i.e., transfer of MeHg from water to seston; BCFw-s) varied from 3 to 7 orders of magnitude across sites and correlated significantly with MeHg in fish. The MeHg biomagnification factors from zooplankton to fish varied much less (logBMFz-f, 0.75 ± 0.31), and did not significantly correlate with fish MeHg, suggesting that zooplanktivory is not as important as bioconcentration in the biomagnification of fish MeHg across the range of ecosystems represented in our meta-analysis. Partial least square (PLS) and linear regression analyses identified several environmental factors associated with increased BCF, including low dissolved organic carbon, low pH, and oligotrophy. Our study reveals the widespread importance of MeHg bioconcentration into the base of the aquatic food web for MeHg at higher trophic levels in aquatic food webs, as well as the major influences on the variability in this bioconcentration.
Collapse
Affiliation(s)
- Pianpian Wu
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Martin J Kainz
- WasserCluster - Biologische Station Lunz, Inter-University Center for Aquatic Ecosystems Research, Lunz am See, Austria
| | - Andrea G Bravo
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236 Uppsala, Sweden
| | - Staffan Åkerblom
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lars Sonesten
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
147
|
Vizuete J, Pérez-López M, Míguez-Santiyán MP, Hernández-Moreno D. Mercury (Hg), Lead (Pb), Cadmium (Cd), Selenium (Se), and Arsenic (As) in Liver, Kidney, and Feathers of Gulls: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 247:85-146. [PMID: 30413976 DOI: 10.1007/398_2018_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mercury (Hg), lead (Pb), cadmium (Cd), selenium (Se), and arsenic (As) are metals or metalloids of high concern because of their effects on the environment and, specially, their potential toxicity on the animals inhabiting there. Due to their relevance, these elements have been object of several biomonitoring studies in different animal species around the world. Birds are widespread and, as species, are able to supply specific and relevant information about the regions where they live, being useful as bioindicators, as long as they are not birds with a strong migratory character. The main goal of this review is to summarize data collected from different studies using seabirds, paying special attention to gulls, in order to be helpful for coming studies and regulatory affairs.Several tissues have been used to evaluate Hg, Cd, Pb, Se, and As concentrations in seabirds, being focused the present review in those analyzing the liver, kidneys, and feathers. The most frequently analyzed tissue for Hg was the liver, followed by feathers, and finally kidney. For Cd levels, most of the studies were carried out in the liver, followed by feathers and kidneys. Pb, Se, and As levels were determined to a lesser extent. Feathers should be taken carefully as indicator of accumulation of pollutants, since procedure during analysis may lead to controversial results.Some authors reported that interspecific differences in the exposure of elements are determined by multiple factors, including properties of the contaminant, species, feeding habits, migratory status, sex, and age.The present review provides a comprehensive overview of the analyzed elements' occurrence in different species of seabirds, including gulls. Therefore, it can be a useful database providing for Hg, Pb, Cd, Se, and As levels in different tissues of seabirds.
Collapse
Affiliation(s)
- Jorge Vizuete
- Faculty of Veterinary Medicine (UEX), Toxicology Area, Cáceres, Spain
| | - Marcos Pérez-López
- Faculty of Veterinary Medicine (UEX), Toxicology Area, Cáceres, Spain
- INBIO G+C Research Institutes, Cáceres, Spain
| | - María Prado Míguez-Santiyán
- Faculty of Veterinary Medicine (UEX), Toxicology Area, Cáceres, Spain.
- INBIO G+C Research Institutes, Cáceres, Spain.
| | | |
Collapse
|
148
|
Shoji A, Elliott KH, Aris-Brosou S, Mizukawa H, Nakayama SMM, Ikenaka Y, Ishizuka M, Kuwae T, Watanabe K, Escoruela Gonzalez J, Watanuki Y. Biotransport of metallic trace elements from marine to terrestrial ecosystems by seabirds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:106-114. [PMID: 30284322 DOI: 10.1002/etc.4286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/20/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Physical systems, such as currents and winds, have traditionally been considered responsible for transporting contaminants. Although evidence is mounting that animals play a role in this process through their movements, we still know little about how such contaminant biotransport occurs and the extent of effects at deposition sites. In the present study, we address this question by studying how rhinoceros auklets (Cerorhinca monocerata), a seabird that occurs in immense colonies (∼300 000 pairs at our study site, Teuri Island), affect contaminant levels at their colony and at nearby sites. More specifically, we hypothesize that contaminants are transported and deposited by seabirds at their colony and that these contaminants are passed on locally to the terrestrial ecosystem. To test this hypothesis, we analyzed the concentration of 9 heavy metal and metalloids, as well as δ13 C and δ15 N stable isotopes, in bird tissues, plants, and soil, both within and outside of the colony. The results show that rhinoceros auklets transport marine-derived mercury (Hg), possibly from their wintering location, and deposit Hg via their feces at their breeding site, thereby contaminating plants and soils within the breeding colony. The present study confirms not only that animals can transport contaminants from marine to terrestrial ecosystems, potentially over unexpectedly long distances, but also that bird tissues contribute locally to plant contamination. Environ Toxicol Chem 2019;38:106-114. © 2018 SETAC.
Collapse
Affiliation(s)
- A Shoji
- Graduate School of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
- Department of Zoology, Oxford University, Oxford, United Kingdom
| | - K H Elliott
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - S Aris-Brosou
- Departments of Biology and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - H Mizukawa
- Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan
| | - S M M Nakayama
- Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan
| | - Y Ikenaka
- Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - M Ishizuka
- Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan
| | - T Kuwae
- Coastal and Estuarine Environment Research Group, Port and Airport Research Institute, Yokosuka, Japan
| | - K Watanabe
- Coastal and Estuarine Environment Research Group, Port and Airport Research Institute, Yokosuka, Japan
| | - J Escoruela Gonzalez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Y Watanuki
- Graduate School of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
149
|
Živković I, Fajon V, Kotnik J, Shlyapnikov Y, Obu Vazner K, Begu E, Šestanović S, Šantić D, Vrdoljak A, Jozić S, Šolić M, Lušić J, Veža J, Kušpilić G, Ordulj M, Matić F, Grbec B, Bojanić N, Ninčević Gladan Ž, Horvat M. Relations between mercury fractions and microbial community components in seawater under the presence and absence of probable phosphorus limitation conditions. J Environ Sci (China) 2019; 75:145-162. [PMID: 30473280 DOI: 10.1016/j.jes.2018.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 06/09/2023]
Abstract
Microbial transformations of toxic monomethylmercury (MMHg) and dissolved gaseous mercury (DGM) at the lower levels of the marine food web are not well understood, especially in oligotrophic and phosphorus-limited seas. To examine the effects of probable phosphorus limitation (PP-limitation) on relations between mercury (Hg) fractions and microorganisms, we determined the total mercury (THg), total methylated mercury (MeHg), DGM, and microbiological and chemical parameters in the Central Adriatic Sea. Using statistical analysis, we assessed the potential microbial effects on Hg transformations and bioaccumulation. Only in the absence of PP-limitation conditions (NO-PP-limitation) is MeHg significantly related to most chemical and microbial parameters, indicating metabolism-dependent Hg transformations. The heterotrophic activity of low nucleic acid bacteria (abundant in oligotrophic regions) seems responsible for most of Hg methylation under NO-PP-limitation. Under these conditions, DGM is strongly related to microbial fractions and chlorophyll a, indicating biological DGM production, which is probably not metabolically induced, as most of these relations are also observed under PP-limitation. MMHg biomagnification was observed through an increased bioaccumulation factor from microseston to mesozooplankton. Our results indicate that Hg transformations and uptake might be enhanced under NO-PP-limitation conditions, emphasizing their impact on the transfer of Hg to higher trophic levels.
Collapse
Affiliation(s)
- Igor Živković
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| | - Vesna Fajon
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| | - Jože Kotnik
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia
| | - Yaroslav Shlyapnikov
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| | - Kristina Obu Vazner
- Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia; Ecological Engineering Institute, Maribor 2000, Slovenia
| | - Ermira Begu
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| | - Stefanija Šestanović
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Danijela Šantić
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Ana Vrdoljak
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Slaven Jozić
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Mladen Šolić
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Jelena Lušić
- Laboratory of Chemical Oceanography and Sedimentology of the Sea, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Jere Veža
- Laboratory of Chemical Oceanography and Sedimentology of the Sea, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Grozdan Kušpilić
- Laboratory of Chemical Oceanography and Sedimentology of the Sea, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Marin Ordulj
- Department of Marine Studies, University of Split, Split 21000, Croatia
| | - Frano Matić
- Laboratory of Physical Oceanography, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Branka Grbec
- Laboratory of Physical Oceanography, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Natalia Bojanić
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Živana Ninčević Gladan
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia.
| |
Collapse
|
150
|
Bravo AG, Kothawala DN, Attermeyer K, Tessier E, Bodmer P, Ledesma JLJ, Audet J, Casas-Ruiz JP, Catalán N, Cauvy-Fraunié S, Colls M, Deininger A, Evtimova VV, Fonvielle JA, Fuß T, Gilbert P, Herrero Ortega S, Liu L, Mendoza-Lera C, Monteiro J, Mor JR, Nagler M, Niedrist GH, Nydahl AC, Pastor A, Pegg J, Gutmann Roberts C, Pilotto F, Portela AP, González-Quijano CR, Romero F, Rulík M, Amouroux D. The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: A latitudinal study across Europe. WATER RESEARCH 2018; 144:172-182. [PMID: 30029076 DOI: 10.1016/j.watres.2018.06.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 05/16/2023]
Abstract
Large-scale studies are needed to identify the drivers of total mercury (THg) and monomethyl-mercury (MeHg) concentrations in aquatic ecosystems. Studies attempting to link dissolved organic matter (DOM) to levels of THg or MeHg are few and geographically constrained. Additionally, stream and river systems have been understudied as compared to lakes. Hence, the aim of this study was to examine the influence of DOM concentration and composition, morphological descriptors, land uses and water chemistry on THg and MeHg concentrations and the percentage of THg as MeHg (%MeHg) in 29 streams across Europe spanning from 41°N to 64 °N. THg concentrations (0.06-2.78 ng L-1) were highest in streams characterized by DOM with a high terrestrial soil signature and low nutrient content. MeHg concentrations (7.8-159 pg L-1) varied non-systematically across systems. Relationships between DOM bulk characteristics and THg and MeHg suggest that while soil derived DOM inputs control THg concentrations, autochthonous DOM (aquatically produced) and the availability of electron acceptors for Hg methylating microorganisms (e.g. sulfate) drive %MeHg and potentially MeHg concentration. Overall, these results highlight the large spatial variability in THg and MeHg concentrations at the European scale, and underscore the importance of DOM composition on mercury cycling in fluvial systems.
Collapse
Affiliation(s)
- Andrea G Bravo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain.
| | - Dolly N Kothawala
- Limnology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Katrin Attermeyer
- Limnology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Emmanuel Tessier
- CNRS/ UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, UMR5254, MIRA, Pau, France
| | - Pascal Bodmer
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany; Chemical Analytics and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - José L J Ledesma
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Joachim Audet
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Núria Catalán
- Catalan Institute for Water Research (ICRA), Girona, Spain
| | | | - Miriam Colls
- Catalan Institute for Water Research (ICRA), Girona, Spain
| | - Anne Deininger
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Vesela V Evtimova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jérémy A Fonvielle
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Thomas Fuß
- Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; WasserCluster Biological Station Lunz, Lunz am See, Austria
| | - Peter Gilbert
- The Environmental Research Institute, North Highland College, University of Highlands and Islands, Thurso, Scotland, UK
| | - Sonia Herrero Ortega
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Liu Liu
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Clara Mendoza-Lera
- IRSTEA, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, Cedex, France
| | - Juliana Monteiro
- Research Centre in Biodiversity and Genetic Resources (CIBIO), University of Porto, Porto, Portugal
| | - Jordi-René Mor
- Catalan Institute for Water Research (ICRA), Girona, Spain; Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
| | - Magdalena Nagler
- Microbial Resource Management, Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Georg H Niedrist
- River and Conservation Research, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Anna C Nydahl
- Limnology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Ada Pastor
- Catalan Institute for Water Research (ICRA), Girona, Spain
| | - Josephine Pegg
- Department of Life and Environmental Sciences, Bournemouth University, UK; University Centre Sparsholt, Winchester, UK
| | | | - Francesca Pilotto
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Ana Paula Portela
- Research Centre in Biodiversity and Genetic Resources (CIBIO), University of Porto, Porto, Portugal
| | | | - Ferran Romero
- Catalan Institute for Water Research (ICRA), Girona, Spain
| | - Martin Rulík
- Department of Ecology and Environmental Sciences, Palacky University in Olomouc, Olomouc, Czech Republic
| | - David Amouroux
- CNRS/ UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, UMR5254, MIRA, Pau, France.
| |
Collapse
|