101
|
Li C, Li Y, Bai L, Zhang T, He C, Yan Y, Yu X. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level. PHYSIOLOGIA PLANTARUM 2014; 151:406-422. [PMID: 24279842 DOI: 10.1111/ppl.12122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/20/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
Grafting is an important agricultural technique widely used for improving growth, yields and tolerance of crops to abiotic and biotic stresses. As one type of endogenous, non-coding small RNAs, microRNAs (miRNAs) regulate development and responsiveness to biotic and abiotic stresses by negatively mediating expression of target genes at the post-transcriptional level. However, there have been few detailed studies to evaluate the role of miRNAs in mediation of grafting-induced physiological processes in plants. Cucumis sativus and Cucurbita moschata are important vegetables worldwide. We constructed eight small RNA libraries from leaves and roots of seedlings that were grafted in the following four ways: (1) hetero-grafting, using cucumber as scion and pumpkin as rootstock; (2) hetero-grafting, with pumpkin as scion and cucumber as rootstock; (3) auto-grafting of cucumbers and (4) auto-grafting of pumpkins. High-throughput sequencing was employed, and more than 120 million raw reads were obtained. We annotated 112 known miRNAs belonging to 40 miRNA families and identified 48 new miRNAs in the eight libraries, and the targets of these known and novel miRNAs were predicted by bioinformatics. Grafting led to changes in expression of most miRNAs and their predicted target genes, suggesting that miRNAs may play significant roles in mediating physiological processes of grafted seedlings by regulating the expression of target genes. The potential role of the grafting-responsive miRNAs in seedling growth and long-distance transport of miRNA was discussed. These results are useful for functional characterization of miRNAs in mediation of grafting-dependent physiological processes.
Collapse
Affiliation(s)
- Chaohan Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | |
Collapse
|
102
|
Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in Cassava. BMC Genomics 2014; 15:634. [PMID: 25070534 PMCID: PMC4124141 DOI: 10.1186/1471-2164-15-634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Small noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs) are key gene regulators in eukaryotes, playing critical roles in plant development and stress tolerance. Trans-acting siRNAs (ta-siRNAs), which are secondary siRNAs triggered by miRNAs, and siRNAs from natural antisense transcripts (nat-siRNAs) are two well-studied classes of endo-siRNAs. RESULTS In order to understand sncRNAs' roles in plant chilling response and stress acclimation, we performed a comprehensive study of miRNAs and endo-siRNAs in Cassava (Manihot esculenta), a major source of food for the world populations in tropical regions. Combining Next-Generation sequencing and computational and experimental analyses, we profiled and characterized sncRNA species and mRNA genes from the plants that experienced severe and moderate chilling stresses, that underwent further severe chilling stress after chilling acclimation at moderate stress, and that grew under the normal condition. We also included castor bean (Ricinus communis) in our study to understand conservation of sncRNAs. In addition to known miRNAs, we identified 32 (22 and 10) novel miRNAs as well as 47 (26 and 21) putative secondary siRNA-yielding and 8 (7 and 1) nat-siRNA-yielding candidate loci in Cassava and castor bean, respectively. Among the expressed sncRNAs, 114 miRNAs, 12 ta-siRNAs and 2 nat-siRNAs showed significant expression changes under chilling stresses. CONCLUSION Systematic and computational analysis of microRNAome and experimental validation collectively showed that miRNAs, ta-siRNAs, and possibly nat-siRNAs play important roles in chilling response and chilling acclimation in Cassava by regulating stress-related pathways, e.g. Auxin signal transduction. The conservation of these sncRNA might shed lights on the role of sncRNA-mediated pathways affected by chilling stress and stress acclimation in Euphorbiaceous plants.
Collapse
|
103
|
Xu D, Mou G, Wang K, Zhou G. MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice. Virus Res 2014; 190:60-8. [PMID: 25038403 DOI: 10.1016/j.virusres.2014.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 12/29/2022]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is a recently emerged rice virus that has spread across Asia. This devastating virus causes rice plants to produce a variety of symptoms during different growth stages. MicroRNAs (miRNAs) comprise a large group of 21-24-nt RNA molecules that are important regulators of plant development processes and stress responses. In this study, we used microarray profiling to investigate rice miRNAs responding to SRBSDV infection at 3, 9, 15, and 20 days post-inoculation (dpi). Expression levels of 56 miRNAs were altered in SRBSDV-infected rice plants, with these changes classified into eight different regulation patterns according to their temporal expression dynamics. Fourteen miRNAs belonging to six families (miR164, R396, R530, R1846, R1858, and R2097) were significantly regulated at 20 dpi. We used RT-qPCR to search for expression level correlations between members of these families and their putative targets at 3, 9, and 15 dpi. Some members of the miR164, R396, R530, and R1846 families were found to be positively or negatively correlated with their respective targets during 3-15 days after SRBSDV infection, whereas in more cases the rice miRNAs were not in correlation with their targets along the post-inoculation period, suggesting that some additional factors may be involved in rice miRNA-target interactions. The reported functions of rice genes targeted by the miR164, R396, R530, R1846, and R1858 families indicated that these genes are associated with symptom development. These results provide insights into miRNA-mediated SRBSDV-rice interactions.
Collapse
Affiliation(s)
- Donglin Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Natural Resources and the Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guiping Mou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Natural Resources and the Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kang Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Natural Resources and the Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Natural Resources and the Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
104
|
Role of microRNAs in biotic and abiotic stress responses in crop plants. Appl Biochem Biotechnol 2014; 174:93-115. [PMID: 24869742 DOI: 10.1007/s12010-014-0914-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/09/2014] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNAs (18-24 nucleotides) which regulate gene expression at posttranscriptional level either by degrading the target mRNA (plants) or by blocking the protein translation through binding with 3' UTR of the target mRNA (animals). Though miRNAs are known to play key roles in animal development, miRNAs that are involved in plant developmental timing, cell proliferation, and several other physiological functions need to be investigated. In addition, plant miRNAs have been shown to be involved in various biotic (bacterial and viral pathogenesis) and abiotic stress responses such as oxidative, mineral nutrient deficiency, drought, salinity, temperature, cold (chilling), and other abiotic stress. miRNA expression profiling reveals that miRNAs which are involved in the progression of plant growth and development are differentially expressed during abiotic stress responses. The high-throughout techniques can provide genome-wide identification of stress-associated miRNAs under various abiotic stresses in plants. Various web-based and non-web-based computational tools facilitate in the identification and characterization of biotic/abiotic stress associated miRNAs and their target genes. In the future, miRNA-mediated RNA interference (RNAi) approach might help in developing transgenic crop plants for better crop improvement by conferring resistance against biotic (pathogens) as well as abiotic stress responses.
Collapse
|
105
|
Fang Y, Xie K, Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2119-35. [PMID: 24604734 PMCID: PMC3991743 DOI: 10.1093/jxb/eru072] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
MicroRNAs constitute a large group of endogenous small RNAs of ~22 nt that emerge as vital regulators, mainly by targeting mRNAs for post-transcriptional repression. Previous studies have revealed that the miR164 family in Arabidopsis is comprised of three members which guide the cleavage of the mRNAs of five NAC genes to modulate developmental processes. However, the functions of the miR164-targeted NAC genes in crops are poorly deciphered. In this study, the conserved features of six miR164-targeted NAC genes (OMTN1-OMTN6) in rice are described, and evidence is provided that four of them confer a negative regulatory role in drought resistance. OMTN proteins have the characteristics of typical NAC transcriptional factors. The miR164 recognition sites of the OMTN genes are highly conserved in rice germplasms. Deletion of the recognition sites impaired the transactivation activity, indicating that the conserved recognition sites play a crucial role in maintaining the function of the OMTN proteins. The OMTN genes were responsive to abiotic stresses, and showed diverse spatio-temporal expression patterns in rice. Overexpression of OMTN2, OMTN3, OMTN4, and OMTN6 in rice led to negative effects on drought resistance at the reproductive stage. The expression of numerous genes related to stress response, development, and metabolism was altered in OMTN2-, OMTN3-, OMTN4-, and OMTN6-overexpressing plants. Most of the up-regulated genes in the OMTN-overexpressing plants were down-regulated by drought stress. The results suggest that the conserved miR164-targeted NAC genes may be negative regulators of drought tolerance in rice, in addition to their reported roles in development.
Collapse
Affiliation(s)
| | - Kabin Xie
- * Present address: Department of Plant Pathology, Pennsylvania State University, State College, PA 16802, USA
| | - Lizhong Xiong
- † To whom correspondence should be addressed. E-mail:
| |
Collapse
|
106
|
Pashkovskiy PP, Ryazansky SS. Biogenesis, evolution, and functions of plant microRNAs. BIOCHEMISTRY (MOSCOW) 2014; 78:627-37. [PMID: 23980889 DOI: 10.1134/s0006297913060084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on the biological role of one class of plant small RNAs, ~22-nt microRNAs (miRNAs). The majority of plant miRNA targets are genes encoding the effector factors of cell signaling pathways. The regulation of their expression is necessary for both ontogenesis and rapid response of plants to biotic and abiotic stress factors. We also summarized current views on the biogenesis and evolution of plant miRNAs as well as the techniques used for their investigation.
Collapse
Affiliation(s)
- P P Pashkovskiy
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia.
| | | |
Collapse
|
107
|
Thiebaut F, Grativol C, Tanurdzic M, Carnavale-Bottino M, Vieira T, Motta MR, Rojas C, Vincentini R, Chabregas SM, Hemerly AS, Martienssen RA, Ferreira PCG. Differential sRNA regulation in leaves and roots of sugarcane under water depletion. PLoS One 2014; 9:e93822. [PMID: 24695493 PMCID: PMC3973653 DOI: 10.1371/journal.pone.0093822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/07/2014] [Indexed: 11/18/2022] Open
Abstract
Plants have developed multiple regulatory mechanisms to respond and adapt to stress. Drought stress is one of the major constraints to agricultural productivity worldwide and recent reports have highlighted the importance of plant sRNA in the response and adaptation to water availability. In order to increase our understanding of the roles of sRNA in response to water depletion, cultivars of sugarcane were submitted to treatment of ceasing drip irrigation for 24 hours. Deep sequencing analysis was carried out to identify the sRNA regulated in leaves and roots of sugarcane cultivars with different drought sensitivities. The pool of sRNA selected allowed the analysis of different sRNA classes (miRNA and siRNA). Twenty-eight and 36 families of conserved miRNA were identified in leaf and root libraries, respectively. Dynamic regulation of miRNA was observed and the expression profiles of eight miRNA were verified in leaf samples from three biological replicates by stem-loop qRT-PCR assay using the cultivars: SP90-1638--sensitive cultivar--and SP83-2847 and SP83-5073--tolerant cultivars. Altered miRNA regulation was correlated with changes in mRNA levels of specific targets. Two leaf libraries from individual sugarcane cultivars with contrasting drought-tolerance properties were also analyzed. An enrichment of 22-nt sRNA species was observed in leaf libraries. 22-nt miRNA triggered siRNA production by cleavage of their targets in response to water depletion. A number of genes of the sRNA biogenesis pathway were down-regulated in tolerant genotypes and up-regulated in sensitive in response to water depletion treatment. Our analysis contributes to increase the knowledge on the roles of sRNA in sugarcane submitted to water depletion.
Collapse
Affiliation(s)
- Flávia Thiebaut
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clícia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milos Tanurdzic
- School of Biological Sciences, The University of Queensland, Brisbane St Lucia, Queensland, Australia
| | - Mariana Carnavale-Bottino
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tauan Vieira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Romeiro Motta
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristian Rojas
- Universidade Federal da INTEGRAÇÃO Latino-Americana, Foz do Iguaçu, Paraná, Brazil
| | - Renato Vincentini
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Sabrina Moutinho Chabregas
- Centro de Tecnologia Canavieira, Fazenda Santo Antônio – Laboratório de Biologia Molecular, Piracicaba, São Paulo, Brazil
| | - Adriana Silva Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robert A. Martienssen
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Paulo Cavalcanti Gomes Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
108
|
Gupta OP, Meena NL, Sharma I, Sharma P. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Mol Biol Rep 2014; 41:4623-9. [PMID: 24682922 DOI: 10.1007/s11033-014-3333-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/14/2014] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) are tiny non-coding regulatory molecules that modulate plant's gene expression either by cleaving or repressing their mRNA targets. To unravel the plant actions in response to various environmental factors, identification of stress related miRNAs is essential. For understanding the regulatory behaviour of various abiotic stresses and miRNAs in wheat genotype C-306, we examined expression profile of selected conserved miRNAs viz. miR159, miR164, miR168, miR172, miR393, miR397, miR529 and miR1029 tangled in adapting osmotic, salt and cold stresses. The investigation revealed that two miRNAs (miR168, miR397) were down-regulated and miR172 was up-regulated under all the stress conditions. However, miR164 and miR1029 were up-regulated under cold and osmotic stresses in contrast to salt stress. miR529 responded to cold alone and does not change under osmotic and salt stress. miR393 showed up-regulation under osmotic and salt, and down-regulation under cold stress indicating auxin based differential cold response. Variation in expression level of studied miRNAs in presence of target genes delivers a likely elucidation of miRNAs based abiotic stress regulation. In addition, we reported new stress induced miRNAs Ta-miR855 using computational approach. Results revealed first documentation that miR855 is regulated by salinity stress in wheat. These findings indicate that diverse miRNAs were responsive to osmotic, salt and cold stress and could function in wheat response to abiotic stresses.
Collapse
Affiliation(s)
- Om Prakash Gupta
- Quality and Basic Sciences Division, Directorate of Wheat Research, Karnal, 132001, Haryana, India
| | | | | | | |
Collapse
|
109
|
Wang TZ, Zhang WH. Genome-wide identification of microRNAs in Medicago truncatula by high-throughput sequencing. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2014; 1069:67-80. [PMID: 23996309 DOI: 10.1007/978-1-62703-613-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in development and stress response in plants by negatively regulating gene expression post-transcriptionally. Medicago truncatula has been used as a model plant to study functional genomics of legume plants. It has also been widely used to functionally study miRNAs. Identification of miRNAs at the whole-genome level is essential for functional characterization of miRNAs in plants. High-throughput sequencing is a powerful technology to identify miRNAs. In this chapter, the methods used for construction of a small RNA library and high-throughput sequencing involving total RNA isolation, small RNA purification, adapter ligation, reverse transcription, PCR amplification, and Solexa sequencing are described. Bioinformatics and analysis of differential expression of miRNAs including primary disposal, miRNA identification, target prediction, and expression analysis are also discussed. These methodologies associated with identification and functional characterization of miRNAs may provide useful tools for readers to study miRNAs in plants in general and Medicago truncatula in particular.
Collapse
Affiliation(s)
- Tian-Zuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
110
|
Wang ST, Sun XL, Hoshino Y, Yu Y, Jia B, Sun ZW, Sun MZ, Duan XB, Zhu YM. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS One 2014; 9:e91357. [PMID: 24667308 PMCID: PMC3965387 DOI: 10.1371/journal.pone.0091357] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022] Open
Abstract
The microRNA319 (miR319) family is conserved among diverse plant species. In rice (Oryza sativa L.), the miR319 gene family is comprised of two members, Osa-miR319a and Osa-miR319b. We found that overexpressing Osa-miR319b in rice resulted in wider leaf blades and delayed development. Here, we focused on the biological function and potential molecular mechanism of the Osa-miR319b gene in response to cold stress in rice. The expression of Osa-miR319b was down-regulated by cold stress, and the overexpression of Osa-miR319b led to an enhanced tolerance to cold stress, as evidenced by higher survival rates and proline content. Also, the expression of a handful of cold stress responsive genes, such as DREB1A/B/C, DREB2A, TPP1/2, was increased in Osa-miR319b transgenic lines. Furthermore, we demonstrated the nuclear localization of the transcription factors, OsPCF6 and OsTCP21, which may be Osa-miR319b-targeted genes. We also showed that OsPCF6 and OsTCP21 expression was largely induced by cold stress, and the degree of induction was obviously repressed in plants overexpressing Osa-miR319b. As expected, the down-regulation of OsPCF6 and OsTCP21 resulted in enhanced tolerance to cold stress, partially by modifying active oxygen scavenging. Taken together, our findings suggest that Osa-miR319b plays an important role in plant response to cold stress, maybe by targeting OsPCF6 and OsTCP21.
Collapse
Affiliation(s)
- Sun-ting Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Xiao-li Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Yoichiro Hoshino
- Field Science Center for Northern Biosphere, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Bei Jia
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Zhong-wen Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Ming-zhe Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Xiang-bo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Yan-ming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
- * E-mail:
| |
Collapse
|
111
|
|
112
|
Johnson BN, Mutharasan R. Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst 2014; 139:1576-88. [DOI: 10.1039/c3an01677c] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
113
|
Zhou M, Luo H. Role of microRNA319 in creeping bentgrass salinity and drought stress response. PLANT SIGNALING & BEHAVIOR 2014; 9:e28700. [PMID: 24698809 PMCID: PMC4091478 DOI: 10.4161/psb.28700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The microRNA319 family (miR319) is one of the most conserved and ancient microRNA (miRNA) families in plants. Transgenic creeping bentgrass (Agrostis stolonifera) overexpressing a rice miR319, Osa-miR319a, exhibited enhanced salt and drought tolerance. A comprehensive hypothetical model about the role of miR319 in creeping bentgrass response to salinity and drought stress was proposed. Salinity and drought stress induces elevated expression of miR319, resulting in downregulation of at least 4 putative target genes of miR319 (AsPCF5, AsPCF6, AsPCF8, and AsTCP14) as well as a homolog of the rice NAC domain gene AsNAC60, and therefore positively contributing to plant abiotic stress response. Hormones might also regulate miR319 and its targets, and the expression level of the miR319 targets might be a balance of miR319-mediated target cleavage and hormone regulation of the targets. Furthermore, HKT gene families involved in salt exclusion mechanisms as well as mechanisms controlling the timing of gene expression network are also hypothesized to play an important role in this pathway.
Collapse
Affiliation(s)
- Man Zhou
- Department of Genetics and Biochemistry; Clemson University; Clemson, SC USA
| | - Hong Luo
- Department of Genetics and Biochemistry; Clemson University; Clemson, SC USA
- Correspondence to: Hong Luo,
| |
Collapse
|
114
|
|
115
|
Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing. Mol Genet Genomics 2013; 289:169-83. [DOI: 10.1007/s00438-013-0800-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/04/2013] [Indexed: 01/01/2023]
|
116
|
Yang C, Li D, Mao D, Liu X, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). PLANT, CELL & ENVIRONMENT 2013; 36:2207-18. [PMID: 23651319 DOI: 10.1111/pce.12130] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/24/2013] [Indexed: 05/20/2023]
Abstract
MicroRNA319 (miR319) family is one of the conserved microRNA (miRNA) families among diverse plant species. It has been reported that miR319 regulates plant development in dicotyledons, but little is known at present about its functions in monocotyledons. In rice (Oryza sativa L.), the MIR319 gene family comprises two members, Osa-MIR319a and Osa-MIR319b. Here, we report an expression pattern analysis and a functional characterization of the two Osa-MIR319 genes in rice. We found that overexpressing Osa-MIR319a and Osa-MIR319b in rice both resulted in wider leaf blades. Leaves of osa-miR319 overexpression transgenic plants showed an increased number of longitudinal small veins, which probably accounted for the increased leaf blade width. In addition, we observed that overexpressing osa-miR319 led to enhanced cold tolerance (4 °C) after chilling acclimation (12 °C) in transgenic rice seedlings. Notably, under both 4 and 12 °C low temperatures, Osa-MIR319a and Osa-MIR319b were down-regulated while the expression of miR319-targeted genes was induced. Furthermore, genetically down-regulating the expression of either of the two miR319-targeted genes, OsPCF5 and OsPCF8, in RNA interference (RNAi) plants also resulted in enhanced cold tolerance after chilling acclimation. Our findings in this study demonstrate that miR319 plays important roles in leaf morphogenesis and cold tolerance in rice.
Collapse
Affiliation(s)
- Chunhua Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Zhou M, Luo H. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. PLANT MOLECULAR BIOLOGY 2013; 83:59-75. [PMID: 23771582 DOI: 10.1007/s11103-013-0089-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/05/2013] [Indexed: 05/19/2023]
Abstract
Food security is one of the most important issues challenging the world today. Any strategies to solve this problem must include increasing crop yields and quality. MicroRNA-based genetic modification technology (miRNA-based GM tech) can be one of the most promising solutions that contribute to agricultural productivity directly by developing superior crop cultivars with enhanced biotic and abiotic stress tolerance and increased biomass yields. Indirectly, the technology may increase usage of marginal soils and decrease pesticide use, among other benefits. This review highlights the most recent progress of transgenic studies utilizing various miRNAs and their targets for plant trait modifications, and analyzes the potential of miRNA-mediated gene regulation for use in crop improvement. Strategies for manipulating miRNAs and their targets in transgenic plants including constitutive, stress-induced, or tissue-specific expression of miRNAs or their targets, RNA interference, expressing miRNA-resistant target genes, artificial target mimic and artificial miRNAs were discussed. We also discussed potential risks of utilizing miRNA-based GM tech. In general, miRNAs and their targets not only provide an invaluable source of novel transgenes, but also inspire the development of several new GM strategies, allowing advances in breeding novel crop cultivars with agronomically useful characteristics.
Collapse
MESH Headings
- Adaptation, Biological
- Crops, Agricultural/genetics
- Crops, Agricultural/immunology
- Crops, Agricultural/metabolism
- Disease Resistance
- Food Supply
- Food, Genetically Modified
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Engineering/methods
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Risk Factors
- Transgenes
Collapse
Affiliation(s)
- Man Zhou
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | | |
Collapse
|
118
|
Devi SJSR, Madhav MS, Kumar GR, Goel AK, Umakanth B, Jahnavi B, Viraktamath BC. Identification of abiotic stress miRNA transcription factor binding motifs (TFBMs) in rice. Gene 2013; 531:15-22. [PMID: 23994683 DOI: 10.1016/j.gene.2013.08.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 08/17/2013] [Accepted: 08/19/2013] [Indexed: 11/26/2022]
Abstract
Plant growth and yield are affected by many abiotic stresses like salinity, drought, cold and heavy metal; these stresses trigger up and down-regulate several genes through various transcription factors (TFs). Transcription factor binding motifs (TFBMs), located in the upstream region of the genes, associate with TFs to regulate the gene expression. Many factors, including the activation of miRNAs, which are encoded by genes having independent transcription units, regulate the gene expression. TFBMs in the regulatory region of miRNA sequences influence the miRNA expression, which in turn influences the expression of other genes in the cell. However, the current level of information available on TFBMs of miRNA involved in abiotic stress related defense pathway(s) is limited and in-depth studies in this direction may lead to a better understanding of their role in expression and regulation of defense responses in plants. In this study, various aspects related to genomic positions of pre-miRNA, prediction of TSS and TATA box positions and identification of known, unique motifs at regulatory regions of all the reported miRNAs of rice associated with different abiotic stresses are discussed. Sixteen motifs were identified in this study, of which nine are known cis-regulatory elements associated with various stresses, two strong motifs, (CGCCGCCG, CGGCGGCG) and five unique motifs which might play a vital role in the regulation of abiotic stresses related miRNA genes. Common motifs shared by miRNAs that are involved in more than one abiotic stresses were also identified. The motifs identified in this study will be a resource for further functional validation.
Collapse
Affiliation(s)
- S J S Rama Devi
- Crop Improvement section, Directorate of Rice Research, Rajendranagar, Hyderabad 500030, India
| | | | | | | | | | | | | |
Collapse
|
119
|
Tong YA, Peng H, Zhan C, Fan L, Ai T, Wang S. Genome-wide analysis reveals diversity of rice intronic miRNAs in sequence structure, biogenesis and function. PLoS One 2013; 8:e63938. [PMID: 23717514 PMCID: PMC3661559 DOI: 10.1371/journal.pone.0063938] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/08/2013] [Indexed: 11/18/2022] Open
Abstract
Intronic microRNAs (in-miRNAs) as a class of miRNA family that regulates gene expression are still poorly understood in plants. In this study, we systematically identified rice in-miRNAs by re-mining eight published small RNA-sequencing datasets of rice. Furthermore, based on the collected expression, annotation, and putative target data, we investigated the structures, potential functions, and expression features of these in-miRNAs and the expression patterns of their host genes. A total of 153 in-miRNAs, which account for over 1/4 of the total rice miRNAs, were identified. In silico expression analysis showed that most of them (∼63%) are tissue or stage-specific. However, a majority of their host genes, especially those containing clustered in-miRNAs, exhibit stable high-level expressions among 513 microarray datasets. Although in-miRNAs show diversity in function and mechanism, the DNA methylation directed by 24 nt in-miRNAs may be the main pathway that controls the expressions of target genes, host genes, and even themselves. These findings may enhance our understanding on special functions of in-miRNAs, especially in mediating DNA methylation that was concluded to affect the stability of expression and structure of host and target genes.
Collapse
Affiliation(s)
- Yong-ao Tong
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Hua Peng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Zhan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - LinHong Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Taobo Ai
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Shenghua Wang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
120
|
Miura K, Furumoto T. Cold signaling and cold response in plants. Int J Mol Sci 2013; 14:5312-37. [PMID: 23466881 PMCID: PMC3634503 DOI: 10.3390/ijms14035312] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 11/16/2022] Open
Abstract
Plants are constantly exposed to a variety of environmental stresses. Freezing or extremely low temperature constitutes a key factor influencing plant growth, development and crop productivity. Plants have evolved a mechanism to enhance tolerance to freezing during exposure to periods of low, but non-freezing temperatures. This phenomenon is called cold acclimation. During cold acclimation, plants develop several mechanisms to minimize potential damages caused by low temperature. Cold response is highly complex process that involves an array of physiological and biochemical modifications. Furthermore, alterations of the expression patterns of many genes, proteins and metabolites in response to cold stress have been reported. Recent studies demonstrate that post-transcriptional and post-translational regulations play a role in the regulation of cold signaling. In this review article, recent advances in cold stress signaling and tolerance are highlighted.
Collapse
Affiliation(s)
- Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tsuyoshi Furumoto
- Department of Agriculture, Ryukoku University, Kyoto 610-8577, Japan; E-Mail:
| |
Collapse
|
121
|
Zhang S, Yue Y, Sheng L, Wu Y, Fan G, Li A, Hu X, ShangGuan M, Wei C. PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress. BMC PLANT BIOLOGY 2013; 13:33. [PMID: 23448274 PMCID: PMC3599438 DOI: 10.1186/1471-2229-13-33] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 02/21/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Over 200 published studies of more than 30 plant species have reported a role for miRNAs in regulating responses to abiotic stresses. However, data from these individual reports has not been collected into a single database. The lack of a curated database of stress-related miRNAs limits research in this field, and thus a cohesive database system should necessarily be constructed for data deposit and further application. DESCRIPTION PASmiR, a literature-curated and web-accessible database, was developed to provide detailed, searchable descriptions of miRNA molecular regulation in different plant abiotic stresses. PASmiR currently includes data from ~200 published studies, representing 1038 regulatory relationships between 682 miRNAs and 35 abiotic stresses in 33 plant species. PASmiR's interface allows users to retrieve miRNA-stress regulatory entries by keyword search using plant species, abiotic stress, and miRNA identifier. Each entry upon keyword query contains detailed regulation information for a specific miRNA, including species name, miRNA identifier, stress name, miRNA expression pattern, detection method for miRNA expression, a reference literature, and target gene(s) of the miRNA extracted from the corresponding reference or miRBase. Users can also contribute novel regulatory entries by using a web-based submission page. The PASmiR database is freely accessible from the two URLs of http://hi.ustc.edu.cn:8080/PASmiR, and http://pcsb.ahau.edu.cn:8080/PASmiR. CONCLUSION The PASmiR database provides a solid platform for collection, standardization, and searching of miRNA-abiotic stress regulation data in plants. As such this database will be a comprehensive repository for miRNA regulatory mechanisms involved in plant response to abiotic stresses for the plant stress physiology community.
Collapse
Affiliation(s)
- Shihua Zhang
- School of life sciences, Anhui Agricultural University, Hefei 230036, China
- Key laboratory of Tea Biochemistry and Biotechnology, Ministry of Education, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Yi Yue
- College of information and computer science, Anhui Agricultural University, Hefei 230036, China
| | - Liang Sheng
- Key laboratory of Tea Biochemistry and Biotechnology, Ministry of Education, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Yunzhi Wu
- College of information and computer science, Anhui Agricultural University, Hefei 230036, China
| | - Guohua Fan
- College of information and computer science, Anhui Agricultural University, Hefei 230036, China
| | - Ao Li
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiaoyi Hu
- Key laboratory of Tea Biochemistry and Biotechnology, Ministry of Education, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Mingzhu ShangGuan
- Key laboratory of Tea Biochemistry and Biotechnology, Ministry of Education, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Chaoling Wei
- Key laboratory of Tea Biochemistry and Biotechnology, Ministry of Education, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
122
|
Casacuberta E, González J. The impact of transposable elements in environmental adaptation. Mol Ecol 2013; 22:1503-17. [DOI: 10.1111/mec.12170] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Elena Casacuberta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra); Passeig Maritim de la Barceloneta 37-49 Barcelona 08003 Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra); Passeig Maritim de la Barceloneta 37-49 Barcelona 08003 Spain
| |
Collapse
|
123
|
Confraria A, Martinho C, Elias A, Rubio-Somoza I, Baena-González E. miRNAs mediate SnRK1-dependent energy signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:197. [PMID: 23802004 PMCID: PMC3687772 DOI: 10.3389/fpls.2013.00197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/27/2013] [Indexed: 05/17/2023]
Abstract
The SnRK1 protein kinase, the plant ortholog of mammalian AMPK and yeast Snf1, is activated by the energy depletion caused by adverse environmental conditions. Upon activation, SnRK1 triggers extensive transcriptional changes to restore homeostasis and promote stress tolerance and survival partly through the inhibition of anabolism and the activation of catabolism. Despite the identification of a few bZIP transcription factors as downstream effectors, the mechanisms underlying gene regulation, and in particular gene repression by SnRK1, remain mostly unknown. microRNAs (miRNAs) are 20-24 nt RNAs that regulate gene expression post-transcriptionally by driving the cleavage and/or translation attenuation of complementary mRNA targets. In addition to their role in plant development, mounting evidence implicates miRNAs in the response to environmental stress. Given the involvement of miRNAs in stress responses and the fact that some of the SnRK1-regulated genes are miRNA targets, we postulated that miRNAs drive part of the transcriptional reprogramming triggered by SnRK1. By comparing the transcriptional response to energy deprivation between WT and dcl1-9, a mutant deficient in miRNA biogenesis, we identified 831 starvation genes misregulated in the dcl1-9 mutant, out of which 155 are validated or predicted miRNA targets. Functional clustering analysis revealed that the main cellular processes potentially co-regulated by SnRK1 and miRNAs are translation and organelle function and uncover TCP transcription factors as one of the most highly enriched functional clusters. TCP repression during energy deprivation was impaired in miR319 knockdown (MIM319) plants, demonstrating the involvement of miR319 in the stress-dependent regulation of TCPs. Altogether, our data indicates that miRNAs are components of the SnRK1 signaling cascade contributing to the regulation of specific mRNA targets and possibly tuning down particular cellular processes during the stress response.
Collapse
Affiliation(s)
- Ana Confraria
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Cláudia Martinho
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Alexandre Elias
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingen, Germany
| | - Elena Baena-González
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|
124
|
Yang QS, Wu JH, Li CY, Wei YR, Sheng O, Hu CH, Kuang RB, Huang YH, Peng XX, McCardle JA, Chen W, Yang Y, Rose JKC, Zhang S, Yi GJ. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings. Mol Cell Proteomics 2012; 11:1853-69. [PMID: 22982374 PMCID: PMC3518116 DOI: 10.1074/mcp.m112.022079] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/30/2012] [Indexed: 12/22/2022] Open
Abstract
Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by proteomic analysis.
Collapse
Affiliation(s)
- Qiao-Song Yang
- From the ‡Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences
- §Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
| | - Jun-Hua Wu
- ¶State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Chun-Yu Li
- From the ‡Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences
- §Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
| | - Yue-Rong Wei
- From the ‡Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences
- §Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
| | - Ou Sheng
- From the ‡Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences
- §Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
| | - Chun-Hua Hu
- From the ‡Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences
- §Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
| | - Rui-Bin Kuang
- From the ‡Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences
- §Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
| | - Yong-Hong Huang
- From the ‡Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences
- §Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
| | - Xin-Xiang Peng
- ¶State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | | | - Wei Chen
- ‖Institute for Biotechnology and Life Science Technologies
| | - Yong Yang
- **Robert W. Holley Center for Agriculture and Health, USDA-ARS
| | | | - Sheng Zhang
- ‖Institute for Biotechnology and Life Science Technologies
| | - Gan-Jun Yi
- From the ‡Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences
- §Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
125
|
Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F. Role of microRNAs and other sRNAs of plants in their changing environments. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1664-72. [PMID: 22647959 DOI: 10.1016/j.jplph.2012.03.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 05/18/2023]
Abstract
Plants constantly face a complex array of environmental biotic and abiotic stimuli. Recent studies in various plants have highlighted the key roles of microRNAs and of different siRNA classes in the post-transcriptional regulation of plant genes essential for conserved responses of plants to individual stress conditions. It is not yet clear how these different signals and responses are integrated in nature. In the present review, we summarize current knowledge on sRNA-mediated responses to stress, and highlight possible directions of future research.
Collapse
Affiliation(s)
- Katarzyna Kruszka
- Department of Gene Expression, Adam Mickiewicz University, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
126
|
An FM, Chan MT. Transcriptome-wide characterization of miRNA-directed and non-miRNA-directed endonucleolytic cleavage using Degradome analysis under low ambient temperature in Phalaenopsis aphrodite subsp. formosana. PLANT & CELL PHYSIOLOGY 2012; 53:1737-50. [PMID: 22904110 DOI: 10.1093/pcp/pcs118] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant microRNAs (miRNAs) regulate gene expression through post-transcriptional gene silencing. Phalaenopsis aphrodite subsp. formosana is an orchid species native to Taiwan, which has high economic value and a high frequency of floral polymorphism. To date, few studies have focused on the regulatory roles of miRNAs and functional small RNAs (sRNAs) in orchids although understanding the regulation of flower development and flowering time is potentially important. Here, we combined analyses of the transcriptome, sRNAs and the degradome to identify sRNA-directed transcript cleavages in Phalaenopsis. Degradome analysis provided large-scale evidence of conserved and novel miRNA-directed cleavage of target transcripts, and 46 abundant sRNA groups and their target transcripts were identified. Low temperature-responsive sRNAs were validated with normalized reads from an sRNA library and quantitative stem-loop reverse transcription-PCR (RT-PCR) analysis. According to gene ontology (GO) categorization, target transcripts of the novel miRNAs and sRNAs are functionally involved in metabolic processes or responses to stress. One particular homologous gene, Allcontig28452, which encodes digalactosyldiacylglycerol synthase 2 (DGD2), was found to be targeted by natural antisense transcripts (NATs) unique to Phalaenopsis. In summary, comprehensive analyses of the transcriptome, sRNAs and degradome using deep sequencing technology provided a useful platform for investigating miRNA-directed and non-miRNA-directed endonucleolytic cleavage in a non-model plant, the orchid Phalaenopsis.
Collapse
Affiliation(s)
- Feng-Ming An
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | |
Collapse
|
127
|
Knight MR, Knight H. Low-temperature perception leading to gene expression and cold tolerance in higher plants. THE NEW PHYTOLOGIST 2012; 195:737-751. [PMID: 22816520 DOI: 10.1111/j.1469-8137.2012.04239.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant species exhibit a range of tolerances to low temperatures, and these constitute a major determinant of their geographical distribution and use as crops. When tolerance is insufficient, either chilling or freezing injuries result. A variety of mechanisms are employed to evade the ravages of extreme or sub-optimal temperatures. Many of these involve cold-responsive gene expression and require that the drop in temperature is first sensed by the plant. Despite intensive research over the last 100 yr or longer, we still cannot easily answer the question of how plants sense low temperature. Over recent years, genomic and post-genomic approaches have produced a wealth of information relating to the sequence of events leading from cold perception to appropriate and useful responses. However, there are also crucial and significant gaps in the pathways constructed from these data. We describe the literature pertaining to the current understanding of cold perception, signalling and regulation of low-temperature-responsive gene expression in higher plants, raising some of the key questions that still intrigue plant biologists today and that could be targets for future work. Our review focuses on the control of gene expression in the pathways leading from cold perception to chilling and freezing tolerance.
Collapse
Affiliation(s)
- Marc R Knight
- Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Heather Knight
- Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
128
|
Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu JK. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC PLANT BIOLOGY 2012; 12:132. [PMID: 22862743 PMCID: PMC3431262 DOI: 10.1186/1471-2229-12-132] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/24/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small RNA molecules that play important regulatory roles in plant development and stress responses. Identification of stress-regulated miRNAs is crucial for understanding how plants respond to environmental stimuli. Abiotic stresses are one of the major factors that limit crop growth and yield. Whereas abiotic stress-regulated miRNAs have been identified in vegetative tissues in several plants, they are not well studied in reproductive tissues such as inflorescences. RESULTS We used Illumina deep sequencing technology to sequence four small RNA libraries that were constructed from the inflorescences of rice plants that were grown under control condition and drought, cold, or salt stress. We identified 227 miRNAs that belong to 127 families, including 70 miRNAs that are not present in the miRBase. We validated 62 miRNAs (including 10 novel miRNAs) using published small RNA expression data in DCL1, DCL3, and RDR2 RNAi lines and confirmed 210 targets from 86 miRNAs using published degradome data. By comparing the expression levels of miRNAs, we identified 18, 15, and 10 miRNAs that were regulated by drought, cold and salt stress conditions, respectively. In addition, we identified 80 candidate miRNAs that originated from transposable elements or repeats, especially miniature inverted-repeat elements (MITEs). CONCLUSION We discovered novel miRNAs and stress-regulated miRNAs that may play critical roles in stress response in rice inflorescences. Transposable elements or repeats, especially MITEs, are rich sources for miRNA origination.
Collapse
Affiliation(s)
- Blanca E Barrera-Figueroa
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca, 38601, Mexico
| | - Lei Gao
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Zhigang Wu
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Xuefeng Zhou
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Renyi Liu
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
129
|
Curaba J, Spriggs A, Taylor J, Li Z, Helliwell C. miRNA regulation in the early development of barley seed. BMC PLANT BIOLOGY 2012; 12:120. [PMID: 22838835 PMCID: PMC3443071 DOI: 10.1186/1471-2229-12-120] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/17/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets. RESULTS Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis. We also identified many potential miRNAs including several belonging to known miRNA families. Our data gave us evidence for an increase in miRNA-mediated regulation during the transition between pre-storage and storage phases. Potential miRNA targets were found in various signalling pathways including components of four phytohormone pathways (ABA, GA, auxin, ethylene) and the defence response to powdery mildew infection. Among the putative miRNA targets we identified were two essential genes controlling the GA response, a GA3oxidase1 and a homolog of the receptor GID1, and a homolog of the ACC oxidase which catalyses the last step of ethylene biosynthesis. We found that two MLA genes are potentially miRNA regulated, establishing a direct link between miRNAs and the R gene response. CONCLUSION Our dataset provides a useful source of information on miRNA regulation during the early development of cereal grains and our analysis suggests that miRNAs contribute to the control of development of the cereal grain, notably through the regulation of phytohormone response pathways.
Collapse
Affiliation(s)
- Julien Curaba
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Andrew Spriggs
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Jen Taylor
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Zhongyi Li
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Chris Helliwell
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| |
Collapse
|
130
|
Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li JT, Hu SN, Shu WS. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). THE NEW PHYTOLOGIST 2012; 195:97-112. [PMID: 22537016 DOI: 10.1111/j.1469-8137.2012.04154.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
• Arsenic (As) contamination of rice (Oryza sativa) is a worldwide concern and elucidating the molecular mechanisms of As accumulation in rice may provide promising solutions to the problem. Previous studies using microarray techniques to investigate transcriptional regulation of plant responses to As stress have identified numerous differentially expressed genes. However, little is known about the metabolic and regulatory network remodelings, or their interactions with microRNA (miRNA) in plants upon As(III) exposure. • We used Illumina sequencing to acquire global transcriptome alterations and miRNA regulation in rice under As(III) treatments of varying lengths of time and dosages. • We found that the response of roots was more distinct when the dosage was varied, whereas that of shoots was more distinct when the treatment time was varied. In particular, the genes involved in heavy metal transportation, jasmonate (JA) biosynthesis and signaling, and lipid metabolism were closely related to responses of rice under As(III) stress. Furthermore, we discovered 36 new As(III)-responsive miRNAs, 14 of which were likely involved in regulating gene expression in transportation, signaling, and metabolism. • Our findings highlight the significance of JA signaling and lipid metabolism in response to As(III) stress and their regulation by miRNA, which provides a foundation for subsequent functional research.
Collapse
Affiliation(s)
- Lu-jun Yu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Li X, Wang X, Zhang S, Liu D, Duan Y, Dong W. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. PLoS One 2012; 7:e39650. [PMID: 22802924 PMCID: PMC3384596 DOI: 10.1371/journal.pone.0039650] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/24/2012] [Indexed: 01/11/2023] Open
Abstract
Soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are known to play important role in plant stress response. However, there are few reports profiling the miRNA expression patterns during pathogen stress. We sequenced four small RNA libraries from two soybean cultivar (Hairbin xiaoheidou, SCN race 3 resistant, Liaodou 10, SCN race 3 susceptible) that grown under un-inoculated and SCN-inoculated soil. Small RNAs were mapped to soybean genome sequence, 364 known soybean miRNA genes were identified in total. In addition, 21 potential miRNA candidates were identified. Comparative analysis of miRNA profiling indicated 101 miRNAs belong to 40 families were SCN-responsive. We also found 20 miRNAs with different express pattern even between two cultivars of the same species. These findings suggest that miRNA paly important role in soybean response to SCN and have important implications for further identification of miRNAs under pathogen stress.
Collapse
Affiliation(s)
- Xiaoyan Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xue Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Shaopeng Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Wei Dong
- Beijing Genomics Institute, Hangzhou, China
| |
Collapse
|
132
|
Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress. Mol Biol Rep 2012; 39:8645-54. [PMID: 22718503 DOI: 10.1007/s11033-012-1719-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/06/2012] [Indexed: 01/01/2023]
Abstract
Soil salinization can lead to environmental and ecological problems worldwide. Abiotic stressors, including salinity, are suspected to regulate microRNA (miRNA) expression. Plants exposed to such abiotic stressors express specific miRNAs, which are genes encoding small non-coding RNAs of 20-24 nucleotides. miRNAs are known to exist widely in plant genomes, and are endogenous. A previous study used miRNA microarray technology and poly(A) polymerase-mediated qRT-PCR technology to analyze the expression profile of miRNAs in two types of plants, Populus cathayana L. (salt-sensitive plants) and Salix matsudana Koidz (highly salinity-tolerant plants), both belonging to the Salicaceae family. miRNA microarray hybridization revealed changes in expression of 161 miRNAs P. cathayana and 32 miRNAs in S. matsudana under salt stress. Differences in expression indicate that the same miRNA has different expression patterns in salt-sensitive plants and salt-tolerant plants under salt stress. These indicate that changes in expression of miRNAs might function as a response to varying salt concentrations. To examine this, we used qRT-PCR to select five miRNA family target genes involved in plant responses to salt stress. Upon saline treatment, the expressions of both ptc-miR474c and ptc-miR398b in P. cathayana were down-regulated, but were up-regulated in S. matsudana. Expression of the miR396 family in both types of plants was suppressed. Furthermore, we have analyzed the different expression patterns between P. cathayana and S. matsudana. Findings of this study can be utilized in future investigations of post-transcriptional gene regulation in P. cathayana and S. matsudana under saline stress.
Collapse
|
133
|
Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. PLANT PHYSIOLOGY 2012; 159:721-38. [PMID: 22508932 PMCID: PMC3375937 DOI: 10.1104/pp.112.196048] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/15/2012] [Indexed: 05/18/2023]
Abstract
The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress.
Collapse
MESH Headings
- Adaptation, Physiological
- Cold Temperature
- Computational Biology
- Flowers/genetics
- Flowers/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant
- Indoleacetic Acids/metabolism
- MicroRNAs/metabolism
- Plant Infertility
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, RNA/methods
- Signal Transduction
- Stress, Physiological
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triticum/genetics
- Triticum/physiology
Collapse
|
134
|
Sunkar R, Li YF, Jagadeeswaran G. Functions of microRNAs in plant stress responses. TRENDS IN PLANT SCIENCE 2012; 17:196-203. [PMID: 22365280 DOI: 10.1016/j.tplants.2012.01.010] [Citation(s) in RCA: 562] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/21/2012] [Accepted: 01/25/2012] [Indexed: 05/18/2023]
Abstract
The discovery of microRNAs (miRNAs) as gene regulators has led to a paradigm shift in the understanding of post-transcriptional gene regulation in plants and animals. miRNAs have emerged as master regulators of plant growth and development. Evidence suggesting that miRNAs play a role in plant stress responses arises from the discovery that miR398 targets genes with known roles in stress tolerance. In addition, the expression profiles of most miRNAs that are implicated in plant growth and development are significantly altered during stress. These later findings imply that attenuated plant growth and development under stress may be under the control of stress-responsive miRNAs. Here we review recent progress in the understanding of miRNA-mediated plant stress tolerance.
Collapse
Affiliation(s)
- Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | |
Collapse
|
135
|
Thiebaut F, Rojas CA, Almeida KL, Grativol C, Domiciano GC, Lamb CRC, Engler JDA, Hemerly AS, Ferreira PCG. Regulation of miR319 during cold stress in sugarcane. PLANT, CELL & ENVIRONMENT 2012; 35:502-12. [PMID: 22017483 DOI: 10.1111/j.1365-3040.2011.02430.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are part of a novel mechanism of gene regulation that is active in plants under abiotic stress conditions. In the present study, 12 miRNAs were analysed to identify miRNAs differentially expressed in sugarcane subjected to cold stress (4 °C). The expression of miRNAs assayed by stem-loop RT-PCR showed that miR319 is up-regulated in sugarcane plantlets exposed to 4 °C for 24 h. The induction of miR319 expression during cold stress was observed in both roots and shoots. Sugarcane miR319 was also regulated by treatment with abscisic acid. Putative targets of this miRNA were identified and their expression levels were decreased in sugarcane plantlets exposed to cold. The cleavage sites of two targets were mapped using a 5' RACE PCR assay confirming the regulation of these genes by miR319. When sugarcane cultivars contrasting in cold tolerance were subjected to 4 °C, we observed up-regulation of miR319 and down-regulation of the targets in both varieties; however, the changes in expression were delayed in the cold-tolerant cultivar. These results suggest that differences in timing and levels of the expression of miR319 and its targets could be tested as markers for selection of cold-tolerant sugarcane cultivars.
Collapse
Affiliation(s)
- Flávia Thiebaut
- Laboratorio de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Bl.B-33A, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco s/n, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Gébelin V, Argout X, Engchuan W, Pitollat B, Duan C, Montoro P, Leclercq J. Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. BMC PLANT BIOLOGY 2012; 12:18. [PMID: 22330773 PMCID: PMC3368772 DOI: 10.1186/1471-2229-12-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 02/13/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plants respond to external stimuli through fine regulation of gene expression partially ensured by small RNAs. Of these, microRNAs (miRNAs) play a crucial role. They negatively regulate gene expression by targeting the cleavage or translational inhibition of target messenger RNAs (mRNAs). In Hevea brasiliensis, environmental and harvesting stresses are known to affect natural rubber production. This study set out to identify abiotic stress-related miRNAs in Hevea using next-generation sequencing and bioinformatic analysis. RESULTS Deep sequencing of small RNAs was carried out on plantlets subjected to severe abiotic stress using the Solexa technique. By combining the LeARN pipeline, data from the Plant microRNA database (PMRD) and Hevea EST sequences, we identified 48 conserved miRNA families already characterized in other plant species, and 10 putatively novel miRNA families. The results showed the most abundant size for miRNAs to be 24 nucleotides, except for seven families. Several MIR genes produced both 20-22 nucleotides and 23-27 nucleotides. The two miRNA class sizes were detected for both conserved and putative novel miRNA families, suggesting their functional duality. The EST databases were scanned with conserved and novel miRNA sequences. MiRNA targets were computationally predicted and analysed. The predicted targets involved in "responses to stimuli" and to "antioxidant" and "transcription activities" are presented. CONCLUSIONS Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs when the complete genome is not yet available. Our study provided additional information for evolutionary studies and revealed potentially specific regulation of the control of redox status in Hevea.
Collapse
Affiliation(s)
| | | | - Worrawat Engchuan
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- King Mongkut's University of Technology, Thonburi, Thailand
| | | | - Cuifang Duan
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- CATAS, RRI, Danzhou, 571737 Hainan, China
| | | | | |
Collapse
|
137
|
Zhu QH, Curaba J, de Lima JC, Helliwell C. Functions of miRNAs in Rice. MICRORNAS IN PLANT DEVELOPMENT AND STRESS RESPONSES 2012. [DOI: 10.1007/978-3-642-27384-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
138
|
Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y. Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 2011; 417:892-6. [PMID: 22209794 DOI: 10.1016/j.bbrc.2011.12.070] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/15/2011] [Indexed: 11/19/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of target mRNAs in plant growth, development, abiotic stress responses, and pathogen responses. Cold stress is one of the most common abiotic factors affecting plants, and it adversely affects plant growth, development, and spatial distribution. To understand the roles of miRNAs under cold stress in Populus tomentosa, we constructed two small RNA libraries from plantlets treated or not with cold conditions (4°C for 8 h). High-throughput sequencing of the two libraries identified 144 conserved miRNAs belonging to 33 miRNA families and 29 new miRNAs (as well as their corresponding miRNA(∗)s) belonging to 23 miRNA families. Differential expression analysis showed that 21 miRNAs were down-regulated and nine miRNAs were up-regulated in response to cold stress. Among them, 19 cold-responsive miRNAs, two new miRNAs and their corresponding miRNA(∗)s were validated by qRT-PCR. A total of 101 target genes of the new miRNAs were predicted using a bioinformatics approach. These target genes are involved in growth and resistance to various stresses. The results demonstrated that Populus miRNAs play critical roles in the cold stress response.
Collapse
Affiliation(s)
- Lei Chen
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
139
|
Guleria P, Mahajan M, Bhardwaj J, Yadav SK. Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2011; 9:183-99. [PMID: 22289475 PMCID: PMC5054152 DOI: 10.1016/s1672-0229(11)60022-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/21/2011] [Indexed: 01/01/2023]
Abstract
Small RNAs (sRNAs) are 18-30 nt non-coding regulatory elements found in diverse organisms, which were initially identified as small double-stranded RNAs in Caenorhabditis elegans. With the development of new and improved technologies, sRNAs have also been identified and characterized in plant systems. Among them, micro RNAs (miRNAs) and small interfering RNAs (siRNAs) are found to be very important riboregulators in plants. Various types of sRNAs differ in their mode of biogenesis and in their function of gene regulation. sRNAs are involved in gene regulation at both transcriptional and post-transcriptional levels. They are known to regulate growth and development of plants. Furthermore, sRNAs especially plant miRNAs have been found to be involved in various stress responses, such as oxidative, mineral nutrient deficiency, dehydration, and even mechanical stimulus. Therefore, in the present review, we focus on the current understanding of biogenesis and regulatory mechanisms of plant sRNAs and their responses to various abiotic stresses.
Collapse
Affiliation(s)
- Praveen Guleria
- Plant Metabolic Engineering, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, CSIR, Palampur 176061 (HP), India
| | | | | | | |
Collapse
|
140
|
Frazier TP, Sun G, Burklew CE, Zhang B. Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 2011; 49:159-65. [PMID: 21359858 DOI: 10.1007/s12033-011-9387-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Drought and salinity stresses significantly altered microRNA (miRNA) expression in a dose-dependent manner in tobacco. Salinity stress changed the miRNA expression levels from a 6.86-fold down-regulation to a 616.57-fold up-regulation. Alternatively, miRNAs were down-regulated by 2.68-fold and up-regulated 2810-fold under drought conditions. miR395 was most sensitive to both stresses and was up-regulated by 616 and 2810-folds by 1.00% PEG and 0.171 M NaCl, respectively. Salinity and drought stresses also changed the expression of protein-coding genes [alcohol dehydrogenase (ADH) and alcohol peroxidase (APX)]. The results suggest that miRNAs may play an important role in plant response to environmental abiotic stresses. Further investigation of miRNA-mediated gene regulation may elucidate the molecular mechanism of plant tolerance to abiotic stresses and has the potential to create a miRNA-based biotechnology for improving plant tolerance to drought and salinity stresses.
Collapse
Affiliation(s)
- Taylor P Frazier
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | | | |
Collapse
|
141
|
Grativol C, Hemerly AS, Ferreira PCG. Genetic and epigenetic regulation of stress responses in natural plant populations. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:176-85. [PMID: 21914492 DOI: 10.1016/j.bbagrm.2011.08.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/30/2022]
Abstract
Plants have developed intricate mechanisms involving gene regulatory systems to adjust to stresses. Phenotypic variation in plants under stress is classically attributed to DNA sequence variants. More recently, it was found that epigenetic modifications - DNA methylation-, chromatin- and small RNA-based mechanisms - can contribute separately or together to phenotypes by regulating gene expression in response to the stress effect. These epigenetic modifications constitute an additional layer of complexity to heritable phenotypic variation and the evolutionary potential of natural plant populations because they can affect fitness. Natural populations can show differences in performance when they are exposed to changes in environmental conditions, partly because of their genetic variation but also because of their epigenetic variation. The line between these two components is blurred because little is known about the contribution of genotypes and epigenotypes to stress tolerance in natural populations. Recent insights in this field have just begun to shed light on the behavior of genetic and epigenetic variation in natural plant populations under biotic and abiotic stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Clícia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
142
|
Wang T, Chen L, Zhao M, Tian Q, Zhang WH. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics 2011. [PMID: 21762498 DOI: 10.1186/1471‐2164‐12‐367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in development and stress response in plants by negatively affecting gene expression post-transcriptionally. Identification of miRNAs at the global genome-level by high-throughout sequencing is essential to functionally characterize miRNAs in plants. Drought is one of the common environmental stresses limiting plant growth and development. To understand the role of miRNAs in response of plants to drought stress, drought-responsive miRNAs were identified by high-throughput sequencing in a legume model plant, Medicago truncatula. RESULTS Two hundreds eighty three and 293 known miRNAs were identified from the control and drought stress libraries, respectively. In addition, 238 potential candidate miRNAs were identified, and among them 14 new miRNAs and 15 new members of known miRNA families whose complementary miRNA*s were also detected. Both high-throughput sequencing and RT-qPCR confirmed that 22 members of 4 miRNA families were up-regulated and 10 members of 6 miRNA families were down-regulated in response to drought stress. Among the 29 new miRNAs/new members of known miRNA families, 8 miRNAs were responsive to drought stress with both 4 miRNAs being up- and down-regulated, respectively. The known and predicted targets of the drought-responsive miRNAs were found to be involved in diverse cellular processes in plants, including development, transcription, protein degradation, detoxification, nutrient status and cross adaptation. CONCLUSIONS We identified 32 known members of 10 miRNA families and 8 new miRNAs/new members of known miRNA families that were responsive to drought stress by high-throughput sequencing of small RNAs from M. truncatula. These findings are of importance for our understanding of the roles played by miRNAs in response of plants to abiotic stress in general and drought stress in particular.
Collapse
Affiliation(s)
- Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
| | | | | | | | | |
Collapse
|
143
|
Wang T, Chen L, Zhao M, Tian Q, Zhang WH. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics 2011; 12:367. [PMID: 21762498 PMCID: PMC3160423 DOI: 10.1186/1471-2164-12-367] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 07/15/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in development and stress response in plants by negatively affecting gene expression post-transcriptionally. Identification of miRNAs at the global genome-level by high-throughout sequencing is essential to functionally characterize miRNAs in plants. Drought is one of the common environmental stresses limiting plant growth and development. To understand the role of miRNAs in response of plants to drought stress, drought-responsive miRNAs were identified by high-throughput sequencing in a legume model plant, Medicago truncatula. RESULTS Two hundreds eighty three and 293 known miRNAs were identified from the control and drought stress libraries, respectively. In addition, 238 potential candidate miRNAs were identified, and among them 14 new miRNAs and 15 new members of known miRNA families whose complementary miRNA*s were also detected. Both high-throughput sequencing and RT-qPCR confirmed that 22 members of 4 miRNA families were up-regulated and 10 members of 6 miRNA families were down-regulated in response to drought stress. Among the 29 new miRNAs/new members of known miRNA families, 8 miRNAs were responsive to drought stress with both 4 miRNAs being up- and down-regulated, respectively. The known and predicted targets of the drought-responsive miRNAs were found to be involved in diverse cellular processes in plants, including development, transcription, protein degradation, detoxification, nutrient status and cross adaptation. CONCLUSIONS We identified 32 known members of 10 miRNA families and 8 new miRNAs/new members of known miRNA families that were responsive to drought stress by high-throughput sequencing of small RNAs from M. truncatula. These findings are of importance for our understanding of the roles played by miRNAs in response of plants to abiotic stress in general and drought stress in particular.
Collapse
Affiliation(s)
- Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mingui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
| | - Qiuying Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
| |
Collapse
|
144
|
Shen J, Xie K, Xiong L. Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Genomics 2010; 284:477-88. [PMID: 20941508 DOI: 10.1007/s00438-010-0581-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 09/26/2010] [Indexed: 12/14/2022]
Abstract
MicroRNAs are a class of endogenous small RNA molecules (20-24 nucleotides) that have pivotal roles in regulating gene expression mostly at posttranscriptional levels in plants. Plant microRNAs have been implicated in the regulation of diverse biological processes including growth and stress responses. However, the information about microRNAs in regulating abiotic stress responses in rice is limited. We optimized a one-tube stem-loop reverse transcription quantitative PCR (ST-RT qPCR) for high-throughput expression profiling analysis of microRNAs in rice under normal and stress conditions. The optimized ST-RT qPCR method was as accurate as small RNA gel blotting and was more convenient and time-saving than other methods in quantifying microRNAs. With this method, 41 rice microRNAs were quantified for their relative expression levels after drought, salt, cold, and abscisic acid (ABA) treatments. Thirty-two microRNAs showed induced or suppressed expression after stress or ABA treatment. Further analysis suggested that stress-responsive cis-elements were enriched in the promoters of stress-responsive microRNA genes. The expressions of five and seven microRNAs were significantly affected in the rice plant with defects in stress tolerance regulatory genes OsSKIPa and OsbZIP23, respectively. Some of the predicted target genes of these microRNAs were also related to abiotic stresses. We conclude that ST-RT qPCR is an efficient and reliable method for expression profiling of microRNAs and a significant portion of rice microRNAs participate in abiotic stress response and regulation.
Collapse
Affiliation(s)
- Jianqiang Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|