101
|
Lan J, Chen J, Zhu R, Lin C, Ma X, Cao S. Antibacterial and antiviral chitosan oligosaccharide modified cellulosic fibers with durability against washing and long-acting activity. Int J Biol Macromol 2023; 231:123587. [PMID: 36758766 PMCID: PMC9907796 DOI: 10.1016/j.ijbiomac.2023.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The worldwide outbreak of SARS-CoV-2 has attracted extensive attention to antibacterial and antivirus materials. Cellulose is the most potential candidate for the preparation of green, environmentally friendly antibacterial and antiviral materials. Herein, modified cellulosic fibers with sustained antibacterial and antiviral performance was prepared by introducing chitosan oligosaccharide onto the fibers. The two-step method is proved to be more effective than the one-step method for enhanced chitosan oligosaccharide loadings and antibacterial and antiviral activity. In this instance, the modified fibers with 61.77 mg/g chitosan oligosaccharide loadings can inhibit Staphylococcus aureus and Escherichia coli by 100 % after contacting with bacteria for 12 h and reduce the bacteriophage MS2 by 99.19 % after 1 h of contact. More importantly, the modified fibers have washing durable antibacterial and antiviral activity; the modified fibers have 100 % antibacterial and 98.38 % antiviral activity after 20 washing cycles. Benefiting from the excellent performance of the individual fibers, the paper prepared from the modified fibers show great antibacterial (100 %) and antiviral performance (99.01 %) and comparable mechanical strength. The modified fibers have potential applications in the manufacture of protective clothing and protective hygiene products.
Collapse
Affiliation(s)
| | | | | | | | - Xiaojuan Ma
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shilin Cao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
102
|
Boamah PO, Onumah J, Aduguba WO, Santo KG. Application of depolymerized chitosan in crop production: A review. Int J Biol Macromol 2023; 235:123858. [PMID: 36871686 DOI: 10.1016/j.ijbiomac.2023.123858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Currently, chitosan (CHT) is well known for its uses, particularly in veterinary and agricultural fields. However, chitosan's uses suffer greatly due to its extremely solid crystalline structure, it is insoluble at pH levels above or equal to 7. This has sped up the process of derivatizing and depolymerizing it into low molecular weight chitosan (LMWCHT). As a result of its diverse physicochemical as well as biological features which include antibacterial activity, non-toxicity, and biodegradability, LMWCHT has evolved into new biomaterials with extremely complex functions. The most important physicochemical and biological property is antibacterial, which has some degree of industrialization today. CHT and LMWCHT have potential due to the antibacterial and plant resistance-inducing properties when applied in crop production. This study has highlighted the many advantages of chitosan derivatives as well as the most recent studies on low molecular weight chitosan applications in crop development.
Collapse
Affiliation(s)
- Peter Osei Boamah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana.
| | - Jacqueline Onumah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana
| | | | - Kwadwo Gyasi Santo
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Ghana
| |
Collapse
|
103
|
Oliveira RWG, de Oliveira JM, da Paz FB, Muniz EC, de Moura EM, Costa JCS, do Nascimento MO, Carvalho ALM, Pinheiro IM, Mendes AN, Filgueiras LA, de Souza PR, de Moura CVR. Films composed of white angico gum and chitosan containing chlorhexidine as an antimicrobial agent. Int J Biol Macromol 2023; 235:123905. [PMID: 36870650 DOI: 10.1016/j.ijbiomac.2023.123905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Anadenanthera colubrina, popularly known as white angico, is a species extensively cultivated in Brazil, mainly in the cerrado region, including the state of Piauí. This study examines the development of films composed of white angico gum (WAG) and chitosan (CHI) and containing chlorhexidine (CHX), an antimicrobial agent. The solvent casting method was used to prepare films. Different combinations and concentrations of WAG and CHI were used to obtain films with good physicochemical characteristics. Properties such as the in vitro swelling ratio, the disintegration time, folding endurance, and the drug content were determined. The selected formulations were characterised by scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction, and the CHX release time and antimicrobial activity were evaluated. CHX showed a homogenous distribution in all CHI/WAG film formulations. The optimised films showed good physicochemical properties with 80% CHX release over 26 h, which is considered promising for local treatment of severe lesions in the mouth. Cytotoxicity tests of the films did not show toxicity. The antimicrobial and antifungal effects were very effective against the tested microorganisms.
Collapse
Affiliation(s)
| | | | | | - Edvani Curti Muniz
- Department of Chemistry, Federal University of Piauí, 64049-550, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Dong P, Shi Q, Peng R, Yuan Y, Xie X. N,N-dimethyl chitosan oligosaccharide (DMCOS) promotes antifungal activity by causing mitochondrial damage. Carbohydr Polym 2023; 303:120459. [PMID: 36657838 DOI: 10.1016/j.carbpol.2022.120459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
By modifying chitosan oligosaccharide (COS) with the Eschweiler-Clarke reaction, the chitosan oligosaccharide derivative DMCOS was synthesized. FT-IR, 1D and 2D NMR spectra, MALDI-ToF MS, and elemental analysis were applied to analyze the structure of DMCOS, which revealed that the primary amines were converted into tertiary amines after methylation. DMCOS displayed less thermal stability than COS. In comparison to COS, it was discovered that DMCOS possessed more potent antimicrobial activity against four bacterial strains (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) and three yeast strains (Candida albicans, Candida tropicalis, and Candida parapsilosis). The antioxidant studies indicated that DMCOS had less antioxidant activity than COS. Consequently, ROS level elevated in C. albicans cells following treatment with DMCOS, which decreased mitochondrial membrane potential. It was recalled that DMCOS may kill C. albicans by causing mitochondrial damage. In addition, DMCOS was demonstrated to be non-cytotoxic.
Collapse
Affiliation(s)
- Peng Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Ruqun Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Yingzi Yuan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China.
| |
Collapse
|
105
|
Wang M, Veeraperumal S, Zhong S, Cheong KL. Fucoidan-Derived Functional Oligosaccharides: Recent Developments, Preparation, and Potential Applications. Foods 2023; 12:foods12040878. [PMID: 36832953 PMCID: PMC9956988 DOI: 10.3390/foods12040878] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Oligosaccharides derived from natural resources are attracting increasing attention as both food and nutraceutical products because of their beneficial health effects and lack of toxicity. During the past few decades, many studies have focused on the potential health benefits of fucoidan. Recently, new interest has emerged in fucoidan, partially hydrolysed into fuco-oligosaccharides (FOSs) or low-molecular weight fucoidan, owing to their superior solubility and biological activities compared with fucoidan. There is considerable interest in their development for use in the functional food, cosmetic, and pharmaceutical industries. Therefore, this review summarises and discusses the preparation of FOSs from fucoidan using mild acid hydrolysis, enzymatic depolymerisation, and radical degradation methods, and discusses the advantages and disadvantages of hydrolysis methods. Several purification steps performed to obtain FOSs (according to the latest reports) are also reviewed. Moreover, the biological activities of FOS that are beneficial to human health are summarised based on evidence from in vitro and in vivo studies, and the possible mechanisms for the prevention or treatment of various diseases are discussed.
Collapse
Affiliation(s)
- Min Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Postgraduate College, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (S.Z.); (K.-L.C.)
| | - Kit-Leong Cheong
- Department of Biology, Shantou University, Shantou 515063, China
- Correspondence: (S.Z.); (K.-L.C.)
| |
Collapse
|
106
|
Rousta N, Aslan M, Yesilcimen Akbas M, Ozcan F, Sar T, Taherzadeh MJ. Effects of fungal based bioactive compounds on human health: Review paper. Crit Rev Food Sci Nutr 2023; 64:7004-7027. [PMID: 36794421 DOI: 10.1080/10408398.2023.2178379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Since the first years of history, microbial fermentation products such as bread, wine, yogurt and vinegar have always been noteworthy regarding their nutritional and health effects. Similarly, mushrooms have been a valuable food product in point of both nutrition and medicine due to their rich chemical components. Alternatively, filamentous fungi, which can be easier to produce, play an active role in the synthesis of some bioactive compounds, which are also important for health, as well as being rich in protein content. Therefore, this review presents some important bioactive compounds (bioactive peptides, chitin/chitosan, β-glucan, gamma-aminobutyric acid, L-carnitine, ergosterol and fructooligosaccharides) synthesized by fungal strains and their health benefits. In addition, potential probiotic- and prebiotic fungi were researched to determine their effects on gut microbiota. The current uses of fungal based bioactive compounds for cancer treatment were also discussed. The use of fungal strains in the food industry, especially to develop innovative food production, has been seen as promising microorganisms in obtaining healthy and nutritious food.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Melissa Aslan
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
107
|
In Vitro Anti-HIV-1 Activity of Chitosan Oligomers N-Conjugated with Asparagine and Glutamine. BIOTECH 2023; 12:biotech12010018. [PMID: 36810445 PMCID: PMC9944945 DOI: 10.3390/biotech12010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Chitosan oligomers (COS) are polysaccharides obtained by the hydrolyzation of chitosan. They are water-soluble, biodegradable, and have a wide range of beneficial properties for human health. Studies have shown that COS and its derivatives possess antitumor, antibacterial, antifungal, and antiviral activities. The goal of the current study was to investigate the anti-human immunodeficiency virus-1 (HIV-1) potential of amino acid-conjugated COS compared to COS itself. The HIV-1 inhibitory effects of asparagine-conjugated (COS-N) and glutamine-conjugated (COS-Q) COS were evaluated by their ability to protect C8166 CD4+ human T cell lines from HIV-1 infection and infection-mediated death. The results show that the presence of COS-N and COS-Q was able to prevent cells from HIV-1-induced lysis. Additionally, p24 viral protein production was observed to be suppressed in COS conjugate-treated cells compared to COS-treated and untreated groups. However, the protective effect of COS conjugates diminished by delayed treatment indicated an early stage inhibitory effect. COS-N and COS-Q did not show any inhibitory effect on the activities of HIV-1 reverse transcriptase and protease enzyme. The results suggest that COS-N and COS-Q possess an HIV-1 entry inhibition activity compared to COS and further studies to develop different peptide and amino acid conjugates containing N and Q amino acids might yield more effective compounds to battle HIV-1 infection.
Collapse
|
108
|
Fan P, Zeng Y, Zaldivar-Silva D, Agüero L, Wang S. Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects. Molecules 2023; 28:1473. [PMID: 36771141 PMCID: PMC9921727 DOI: 10.3390/molecules28031473] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
The design of new hemostatic materials to mitigate uncontrolled bleeding in emergencies is challenging. Chitosan-based hemostatic hydrogels have frequently been used for hemostasis due to their unique biocompatibility, tunable mechanical properties, injectability, and ease of handling. Moreover, chitosan (CS) absorbs red blood cells and activates platelets to promote hemostasis. Benefiting from these desired properties, the hemostatic application of CS hydrogels is attracting ever-increasing research attention. This paper reviews the recent research progress of CS-based hemostatic hydrogels and their advantageous characteristics compared to traditional hemostatic materials. The effects of the hemostatic mechanism, effects of deacetylation degree, relative molecular mass, and chemical modification on the hemostatic performance of CS hydrogels are summarized. Meanwhile, some typical applications of CS hydrogels are introduced to provide references for the preparation of efficient hemostatic hydrogels. Finally, the future perspectives of CS-based hemostatic hydrogels are presented.
Collapse
Affiliation(s)
- Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Yanbo Zeng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Dionisio Zaldivar-Silva
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China
- Departamento de Biomateriales Poliméricos, Centro de Biomateriales, Universidad de La Habana, Ave. Universidad entre Calle Ronda y Calle G, Municipio Plaza de la Revolución 10400, Cuba
| | - Lissette Agüero
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China
- Departamento de Biomateriales Poliméricos, Centro de Biomateriales, Universidad de La Habana, Ave. Universidad entre Calle Ronda y Calle G, Municipio Plaza de la Revolución 10400, Cuba
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
109
|
Thakur D, Chauhan A, Jhilta P, Kaushal R, Dipta B. Microbial chitinases and their relevance in various industries. Folia Microbiol (Praha) 2023; 68:29-53. [PMID: 35972681 DOI: 10.1007/s12223-022-00999-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/31/2022] [Indexed: 01/09/2023]
Abstract
Chitin, the second most abundant biopolymer on earth after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) units. It is widely distributed in nature, especially as a structural polysaccharide in the cell walls of fungi, the exoskeletons of crustaceans, insects, and nematodes. However, the principal commercial source of chitin is the shells of marine or freshwater invertebrates. Microbial chitinases are largely responsible for chitin breakdown in nature, and they play an important role in the ecosystem's carbon and nitrogen balance. Several microbial chitinases have been characterized and are gaining prominence for their applications in various sectors. The current review focuses on chitinases of microbial origin, their diversity, and their characteristics. The applications of chitinases in several industries such as agriculture, food, the environment, and pharmaceutical sectors are also highlighted.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Prakriti Jhilta
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Rajesh Kaushal
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| |
Collapse
|
110
|
Su H, Zhao H, Jia Z, Guo C, Sun J, Mao X. Biochemical Characterization of a GH46 Chitosanase Provides Insights into the Novel Digestion Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2038-2048. [PMID: 36661321 DOI: 10.1021/acs.jafc.2c08127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Endo-chitosanases (EC 3.2.1.132) are generally considered to selectively release functional chito-oligosaccharides (COSs) with degrees of polymerization (DPs) ≥ 2. Although numerous endo-chitosanases have been characterized, the digestion specificity of endo-chitosanases needs to be further explored. In this study, a GH46 endo-chitosanase OUC-CsnPa was cloned, expressed, and characterized from Paenibacillus sp. 1-18. The digestion pattern analysis indicated that OUC-CsnPa could produce monosaccharides from chitotetraose [(GlcN)4], the smallest recognized substrate, in a random endo-acting manner. Especially, the enzyme specificities during chitosan digestion including the regulation of product abundance through a transglycosylation reaction were also evaluated. It was hypothesized that an insertion region in OUC-CsnPa may form a strong force to be involved in stabilizing (GlcN)4 at its negative subsite for efficient hydrolysis. This is the first comprehensive report to reveal the digestion specificity and subsite specificity of monosaccharide production by endo-chitosanases. Overall, OUC-CsnPa described here highlights the previously unknown digestion properties of the endo-acting chitosanases and provides a unique example of possible structure-function relationships.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hongjun Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhenrong Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chaoran Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
111
|
Zhao XP, Liu J, Sui ZJ, Xu MJ, Zhu ZY. Preparation and antibacterial effect of chitooligosaccharides monomers with different polymerization degrees from crab shell chitosan by enzymatic hydrolysis. Biotechnol Appl Biochem 2023; 70:164-174. [PMID: 35307889 DOI: 10.1002/bab.2339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/27/2022] [Indexed: 11/08/2022]
Abstract
This study aimed to explore the structure and antibacterial properties of chitooligosaccharide monomers with different polymerization degrees and to provide a theoretical basis for inhibiting Salmonella infection. Chitosan was used as a raw material to prepare and separate low-molecular-weight chitooligosaccharides. Chitobiose, chitotriose, and chitotetraose were obtained by gradient elution with cation exchange resin. The molecular weights and acetyl groups of the three monomers were determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and nuclear magnetic resonance (NMR), respectively. Three chitooligosaccharide monomers were used to explore the antibacterial effect on Salmonella. The results showed that the degree of deacetylation of chitosan was 92.6%, and the enzyme activity of chitosanase was 102.53 U/g. Within 18 h, chitosan was enzymatically hydrolyzed to chitooligosaccharides containing chitobiose, chitotriose, and chitotetraose, which were analyzed by thin-layer chromatography (TLC) and MALDI-TOF. MALD-TOF and TLC showed that the separation of monomers with ion exchange resins was effective, and NMR showed that there was no acetyl group. Chitobiose had a poor inhibitory effect on Salmonella, and chitotriose and chitotetraose had equivalent antibacterial effects.
Collapse
Affiliation(s)
- Xin-Peng Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Jie Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zhu-Jun Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Meng-Jie Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| |
Collapse
|
112
|
Mouniga R, Anita B, Lakshmanan A, Shanthi A, Karthikeyan G. Nematicidal Properties of Chitosan Nanoformulation. J Nematol 2023; 55:20230033. [PMID: 37622051 PMCID: PMC10446853 DOI: 10.2478/jofnem-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 08/26/2023] Open
Abstract
Chitosan is the second most abundant bio-polymer available in the world, second only to cellulose. It is found in crustaceous shells, e.g., those of crabs, shrimps, prawns, and fungi, as well as insect exoskeletons. The use of nanoformulations for the management of pests and diseases is receiving increased interest with the advancement of nanotechnology. Here, chitosan nanospheres were obtained from chitosan using the ionic gelation technique. The nanoformulations obtained were characterized using a particle size analyzer, Fourier transform infrared spectroscopy, and a transmission electron microscope. The efficacy of chitosan nanospheres in suppressing the root-knot nematode Meloidogyne incognita was studied. The particle size of nanospheres formulated for this study was 380.2 nm, with a polydispersity index (PI) of 0.4 and Zeta potential of 45.7 or 50.9 mV at pH 5.2. The chitosan nanospheres were spherical and the particles did not agglomerate. FTIR spectra of the chitosan nanospheres peaked at 3334 cm-1, thereby indicating the stretching of the OH and NH group. In In-vitro studies, chitosan nanospheres showed significant nematicidal activity against M. incognita. Under pot culture conditions, chitosan nanospheres (1%- active compound chitosan) at 2ml/plant decreased the nematode population in roots or soil. Compared to the control, the number of galls was reduced by 83.68%, the number of egg masses by 83.85%, the number of adult females by 66.56%, and the number of second-stage juveniles by 73.20%. In a field experiment, application of chitosan nanospheres (1%) was followed by a 18.75% increase in fruit yield compared to the non-treated control.
Collapse
Affiliation(s)
- R. Mouniga
- Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India
| | - B. Anita
- Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India
| | - A. Lakshmanan
- Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India
| | - A. Shanthi
- Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India
| | - G. Karthikeyan
- Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India
| |
Collapse
|
113
|
Lang A, Lan W, Gu Y, Wang Z, Xie J. Effects of ε-polylysine and chitooligosaccharide Maillard reaction products on quality of refrigerated sea bass fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:152-163. [PMID: 35848059 DOI: 10.1002/jsfa.12125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Maillard reaction is a promising and safe method for obtaining chitooligosaccharide conjugates with proteins or peptides as food preservatives. This study aims to investigate the moisture state, physicochemical properties, and shelf-life of sea bass fillets treated with ε-polylysine (ε-PL) and chitooligosaccharides (COS), which are Maillard reaction products (LC-MRPs), during refrigerated storage. RESULTS The results of microbiological analysis and confocal laser scanning microscope (CLSM) revealed that LC-MRPs could retard microbial growth effectively. Compared with control, other treated groups could strongly retard the increase in the thiobarbituric acid (TBA) value, the K-value and the total volatile basic nitrogen (TVB-N) value, and also inhibited the softening of texture and the accumulation of biogenic amines in fish. The results of low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) indicate that LC-MRPs could delay the water migration of fillets and increase water holding capacity (WHC). Through sensory evaluation, the application of LC-MRPs increased the shelf-life of refrigerated sea bass fillets for another 9 days. CONCLUSION Maillard reaction products derived from chitooligosaccharides and ε-polylysine have strong potential for preserving sea bass. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Yongji Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhicheng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
114
|
Differential Effects of Oligosaccharides, Antioxidants, Amino Acids and PUFAs on Heat/Hypoxia-Induced Epithelial Injury in a Caco-2/HT-29 Co-Culture Model. Int J Mol Sci 2023; 24:ijms24021111. [PMID: 36674626 PMCID: PMC9861987 DOI: 10.3390/ijms24021111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
(1) Exposure of intestinal epithelial cells to heat and hypoxia causes a (heat) stress response, resulting in the breakdown of epithelial integrity. There are indications that several categories of nutritional components have beneficial effects on maintaining the intestinal epithelial integrity under stress conditions. This study evaluated the effect of nine nutritional components, including non-digestible oligosaccharides (galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), chitosan oligosaccharides (COS)), antioxidants (α-lipoic acid (ALA), resveratrol (RES)), amino acids (l-glutamine (Glu), l-arginine (Arg)) and polyunsaturated fatty acids (PUFAs) (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)), on heat/hypoxia-induced epithelial injury. (2) Two human colonic cell lines, Caco-2 and HT-29, were co-cultured and pre-treated with the nutritional components for 48 h. After pre-treatment, the cells were exposed to heat/hypoxia (42 °C, 5% O2) for 2 h. Epithelial integrity was evaluated by measuring trans-epithelial electrical resistance (TEER), paracellular Lucifer Yellow (LY) permeability, and tight junction (TJ) protein expression. Heat stress and oxidative stress levels were evaluated by determining heat-shock protein-70 (HSP-70) expression and the concentration of the lipid peroxidation product malondialdehyde (MDA). (3) GOS, FOS, COS, ALA, RES, Arg, and EPA presented protective effects on epithelial damage in heat/hypoxia-exposed Caco-2/HT-29 cells by preventing the decrease in TEER, the increase in LY permeability, and/or decrease in TJ proteins zonula occludens-1 (ZO-1) and claudin-3 expression. COS, RES, and EPA demonstrated anti-oxidative stress effects by suppressing the heat/hypoxia-induced MDA production, while Arg further elevated the heat/hypoxia-induced increase in HSP-70 expression. (4) This study indicates that various nutritional components have the potential to counteract heat/hypoxia-induced intestinal injury and might be interesting candidates for future in vivo studies and clinical trials in gastrointestinal disorders related to heat stress and hypoxia.
Collapse
|
115
|
WANG Y, ZHAO K, LI L, SONG X, HE Y, DING N, LI L, WANG S, LIU Z. A review of the immune activity of chitooligosaccharides. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.97822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Li LI
- Chenland Nutritionals, United States
| | - Xuena SONG
- Qingdao Chenland Health Industry Group Co, China
| | - Yao HE
- Nanchang University, China
| | | | - Lijie LI
- Qingdao Engineering Vocational College, China
| | | | - Zimin LIU
- Chenland Nutritionals, United States
| |
Collapse
|
116
|
Slc9a1 plays a vital role in chitosan oligosaccharide transport across the intestinal mucosa of mice. Carbohydr Polym 2023; 299:120179. [PMID: 36876794 DOI: 10.1016/j.carbpol.2022.120179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
The mechanism underlying the intestinal transport of COS is not well understood. Here, transcriptome and proteome analyses were performed to identify potential critical molecules involved in COS transport. Enrichment analyses revealed that the differentially expressed genes in the duodenum of the COS-treated mice were mainly enriched in transmembrane and immune function. In particular, B2 m, Itgb2, and Slc9a1 were upregulated. The Slc9a1 inhibitor decreased the transport efficiency of COS both in MODE-K cells (in vitro) and in mice (in vivo). The transport of FITC-COS in Slc9a1-overexpressing MODE-K cells was significantly higher than that in empty vector-transfected cells (P < 0.01). Molecular docking analysis revealed the possibility of stable binding between COS and Slc9a1 through hydrogen bonding. This finding indicates that Slc9a1 plays a crucial role in COS transport in mice. This provides valuable insights for improving the absorption efficiency of COS as a drug adjuvant.
Collapse
|
117
|
Zhuikova Y, Zhuikov V, Varlamov V. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review. Polymers (Basel) 2022; 14:5549. [PMID: 36559916 PMCID: PMC9782520 DOI: 10.3390/polym14245549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
One of the important directions in the development of modern medical devices is the search and creation of new materials, both synthetic and natural, which can be more effective in their properties than previously used materials. Traditional materials such as metals, ceramics, and synthetic polymers used in medicine have certain drawbacks, such as insufficient biocompatibility and the emergence of an immune response from the body. Natural biopolymers have found applications in various fields of biology and medicine because they demonstrate a wide range of biological activity, biodegradability, and accessibility. This review first described the properties of the two most promising biopolymers belonging to the classes of polyhydroxyalkanoates and polysaccharides-polyhydroxybutyrate and chitosan. However, homopolymers also have some disadvantages, overcome which becomes possible by creating polymer composites. The article presents the existing methods of creating a composite of two polymers: copolymerization, electrospinning, and different ways of mixing, with a description of the properties of the resulting compositions. The development of polymer composites is a promising field of material sciences, which allows, based on the combination of existing substances, to develop of materials with significantly improved properties or to modify of the properties of each of their constituent components.
Collapse
Affiliation(s)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, Moscow 119071, Russia
| | | |
Collapse
|
118
|
Antidiabetic Properties of Chitosan and Its Derivatives. Mar Drugs 2022; 20:md20120784. [PMID: 36547931 PMCID: PMC9782916 DOI: 10.3390/md20120784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder. In addition to taking medication, adjusting the composition of the diet is also considered one of the effective methods to control the levels of blood glucose. Chitosan and its derivatives are natural and versatile biomaterials with health benefits. Chitosan has the potential to alleviate diabetic hyperglycemia by reducing hepatic gluconeogenesis and increasing skeletal muscle glucose uptake and utility. Scientists also focus on the glucose-lowering effect of chitosan oligosaccharide (COS). COS supplementation has the potential to alleviate abnormal glucose metabolism in diabetic rats by inhibiting gluconeogenesis and lipid peroxidation in the liver. Both high and low molecular weight chitosan feeding reduced insulin resistance by inhibiting lipid accumulation in the liver and adipose tissue and ameliorating chronic inflammation in diabetic rats. COS can reduce insulin resistance but has less ability to reduce hepatic lipids in diabetic rats. A clinical trial showed that a 3-month administration of chitosan increased insulin sensitivity and decreased body weight and triglycerides in obese patients. Chitosan and COS are considered Generally Recognized as Safe; however, they are still considered to be of safety concerns. This review highlights recent advances of chitosan and its derivatives in the glucose-lowering/antidiabetic effects and the safety.
Collapse
|
119
|
Weyer R, Hellmann MJ, Hamer-Timmermann SN, Singh R, Moerschbacher BM. Customized chitooligosaccharide production-controlling their length via engineering of rhizobial chitin synthases and the choice of expression system. Front Bioeng Biotechnol 2022; 10:1073447. [PMID: 36588959 PMCID: PMC9795070 DOI: 10.3389/fbioe.2022.1073447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chitooligosaccharides (COS) have attracted attention from industry and academia in various fields due to their diverse bioactivities. However, their conventional chemical production is environmentally unfriendly and in addition, defined and pure molecules are both scarce and expensive. A promising alternative is the in vivo synthesis of desired COS in microbial platforms with specific chitin synthases enabling a more sustainable production. Hence, we examined the whole cell factory approach with two well-established microorganisms-Escherichia coli and Corynebacterium glutamicum-to produce defined COS with the chitin synthase NodC from Rhizobium sp. GRH2. Moreover, based on an in silico model of the synthase, two amino acids potentially relevant for COS length were identified and mutated to direct the production. Experimental validation showed the influence of the expression system, the mutations, and their combination on COS length, steering the production from originally pentamers towards tetramers or hexamers, the latter virtually pure. Possible explanations are given by molecular dynamics simulations. These findings pave the way for a better understanding of chitin synthases, thus allowing a more targeted production of defined COS. This will, in turn, at first allow better research of COS' bioactivities, and subsequently enable sustainable large-scale production of oligomers.
Collapse
|
120
|
Peng J, Wang Q, Guo M, Liu C, Chen X, Tao L, Zhang K, Shen X. Development of Inhalable Chitosan-Coated Oxymatrine Liposomes to Alleviate RSV-Infected Mice. Int J Mol Sci 2022; 23:ijms232415909. [PMID: 36555548 PMCID: PMC9786244 DOI: 10.3390/ijms232415909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Human respiratory syncytial virus (RSV) infection is the most important cause of acute lower respiratory tract infection in infants, neonates, and young children, even leading to hyperinflation and atelectasis. Oxymatrine (OMT), originating from natural herbs, possessed potential antivirus activity against influenza A virus, Coxsackie B3 virus, and RSV, whereas the absence of an in vivo study indicated the difficulties in overcoming the physiological obstacles. Since RSV basically replicated in lung tissue, in this study, we fabricated and characterized a chitosan (CS)-coated liposome with OMT loaded for the treatment of lethal RSV infection via inhalation. The results uncovered that OMT, as a hydrophilic drug, was liable to diffuse in the mucus layer and penetrate through the gas-blood barrier to enter systemic circulation quickly, which might restrict its inhibitory effect on RSV replication. The CS-coated liposome enhanced the distribution and retention of OMT in lung tissue without restriction from mucus, which contributed to the improved alleviative effect of OMT on lethal RSV-infected mice. Overall, this study provides a novel inhalation therapy for RSV infection, and the CS-coated liposome might be a potential inhalable nanocarrier for hydrophilic drugs to prevent pulmonary infections.
Collapse
Affiliation(s)
- Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qin Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Mingyang Guo
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Chunyuan Liu
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xuesheng Chen
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ling Tao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ke Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (K.Z.); (X.S.); Tel.: +86-0851-884-16022 (K.Z.); +86-0851-881-74180 (X.S.)
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (K.Z.); (X.S.); Tel.: +86-0851-884-16022 (K.Z.); +86-0851-881-74180 (X.S.)
| |
Collapse
|
121
|
Avila LB, Pinto D, Silva LFO, de Farias BS, Moraes CC, Da Rosa GS, Dotto GL. Antimicrobial Bilayer Film Based on Chitosan/Electrospun Zein Fiber Loaded with Jaboticaba Peel Extract for Food Packaging Applications. Polymers (Basel) 2022; 14:polym14245457. [PMID: 36559823 PMCID: PMC9786702 DOI: 10.3390/polym14245457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
This work focused on developing an active bilayer film based on natural extract. Thus, the jaboticaba peel extract (JPE) was produced and characterized and showed promising application as a natural additive in biopolymeric materials. The zein fiber and bilayer films were produced using a chitosan film (casting) and zein fiber (electrospinning), with and without JPE. All samples were evaluated according to thickness, solubility in water, water vapor permeability, and main diameter, and for these, zein fiber, chitosan/zein fiber, and chitosan/zein fiber + 3% JPE showed values of 0.19, 0.51, and 0.50 mm, 36.50, 12.96, and 27.38%, 4.48 × 10-9, 1.6 × 10-10, and 1.58 × 10-10 (g m-1 Pa-1 s-1), and 6.094, 4.685, and 3.620 μm, respectively. These results showed that the addition of a second layer improved the barrier properties of the material when compared to the monolayer zein fiber. The thermal stability analysis proved that the addition of JPE also improved this parameter and the interactions between the components of the zein fiber and bilayer films; additionally, the effective presence of JPE was shown through FTIR spectra. In the end, the active potential of the material was confirmed by antimicrobial analysis since the bilayer film with JPE showed inhibition halos against E. coli and S. aureus.
Collapse
Affiliation(s)
- Luisa Bataglin Avila
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 # 55–66, Barranquilla 080002, Colombia
| | - Luis F. O. Silva
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 # 55–66, Barranquilla 080002, Colombia
- Correspondence: (L.F.O.S.); (G.L.D.)
| | - Bruna Silva de Farias
- School of Chemistry and Food, Federal University of Rio Grande (FURG), Itália Avenue, Rio Grande 96203-900, Rio Grande do Sul, Brazil
| | - Caroline Costa Moraes
- Graduate Program in Materials Science and Engineering, Federal University of Pampa (UNIPAMPA), Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Rio Grande do Sul, Brazil
| | - Gabriela Silveira Da Rosa
- Graduate Program in Materials Science and Engineering, Federal University of Pampa (UNIPAMPA), Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Rio Grande do Sul, Brazil
- Chemical Engineering, Federal University of Pampa (UNIPAMPA), Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Rio Grande do Sul, Brazil
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, Santa Maria 97105-900, Rio Grande do Sul, Brazil
- Correspondence: (L.F.O.S.); (G.L.D.)
| |
Collapse
|
122
|
Tamburino R, Marcolongo L, Sannino L, Ionata E, Scotti N. Plastid Transformation: New Challenges in the Circular Economy Era. Int J Mol Sci 2022; 23:ijms232315254. [PMID: 36499577 PMCID: PMC9736159 DOI: 10.3390/ijms232315254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In a circular economy era the transition towards renewable and sustainable materials is very urgent. The development of bio-based solutions, that can ensure technological circularity in many priority areas (e.g., agriculture, biotechnology, ecology, green industry, etc.), is very strategic. The agricultural and fishing industry wastes represent important feedstocks that require the development of sustainable and environmentally-friendly industrial processes to produce and recover biofuels, chemicals and bioactive molecules. In this context, the replacement, in industrial processes, of chemicals with enzyme-based catalysts assures great benefits to humans and the environment. In this review, we describe the potentiality of the plastid transformation technology as a sustainable and cheap platform for the production of recombinant industrial enzymes, summarize the current knowledge on the technology, and display examples of cellulolytic enzymes already produced. Further, we illustrate several types of bacterial auxiliary and chitinases/chitin deacetylases enzymes with high biotechnological value that could be manufactured by plastid transformation.
Collapse
Affiliation(s)
- Rachele Tamburino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | | | - Lorenza Sannino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | - Elena Ionata
- CNR-IRET, Research Institute on Terrestrial Ecosystems, 80131 Naples, Italy
| | - Nunzia Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
- Correspondence:
| |
Collapse
|
123
|
Lyapina LA, Obergan TY, Grigorjeva ME, Shubina TA. The Effect of Chitosan on Blood Coagulation in Heparinized Rats. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
124
|
Zhang M, Chen Y, Chen R, Wen Y, Huang Q, Liu Y, Zhao C. Research status of the effects of natural oligosaccharides on glucose metabolism. EFOOD 2022. [DOI: 10.1002/efd2.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Minjiao Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yaobin Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Ruoxin Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Department of Analytical and Food Chemistry, Nutrition and Bromatology Group, Faculty of Sciences Universidade de Vigo Ourense Spain
| | - Qihui Huang
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Department of Analytical and Food Chemistry, Nutrition and Bromatology Group, Faculty of Sciences Universidade de Vigo Ourense Spain
| | - Yuanyuan Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
125
|
Taneja H, Salodkar SM, Singh Parmar A, Chaudhary S. Hydrogel based 3D printing: Bio ink for tissue engineering. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
126
|
Wu J, Xu Y, Geng Z, Zhou J, Xiong Q, Xu Z, Li H, Han Y. Chitosan oligosaccharide alleviates renal fibrosis through reducing oxidative stress damage and regulating TGF-β1/Smads pathway. Sci Rep 2022; 12:19160. [PMID: 36357407 PMCID: PMC9649626 DOI: 10.1038/s41598-022-20719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
Renal fibrosis (RF) is the common pathway for a variety of chronic kidney diseases that progress to end-stage renal disease. Chitosan oligosaccharide (COS) has been identified as possessing many health functions. However, it is not clear whether COS can prevent RF. The purpose of this paper was to explore the action and mechanism of COS in alleviating RF. First, an acute unilateral ureteral obstruction operation (UUO) in male BALB/c mice was performed to induce RF, and COS or fosinopril (positive control drug) were administered for 7 consecutive days. Data from our experiments indicated that COS treatment can significantly alleviate kidney injury and decrease the levels of blood urea nitrogen (BUN) and serum creatinine (SCr) in the UUO mouse model. More importantly, our results show that COS can reduce collagen deposition and decrease the expression of fibrosis proteins, such as collagen IV, fibronectin, collagen I, α-smooth muscle actin (α-SMA) and E-cadherin, ameliorating experimental renal fibrosis in vivo. In addition, we also found that COS suppressed oxidative stress and inflammation in RF model mice. Further studies indicated that the mechanism by which COS alleviates renal fibrosis is closely related to the regulation of the TGF-β1/Smad pathway. COS has a therapeutic effect on ameliorating renal fibrosis similar to that of the positive control drug fosinopril. Taken together, COS can alleviate renal fibrosis induced by UUO by reducing oxidative stress damage and regulating the TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Jun Wu
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai, 264199 Shandong People’s Republic of China ,grid.411866.c0000 0000 8848 7685Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People’s Republic of China
| | - Yingtao Xu
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai, 264199 Shandong People’s Republic of China
| | - Zikai Geng
- grid.440653.00000 0000 9588 091XSchool of Integrated Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003 Shandong People’s Republic of China
| | - Jianqing Zhou
- grid.511252.0Department of Food, Jiangsu Food and Pharmaceutical Science College, Huai’an, 223003 Jiangsu China
| | - Qingping Xiong
- grid.417678.b0000 0004 1800 1941Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu People’s Republic of China
| | - Zhimeng Xu
- grid.417678.b0000 0004 1800 1941Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu People’s Republic of China
| | - Hailun Li
- grid.417303.20000 0000 9927 0537Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, 223002, Huai’an, Jiangsu People’s Republic of China
| | - Yun Han
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai, 264199 Shandong People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Integrated Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003 Shandong People’s Republic of China
| |
Collapse
|
127
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
128
|
Cai M, Ratnayake J, Cathro P, Gould M, Ali A. Investigation of a Novel Injectable Chitosan Oligosaccharide-Bovine Hydroxyapatite Hybrid Dental Biocomposite for the Purposes of Conservative Pulp Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3925. [PMID: 36364700 PMCID: PMC9658921 DOI: 10.3390/nano12213925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to develop injectable chitosan oligosaccharide (COS) and bovine hydroxyapatite (BHA) hybrid biocomposites, and characterise their physiochemical properties for use as a dental pulp-capping material. The COS powder was prepared from chitosan through hydrolytic reactions and then dissolved in 0.2% acetic acid to create a solution. BHA was obtained from waste bovine bone and milled to form a powder. The BHA powder was incorporated with the COS solution at different proportions to create the COS-BHA hybrid biocomposite. Zirconium oxide (ZrO2) powder was included in the blend as a radiopacifier. The composite was characterised to evaluate its physiochemical properties, radiopacity, setting time, solubility, and pH. Fourier-transform infrared spectroscopic analysis of the COS-BHA biocomposite shows the characteristic peaks of COS and hydroxyapatite. Compositional analysis via ICP-MS and SEM-EDX shows the predominant elements present to be the constituents of COS, BHA, and ZrO2. The hybrid biocomposite demonstrated an average setting time of 1 h and 10 min and a pH value of 10. The biocomposite demonstrated solubility when placed in a physiological solution. Radiographically, the set hybrid biocomposite appears to be more radiopaque than the commercial mineral trioxide aggregate (MTA). The developed COS-BHA hybrid biocomposite demonstrated good potential as a pulp-capping agent exhibiting high pH, with a greater radiopacity and reduced setting time compared to MTA. Solubility of the biocomposite may be addressed in future studies with the incorporation of a cross-linking agent. However, further in vitro and in vivo studies are necessary to evaluate its clinical feasibility.
Collapse
|
129
|
Gupta M, Sharma A, Beniwal CS, Tyagi P. Curcumin coated 3D biocomposite scaffolds based on chitosan and cellulose for diabetic wound healing. Heliyon 2022; 8:e11442. [DOI: 10.1016/j.heliyon.2022.e11442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
130
|
Fabrication, characterization, and in vitro evaluation of doxorubicin-coupled chitosan oligosaccharide nanoparticles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
131
|
Recent developments of nanomedicine delivery systems for the treatment of pancreatic cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
132
|
Rajabi M, Cabral J, Saunderson S, Ali MA. Green synthesis of chitooligosaccharide-PEGDA derivatives through aza-Michael reaction for biomedical applications. Carbohydr Polym 2022; 295:119884. [DOI: 10.1016/j.carbpol.2022.119884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
|
133
|
Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: a critical analysis. Drug Deliv Transl Res 2022; 12:2649-2666. [PMID: 35499715 DOI: 10.1007/s13346-022-01152-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Natural biodegradable polymers generally include polysaccharides (starch, alginate, chitin/chitosan, hyaluronic acid derivatives, etc.) and proteins (collagen, gelatin, fibrin, etc.). In transdermal drug delivery systems (TDDS), these polymers play a vital role in controlling the device's drug release. It is possible that natural polymers can be used for TDDS to attain predetermined drug delivery rates due to their physicochemical properties. These polymers can be employed to market products and scale production because they are readily available and inexpensive. As a result of these polymers, new pharmaceutical delivery systems can be developed that is both regulated and targeted. The focus of this article is the application of a biodegradable polymeric platform based on natural polymers for TDDS. Due to their biocompatibility and biodegradability, natural biodegradable polymers are frequently used in biomedical applications. Additionally, these natural biodegradable polymers are being studied for their characteristics and behaviors.
Collapse
|
134
|
Hu L, Ding F, Liu W, Cheng Y, Zhu J, Ma L, Zhang Y, Wang H. Effect of enzymatic-ultrasonic hydrolyzed chitooligosaccharide on rheology of gelatin incorporated yogurt and 3D printing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
135
|
Role of Chitin and Chitosan in Ruminant Diets and Their Impact on Digestibility, Microbiota and Performance of Ruminants. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The slow progress in the development of the subsector, particularly of alternative feed sources such as agro-industrial byproducts and unconventional feed resources, has deepened the gap in the availability of and accessibility to animal feed. Production of animal feed is highly resource demanding. Recently, it has been shown that increasing climate change, land degradation, and the recurrence of droughts have worsened the feed gap. In the backdrop of these challenges, there has been attention to food-not-feed components, which have great potential to substitute human-edible components in livestock feeding. Chitosan, a non-toxic polyglucosamine, is widely distributed in nature and used as a feed additive. Chitosan is obtained from the de-acetylation process of the chitin and is mostly present in shrimp, crabs, and insect exoskeletons, and has antimicrobial and anti-inflammatory, anti-oxidative, antitumor, and immune-stimulatory hypo-cholesterolemic properties. This review article discusses the results of recent studies focusing on the effects of chitosan and chitin on the performance of dairy cows, beef steers, sheep, and goats. In addition, the effects of chitosan and chitin on feed intake, feed digestibility, rumen fermentation, and microbiota are also discussed. Available evidence suggests that chitosan and chitin used as a feed additive for ruminants including dairy cows, beef steers, sheep, goats, and yaks have useful biological effects, including immune-modulatory, antimicrobial, and other important properties. These properties of chitosan and chitin are different from the other feed additives and have a positive impact on production performance, feed digestibility, rumen fermentation, and bacterial population in dairy cows, beef steers, sheep, goats, and yaks. There is promising evidence that chitosan and chitin can be used as additives in livestock feed and that well-designed feeding interventions focusing on these compounds in ruminants are highly encouraged.
Collapse
|
136
|
Mehmood T, Pichyangkura R, Muanprasat C. Chitosan Oligosaccharide Prevents Afatinib-Induced Barrier Disruption and Chloride Secretion through Modulation of AMPK, PI3K/AKT, and ERK Signaling in T84 Cells. Polymers (Basel) 2022; 14:polym14204255. [PMID: 36297833 PMCID: PMC9611671 DOI: 10.3390/polym14204255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Diarrhea is an important adverse effect of epidermal growth factor receptor-tyrosine kinase inhibitors, especially afatinib. Novel antidiarrheal agents are needed to reduce epidermal growth factor receptor-tyrosine kinase inhibitor-associated diarrhea to improve the quality of life and treatment outcome in cancer patients. This study aimed to investigate the anti-diarrheal activity of chitosan oligosaccharide against afatinib-induced barrier disruption and chloride secretion in human intestinal epithelial cells (T84 cells). Chitosan oligosaccharide (100 μg/mL) prevented afatinib-induced barrier disruption determined by changes in transepithelial electrical resistance and FITC-dextran flux in the T84 cell monolayers. In addition, chitosan oligosaccharide prevented afatinib-induced potentiation of cAMP-induced chloride secretion measured by short-circuit current analyses in the T84 cell monolayers. Chitosan oligosaccharide induced the activation of AMPK, a positive regulator of epithelial tight junction and a negative regulator of cAMP-induced chloride secretion. Moreover, chitosan oligosaccharide partially reversed afatinib-induced AKT inhibition without affecting afatinib-induced ERK inhibition via AMPK-independent mechanisms. Collectively, this study reveals that chitosan oligosaccharide prevents the afatinib-induced diarrheal activities in T84 cells via both AMPK-dependent and AMPK-independent mechanisms. Chitosan oligosaccharide represents a promising natural polymer-derived compound for further development of treatment for afatinib-associated diarrheas.
Collapse
Affiliation(s)
- Tahir Mehmood
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10400, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
- Correspondence:
| |
Collapse
|
137
|
Intelligent-Responsive Enrofloxacin-Loaded Chitosan Oligosaccharide-Sodium Alginate Composite Core-Shell Nanogels for On-Demand Release in the Intestine. Animals (Basel) 2022; 12:ani12192701. [PMID: 36230443 PMCID: PMC9559476 DOI: 10.3390/ani12192701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
Simple Summary Novel pharmaceutical formulations are attracting interest in their potential to overcome the poor palatability and strong gastric irritation of enrofloxacin. To overcome the difficulty of treating intestinal Escherichia coli infections, an oral intelligent-responsive chitosan-oligosaccharide (COS)–sodium alginate (SA) composite core-shell nanogel loaded with enrofloxacin was designed and systematically evaluated. Scanning electron microscopy images revealed that enrofloxacin nanogels were incorporated into the nano-sized cross-linked networks. The physical state and molecular interaction among the components of the nanogel and the enrofloxacin were evaluated by Fourier transform infrared spectroscopy. Furthermore, their biocompatible structure, high drug loading efficacy, ideal stability, “on-demand” release at the target site, and antibacterial activity were confirmed. Thus, the present study may serve as a fruitful platform to explore nanogel to resolve the challenge of enrofloxacin formulation development and the fight against intestinal bacterial infections. Abstract Enrofloxacin has a poor palatability and causes strong gastric irritation; the oral formulation of enrofloxacin is unavailable, which limits the treatment of Escherichia coli (E. coli) infections via oral administration. To overcome the difficulty in treating intestinal E. coli infections, an oral intelligent-responsive chitosan-oligosaccharide (COS)–sodium alginate (SA) composite core-shell nanogel loaded with enrofloxacin was explored. The formulation screening, characteristics, pH-responsive performance in gastric juice and the intestinal tract, antibacterial effects, therapeutic effects, and biosafety level of the enrofloxacin composite nanogels were investigated. The optimized concentrations of COS, SA, CaCl2, and enrofloxacin were 8, 8, 0.2, and 5 mg/mL, respectively. The encapsulation efficiency, size, loading capacity, zeta potential, and polydispersity index of the optimized formulation were 72.4 ± 0.8%, 143.5 ± 2.6 nm, 26.6 ± 0.5%, −37.5 ± 1.5 mV, and 0.12 ± 0.07, respectively. Scanning electron microscopy images revealed that enrofloxacin-loaded nanogels were incorporated into the nano-sized cross-linked networks. Fourier transform infrared spectroscopy showed that the nanogels were prepared by the electrostatic interaction of the differently charged groups (positive amino groups (-NH3+) of COS and the negative phenolic hydroxyl groups (-COO−) of SA). In vitro, pH-responsive release performances revealed effective pH-responsive performances, which can help facilitate targeted “on-demand” release at the target site and ensure that the enrofloxacin has an ideal stability in the stomach and a responsive release in the intestinal tract. The antibacterial activity study demonstrated that more effective bactericidal activity against E. coli could have a better treatment effect than the enrofloxacin solution. Furthermore, the enrofloxacin composite nanogels had great biocompatibility. Thus, the enrofloxacin composite core-shell nanogels might be an oral intelligent-responsive preparation to overcome the difficulty in treating intestinal bacterial infections.
Collapse
|
138
|
Salicylaldehyde and D-(+)-galactose functionalized chitosan oligosaccharide nanoparticles as carriers for sustained release of pesticide with enhanced UV stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
139
|
Chitosan and chitosan oligosaccharide influence digestibility of whey protein isolate through electrostatic interaction. Int J Biol Macromol 2022; 222:1443-1452. [DOI: 10.1016/j.ijbiomac.2022.09.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022]
|
140
|
Wang T, Tao Y, Lai C, Huang C, Ling Z, Yong Q. Influence of glycosyl composition on the immunological activity of pectin and pectin-derived oligosaccharide. Int J Biol Macromol 2022; 222:671-679. [PMID: 36174858 DOI: 10.1016/j.ijbiomac.2022.09.193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Factors causing differences in immune activities between pectin and pectin-derived oligosaccharides have not been fully studied. In this article, four samples with different molecular weights and monosaccharide compositions, including polygalacturonic acid (poly-GA) and its oligosaccharide (oligo-GA), navel orange peel pectin (NP) and its oligosaccharide (oligo-NP), were used to compare their immunomodulatory properties on RAW264.7 cells. All samples had nontoxic effect on cells, oligo-GA and oligo-NP could increase the production of nitric oxide and cytokines to a much higher level than poly-GA and NP. The findings revealed that reducing the molecular weight and preserving the branched regions of pectin-derived samples could improve their immune-enhancing effects on macrophages. Interestingly, the addition of TAK-242 (TLR4 inhibitor) also demonstrated that the tested pectin oligosaccharides could stimulate the activation of macrophages through TLR4 signaling pathway. These results confirmed the potential value of pectin oligosaccharides, and provided theoretical support for their application in the pharmaceutical industry.
Collapse
Affiliation(s)
- Ting Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
141
|
Silvestre WP, Duarte J, Tessaro IC, Baldasso C. Non-Supported and PET-Supported Chitosan Membranes for Pervaporation: Production, Characterization, and Performance. MEMBRANES 2022; 12:930. [PMID: 36295689 PMCID: PMC9607258 DOI: 10.3390/membranes12100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study was to develop non-supported and PET-supported chitosan membranes that were cross-linked with glutaraldehyde, then evaluate their physical-chemical, morphological, and mechanical properties, and evaluate their performance in the separation of ethanol/water and limonene/linalool synthetic mixtures by hydrophilic and target-organophilic pervaporation, respectively. The presence of a PET layer did not affect most of the physical-chemical parameters of the membranes, but the mechanical properties were enhanced, especially the Young modulus (76 MPa to 398 MPa), tensile strength (16 MPa to 27 MPa), and elongation at break (7% to 26%), rendering the supported membrane more resistant. Regarding the pervaporation tests, no permeate was obtained in target-organophilic pervaporation tests, regardless of membrane type. The support layer influenced the hydrophilic pervaporation parameters of the supported membrane, especially in reducing transmembrane flux (0.397 kg∙m-2∙h-1 to 0.121 kg∙m-2∙h-1) and increasing membrane selectivity (611 to 1974). However, the pervaporation separation index has not differed between membranes (228 for the non-supported and 218 for the PET-supported membrane), indicating that, overall, both membranes had a similar performance. Thus, the applicability of each membrane is linked to specific applications that require a more resistant membrane, greater transmembrane fluxes, and higher selectivity.
Collapse
Affiliation(s)
- Wendel Paulo Silvestre
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Jocelei Duarte
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Isabel Cristina Tessaro
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Camila Baldasso
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| |
Collapse
|
142
|
Effects of Chitosan Oligosaccharide on Production Performance, Egg Quality and Ovarian Function in Laying Hens with Fatty Liver Syndrome. Animals (Basel) 2022; 12:ani12182465. [PMID: 36139325 PMCID: PMC9495091 DOI: 10.3390/ani12182465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Fatty liver syndrome (FLS) often occurs in caged laying hens and can cause decreases in production performance. Chitosan oligosaccharide (COS), degraded from chitin or chitosan, has been demonstrated to prevent metabolic diseases in rodents. In this work, we found that dietary COS supplementation could improve production performance and egg quality in laying hens with FLS. Further study indicated that improved ovarian morphology and function may be involved in these beneficial effects of COS. Specifically, dietary COS supplementation decreased oxidative stress, inflammation and apoptosis in the ovaries of laying hens with FLS. This study provides evidence for the application of COS to improve production performance and egg quality in laying hens with FLS. Abstract This study aimed to investigate the role of chitosan oligosaccharide (COS) as an additive in the feed of laying hens with fatty liver syndrome (FLS). Effects on production performance, egg quality as well as ovarian function were determined. A total of 360 Lohmann Pink-shell laying hens (28 weeks old) were randomly assigned to 5 groups (6 replicates × 12 birds). Hens were fed with a basal diet and a high-energy low-protein (HELP) diet supplemented with 0, 200, 400 and 800 mg/kg COS. COS reversed the lowered laying rates, increased feed-to-egg ratios and decreased albumen heights and Haugh units induced by the HELP diet. Additionally, COS improved the ovarian morphologies damaged by the HELP diet. Furthermore, COS enhanced antioxidant enzyme activities, reduced malonaldehyde levels and downregulated the mRNA expressions of nuclear factor kappa B, pro-inflammation cytokine genes and pro-apoptosis-related genes, while it upregulated the mRNA expression of anti-apoptosis-related genes in the ovaries of HELP-diet-fed hens. These findings suggested that dietary COS supplementation could improve production performance and egg quality in laying hens with FLS, and these beneficial effects were linked to improved ovarian morphology, which was attributed to decreased oxidative stress, inflammation and apoptosis in the ovaries.
Collapse
|
143
|
Multifunctional role of chitosan in farm animals: a comprehensive review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
The deacetylation of chitin results in chitosan, a fibrous-like material. It may be produced in large quantities since the raw material (chitin) is plentiful in nature as a component of crustacean (shrimps and crabs) and insect hard outer skeletons, as well as the cell walls of some fungi. Chitosan is a nontoxic, biodegradable, and biocompatible polygluchitosanamine that contains two essential reactive functional groups, including amino and hydroxyl groups. This unique chemical structure confers chitosan with many biological functions and activities such as antimicrobial, anti-inflammatory, antioxidative, antitumor, immunostimulatory and hypocholesterolemic, when used as a feed additive for farm animals. Studies have indicated the beneficial effects of chitosan on animal health and performance, aside from its safer use as an antibiotic alternative. This review aimed to highlight the effects of chitosan on animal health and performance when used as a promising feed additive.
Collapse
|
144
|
You J, Zhao M, Chen S, Jiang L, Gao S, Yin H, Zhao L. Effect of chitooligosaccharides with a specific degree of polymerization on multiple targets in T2DM mice. BIORESOUR BIOPROCESS 2022; 9:94. [PMID: 38647883 PMCID: PMC10992422 DOI: 10.1186/s40643-022-00579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Chitooligosaccharides (COS) are found naturally in the ocean and present a variety of physiological activities, of which hypoglycemic action has attracted considerable research attention. This study aimed to assess the therapeutic effect of COS on mice suffering from type 2 diabetes mellitus (T2DM). COS effectively reduced blood glucose and blood lipid levels and improved glucose tolerance. Furthermore, COS revealed strong inhibitory activity against α-glucosidase, reducing postprandial blood glucose levels. Molecular docking data showed that COS might interact with surrounding amino acids to form a complex and decrease α-glucosidase activity. Additionally, COS enhanced insulin signal transduction and glycogen synthesis while restricting gluconeogenesis in the liver and muscles, reducing insulin resistance (IR) as a result. Moreover, COS effectively protected and restored islet cell function to increase insulin secretion. These results indicated that COS exhibited a significant hypoglycemic effect with multi-target participation. Therefore, COS may serve as a new preventive or therapeutic drug for diabetes to alleviate metabolic syndrome.
Collapse
Affiliation(s)
- Jiangshan You
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Shumin Chen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lihua Jiang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Shuhong Gao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| |
Collapse
|
145
|
Interfacial architecting of organic–inorganic hybrid toward mechanically reinforced, fire-resistant and smoke-suppressed polyurethane composites. J Colloid Interface Sci 2022; 621:385-397. [DOI: 10.1016/j.jcis.2022.04.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/25/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022]
|
146
|
Synthesis and antifungal activity of slow-release pyridinylcarbonyl chitooligosaccharide copper complexes. Carbohydr Polym 2022; 291:119663. [DOI: 10.1016/j.carbpol.2022.119663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
|
147
|
Anil S. Potential Medical Applications of Chitooligosaccharides. Polymers (Basel) 2022; 14:3558. [PMID: 36080631 PMCID: PMC9460531 DOI: 10.3390/polym14173558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Chitooligosaccharides, also known as chitosan oligomers or chitooligomers, are made up of chitosan with a degree of polymerization (DP) that is less than 20 and an average molecular weight (MW) that is lower than 3.9 kDa. COS can be produced through enzymatic conversions using chitinases, physical and chemical applications, or a combination of these strategies. COS is of significant interest for pharmacological and medical applications due to its increased water solubility and non-toxicity, with a wide range of bioactivities, including antibacterial, anti-inflammatory, anti-obesity, neuroprotective, anticancer, and antioxidant effects. This review aims to outline the recent advances and potential applications of COS in various diseases and conditions based on the available literature, mainly from preclinical research. The prospects of further in vivo studies and translational research on COS in the medical field are highlighted.
Collapse
Affiliation(s)
- Sukumaran Anil
- Oral Health Institute, Department of Dentistry, Hamad Medical Corporation, Qatar University, Doha 3050, Qatar; ; Tel.: +974-50406670
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre (PIMS&RC), Thiruvalla, Pathanamthitta 689101, Kerala, India
| |
Collapse
|
148
|
Optimization of Oligomer Chitosan/Polyvinylpyrrolidone Coating for Enhancing Antibacterial, Hemostatic Effects and Biocompatibility of Nanofibrous Wound Dressing. Polymers (Basel) 2022; 14:polym14173541. [PMID: 36080616 PMCID: PMC9460443 DOI: 10.3390/polym14173541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
A synergistic multilayer membrane design is necessary to satisfy a multitude of requirements of an ideal wound dressing. In this study, trilayer dressings with asymmetric wettability, composed of electrospun polycaprolactone (PCL) base membranes coated with oligomer chitosan (COS) in various concentrations of polyvinylpyrrolidone (PVP), are fabricated for wound dressing application. The membranes are expected to synergize the hygroscopic, antibacterial, hemostatic, and biocompatible properties of PCL and COS. The wound dressing was coated by spraying the solution of 3% COS and 6% PVP on the PCL base membrane (PVP6–3) three times, which shows good interaction with biological subjects, including bacterial strains and blood components. PVP6–3 samples confirm the diameter of inhibition zones of 20.0 ± 2.5 and 17.9 ± 2.5 mm against Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The membrane induces hemostasis with a blood clotting index of 74% after 5 min of contact. In the mice model, wounds treated with PVP6–3 closed 95% of the area after 10 days. Histological study determines the progression of skin regeneration with the construction of granulation tissue, new vascular systems, and hair follicles. Furthermore, the newly-growth skin shares structural resemblances to that of native tissue. This study suggests a simple approach to a multi-purpose wound dressing for clinical treatment.
Collapse
|
149
|
Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr Polym 2022; 290:119500. [PMID: 35550778 PMCID: PMC9020865 DOI: 10.1016/j.carbpol.2022.119500] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023]
Abstract
The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
Collapse
|
150
|
Yong H, Hu H, Yun D, Jin C, Liu J. Horseradish peroxidase catalyzed grafting of chitosan oligosaccharide with different flavonols: structures, antioxidant activity and edible coating application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4363-4372. [PMID: 35066885 DOI: 10.1002/jsfa.11790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Enzymatic catalyzed grafting of oligosaccharides with polyphenols is a safe and environmentally friendly approach to simultaneously enhance the bioactivity of oligosaccharides and the solubility of polyphenols. In this study, chitosan oligosaccharide (COS) was grafted with three different flavonols including myricetin (MYR), quercetin (QUE) and kaempferol (KAE) by horseradish peroxidase (HRP) catalysis. The structures, antioxidant activity and edible coating application of COS-flavonol conjugates were investigated. RESULTS The total phenol content of COS-MYR, COS-QUE and COS-KAE conjugates was 59.89, 68.37 and 53.77 mg gallic acid equivalents g-1 , respectively. Thin layer chromatography showed the conjugates did not contain ungrafted flavonols. COS-flavonol conjugates showed ultraviolet absorption peak at about 294 nm, corresponding to the A-ring of flavonols. Fourier-transform infrared spectra of conjugates confirmed the formation of Schiff-base and Michael-addition products. The proton-nuclear magnetic resonance spectrum of COS-KAE conjugate exhibited phenyl proton signals of KAE. X-ray diffraction patterns of conjugates showed some diffraction peaks of flavonols. COS-flavonol conjugates presented rough and porous morphologies with sheet-like and/or blocky structures. The conjugates showed higher water solubility, free radical scavenging activity and reducing power than flavonols. Moreover, fish gelatin/COS-flavonol conjugate coatings effectively prolonged the shelf life of refrigerated largemouth bass (Micropterus salmoides) fillets from 5 days to 7-8 days. CONCLUSION COS-flavonol conjugates prepared by HRP catalysis have great potentials as novel antioxidant agents. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Huixia Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|