101
|
Rodrigues FS, França AP, Broetto N, Furian AF, Oliveira MS, Santos ARS, Royes LFF, Fighera MR. Sustained glial reactivity induced by glutaric acid may be the trigger to learning delay in early and late phases of development: Involvement of p75 NTR receptor and protection by N-acetylcysteine. Brain Res 2020; 1749:147145. [PMID: 33035499 DOI: 10.1016/j.brainres.2020.147145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
Degeneration of striatal neurons and cortical atrophy are pathological characteristics of glutaric acidemia type I (GA-I), a disease characterized by accumulation of glutaric acid (GA). The mechanisms that lead to neuronal loss and cognitive impairment are still unclear. The purpose of this study was to verify if acute exposure to GA during the neonatal period is sufficient to trigger apoptotic processes and lead to learning delay in early and late period. Besides, whether N-acetylcysteine (NAC) would protect against impairment induced by GA. Pups mice received a dose of GA (2.5 μmol/ g) or saline, 12 hs after birth, and were treated with NAC (250 mg/kg) or saline, up to 21th day of life. Although GA exhibited deficits in the procedural and working memories in 21 and 40-day-old mice, NAC protected against cognitive impairment. In striatum and cortex, NAC prevented glial cells activation (GFAP and Iba-1), decreased NGF, Bcl-2 and NeuN, the increase of lipid peroxidation and PARP induced by GA in both ages. NAC protected against increased p75NTR induced by GA, but not in cortex of 21-day-old mice. Thus, we showed that the integrity of striatal and cortical pathways has an important role for learning and suggested that sustained glial reactivity in neonatal period can be an initial trigger for delay of cognitive development. Furthermore, NAC protected against cognitive impairment induced by GA. This work shows that early identification of the alterations induced by GA is important to avoid future clinical complications and suggest that NAC could be an adjuvant treatment for this acidemia.
Collapse
Affiliation(s)
- Fernanda Silva Rodrigues
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Centro de Ciências Biológicas, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Angela Patrícia França
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Núbia Broetto
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Adair Roberto Soares Santos
- Centro de Ciências Biológicas, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Luiz Fernando Freire Royes
- Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Michele Rechia Fighera
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
102
|
Modification of proteins by reactive lipid oxidation products and biochemical effects of lipoxidation. Essays Biochem 2020; 64:19-31. [PMID: 31867621 DOI: 10.1042/ebc20190058] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Lipid oxidation results in the formation of many reactive products, such as small aldehydes, substituted alkenals, and cyclopentenone prostaglandins, which are all able to form covalent adducts with nucleophilic residues of proteins. This process is called lipoxidation, and the resulting adducts are called advanced lipoxidation end products (ALEs), by analogy with the formation of advanced glycoxidation end products from oxidized sugars. Modification of proteins by reactive oxidized lipids leads to structural changes such as increased β-sheet conformation, which tends to result in amyloid-like structures and oligomerization, or unfolding and aggregation. Reaction with catalytic cysteines is often responsible for the loss of enzymatic activity in lipoxidized proteins, although inhibition may also occur through conformational changes at more distant sites affecting substrate binding or regulation. On the other hand, a few proteins are activated by lipoxidation-induced oligomerization or interactions, leading to increased downstream signalling. At the cellular level, it is clear that some proteins are much more susceptible to lipoxidation than others. ALEs affect cell metabolism, protein-protein interactions, protein turnover via the proteasome, and cell viability. Evidence is building that they play roles in both physiological and pathological situations, and inhibiting ALE formation can have beneficial effects.
Collapse
|
103
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
104
|
Račková L, Csekes E. Proteasome Biology: Chemistry and Bioengineering Insights. Polymers (Basel) 2020; 12:E2909. [PMID: 33291646 PMCID: PMC7761984 DOI: 10.3390/polym12122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Proteasomal degradation provides the crucial machinery for maintaining cellular proteostasis. The biological origins of modulation or impairment of the function of proteasomal complexes may include changes in gene expression of their subunits, ubiquitin mutation, or indirect mechanisms arising from the overall impairment of proteostasis. However, changes in the physico-chemical characteristics of the cellular environment might also meaningfully contribute to altered performance. This review summarizes the effects of physicochemical factors in the cell, such as pH, temperature fluctuations, and reactions with the products of oxidative metabolism, on the function of the proteasome. Furthermore, evidence of the direct interaction of proteasomal complexes with protein aggregates is compared against the knowledge obtained from immobilization biotechnologies. In this regard, factors such as the structures of the natural polymeric scaffolds in the cells, their content of reactive groups or the sequestration of metal ions, and processes at the interface, are discussed here with regard to their influences on proteasomal function.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
105
|
Wójcik P, Gęgotek A, Wroński A, Jastrząb A, Żebrowska A, Skrzydlewska E. Effect of redox imbalance on protein modifications in lymphocytes of psoriatic patients. J Biochem 2020; 167:323-331. [PMID: 31710683 DOI: 10.1093/jb/mvz096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
Lymphocytes are one of the most important cells involved in the pathophysiology of psoriasis; therefore, the aim of this study was to assess the redox imbalance and protein modifications in the lymphocytes of patients with psoriasis vulgaris (PsV) or psoriatic arthritis (PsA). The results show a stronger shift in redox status to pro-oxidative conditions (observed as an increased reactive oxygen species level, a decrease in catalase activity and lower levels of glutathione peroxidase and vitamin E compared with healthy controls) in the lymphocytes of PsA than PsV patients. It is also favoured by the enhanced level of activators of the Nrf2 transcription factor in lymphocytes of PsV compared with decreased of these proteins level in PsA. Moreover, the differential modifications of proteins by lipid peroxidation products 4-oxononenal (mainly binding proteins) and malondialdehyde (mainly catalytic proteins with redox activity), promoted a pro-apoptotic pathway in lymphocytes of PsV, which was manifested by enhanced expression of pro-apoptotic caspases, particularly caspase 3. Taken together, differences in Nrf2 pathway activation may be responsible for the differential level of redox imbalance in lymphocytes of patients with PsV and PsA. This finding may enable identification of a targeted therapy to modify the metabolic pathways disturbed in psoriasis.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Adam Wroński
- Dermatological Specialized Center "DERMAL" NZOZ in Białystok, Nowy Świat 17/5, 15-453 Białystok, Poland
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Agnieszka Żebrowska
- Regional Center for Blood Donation and Blood Treatment, M. Skłodowskiej - Curie 23, 15-950 Białystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
106
|
Yuan W, Wang J, Zhang Y, Lu H. Sample preparation approaches for qualitative and quantitative analysis of lipid-derived electrophile modified proteomes by mass spectrometry. Mol Omics 2020; 16:511-520. [PMID: 33079115 DOI: 10.1039/d0mo00099j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipid-derived electrophile (LDE) modifications, which are covalent modifications of proteins by endogenous LDEs, are essential types of protein posttranslational modifications. LDE modifications alter the protein structure and regulate their biological processes in cells. LDE modifications of proteins are also closely associated with several diseases and function as potential biomarkers for clinical diagnosis. The crucial step in studying the LDE modifications is to enrich the LDE modified proteins/peptides from complex biological samples with high efficiency and high selectivity and quantify modified proteins/peptides with high accuracy. In this review, we summarize the recent progress in MS-based proteomic technologies to globally identify and quantify LDE modified proteomes, mainly focusing on discussing the qualitative and quantitative technologies.
Collapse
Affiliation(s)
- Wenjuan Yuan
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China.
| | | | | | | |
Collapse
|
107
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
108
|
Retamal MA, Fiori MC, Fernandez-Olivares A, Linsambarth S, Peña F, Quintana D, Stehberg J, Altenberg GA. 4-Hydroxynonenal induces Cx46 hemichannel inhibition through its carbonylation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158705. [PMID: 32244060 DOI: 10.1016/j.bbalip.2020.158705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 12/22/2022]
Abstract
Hemichannels formed by connexins mediate the exchange of ions and signaling molecules between the cytoplasm and the extracellular milieu. Under physiological conditions hemichannels have a low open probability, but in certain pathologies their open probability increases, which can result in cell damage. Pathological conditions are characterized by the production of a number of proinflammatory molecules, including 4-hydroxynonenal (4-HNE), one of the most common lipid peroxides produced in response to inflammation and oxidative stress. The aim of this work was to evaluate whether 4-HNE modulates the activity of Cx46 hemichannels. We found that 4-HNE (100 μM) reduced the rate of 4',6-diamino-2-fenilindol (DAPI) uptake through hemichannels formed by recombinant human Cx46 fused to green fluorescent protein, an inhibition that was reversed partially by 10 mM dithiothreitol. Immunoblot analysis showed that the recombinant Cx46 expressed in HeLa cells becomes carbonylated after exposure to 4-HNE, and that 10 mM dithiothreitol reduced its carbonylation. We also found that Cx46 was carbonylated by 4-HNE in the lens of a selenite-induced cataract animal model. The exposure to 100 μM 4-HNE decreased hemichannel currents formed by recombinant rat Cx46 in Xenopus laevis oocytes. This inhibition also occurred in a mutant expressing only the extracellular loop cysteines, suggesting that other Cys are not responsible for the hemichannel inhibition by carbonylation. This work demonstrates for the first time that Cx46 is post-translationally modified by a lipid peroxide and that this modification reduces Cx46 hemichannel activity.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago, Chile; Universidad del Desarrollo, Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Santiago, Chile.
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA
| | - Ainoa Fernandez-Olivares
- Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago, Chile; Universidad del Desarrollo, Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - Sergio Linsambarth
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la vida, Universidad Andres Bello, Santiago, Chile
| | - Francisca Peña
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la vida, Universidad Andres Bello, Santiago, Chile
| | - Daisy Quintana
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la vida, Universidad Andres Bello, Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la vida, Universidad Andres Bello, Santiago, Chile
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA
| |
Collapse
|
109
|
Type III intermediate filaments as targets and effectors of electrophiles and oxidants. Redox Biol 2020; 36:101582. [PMID: 32711378 PMCID: PMC7381704 DOI: 10.1016/j.redox.2020.101582] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Intermediate filaments (IFs) play key roles in cell mechanics, signaling and homeostasis. Their assembly and dynamics are finely regulated by posttranslational modifications. The type III IFs, vimentin, desmin, peripherin and glial fibrillary acidic protein (GFAP), are targets for diverse modifications by oxidants and electrophiles, for which their conserved cysteine residue emerges as a hot spot. Pathophysiological examples of these modifications include lipoxidation in cell senescence and rheumatoid arthritis, disulfide formation in cataracts and nitrosation in endothelial shear stress, although some oxidative modifications can also be detected under basal conditions. We previously proposed that cysteine residues of vimentin and GFAP act as sensors for oxidative and electrophilic stress, and as hinges influencing filament assembly. Accumulating evidence indicates that the structurally diverse cysteine modifications, either per se or in combination with other posttranslational modifications, elicit specific functional outcomes inducing distinct assemblies or network rearrangements, including filament stabilization, bundling or fragmentation. Cysteine-deficient mutants are protected from these alterations but show compromised cellular performance in network assembly and expansion, organelle positioning and aggresome formation, revealing the importance of this residue. Therefore, the high susceptibility to modification of the conserved cysteine of type III IFs and its cornerstone position in filament architecture sustains their role in redox sensing and integration of cellular responses. This has deep pathophysiological implications and supports the potential of this residue as a drug target. Type III intermediate filaments can be modified by many oxidants and electrophiles. Oxidative modifications of type III IFs occur in normal and pathological conditions. The conserved cysteine residue acts as a hub for redox/electrophilic modifications. Cysteine modifications elicit structure-dependent type III IF rearrangements. Type III intermediate filaments act as sensors for oxidative and electrophilic stress.
Collapse
|
110
|
Kepchia D, Huang L, Dargusch R, Rissman RA, Shokhirev MN, Fischer W, Schubert D. Diverse proteins aggregate in mild cognitive impairment and Alzheimer's disease brain. Alzheimers Res Ther 2020; 12:75. [PMID: 32560738 PMCID: PMC7305608 DOI: 10.1186/s13195-020-00641-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND All cells accumulate insoluble protein aggregates throughout their lifespan. While many studies have characterized the canonical disease-associated protein aggregates, such as those associated with amyloid plaques, additional, undefined proteins aggregate in the brain and may be directly associated with disease and lifespan. METHODS A proteomics approach was used to identify a large subset of insoluble proteins in the mild cognitively impaired (MCI) and Alzheimer's disease (AD) human brain. Cortical samples from control, MCI, and AD patients were separated into detergent-soluble and detergent-insoluble fractions, and high-resolution LC/MS/MS technology was used to determine which proteins became more insoluble in the disease state. Bioinformatics analyses were used to determine if the alteration of protein aggregation between AD and control patients was associated with any specific biological process. Western blots were used to validate the proteomics data and to assess the levels of secondary protein modifications in MCI and AD. RESULTS There was a stage-dependent increase in detergent-insoluble proteins, with more extreme changes occurring in the AD cohort. Glycolysis was the most significantly overrepresented gene ontology biological process associated with the alteration of protein aggregation between AD and control patients. It was further shown that many low molecular weight proteins that were enriched in the AD brain were also highly aggregated, migrating on SDS-PAGE far above their predicted molecular masses. Glucose-6-phosphate isomerase, ubiquitin carboxyl-terminal hydrolase isoenzyme L1 (UCHL1/PARK5), and the DNA damage repair enzyme KU70 were among the top insoluble proteins identified by proteomics and validated by Western blot to be increased in the insoluble fractions of both MCI and AD brain samples. CONCLUSIONS Diverse proteins became more detergent-insoluble in the brains of both MCI and AD patients compared to age-matched controls, suggesting that multiple proteins aggregate in these diseases, likely posing a direct toxic insult to neurons. Furthermore, detergent-insoluble proteins included those with important biological activities for critical cellular processes such as energetics, proteolysis, and DNA damage repair. Thus, reduced protein solubility likely promotes aggregation and limits functionality, reducing the efficiency of multiple aspects of cell physiology. Pharmaceutical interventions that increase autophagy may provide a useful therapeutic treatment to combat protein aggregation.
Collapse
Affiliation(s)
- Devin Kepchia
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Richard Dargusch
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Robert A Rissman
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Research Center Neuropathology Core, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Maxim N Shokhirev
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Wolfgang Fischer
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| |
Collapse
|
111
|
Sguizzato M, Mariani P, Spinozzi F, Benedusi M, Cervellati F, Cortesi R, Drechsler M, Prieux R, Valacchi G, Esposito E. Ethosomes for Coenzyme Q10 Cutaneous Administration: From Design to 3D Skin Tissue Evaluation. Antioxidants (Basel) 2020; 9:E485. [PMID: 32503293 PMCID: PMC7346166 DOI: 10.3390/antiox9060485] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Ethosome represents a smart transdermal vehicle suitable for solubilization and cutaneous application of drugs. Coenzyme Q10 is an endogenous antioxidant whose supplementation can counteract many cutaneous disorders and pathologies. In this respect, the present study describes the production, characterization, and cutaneous protection of phosphatidylcholine based ethosomes as percutaneous delivery systems for coenzyme Q10. CoQ10 entrapment capacity in ethosomes was almost 100%, vesicles showed the typical 'fingerprint' structure, while mean diameters were around 270 nm, undergoing an 8% increase after 3 months from production. An ex-vivo study, conducted by transmission electron microscopy, could detect the uptake of ethosomes in human skin fibroblasts and the passage of the vesicles through 3D reconstituted human epidermis. Immunofluorescence analyses were carried on both on fibroblasts and 3D reconstituted human epidermis treated with ethosomes in the presence of H2O2 as oxidative stress challenger, evaluating 4-hydroxynonenal protein adducts which is as a reliable biomarker for oxidative damage. Notably, the pretreatment with CoQ10 loaded in ethosomes exerted a consistent protective effect against oxidative stress, in both models, fibroblasts and in reconstituted human epidermis respectively.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy;
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (P.M.); (F.S.)
| | - Francesco Spinozzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (P.M.); (F.S.)
| | - Mascia Benedusi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.B.); (F.C.); (R.P.)
| | - Franco Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.B.); (F.C.); (R.P.)
| | - Rita Cortesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy;
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Roxane Prieux
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.B.); (F.C.); (R.P.)
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.B.); (F.C.); (R.P.)
- Animal Science Dept., Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| | - Elisabetta Esposito
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy;
| |
Collapse
|
112
|
Oskolkova OV, Bochkov VN. Gain of function mechanisms triggering biological effects of oxidized phospholipids. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
113
|
Cafe SL, Nixon B, Dun MD, Roman SD, Bernstein IR, Bromfield EG. Oxidative Stress Dysregulates Protein Homeostasis Within the Male Germ Line. Antioxid Redox Signal 2020; 32:487-503. [PMID: 31830800 DOI: 10.1089/ars.2019.7832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: Oxidative stress is causally linked to male reproductive pathologies, driven primarily by lipid peroxidation and an attendant production of highly reactive lipid aldehydes, such as 4-hydroxynonenal (4HNE) within the male germ line. In somatic cells, 4HNE dysregulates proteostasis via targeting of vulnerable proteins for adduction, causing protein misfolding and eventually aggregation. The aims of this study were to explore whether oxidative stress precipitates an equivalent response in the male germ line and determine the protective mechanisms used by germ cells to prevent this cascade of protein damage. Results: We reveal a causative role for oxidative stress in the accumulation of protein deposits in male germ cells. Specifically, 4HNE treatment resulted in a significant increase in cytosolic protein aggregation within pre- and post-meiotic germ cells as measured by the aggregate-detecting fluorophores ProteoStat and Thioflavin T, and the amyloid-specific anti-A11 and anti-OC antibodies. Our data implicate nucleocytoplasmic transport machinery and molecular chaperones as potential mechanisms for the subcellular compartmentalization and/or suppression of aggregating proteins. Thus, the inhibition of karyopherin transport proteins and molecular chaperones resulted in a significant increase in the accumulation of aggregated cellular protein. Innovation: These data establish the novel paradigm that lipid peroxidation is a key contributor to a decline in proteostasis in developing germ cells. These findings will inform the development of novel strategies to protect germ cells from oxidative stress. Conclusion: Together, these results shed light on proteostasis mechanisms that may assist in the management of misfolded proteins in the male germ line under conditions of acute oxidative stress.
Collapse
Affiliation(s)
- Shenae Louise Cafe
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Matthew D Dun
- Cancer Signaling Research Group, School of Biomedical Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia.,Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, Lambton, Australia
| | - Shaun Daryl Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia.,Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Ilana Ruth Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Elizabeth Grace Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
114
|
Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat 2020; 49:100670. [DOI: 10.1016/j.drup.2019.100670] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022]
|
115
|
Guo J, Wang J, Guo Y, Feng J. Association of aspirin resistance with 4-hydroxynonenal and its impact on recurrent cerebral infarction in patients with acute cerebral infarction. Brain Behav 2020; 10:e01562. [PMID: 32027781 PMCID: PMC7066347 DOI: 10.1002/brb3.1562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES To investigate the association of aspirin resistance (AR) with the plasma 4-hydroxynonenal (4-HNE) level and its impact on recurrent cerebral infarction (CI) in patients with acute cerebral infarction (ACI) who were receiving aspirin therapy. METHODS One hundred and fifty-four ACI patients who previously received aspirin therapy (100 mg/day) were enrolled. Whole urine (for measuring 11dhTXB2 and creatinine) along with blood (for measuring the plasma 4-HNE level) were collected at least 7 days after the patients received aspirin. A cutoff of 1500 pg/mg of 11dhTXB2/ creatinine was used to determine AR. A follow-up period to monitor recurrence CI events was 1 year. In addition, blood testing was performed when the patients were first admitted to hospital. RESULTS Forty-six of the 154 enrolled patients (29.9%) were found to be AR. No statistical difference in age, sex, hypertension, diabetes mellitus, coronary disease, smoking status, NIHSS score, TOAST classification, platelet count, thrombocytocrit, LDL-C, HDL-C, TG, and TC was found between the AR and aspirin-sensitive (AS) patients, but the plasma 4-HNE level was found to be higher in the AR patients than AS patients (p < .05). Multiple logistic regression analysis showed that the 4-HNE level was associated with a higher risk of AR (OR = 1.034; 95% CI = 1.011-1.058; p < .05). Moreover, 1-year follow-up showed that AR was more prevalent in patients with recurrent CI (26 (56.6%)) than those without (20/(43.5%)) (p < .001). CONCLUSIONS The plasma 4-HNE level is strongly associated with AR and thus may be a factor contributing to AR. Patients with AR have a greater risk of recurrence CI.
Collapse
Affiliation(s)
- Juan Guo
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yanxia Guo
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
116
|
Zheng K, Hao J, Xiao L, Wang M, Zhao Y, Fan D, Li Y, Wang X, Zhang L. Expression of nicotinamide adenine dinucleotide phosphate oxidase in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2020; 10:646-655. [PMID: 32052917 DOI: 10.1002/alr.22530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/30/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase produces reactive oxygen species (ROS) involved in oxidative stress and signal transduction. Recent studies have suggested that NADPH oxidase is associated with the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). The aim of this study was to detect the expression of NADPH oxidase subunits and 4-hydroxynonenal (4-HNE) in nasal polyp tissue and normal nasal mucosa, in order to explore the possible role played by NADPH oxidase in the pathogenesis of CRSwNP. METHODS Thirteen patients with CRSwNP and 9 normal control subjects were selected to participate in this study, in which we evaluated the expression of different NADPH oxidase subunits (gp91phox , p67phox , p47phox , and p22phox ) in nasal polyp (NP) tissue and control mucosa by Western blotting and real-time polymerase chain reaction (PCR). Immunohistochemistry and immunofluorescence staining were used to detect expression of the p67phox subunit and 4-HNE in NP tissue and normal nasal mucosa. RESULTS Western blot and real-time PCR results showed that p67phox expression was significantly increased in NP tissue when compared with its expression in control mucosa (p = 0.004). p67phox was expressed in the eosinophils and neutrophils found in NP tissue, but not in the macrophages. Additionally, the levels of 4-HNE expression were also significantly increased in NP tissue when compared with control mucosa (p = 0.001). CONCLUSION The levels of p67phox messenger RNA (mRNA) and protein as well as 4-HNE were both upregulated in NP tissue, suggesting that p67phox and oxidative stress play roles in the pathogenesis of CRSwNP.
Collapse
Affiliation(s)
- Kaili Zheng
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jin Hao
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Lei Xiao
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Min Wang
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Dachuan Fan
- Department of Otolaryngology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Department of Allergy, Beijing TongRen Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| |
Collapse
|
117
|
In Vitro Aging of Human Skin Fibroblasts: Age-Dependent Changes in 4-Hydroxynonenal Metabolism. Antioxidants (Basel) 2020; 9:antiox9020150. [PMID: 32053996 PMCID: PMC7070748 DOI: 10.3390/antiox9020150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence suggests that the increased production of free radicals and reactive oxygen species lead to cellular aging. One of the consequences is lipid peroxidation generating reactive aldehydic products, such as 4-hydroxynonenal (HNE) that modify proteins and form adducts with DNA bases. To prevent damage by HNE, it is metabolized. The primary metabolic products are the glutathione conjugate (GSH-HNE), the corresponding 4-hydroxynonenoic acid (HNA), and the alcohol 1,4-dihydroxynonene (DHN). Since HNE metabolism can potentially change during in vitro aging, cell cultures of primary human dermal fibroblasts from several donors were cultured until senescence. After different time points up to 30 min of incubation with 5 µM HNE, the extracellular medium was analyzed for metabolites via liquid chromatography coupled with electrospray ionization mass spectrometry (LC/ESI-MS). The metabolites appeared in the extracellular medium 5 min after incubation followed by a time-dependent increase. But, the formation of GSH-HNL and GSH-DHN decreased with increasing in vitro age. As a consequence, the HNE levels in the cells increase and there is more protein modification observed. Furthermore, after 3 h of incubation with 5 µM HNE, younger cells showed less proliferative capacity, while in older cells slight increase in the mitotic index was noticed.
Collapse
|
118
|
Dual disruption of aldehyde dehydrogenases 1 and 3 promotes functional changes in the glutathione redox system and enhances chemosensitivity in nonsmall cell lung cancer. Oncogene 2020; 39:2756-2771. [PMID: 32015486 PMCID: PMC7098886 DOI: 10.1038/s41388-020-1184-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are multifunctional enzymes that oxidize diverse endogenous and exogenous aldehydes. We conducted a meta-analysis based on The Cancer Genome Atlas and Gene Expression Omnibus data and detected genetic alterations in ALDH1A1, ALDH1A3, or ALDH3A1, 86% of which were gene amplification or mRNA upregulation, in 31% of nonsmall cell lung cancers (NSCLCs). The expression of these isoenzymes impacted chemoresistance and shortened survival times in patients. We hypothesized that these enzymes provide an oxidative advantage for the persistence of NSCLC. To test this hypothesis, we used genetic and pharmacological approaches with DIMATE, an irreversible inhibitor of ALDH1/3. DIMATE showed cytotoxicity in 73% of NSCLC cell lines tested and demonstrated antitumor activity in orthotopic xenografts via hydroxynonenal-protein adduct accumulation, GSTO1-mediated depletion of glutathione and increased H2O2. Consistent with this result, ALDH1/3 disruption synergized with ROS-inducing agents or glutathione synthesis inhibitors to trigger cell death. In lung cancer xenografts with high to moderate cisplatin resistance, combination treatment with DIMATE promoted strong synergistic responses with tumor regression. These results indicate that NSCLCs with increased expression of ALDH1A1, ALDH1A3, or ALDH3A1 may be targeted by strategies involving inhibitors of these isoenzymes as monotherapy or in combination with chemotherapy to overcome patient-specific drug resistance.
Collapse
|
119
|
Zhao S, Feng XF, Huang T, Luo HH, Chen JX, Zeng J, Gu M, Li J, Sun XY, Sun D, Yang X, Fang ZZ, Cao YF. The Association Between Acylcarnitine Metabolites and Cardiovascular Disease in Chinese Patients With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2020; 11:212. [PMID: 32431666 PMCID: PMC7214635 DOI: 10.3389/fendo.2020.00212] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: The association between acylcarnitine metabolites and cardiovascular disease (CVD) in type 2 diabetes mellitus (T2DM) remains uncertain. This study aimed to investigate associations between acylcarnitines and CVD in Chinese patients with T2DM. Methods: A cross-sectional study was conducted from May 2015 to August 2016. Medical records of 741 patients with T2DM were retrieved from the main electronic database of Liaoning Medical University First Affiliated Hospital. CVD was defined as having either coronary artery disease (CAD) or heart failure (HF) or stroke. Mass Spectrometry was utilized to measure levels of 25 acylcarnitine metabolites in fasting plasma. Factor analysis was used to reduce the dimensions and extracted factors of the 25 acylcarnitine metabolites. Multivariable binary logistic regression was used to obtain odds ratios (OR) of the factors extracted from the 25 acylcarnitine metabolites and their 95% confidence intervals (CI) for CVD. Results: Of the 741 patients with T2DM, 288 had CVD. Five factors were extracted from the 25 acylcarnitines and they accounted for 65.9% of the total variance. Factor 1 consisted of acetylcarnitine, butyrylcarnitine, hydroxylbutyrylcarnitine, glutarylcarnitine, hexanoylcarnitine, octanoylcarnitine, and tetradecanoyldiacylcarnitine. Factor 2 consisted of decanoylcarnitine, lauroylcarnitine, myristoylcarnitine, 3-hydroxyl-tetradecanoylcarnitine, tetradecenoylcarnitine, and 3-hydroxypalmitoylcarnitine. After adjusting for potential confounders, increased factor 1 and 2 were associated with increased risks of CVD in T2DM (OR of factor 1: 1.45, 95% CI: 1.03-2.03; OR of factor 2: 1.23, 95% CI: 1.02-1.50). Conclusions: Elevated plasma levels of some acylcarnitine metabolites, i.e., those extracted into factor 1 and 2, were associated with CVD risk in T2DM.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiao-Fei Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ting Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Hui-Huan Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jian-Xin Chen
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jia Zeng
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Muyu Gu
- Central Laboratory of Preventive Medicine, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiao-Yu Sun
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, China
| | - Dan Sun
- College of Life Sciences, NanKai University, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- *Correspondence: Xilin Yang ;
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Zhong-Ze Fang
| | - Yun-Feng Cao
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
- Yun-Feng Cao
| |
Collapse
|
120
|
Méndez L, Muñoz S, Miralles-Pérez B, Nogués MR, Ramos-Romero S, Torres JL, Medina I. Modulation of the Liver Protein Carbonylome by the Combined Effect of Marine Omega-3 PUFAs and Grape Polyphenols Supplementation in Rats Fed an Obesogenic High Fat and High Sucrose Diet. Mar Drugs 2019; 18:E34. [PMID: 31906027 PMCID: PMC7024381 DOI: 10.3390/md18010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 01/05/2023] Open
Abstract
Diet-induced obesity has been linked to metabolic disorders such as cardiovascular diseases andtype 2 diabetes. A factor linking diet to metabolic disorders is oxidative stress, which can damagebiomolecules, especially proteins. The present study was designed to investigate the effect of marineomega-3 polyunsaturated fatty acids (PUFAs) (eicosapentaenoic acid (EPA) and docosahexaenoic acid(DHA)) and their combination with grape seed polyphenols (GSE) on carbonyl-modified proteins fromplasma and liver in Wistar Kyoto rats fed an obesogenic diet, namely high-fat and high-sucrose (HFHS)diet. A proteomics approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labelling of proteincarbonyls, visualization of FTSC-labelled protein on 1-DE or 2-DE gels, and protein identification byMS/MS was used for the protein oxidation assessment. Results showed the efficiency of the combinationof both bioactive compounds in decreasing the total protein carbonylation induced by HFHS diet in bothplasma and liver. The analysis of carbonylated protein targets, also referred to as the 'carbonylome',revealed an individual response of liver proteins to supplements and a modulatory effect on specificmetabolic pathways and processes due to, at least in part, the control exerted by the supplements on theliver protein carbonylome. This investigation highlights the additive effect of dietary fish oils and grapeseed polyphenols in modulating in vivo oxidative damage of proteins induced by the consumption ofHFHS diets.
Collapse
Affiliation(s)
- Lucía Méndez
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (S.M.); (I.M.)
| | - Silvia Muñoz
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (S.M.); (I.M.)
| | - Bernat Miralles-Pérez
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain (M.R.N.)
| | - Maria Rosa Nogués
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain (M.R.N.)
| | - Sara Ramos-Romero
- Instituto de Química Avanzada de Cataluña-Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (S.R.-R.); (J.L.T.)
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biología, Universitad de Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Josep Lluis Torres
- Instituto de Química Avanzada de Cataluña-Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (S.R.-R.); (J.L.T.)
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (S.M.); (I.M.)
| |
Collapse
|
121
|
Finkler JM, Carvalho SC, Santo Neto H, Marques MJ. Cardiac and skeletal muscle changes associated with rosuvastatin therapy in dystrophic
mdx
mice. Anat Rec (Hoboken) 2019; 303:2202-2212. [DOI: 10.1002/ar.24341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Júlia M.G. Finkler
- Department of Structural and Functional Biology Institute of Biology, University of Campinas (UNICAMP) Campinas Brazil
| | - Samara C. Carvalho
- Department of Structural and Functional Biology Institute of Biology, University of Campinas (UNICAMP) Campinas Brazil
| | - Humberto Santo Neto
- Department of Structural and Functional Biology Institute of Biology, University of Campinas (UNICAMP) Campinas Brazil
| | - Maria J. Marques
- Department of Structural and Functional Biology Institute of Biology, University of Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|
122
|
Pohl EE, Jovanovic O. The Role of Phosphatidylethanolamine Adducts in Modification of the Activity of Membrane Proteins under Oxidative Stress. Molecules 2019; 24:molecules24244545. [PMID: 31842328 PMCID: PMC6943717 DOI: 10.3390/molecules24244545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) and their derivatives, reactive aldehydes (RAs), have been implicated in the pathogenesis of many diseases, including metabolic, cardiovascular, and inflammatory disease. Understanding how RAs can modify the function of membrane proteins is critical for the design of therapeutic approaches in the above-mentioned pathologies. Over the last few decades, direct interactions of RA with proteins have been extensively studied. Yet, few studies have been performed on the modifications of membrane lipids arising from the interaction of RAs with the lipid amino group that leads to the formation of adducts. It is even less well understood how various multiple adducts affect the properties of the lipid membrane and those of embedded membrane proteins. In this short review, we discuss a crucial role of phosphatidylethanolamine (PE) and PE-derived adducts as mediators of RA effects on membrane proteins. We propose potential PE-mediated mechanisms that explain the modulation of membrane properties and the functions of membrane transporters, channels, receptors, and enzymes. We aim to highlight this new area of research and to encourage a more nuanced investigation of the complex nature of the new lipid-mediated mechanism in the modification of membrane protein function under oxidative stress.
Collapse
|
123
|
Čipak Gašparović A, Milković L, Dandachi N, Stanzer S, Pezdirc I, Vrančić J, Šitić S, Suppan C, Balic M. Chronic Oxidative Stress Promotes Molecular Changes Associated with Epithelial Mesenchymal Transition, NRF2, and Breast Cancer Stem Cell Phenotype. Antioxidants (Basel) 2019; 8:E633. [PMID: 31835715 PMCID: PMC6943739 DOI: 10.3390/antiox8120633] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a role in carcinogenesis, but it also contributes to the modulation of tumor cells and microenvironment caused by chemotherapeutics. One of the consequences of oxidative stress is lipid peroxidation, which can, through reactive aldehydes such as 4-hydroxy-2-nonenal (HNE), affect cell signaling pathways. On the other hand, cancer stem cells (CSC) are now recognized as a major factor of malignancy by causing metastasis, relapse, and therapy resistance. Here, we evaluated whether oxidative stress and HNE modulation of the microenvironment can influence CSC growth, modifications of the epithelial to mesenchymal transition (EMT) markers, the antioxidant system, and the frequency of breast cancer stem cells (BCSC). Our results showed that oxidative changes in the microenvironment of BCSC and particularly chronic oxidative stress caused changes in the proliferation and growth of breast cancer cells. In addition, changes associated with EMT, increase in glutathione (GSH) and Nuclear factor erythroid 2-related factor 2 (NRF2) were observed in breast cancer cells grown on HNE pretreated collagen and under chronic oxidative stress. Our results suggest that chronic oxidative stress can be a bidirectional modulator of BCSC fate. Low levels of HNE can increase differentiation markers in BCSC, while higher levels increased GSH and NRF2 as well as certain EMT markers, thereby increasing therapy resistance.
Collapse
Affiliation(s)
- Ana Čipak Gašparović
- Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| | - Lidija Milković
- Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| | - Nadia Dandachi
- Department of Internal Medicine, Division of Oncology, Medical University, Graz 8036, Austria; (N.D.); (S.S.); (C.S.)
| | - Stefanie Stanzer
- Department of Internal Medicine, Division of Oncology, Medical University, Graz 8036, Austria; (N.D.); (S.S.); (C.S.)
| | - Iskra Pezdirc
- Outhospital Emergency Medicine Department of Krapina Zagorje County, HR-49000 Krapina, Croatia;
| | - Josip Vrančić
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Sanda Šitić
- Sestre milosrdnice University Hospital Centre, University Hospital for Tumors, HR-10000 Zagreb, Croatia;
| | - Christoph Suppan
- Department of Internal Medicine, Division of Oncology, Medical University, Graz 8036, Austria; (N.D.); (S.S.); (C.S.)
| | - Marija Balic
- Department of Internal Medicine, Division of Oncology, Medical University, Graz 8036, Austria; (N.D.); (S.S.); (C.S.)
| |
Collapse
|
124
|
Mixed Flavonoid Supplementation Attenuates Postexercise Plasma Levels of 4-Hydroxynonenal and Protein Carbonyls in Endurance Athletes. Int J Sport Nutr Exerc Metab 2019; 30:112–119. [PMID: 31754080 DOI: 10.1123/ijsnem.2019-0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 11/18/2022]
Abstract
This double-blinded, placebo controlled, randomized crossover trial investigated the influence of 2-week mixed flavonoid versus placebo supplementation on oxinflammation markers after a 75-km cycling time trial in 22 cyclists (42.3 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr post 75-km cycling (176 ± 5.4 min, 73.4 ±2.0% maximal oxygen consumption). The supplement provided 678-mg flavonoids with quercetin (200 mg), green tea catechins (368 mg, 180-mg epigallocatechin gallate), and anthocyanins (128 mg) from bilberry extract, with caffeine, vitamin C, and omega-3 fatty acids added as adjuvants. Blood samples were analyzed for blood leukocyte counts, oxinflammation biomarkers, including 4-hydroxynonenal, protein carbonyls, and peripheral blood mononuclear mRNA expression for cyclooxygenease-2 and glutathione peroxidase. Each of the blood biomarkers was elevated postexercise (time effects, all ps < .01), with lower plasma levels for 4-hydroxynonenal (at 21-hr postexercise) in flavonoid versus placebo (interaction effect, p = .008). Although elevated postexercise, no trial differences for the neutrophil/lymphocyte ratio (p = .539) or peripheral blood mononuclear mRNA expression for cyclooxygenease-2 (p = .322) or glutathione peroxidase (p = .839) were shown. Flavonoid supplementation prior to intensive exercise decreased plasma peroxidation and oxidative damage, as determined by 4-hydroxynonenal. Postexercise increases were similar between the flavonoid and placebo trials for peripheral blood mononuclear mRNA expression for cyclooxygenease-2 and the nuclear factor erythroid 2-related factor 2 related gene glutathione peroxidase (NFE2L2). The data support the strategy of flavonoid supplementation to mitigate postexercise oxidative stress in endurance athletes.
Collapse
|
125
|
Campos-Pinto I, Méndez L, Schouten J, Wilkins J, Fedorova M, Pitt AR, Davis P, Spickett CM. Epitope mapping and characterization of 4-hydroxy-2-nonenal modified-human serum albumin using two different polyclonal antibodies. Free Radic Biol Med 2019; 144:234-244. [PMID: 31075498 DOI: 10.1016/j.freeradbiomed.2019.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/28/2022]
Abstract
Lipids are susceptible to damage by reactive oxygen species, and from lipid oxidation reactions many short chain lipid peroxidation products can be formed. 4-Hydroxy-2-nonenal (HNE) is one of the most abundant and cytotoxic lipid oxidation products and is known to form covalent adducts with nucleophilic amino acids of proteins. HNE-modified proteins have value as biomarkers and can be detected by antibody-based techniques, but most commercially available antibodies were raised against HNE-keyhole limpet hemocyanin. We used HNE-treated human serum albumin (HSA) to raise sheep antiserum and report for the first time the use of covalently modified peptide arrays to assess epitope binding of antibodies (Abs). Peptide arrays covering the sequence of HSA and treated post peptide synthesis with HNE were used to compare the different binding patterns of a commercial polyclonal antibody (pAb) raised against HNE-treated KLH and an in-house anti-HNE enriched pAb. The results were correlated with analysis of HNE-modified HSA by high-resolution tandem mass spectrometry. Both anti-HNE pAbs were found to bind strongly to eight common peptides on the HNE-treated HSA membranes, suggesting that HNE adducts per se induced an immune response in both cases even though different immunogens were used. Both antibodies bound with the highest affinity to the peptide 365DPHECYAKVFDEFKPLV381, which contains K378 and was also shown to be modified by the mass spectrometry analysis. Overall, the commercial anti-HNE pAb showed better specificity, recognizing nine out of the eleven adducts found by MS/MS, while the in-house enriched pAb only recognizes six. Nevertheless, the in-house pAb recognized specific peptides that were not recognized by the commercial pAb, which suggests the presence of clones uniquely specific to HNE adducts on HSA.
Collapse
Affiliation(s)
- Isabel Campos-Pinto
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YA, UK; School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Lucía Méndez
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany; Institute of Marine Research, Spanish Council for Scientific Resesarch, (IIM-CSIC), Vigo, Spain
| | - James Schouten
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YA, UK
| | - John Wilkins
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YA, UK
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Paul Davis
- Mologic, Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YA, UK
| | - Corinne M Spickett
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
126
|
Sousa BC, Ahmed T, Dann WL, Ashman J, Guy A, Durand T, Pitt AR, Spickett CM. Short-chain lipid peroxidation products form covalent adducts with pyruvate kinase and inhibit its activity in vitro and in breast cancer cells. Free Radic Biol Med 2019; 144:223-233. [PMID: 31173844 DOI: 10.1016/j.freeradbiomed.2019.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
Abstract
Pyruvate kinase catalyses the last step in glycolysis and has been suggested to contribute to the regulation of aerobic glycolysis in cancer cells. It can be inhibited by oxidation of cysteine residues in vitro and in vivo, which is relevant to the more pro-oxidant state in cancer and proliferating tissues. These conditions also favour lipid peroxidation and the formation of electrophilic fragmentation products, including short-chain aldehydes that can covalently modify proteins. However, as yet few studies have investigated their interactions with pyruvate kinase, so we investigated the effects of three different aldehydes, acrolein, malondialdehyde and 4-hydroxy-2(E)-hexenal (HHE), on the structure and activity of the enzyme. Analysis by LC-MS/MS showed unique modification profiles for each aldehyde, but Cys152, Cys423 and Cys474 were the residues most susceptible to electrophilic modification. Analysis of enzymatic activity under these conditions showed that acrolein was the strongest inhibitor, and at incubation times longer than 2 h, pathophysiological concentrations induced significant effects. Treatment of MCF-7 cells with the aldehydes caused similar losses of pyruvate kinase activity to those observed in vitro, and at lower concentrations than those required to cause cell death, with time and dose-dependent effects; acrolein adducts on Cys152 and Cys358 were detected. Cys358 and Cys474 are located at or near the allosteric or active sites, and formation of adducts on these residues probably contributes to loss of activity at low treatment concentrations. This study provides the first detailed analysis of the structure-activity relationship of C3 and C6 aldehydes with pyruvate kinase, and suggests that reactive short-chain aldehydes generated in diseases with an oxidative aetiology or from environmental exposure such as smoking could be involved in the metabolic alterations observed in cancer cells, through alteration of pyruvate kinase activity.
Collapse
Affiliation(s)
- Bebiana C Sousa
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK
| | - Tanzim Ahmed
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK
| | - William L Dann
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK
| | - Jed Ashman
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, UK.
| |
Collapse
|
127
|
4-Hydroxy-Trans-2-Nonenal in the Regulation of Anti-Oxidative and Pro-Inflammatory Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5937326. [PMID: 31781341 PMCID: PMC6875399 DOI: 10.1155/2019/5937326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/13/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022]
Abstract
Recent studies indicate that 4-hydroxy-trans-2-nonenal (HNE), a major oxidative stress triggered lipid peroxidation-derived aldehyde, plays a critical role in the pathophysiology of various human pathologies including metabolic syndrome, diabetes, cardiovascular, neurological, immunological, and age-related diseases and various types of cancer. HNE is the most abundant and toxic α, β-unsaturated aldehyde formed during the peroxidation of polyunsaturated fatty acids in a series of free radical-mediated reactions. The presence of an aldehyde group at C1, a double bond between C2 and C3 and a hydroxyl group at C4 makes HNE a highly reactive molecule. These strong reactive electrophilic groups favor the formation of HNE adducts with cellular macromolecules such as proteins and nucleic acids leading to the regulation of various cell signaling pathways and processes involved in cell proliferation, differentiation, and apoptosis. Many studies suggest that the cell-specific intracellular concentrations of HNE dictate the anti-oxidative and pro-inflammatory activities of this important molecule. In this review, we focused on how HNE could alter multiple anti-oxidative defense pathways and pro-inflammatory cytotoxic pathways by interacting with various cell-signaling intermediates.
Collapse
|
128
|
Xie J, Cheng C, Jie Y, Ma H, Feng J, Su Y, Deng Y, Xu H, Guo Z. Expression of lactate dehydrogenase is induced during hypoxia via HIF-1 in the mud crab Scylla paramamosain. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108563. [PMID: 31276813 DOI: 10.1016/j.cbpc.2019.108563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 01/01/2023]
Abstract
Lactate dehydrogenase (LDH) is a key enzyme involved in anaerobic metabolism in most organisms. In the present study, we determined the structure and function of LDH sequence in Scylla paramamosain (SpLDH) by gene cloning, expression and RNA interference techniques in order to explore the genetic characteristics of LDH and its relationship with HIF-1 during hypoxia. The full-length cDNA was 1453 bp with an open reading frame (ORF) of 996 bp, and encoded a polypeptide of 332 amino acids. Homology analysis showed that the SpLDH gene is highly similar to arthropods. The SpLDH transcript increased after hypoxia in all tested tissues. The silencing of HIF-1 blocked the increase in LDH mRNA and activity, which were induced by hypoxia in gill and muscle tissues. Our results indicated that SpLDH expression was regulated transcriptionally by HIF-1.
Collapse
Affiliation(s)
- Jiawei Xie
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; Shanghai Ocean University, Shanghai 201206, PR China
| | - Changhong Cheng
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Yukun Jie
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; Shanghai Ocean University, Shanghai 201206, PR China
| | - Hongling Ma
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Juan Feng
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Youlu Su
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Yiqin Deng
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Haidong Xu
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Zhixun Guo
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; Shanghai Ocean University, Shanghai 201206, PR China.
| |
Collapse
|
129
|
Samak MA, Elshatory A, Mohamed EM. Outcomes of Gallic Acid on Alternariol Induced Cyto-Morphic and Genotoxic In Vivo Changes in Parotid Gland: 4-HNE Incorporated. Biomedicines 2019; 7:biomedicines7040084. [PMID: 31717852 PMCID: PMC6966541 DOI: 10.3390/biomedicines7040084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 11/27/2022] Open
Abstract
Alternaria toxins are emerging mycotoxins that gained considerable interest with increasing evidence of their existence and toxicological properties. There is limited research and insufficient data about their in vivo hazardous effects. We designed this study to evaluate histopathological and genotoxic in vivo impacts of alternariol (AOH) on the parotid gland as well as to assess the competency of gallic acid (GA) in reversing these effects. Forty healthy adult male Wister rats were utilized and assigned equally on control, GA, alternariol and AOH+ gallic treated groups. Parotid gland samples from experimental groups were collected and then examined for histopathological, ultrastructural and immunohistochemical examination for 4-hydroxynonenal “4-HNE as lipid peroxidation marker” as well as Comet assay for DNA damage. Additionally, parotid tissue homogenates were tested for catalase “CAT”, superoxide dismutase “SOD” and malondialdehyde “MDA” levels. Our data proved that alternariol produced various histopathological and ultrastructural alterations of parotid acini as well as significant DNA damage, significant reduction of CAT and SOD enzymatic activity and significant boosting of 4-HNE immunohistochemical expression and MDA levels as compared to control group. On the other hand, gallic acid administration almost restored histological and ultrastructural parotid architecture, 4-HNE immune-expression and biochemical levels. Ultimately, we demonstrated alternariol-induced histopathological and genotoxic alterations on parotid gland as well as the competency of gallic acid in reversing these effects.
Collapse
Affiliation(s)
- Mai A. Samak
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: or ; Tel.: +02-0100-620-7209
| | - Ahmed Elshatory
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Cairo 11865, Egypt;
| | - Eman M. Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
130
|
Balestri F, Barracco V, Renzone G, Tuccinardi T, Pomelli CS, Cappiello M, Lessi M, Rotondo R, Bellina F, Scaloni A, Mura U, Del Corso A, Moschini R. Stereoselectivity of Aldose Reductase in the Reduction of Glutathionyl-Hydroxynonanal Adduct. Antioxidants (Basel) 2019; 8:antiox8100502. [PMID: 31652566 PMCID: PMC6827081 DOI: 10.3390/antiox8100502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
The formation of the adduct between the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and glutathione, which leads to the generation of 3-glutathionyl-4-hydroxynonane (GSHNE), is one of the main routes of HNE detoxification. The aldo-keto reductase AKR1B1 is involved in the reduction of the aldehydic group of both HNE and GSHNE. In the present study, the effect of chirality on the recognition by aldose reductase of HNE and GSHNE was evaluated. AKR1B1 discriminates very modestly between the two possible enantiomers of HNE as substrates. Conversely, a combined kinetic analysis of the glutathionyl adducts obtained starting from either 4R- or 4S-HNE and mass spectrometry analysis of GSHNE products obtained from racemic HNE revealed that AKR1B1 possesses a marked preference toward the 3S,4R-GSHNE diastereoisomer. Density functional theory and molecular modeling studies revealed that this diastereoisomer, besides having a higher tendency to be in an open aldehydic form (the one recognized by AKR1B1) in solution than other GSHNE diastereoisomers, is further stabilized in its open form by a specific interaction with the enzyme active site. The relevance of this stereospecificity to the final metabolic fate of GSHNE is discussed.
Collapse
Affiliation(s)
- Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| | - Vito Barracco
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, Via Argine 1085, 80147 Napoli, Italy.
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | | | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| | - Marco Lessi
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi, 13, 56124 Pisa, Italy.
| | - Rossella Rotondo
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
| | - Fabio Bellina
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi, 13, 56124 Pisa, Italy.
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, Via Argine 1085, 80147 Napoli, Italy.
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| | - Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|
131
|
Bekyarova G, Tzaneva M, Bratoeva K, Ivanova I, Kotzev A, Hristova M, Krastev D, Kindekov I, Mileva M. 4-Hydroxynonenal (HNE) and hepatic injury related to chronic oxidative stress. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1674690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ganka Bekyarova
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Maria Tzaneva
- Department of General and Clinical Pathology, Forensic Science and Deontology, Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Kamelia Bratoeva
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Irina Ivanova
- Second Department of Internal Medicine, Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Andrei Kotzev
- Gastroenterology Unit, University Hospital “Aleksandrovska”, Sofia, Bulgaria
| | - Minka Hristova
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Dimo Krastev
- Department of Anatomy and Histology, College of Medicine “Yordanka Filaretova”, Sofia, Bulgaria
| | - Ivan Kindekov
- Hematology Department, Military Medical Academy, Sofia, Bulgaria
| | - Milka Mileva
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
132
|
Starčević K, Roškarić P, Šperanda M, Đidara M, Kurilj AG, Maurić M, Mašek T. High dietary n6/n3 ratio decreases eicosapentaenoic to arachidonic acid ratios and upregulates NFκB/p50 expression in short-term low-dose streptozotocin and high-fructose rat model of diabetes. Prostaglandins Leukot Essent Fatty Acids 2019; 149:1-7. [PMID: 31421522 DOI: 10.1016/j.plefa.2019.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
We studied the influence of dietary n6/n3 ratio and docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids supplementation on fatty acid profile, lipid peroxidation and NFκ/p50 expression in diabetes type 2. Treatments consisted of three dietary n6/n3 ratios: 6 (Control), 50 (high n6) and 1 (DHA and EPA supplemented). Half of the rats in each of the dietary treatments were made diabetic using the fructose/low-streptozotocin model. The Control and high n6 diets decreased EPA/ARA (arachidonic acid) ratios in the plasma and in the hepatic tissue suggesting proinflammatory fatty acid profile. The high n6 diet additionally increased the 4-HNE and NFκ/p50 expression in the hepatic tissue. These changes were the consequence of a decrease in the plasma content of DHA and EPA and an increase in the content of arachidonic acid in the liver neutral lipids. The supplementation with the DHA and EPA attenuated the change in EPA/ARA ratios, which imply the importance of the n6/n3 ratio in diabetes type 2.
Collapse
Affiliation(s)
- Kristina Starčević
- Department of Forensic and State Veterinary Medicine, University of Zagreb, Faculty of Veterinary Medicine, Zagreb, Croatia
| | - Petra Roškarić
- Department of Forensic and State Veterinary Medicine, University of Zagreb, Faculty of Veterinary Medicine, Zagreb, Croatia
| | - Marcela Šperanda
- Department of Animal Science, University of Osijek, Faculty of Agriculture, Osijek, Croatia
| | - Mislav Đidara
- Department of Animal Science, University of Osijek, Faculty of Agriculture, Osijek, Croatia
| | - Andrea Gudan Kurilj
- Department of Veterinary Pathology, University of Zagreb, Faculty of Veterinary Medicine, Zagreb, Croatia
| | - Maja Maurić
- Department of Animal Husbandry, University of Zagreb Faculty, of Veterinary Medicine, Zagreb, Croatia
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, University of Zagreb, Faculty of Veterinary Medicine, Zagreb, Croatia.
| |
Collapse
|
133
|
Oumeddour A, Zaroure D, Haroune R, Zaimeche R, Riane K, Sifour M, Tahraoui A. Protective Effects of Propolis and Probiotic Lactobacillus acidophilus against Carbon Tetrachloride-Induced Hepatotoxicity in Rats. PHARMACEUTICAL SCIENCES 2019. [DOI: 10.15171/ps.2019.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Propolis (PRS) and probiotic bacteria Lactobacillus are natural products used as dietary supplement for their therapeutic benefits. This study was performed to examine the possible hepatoprotective effect of PRS and probiotics (PRCs) against carbon tetrachloride-induced liver injury. Methods: Experimentally, intoxicated rats received 0.5 ml/kg CCl4 (i.p.) daily for six days, pretreated rats received per os PRS 100 mg/kg or PRCs 109 CFU for six days followed by a single dose of 0.5 ml/kg CCl4. Control groups received either PRS, PRCs or olive oil for six days. Then, serum biochemistry (total protein, cholesterol, triglycerides and albumin) and oxidative stress parameters were measured. Results: We showed that CCl4 treatment was associated with an increase of the serum aspartate amino transferase (AST), alanine aminotransferase (ALT), cholesterol and triglycerides levels. In parallel, serum total protein, albumin and blood sugar levels were significantly decreased. Regarding the oxidative stress parameters, catalase and glutathione S-transferase (GST) levels were lower, conversely to the lipid peroxidation (MDA). Conclusion: Our results strongly support that administration of PRS and PRCs may significantly protect liver against CCl4-induced toxicity by enhancing antioxidative stress pathway and preventing lipid peroxidation.
Collapse
Affiliation(s)
- Abdelkader Oumeddour
- Departement des Sciences de la Nature et de la Vie, Université 8 Mai 1945 Guelma, BP 401, Guelma 24000, Algeria
- Laboratory of Molecular and Cell Biology, Faculty of Sciences, University Mohamed Seddik Benyahia of Jijel, Algeria
| | - Djahida Zaroure
- Laboratory of Molecular and Cell Biology, Faculty of Sciences, University Mohamed Seddik Benyahia of Jijel, Algeria
| | - Raziqua Haroune
- Laboratory of Molecular and Cell Biology, Faculty of Sciences, University Mohamed Seddik Benyahia of Jijel, Algeria
| | - Rima Zaimeche
- Laboratory of Molecular and Cell Biology, Faculty of Sciences, University Mohamed Seddik Benyahia of Jijel, Algeria
| | - Karima Riane
- Laboratory of Molecular Toxicology, Faculty of Sciences, University Mohamed Seddik Benyahia of Jijel, Algeria
| | - Mohamed Sifour
- Laboratory of Molecular Toxicology, Faculty of Sciences, University Mohamed Seddik Benyahia of Jijel, Algeria
| | - Abdelkrim Tahraoui
- Laboratoire de Neuro-endocrinologie Appliquée, Département de Biologie, Université Badji Mokhtar, Annaba, Algeria
| |
Collapse
|
134
|
Zhao Y, Wang B, Zhang J, He D, Zhang Q, Pan C, Yuan Q, Shi Y, Tang H, Xu F, Wei S, Chen Y. ALDH2 (Aldehyde Dehydrogenase 2) Protects Against Hypoxia-Induced Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:2303-2319. [PMID: 31510791 DOI: 10.1161/atvbaha.119.312946] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Hypoxia-induced pulmonary hypertension (HPH) increases lipid peroxidation with generation of toxic aldehydes that are metabolized by detoxifying enzymes, including ALDH2 (aldehyde dehydrogenase 2). However, the role of lipid peroxidation and ALDH2 in HPH pathogenesis remain undefined. Approach and Results: To determine the role of lipid peroxidation and ALDH2 in HPH, C57BL/6 mice, ALDH2 transgenic mice, and ALDH2 knockout (ALDH2-/-) mice were exposed to chronic hypoxia, and recombinant tissue-specific ALDH2 overexpression adeno-associated viruses were introduced into pulmonary arteries via tail vein injection for ALDH2 overexpression. Human pulmonary artery smooth muscle cells were used to elucidate underlying mechanisms in vitro. Chronic hypoxia promoted lipid peroxidation due to the excessive production of reactive oxygen species and increased expression of lipoxygenases in lung tissues. 4-hydroxynonenal but not malondialdehyde level was increased in hypoxic lung tissues which might reflect differences in detoxifying enzymes. ALDH2 overexpression attenuated the development of HPH, whereas ALDH2 knockout aggravated it. Specific overexpression of ALDH2 using AAV1 (adeno-associated virus)-ICAM (intercellular adhesion molecule) 2p-ALDH2 and AAV2-SM22αp (smooth muscle 22 alpha)-ALDH2 viral vectors in pulmonary artery smooth muscle cells, but not endothelial cells, prevented the development of HPH. Hypoxia or 4-hydroxynonenal increased stabilization of HIF (hypoxia-inducible factor)-1α, phosphorylation of Drp1 (dynamin-related protein 1) at serine 616, mitochondrial fission, and pulmonary artery smooth muscle cells proliferation, whereas ALDH2 activation suppressed the latter 3. CONCLUSIONS Increased 4-hydroxynonenal level plays a critical role in the development of HPH. ALDH2 attenuates the development of HPH by regulating mitochondrial fission and smooth muscle cell proliferation suggesting ALDH2 as a potential new therapeutic target for pulmonary hypertension.
Collapse
Affiliation(s)
- Yu Zhao
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Bailu Wang
- Clinical Trial Center (B.W.), Qilu Hospital of Shandong University, Jinan
| | - Jian Zhang
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Dayu He
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Qun Zhang
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Chang Pan
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Qiuhuan Yuan
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Yinan Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (Y.S., H.T.)
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (Y.S., H.T.).,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, China (H.T.)
| | - Feng Xu
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Shujian Wei
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| | - Yuguo Chen
- From the Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University (Y.Z., J.Z., D.H., Q.Z., C.P., Q.Y., F.X., S.W., Y.C.), Qilu Hospital of Shandong University, Jinan
| |
Collapse
|
135
|
Guerby P, Swiader A, Tasta O, Pont F, Rodriguez F, Parant O, Vayssière C, Shibata T, Uchida K, Salvayre R, Negre-Salvayre A. Modification of endothelial nitric oxide synthase by 4-oxo-2(E)-nonenal(ONE) in preeclamptic placentas. Free Radic Biol Med 2019; 141:416-425. [PMID: 31323312 DOI: 10.1016/j.freeradbiomed.2019.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 01/21/2023]
Abstract
Preeclampsia (PE) is a leading cause of pregnancy complications, affecting 3-7% of pregnant women worldwide. The pathophysiology of preeclampsia involves a redox imbalance, oxidative stress and a reduced nitric oxide (NO) bioavailability. The molecular and cellular mechanisms leading to the dysfunction of the placental endothelial NO synthase (eNOS) are not clarified. This study was designed to investigate whether aldehydes generated by lipid peroxidation products (LPP), may contribute to placental eNOS dysfunction in PE. The analysis of placentas from PE-affected patients and normal pregnancies, showed a significant increase in protein carbonyl content, indicative of oxidative stress-induced protein modification, as shown by the accumulation of acrolein, 4-hydroxynonenal (HNE), and 4-oxo-2(E)-nonenal (ONE) adducts in PE placentas. In contrast, the levels of these LPP-adducts were low in placentas from normal pregnancies. Immunofluorescence and confocal experiments pointed out a colocalization of eNOS with ONE-Lys adducts, whereas eNOS was not modified in normal placentas. LC-MS/MS analysis of recombinant eNOS preincubated with ONE, allowed to identify several ONE-modified Lys-containing peptides, confirming that eNOS may undergo post-translational modification by LPP. The preincubation of HTR-8/SVneo human trophoblasts (HTR8) with ONE, resulted in ONE-Lys modification of eNOS and a reduced generation of NO. ONE inhibited the migration of HTR8 trophoblasts in the wound closure model, and this was partly restored by the NO donor, NOC-18, which confirmed the important role of NO in the invasive potential of trophoblasts. In conclusion, placental eNOS is modified by ONE in PE placentas, which emphasizes the sensitivity of this protein to oxidative stress in the disturbed redox environment of preeclamptic pregnancies.
Collapse
Affiliation(s)
- Paul Guerby
- Inserm U-1048, Université de Toulouse, France; Pôle de Gynécologie Obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | | | - Oriane Tasta
- Inserm U-1048, Université de Toulouse, France; Pôle de Gynécologie Obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | | | | | - Olivier Parant
- Pôle de Gynécologie Obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | - Christophe Vayssière
- Pôle de Gynécologie Obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Koji Uchida
- Laboratory of Food Chemistry, University of Tokyo, Japan
| | | | | |
Collapse
|
136
|
Wójcik P, Biernacki M, Wroński A, Łuczaj W, Waeg G, Žarković N, Skrzydlewska E. Altered Lipid Metabolism in Blood Mononuclear Cells of Psoriatic Patients Indicates Differential Changes in Psoriasis Vulgaris and Psoriatic Arthritis. Int J Mol Sci 2019; 20:ijms20174249. [PMID: 31480263 PMCID: PMC6747546 DOI: 10.3390/ijms20174249] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to investigate possible stress-associated disturbances in lipid metabolism in mononuclear cells, mainly lymphocytes of patients with psoriasis vulgaris (Ps, n = 32) or with psoriatic arthritis (PsA, n = 16) in respect to the healthy volunteers (n = 16). The results showed disturbances in lipid metabolism of psoriatic patients reflected by different phospholipid profiles. The levels of non-enzymatic lipid metabolites associated with oxidative stress 8-isoprostaglandin F2α (8-isoPGF2α) and free 4-hydroxynonenal (4-HNE) were higher in PsA, although levels of 4-HNE-His adducts were higher in Ps. In the case of the enzymatic metabolism of lipids, enhanced levels of endocannabinoids were observed in both forms of psoriasis, while higher expression of their receptors and activities of phospholipases were detected only in Ps. Moreover, cyclooxygenase-1 (COX-1) activity was enhanced only in Ps, but cyclooxygenase-2 (COX-2) was enhanced both in Ps and PsA, generating higher levels of eicosanoids: prostaglandin E1 (PGE1), leukotriene B4 (LTB4), 13-hydroxyoctadecadienoic acid (13HODE), thromboxane B2 (TXB2). Surprisingly, some of major eicosanoids 15-d-PGJ2 (15-deoxy-Δ12,14-prostaglandin J2), 15-hydroxyeicosatetraenoic acid (15-HETE) were elevated in Ps and reduced in PsA. The results of our study revealed changes in lipid metabolism with enhancement of immune system-modulating mediators in psoriatic mononuclear cells. Evaluating further differential stress responses in Ps and PsA affecting lipid metabolism and immunity might be useful to improve the prevention and therapeutic treatments of psoriasis.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Adam Wroński
- Dermatological Specialized Center "DERMAL" NZOZ in Bialystok, 15-453 Białystok, Poland
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Georg Waeg
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Neven Žarković
- LabOS, Rudjer Boskovic Institute, Laboratory for Oxidative Stress, 10000 Zagreb, Croatia
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland.
| |
Collapse
|
137
|
Moldogazieva NT, Mokhosoev IM, Mel'nikova TI, Porozov YB, Terentiev AA. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3085756. [PMID: 31485289 PMCID: PMC6710759 DOI: 10.1155/2019/3085756] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/27/2019] [Indexed: 01/24/2023]
Abstract
Oxidative stress is a consequence of the use of oxygen in aerobic respiration by living organisms and is denoted as a persistent condition of an imbalance between the generation of reactive oxygen species (ROS) and the ability of the endogenous antioxidant system (AOS) to detoxify them. The oxidative stress theory has been confirmed in many animal studies, which demonstrated that the maintenance of cellular homeostasis and biomolecular stability and integrity is crucial for cellular longevity and successful aging. Mitochondrial dysfunction, impaired protein homeostasis (proteostasis) network, alteration in the activities of transcription factors such as Nrf2 and NF-κB, and disturbances in the protein quality control machinery that includes molecular chaperones, ubiquitin-proteasome system (UPS), and autophagy/lysosome pathway have been observed during aging and age-related chronic diseases. The accumulation of ROS under oxidative stress conditions results in the induction of lipid peroxidation and glycoxidation reactions, which leads to the elevated endogenous production of reactive aldehydes and their derivatives such as glyoxal, methylglyoxal (MG), malonic dialdehyde (MDA), and 4-hydroxy-2-nonenal (HNE) giving rise to advanced lipoxidation and glycation end products (ALEs and AGEs, respectively). Both ALEs and AGEs play key roles in cellular response to oxidative stress stimuli through the regulation of a variety of cell signaling pathways. However, elevated ALE and AGE production leads to protein cross-linking and aggregation resulting in an alteration in cell signaling and functioning which causes cell damage and death. This is implicated in aging and various age-related chronic pathologies such as inflammation, neurodegenerative diseases, atherosclerosis, and vascular complications of diabetes mellitus. In the present review, we discuss experimental data evidencing the impairment in cellular functions caused by AGE/ALE accumulation under oxidative stress conditions. We focused on the implications of ALEs/AGEs in aging and age-related diseases to demonstrate that the identification of cellular dysfunctions involved in disease initiation and progression can serve as a basis for the discovery of relevant therapeutic agents.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Street, Moscow, 119991, Russia
| | - Innokenty M. Mokhosoev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Street, Moscow, 119991, Russia
- N.I. Pirogov Russian National Research Medical University, 1 Ostrovityanov Street, Moscow, 117997, Russia
| | - Tatiana I. Mel'nikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Street, Moscow, 119991, Russia
| | - Yuri B. Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Street, Moscow, 119991, Russia
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverksky Prospect, St. Petersburg, 197101, Russia
| | - Alexander A. Terentiev
- N.I. Pirogov Russian National Research Medical University, 1 Ostrovityanov Street, Moscow, 117997, Russia
| |
Collapse
|
138
|
Yang B, Fritsche KL, Beversdorf DQ, Gu Z, Lee JC, Folk WR, Greenlief CM, Sun GY. Yin-Yang Mechanisms Regulating Lipid Peroxidation of Docosahexaenoic Acid and Arachidonic Acid in the Central Nervous System. Front Neurol 2019; 10:642. [PMID: 31275232 PMCID: PMC6591372 DOI: 10.3389/fneur.2019.00642] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Phospholipids in the central nervous system (CNS) are rich in polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (ARA) and docosahexaenoic acid (DHA). Besides providing physical properties to cell membranes, these PUFAs are metabolically active and undergo turnover through the “deacylation-reacylation (Land's) cycle”. Recent studies suggest a Yin-Yang mechanism for metabolism of ARA and DHA, largely due to different phospholipases A2 (PLA2s) mediating their release. ARA and DHA are substrates of cyclooxygenases and lipoxygenases resulting in an array of lipid mediators, which are pro-inflammatory and pro-resolving. The PUFAs are susceptible to peroxidation by oxygen free radicals, resulting in the production of 4-hydroxynonenal (4-HNE) from ARA and 4-hydroxyhexenal (4-HHE) from DHA. These alkenal electrophiles are reactive and capable of forming adducts with proteins, phospholipids and nucleic acids. The perceived cytotoxic and hormetic effects of these hydroxyl-alkenals have impacted cell signaling pathways, glucose metabolism and mitochondrial functions in chronic and inflammatory diseases. Due to the high levels of DHA and ARA in brain phospholipids, this review is aimed at providing information on the Yin-Yang mechanisms for regulating these PUFAs and their lipid peroxidation products in the CNS, and implications of their roles in neurological disorders.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, and the Thompson Center, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - William R Folk
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - C Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| |
Collapse
|
139
|
4-HNE Induces Apoptosis of Human Retinal Pigment Epithelial Cells by Modifying HSP70. Curr Med Sci 2019; 39:442-448. [DOI: 10.1007/s11596-019-2057-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/27/2019] [Indexed: 12/18/2022]
|
140
|
Martín-Sierra C, Laranjeira P, Domingues MR, Paiva A. Lipoxidation and cancer immunity. Redox Biol 2019; 23:101103. [PMID: 30658904 PMCID: PMC6859558 DOI: 10.1016/j.redox.2019.101103] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipoxidation is a well-known reaction between electrophilic carbonyl species, formed during oxidation of lipids, and specific proteins that, in most cases, causes an alteration in proteins function. This can occur under physiological conditions but, in many cases, it has been associated to pathological process, including cancer. Lipoxidation may have an effect in cancer development through their effects in tumour cells, as well as through the alteration of immune components and the consequent modulation of the immune response. The formation of protein adducts affects different proteins in cancer, triggering different mechanism, such as proliferation, cell differentiation and apoptosis, among others, altering cancer progression. The divergent results obtained documented that the formation of lipoxidation adducts can have either anti-carcinogenic or pro-carcinogenic effects, depending on the cell type affected and the specific adduct formed. Moreover, lipoxidation adducts may alter the immune response, consequently causing either positive or negative alterations in cancer progression. Therefore, in this review, we summarize the effects of lipoxidation adducts in cancer cells and immune components and their consequences in the evolution of different types of cancer.
Collapse
Affiliation(s)
- C Martín-Sierra
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - P Laranjeira
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - M R Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal; Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - A Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal.
| |
Collapse
|
141
|
Hosoi T, Kuwamura A, Thon M, Tsuchio K, Abd El-Hafeez AA, Ozawa K. Possible involvement of 4-hydroxy-2-nonenal in the pathogenesis of leptin resistance in obesity. Am J Physiol Cell Physiol 2019; 316:C641-C648. [DOI: 10.1152/ajpcell.00080.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insensitivity to the antiobesity hormone, leptin, has been suggested to be involved in the pathogenesis of obesity. However, the pathological mechanisms underlying the development of leptin resistance are not well-understood. This study aimed to examine the pathological mechanisms of leptin resistance in obesity. In the present study, we found that 4-hydroxy-2-nonenal (4-HNE), an aldehyde, may be involved in the development of leptin resistance. The SH-SY5Y-Ob-Rb human neuroblastoma cell line, transfected to express the Ob-Rb leptin receptor stably, was treated with 4-HNE, and leptin-induced signal transduction was analyzed. We found that 4-HNE dose- and time-dependently inhibited leptin-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation, a major antiobesity signal of leptin. On the other hand, 4-HNE did not affect tyrosine phosphorylation of broad cellular proteins, suggesting that the inhibitory effect may be selective to leptin signaling. Mechanistically, 4-HNE induced the eukaryotic initiation factor 2α-CCAAT/enhancer-binding protein homologous protein arm of endoplasmic reticulum stress signaling, which may be involved in the pathogenesis of leptin resistance. Overall, these results suggest that 4-HNE may partly affect endoplasmic reticulum stress-induced unfolded protein response signaling and may be involved in the pathogenesis of leptin resistance.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ayaka Kuwamura
- Department of Pharmacotherapy, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mina Thon
- Department of Pharmacotherapy, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kyoji Tsuchio
- Department of Pharmacotherapy, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Amer Ali Abd El-Hafeez
- Department of Pharmacotherapy, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Global Career Design Center, Hiroshima University, Hiroshima, Japan
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
142
|
Hill RL, Singh IN, Wang JA, Hall ED. Effects of Phenelzine Administration on Mitochondrial Function, Calcium Handling, and Cytoskeletal Degradation after Experimental Traumatic Brain Injury. J Neurotrauma 2019; 36:1231-1251. [PMID: 30358485 PMCID: PMC6479250 DOI: 10.1089/neu.2018.5946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) results in the production of peroxynitrite (PN), leading to oxidative damage of lipids and protein. PN-mediated lipid peroxidation (LP) results in production of reactive aldehydes 4-hydroxynonenal (4-HNE) and acrolein. The goal of these studies was to explore the hypothesis that interrupting secondary oxidative damage following a TBI via phenelzine (PZ), analdehyde scavenger, would protect against LP-mediated mitochondrial and neuronal damage. Male Sprague-Dawley rats received a severe (2.2 mm) controlled cortical impact (CCI)-TBI. PZ was administered subcutaneously (s.c.) at 15 min (10 mg/kg) and 12 h (5 mg/kg) post-injury and for the therapeutic window/delay study, PZ was administered at 1 h (10 mg/kg) and 24 h (5 mg/kg). Mitochondrial and cellular protein samples were obtained at 24 and 72 h post-injury (hpi). Administration of PZ significantly improved mitochondrial respiration at 24 and 72 h compared with vehicle-treated animals. These results demonstrate that PZ administration preserves mitochondrial bioenergetics at 24 h and that this protection is maintained out to 72 hpi. Additionally, delaying the administration still elicited significant protective effects. PZ administration also improved mitochondrial Ca2+ buffering (CB) capacity and mitochondrial membrane potential parameters compared with vehicle-treated animals at 24 h. Although PZ treatment attenuated aldehyde accumulation post-injury, the effects were insignificant. The amount of α-spectrin breakdown in cortical tissue was reduced by PZ administration at 24 h, but not at 72 hpi compared with vehicle-treated animals. In conclusion, these results indicate that acute PZ treatment successfully attenuates LP-mediated oxidative damage eliciting multiple neuroprotective effects following TBI.
Collapse
Affiliation(s)
- Rachel L. Hill
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky
| | - Indrapal N. Singh
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Juan A. Wang
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky
| | - Edward D. Hall
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
143
|
Beneficial Effects of Vitamins K and D3 on Redox Balance of Human Osteoblasts Cultured with Hydroxyapatite-Based Biomaterials. Cells 2019; 8:cells8040325. [PMID: 30965604 PMCID: PMC6523281 DOI: 10.3390/cells8040325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 02/07/2023] Open
Abstract
Hydroxyapatite-based biomaterials are commonly used in surgery to repair bone damage. However, the introduction of biomaterials into the body can cause metabolic alterations, including redox imbalance. Because vitamins D3 and K (K1, MK-4, MK-7) have pronounced osteoinductive, anti-inflammatory, and antioxidant properties, it is suggested that they may reduce the adverse effects of biomaterials. The aim of this study was to investigate the effects of vitamins D3 and K, used alone and in combination, on the redox metabolism of human osteoblasts (hFOB 1.19 cell line) cultured in the presence of hydroxyapatite-based biomaterials (Maxgraft, Cerabone, Apatos, and Gen-Os). Culturing of the osteoblasts in the presence of hydroxyapatite-based biomaterials resulted in oxidative stress manifested by increased production of reactive oxygen species and decrease of glutathione level and glutathione peroxidase activity. Such redox imbalance leads to lipid peroxidation manifested by an increase of 4-hydroxynonenal level, which is known to influence the growth of bone cells. Vitamins D3 and K were shown to help maintain redox balance and prevent lipid peroxidation in osteoblasts cultured with hydroxyapatite-based biomaterials. The strongest effect was observed for the combination of vitamin D3 and MK-7. Moreover, vitamins promoted growth of the osteoblasts, manifested by increased DNA biosynthesis. Therefore, it is suggested that the use of vitamins D3 and K may protect redox balance and support the growth of osteoblasts affected by hydroxyapatite-based biomaterials.
Collapse
|
144
|
Homma T, Fujii J. An SOD1 deficiency aggravates proteasome inhibitor bortezomib-induced testicular damage in mice. Biochim Biophys Acta Gen Subj 2019; 1863:1108-1115. [PMID: 30974160 DOI: 10.1016/j.bbagen.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 04/05/2019] [Indexed: 10/27/2022]
Abstract
Proteasomes play a key role in maintaining cellular homeostasis by the proteolytic removal of proteins, including ubiquitinated proteins and/or oxidatively-damaged proteins. The proteasome inhibitor bortezomib (BTZ) has been reported to exert testicular toxicity in mice. In the current study, we treated SOD1-knockout (KO) mice with BTZ and investigated the issue of whether oxidative stress is involved in the development of testicular toxicity. The BTZ treatment significantly increased superoxide production and cell death in the testes of SOD1-KO mice compared to wild-type (WT) mice. We also found that high levels of both ubiquitinated proteins and p62 accumulated and underwent aggregation in the seminiferous tubules of BTZ-injected SOD1-KO mice. Furthermore, the proteolytic activities of proteasomes were significantly decreased in the testes of BTZ-injected SOD1-KO mice compared to their WT counterparts. These results suggest that a combination of oxidative stress caused by an SOD1 deficiency and proteasome inhibition by BTZ accelerates the impairment of proteasomes, which results in severe testicular damage in SOD1-KO mice.
Collapse
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan.
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| |
Collapse
|
145
|
Zhang S, Fang C, Yuan W, Zhang Y, Yan G, Zhang L, Di Y, Cai Y, Lu H. Selective Identification and Site-Specific Quantification of 4-Hydroxy-2-nonenal-Modified Proteins. Anal Chem 2019; 91:5235-5243. [DOI: 10.1021/acs.analchem.8b05970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Caiyun Fang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | | | | | | | | | | | | | - Haojie Lu
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
146
|
Long MJC, Urul DA, Aye Y. REX technologies for profiling and decoding the electrophile signaling axes mediated by Rosetta Stone proteins. Methods Enzymol 2019; 633:203-230. [PMID: 32046846 PMCID: PMC7027669 DOI: 10.1016/bs.mie.2019.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is now clear that some cysteines on some proteins are highly tuned to react with electrophiles. Based on numerous studies, it is also established that electrophile sensing underpins rewiring of several critical signaling processes. These electrophile-sensing proteins, or privileged first responders (PFRs), are likely critically relevant for drug design. However, identifying PFRs remains a challenging and unsolved problem, despite the development of several high-throughput methods to ID proteins that react with electrophiles. More importantly, we remain unable to rank how different PFRs identified under different conditions relate to one another, in terms of sensing or signaling capacity. Here we evaluate different methods to assay sensing functions of proteins and discuss these methods in the context of developing a "ranking scheme." Based on theoretical and experimental evidence, we propose that T-REX-the only targeted-electrophile delivery tool presently available-is a reliable method to rank PFRs. Finally, we address to what extent electrophile sensing and downstream signaling are correlated. Based on our current data, we observe that such behaviors are indeed correlated. It is our hope that through this manuscript researchers from various arms of the stress signaling fields will focus on developing a quantitative understanding of precision electrophile labeling.
Collapse
Affiliation(s)
| | - Daniel A Urul
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Yimon Aye
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
147
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
148
|
Bodur A, İnce İ, Kahraman C, Abidin İ, Aydin-Abidin S, Alver A. Effect of a high sucrose and high fat diet in BDNF (+/-) mice on oxidative stress markers in adipose tissues. Arch Biochem Biophys 2019; 665:46-56. [PMID: 30797748 DOI: 10.1016/j.abb.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to investigate the effects of a high fat and a high sucrosediet in wild type and BDNF (+/-) mice on oxidative stress in epididymal and subcutaneousadipose tissues by measuring different markers of oxidative stress and antioxidant enzymes. Wild type (WT) and BDNF (+/-) male mice were divided into six groups receiving fed control diet (CD), high sucrose diet (HSD), or high fat diet (HFD) for four months. Levels of 3-nitrotyrosine (3-NT) increased in the HFD-fed BDNF (+/-) mice, while 4-hydroxynonenal (4-HNE) levels increased in the CD and HFD-fed BDNF (+/-) groups. Malondialdehyde (MDA) levels decreased in subcutaneous tissue compared to epididymal adipose tissue, independently of diet type. Superoxide dismutase (SOD) activity was reduced by HFD (p < 0.05), butglutathione peroxidase (GSH-Px) activity was increased by HSD in epididymal adipose tissuein BDNF (+/-) mice (p < 0.05). GSH-Px activities was increased by CD and HFD in subcutaneous adipose tissue of BDNF (+/-) (p < 0.05). SOD2 and GSH-Px3 expressions were only decreased by HSD in epididymal and subcutaneous adipose tissues of BDNF (+/-) mice (p < 0.05). In conclusion, reduced BDNF may increase OS in epididymal adipose tissue, but not in subcutaneous adipose tissue following HSD and HFD.
Collapse
Affiliation(s)
- Akın Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - İmran İnce
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Cemil Kahraman
- Department of Nutrition and Dietetics, School of Health, Düzce University, Düzce, Turkey
| | - İsmail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selcen Aydin-Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
149
|
Jakubowski H. Homocysteine Modification in Protein Structure/Function and Human Disease. Physiol Rev 2019; 99:555-604. [PMID: 30427275 DOI: 10.1152/physrev.00003.2018] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies established that elevated homocysteine, an important intermediate in folate, vitamin B12, and one carbon metabolism, is associated with poor health, including heart and brain diseases. Earlier studies show that patients with severe hyperhomocysteinemia, first identified in the 1960s, exhibit neurological and cardiovascular abnormalities and premature death due to vascular complications. Although homocysteine is considered to be a nonprotein amino acid, studies over the past 2 decades have led to discoveries of protein-related homocysteine metabolism and mechanisms by which homocysteine can become a component of proteins. Homocysteine-containing proteins lose their biological function and acquire cytotoxic, proinflammatory, proatherothrombotic, and proneuropathic properties, which can account for the various disease phenotypes associated with hyperhomocysteinemia. This review describes mechanisms by which hyperhomocysteinemia affects cellular proteostasis, provides a comprehensive account of the biological chemistry of homocysteine-containing proteins, and discusses pathophysiological consequences and clinical implications of their formation.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health , Newark, New Jersey ; and Department of Biochemistry and Biotechnology, Poznań University of Life Sciences , Poznań , Poland
| |
Collapse
|
150
|
Nixon B, Bernstein IR, Cafe SL, Delehedde M, Sergeant N, Anderson AL, Trigg NA, Eamens AL, Lord T, Dun MD, De Iuliis GN, Bromfield EG. A Kinase Anchor Protein 4 Is Vulnerable to Oxidative Adduction in Male Germ Cells. Front Cell Dev Biol 2019; 7:319. [PMID: 31921838 PMCID: PMC6933317 DOI: 10.3389/fcell.2019.00319] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is a leading causative agent in the defective sperm function associated with male infertility. Such stress commonly manifests via the accumulation of pathological levels of the electrophilic aldehyde, 4-hydroxynonenal (4HNE), generated as a result of lipid peroxidation. This highly reactive lipid aldehyde elicits a spectrum of cytotoxic lesions owing to its propensity to form stable adducts with biomolecules. Notably however, not all elements of the sperm proteome appear to display an equivalent vulnerability to 4HNE modification, with only a small number of putative targets having been identified to date. Here, we validate one such target of 4HNE adduction, A-Kinase Anchor Protein 4 (AKAP4); a major component of the sperm fibrous sheath responsible for regulating the signal transduction and metabolic pathways that support sperm motility and capacitation. Our data confirm that both the precursor (proAKAP4), and mature form of AKAP4, are conserved targets of 4HNE adduction in primary cultures of post-meiotic male germ cells (round spermatids) and in mature mouse and human spermatozoa. We further demonstrate that 4HNE treatment of round spermatids and mature spermatozoa results in a substantial reduction in the levels of both proAKAP4 and AKAP4 proteins. This response proved refractory to pharmacological inhibition of proteolysis, but coincided with an apparent increase in the degree of protein aggregation. Further, we demonstrate that 4HNE-mediated protein degradation and/or aggregation culminates in reduced levels of capacitation-associated phosphorylation in mature human spermatozoa, possibly due to dysregulation of the signaling framework assembled around the AKAP4 scaffold. Together, these findings suggest that AKAP4 plays an important role in the pathophysiological responses to 4HNE, thus strengthening the importance of AKAP4 as a biomarker of sperm quality, and providing the impetus for the design of an efficacious antioxidant-based intervention strategy to alleviate sperm dysfunction.
Collapse
Affiliation(s)
- Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Brett Nixon,
| | - Ilana R. Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Shenae L. Cafe
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | | | - Nicolas Sergeant
- SPQI – 4BioDx-Breeding Section, Lille, France
- University of Lille, INSERM UMRS, Lille, France
| | - Amanda L. Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Natalie A. Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrew L. Eamens
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|