101
|
Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SHI, Frevert U. Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathog 2012; 8:e1002982. [PMID: 23133375 PMCID: PMC3486917 DOI: 10.1371/journal.ppat.1002982] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/07/2012] [Indexed: 12/31/2022] Open
Abstract
Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB. Plasmodium falciparum, the deadliest of all human malaria parasites, can cause cerebral malaria, a severe and frequently fatal complication of this devastating disease. Young children are predominantly at risk and may progress rapidly from the first signs of neurological involvement to coma and death. Here we used a murine model for high-resolution in vivo imaging to demonstrate that cerebral malaria, but not high parasitemia and severe anemia, is associated with extensive leakage of fluid from cerebral blood vessels into the brain tissue. This vascular leakage occurs downstream from the capillary bed, at the neuroimmunological blood brain barrier, a site recently recognized as the immune cell entry point into the brain during neuroinflammation. Vascular leakage is closely associated with the appearance of neurological signs suggesting that the ultimate cause of brain edema, coma and death in cerebral malaria is a widespread opening of the neuroimmunological blood brain barrier. Indeed, vascular leakage, neurological signs, and death from ECM can be prevented with endothelial barrier-stabilizing drugs. Based on the unique role of this anatomical feature in neuroinflammation, our findings are expected to have implications for other infectious diseases and autoimmune disorders of the central nervous system.
Collapse
Affiliation(s)
- Adela Nacer
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Alexandru Movila
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Kerstin Baer
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | | | - Stefan H. I. Kappe
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
102
|
Shikani HJ, Freeman BD, Lisanti MP, Weiss LM, Tanowitz HB, Desruisseaux MS. Cerebral malaria: we have come a long way. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1484-92. [PMID: 23021981 DOI: 10.1016/j.ajpath.2012.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 01/21/2023]
Abstract
Despite decades of research, cerebral malaria remains one of the most serious complications of Plasmodium infection and is a significant burden in Sub-Saharan Africa, where, despite effective antiparasitic treatment, survivors develop long-term neurological sequelae. Although much remains to be discovered about the pathogenesis of cerebral malaria, The American Journal of Pathology has been seminal in presenting original research from both human and experimental models. These studies have afforded significant insight into the mechanism of cerebral damage in this devastating disease. The present review highlights information gleaned from these studies, especially in terms of their contributions to the understanding of cerebral malaria.
Collapse
Affiliation(s)
- Henry J Shikani
- Division of Parasitology and Tropical Medicine, Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | |
Collapse
|
103
|
Johnson HL, Chen Y, Jin F, Hanson LM, Gamez JD, Pirko I, Johnson AJ. CD8 T cell-initiated blood-brain barrier disruption is independent of neutrophil support. THE JOURNAL OF IMMUNOLOGY 2012; 189:1937-45. [PMID: 22772449 DOI: 10.4049/jimmunol.1200658] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Blood-brain barrier (BBB) disruption is a common feature of numerous neurologic disorders. A fundamental question in these diseases is the extent inflammatory immune cells contribute to CNS vascular permeability. We have previously shown that CD8 T cells play a critical role in initiating BBB disruption in the peptide-induced fatal syndrome model developed by our laboratory. However, myelomonocytic cells such as neutrophils have also been implicated in promoting CNS vascular permeability and functional deficit in murine models of neuroinflammatory disease. For this reason, we evaluated neutrophil depletion in a murine model of CD8 T cell-initiated BBB disruption by employing traditionally used anti-granulocyte receptor-1 mAb RB6-8C5 and Ly-6G-specific mAb 1A8. We report that CNS-infiltrating antiviral CD8 T cells express high levels of granulocyte receptor-1 protein and are depleted by treatment with RB6-8C5. Mice treated with RB6-8C5, but not 1A8, display: 1) intact BBB tight junction proteins; 2) reduced CNS vascular permeability visible by gadolinium-enhanced T1-weighted magnetic resonance imaging; and 3) preservation of motor function. These studies demonstrate that traditional methods of neutrophil depletion with RB6-8C5 are broadly immune ablating. Our data also provide evidence that CD8 T cells initiate disruption of BBB tight junction proteins and CNS vascular permeability in the absence of neutrophil support.
Collapse
Affiliation(s)
- Holly L Johnson
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Haemozoin induces early cytokine-mediated lysozyme release from human monocytes through p38 MAPK- and NF-kappaB-dependent mechanisms. PLoS One 2012; 7:e39497. [PMID: 22724024 PMCID: PMC3377659 DOI: 10.1371/journal.pone.0039497] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
Malarial pigment (natural haemozoin, HZ) is a ferriprotoporphyrin IX crystal produced by Plasmodium parasites after haemoglobin catabolism. HZ-fed human monocytes are functionally compromised, releasing increased amounts of pro-inflammatory molecules, including cytokines, chemokines and cytokine-related proteolytic enzyme Matrix Metalloproteinase-9 (MMP-9), whose role in complicated malaria has been recently suggested. In a previous work HZ was shown to induce through TNFalpha production the release of monocytic lysozyme, an enzyme stored in gelatinase granules with MMP-9. Here, the underlying mechanisms were investigated. Results showed that HZ lipid moiety promoted early but not late lysozyme release. HZ-dependent lysozyme induction was abrogated by anti-TNFalpha/IL-1beta/MIP-1alpha blocking antibodies and mimicked by recombinant cytokines. Moreover, HZ early activated either p38 MAPK or NF-kappaB pathways by inducing: p38 MAPK phosphorylation; cytosolic I-kappaBalpha phosphorylation and degradation; NF-kappaB nuclear translocation and DNA-binding. Inhibition of both routes through selected molecules (SB203580, quercetin, artemisinin, parthenolide) prevented HZ-dependent lysozyme release. These data suggest that HZ-triggered overproduction of TNFalpha, IL-1beta and MIP-1alpha mediates induction of lysozyme release from human monocytes through activation of p38 MAPK and NF-kappaB pathways, providing new evidence on mechanisms underlying the HZ-enhanced monocyte degranulation in falciparum malaria and the potential role for lysozyme as a new affordable marker in severe malaria.
Collapse
|
105
|
Johnson HL, Chen Y, Suidan GL, McDole JR, Lohrey AK, Hanson LM, Jin F, Pirko I, Johnson AJ. A hematopoietic contribution to microhemorrhage formation during antiviral CD8 T cell-initiated blood-brain barrier disruption. J Neuroinflammation 2012; 9:60. [PMID: 22452799 PMCID: PMC3350446 DOI: 10.1186/1742-2094-9-60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 03/27/2012] [Indexed: 01/09/2023] Open
Abstract
Background The extent to which susceptibility to brain hemorrhage is derived from blood-derived factors or stromal tissue remains largely unknown. We have developed an inducible model of CD8 T cell-initiated blood-brain barrier (BBB) disruption using a variation of the Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis. This peptide-induced fatal syndrome (PIFS) model results in severe central nervous system (CNS) vascular permeability and death in the C57BL/6 mouse strain, but not in the 129 SvIm mouse strain, despite the two strains' having indistinguishable CD8 T-cell responses. Therefore, we hypothesize that hematopoietic factors contribute to susceptibility to brain hemorrhage, CNS vascular permeability and death following induction of PIFS. Methods PIFS was induced by intravenous injection of VP2121-130 peptide at 7 days post-TMEV infection. We then investigated brain inflammation, astrocyte activation, vascular permeability, functional deficit and microhemorrhage formation using T2*-weighted magnetic resonance imaging (MRI) in C57BL/6 and 129 SvIm mice. To investigate the contribution of hematopoietic cells in this model, hemorrhage-resistant 129 SvIm mice were reconstituted with C57BL/6 or autologous 129 SvIm bone marrow. Gadolinium-enhanced, T1-weighted MRI was used to visualize the extent of CNS vascular permeability after bone marrow transfer. Results C57BL/6 and 129 SvIm mice had similar inflammation in the CNS during acute infection. After administration of VP2121-130 peptide, however, C57BL/6 mice had increased astrocyte activation, CNS vascular permeability, microhemorrhage formation and functional deficits compared to 129 SvIm mice. The 129 SvIm mice reconstituted with C57BL/6 but not autologous bone marrow had increased microhemorrhage formation as measured by T2*-weighted MRI, exhibited a profound increase in CNS vascular permeability as measured by three-dimensional volumetric analysis of gadolinium-enhanced, T1-weighted MRI, and became moribund in this model system. Conclusion C57BL/6 mice are highly susceptible to microhemorrhage formation, severe CNS vascular permeability and morbidity compared to the 129 SvIm mouse. This susceptibility is transferable with the bone marrow compartment, demonstrating that hematopoietic factors are responsible for the onset of brain microhemorrhage and vascular permeability in immune-mediated fatal BBB disruption.
Collapse
|
106
|
Hochman S, Kim K. The Impact of HIV Coinfection on Cerebral Malaria Pathogenesis. JOURNAL OF NEUROPARASITOLOGY 2012; 3:235547. [PMID: 22545215 PMCID: PMC3336366 DOI: 10.4303/jnp/235547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV infection is widespread throughout the world and is especially prevalent in sub-Saharan Africa and Asia. Similarly, Plasmodium falciparum, the most common cause of severe malaria, affects large areas of sub-Saharan Africa, the Indian subcontinent, and Southeast Asia. Although initial studies suggested that HIV and malaria had independent impact upon patient outcomes, recent studies have indicated a more significant interaction. Clinical studies have shown that people infected with HIV have more frequent and severe episodes of malaria, and parameters of HIV disease progression worsen in individuals during acute malaria episodes. However, the effect of HIV on development of cerebral malaria, a manifestation of P. falciparum infection that is frequently fatal, has not been characterized. We review clinical and basic science studies pertaining to HIV and malaria coinfection and cerebral malaria in particular in order to highlight the likely role HIV plays in exacerbating cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Sarah Hochman
- Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | |
Collapse
|
107
|
Rénia L, Howland SW, Claser C, Charlotte Gruner A, Suwanarusk R, Hui Teo T, Russell B, Ng LFP. Cerebral malaria: mysteries at the blood-brain barrier. Virulence 2012; 3:193-201. [PMID: 22460644 PMCID: PMC3396698 DOI: 10.4161/viru.19013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebral malaria is the most severe pathology caused by the malaria parasite, Plasmodium falciparum. The pathogenic mechanisms leading to cerebral malaria are still poorly defined as studies have been hampered by limited accessibility to human tissues. Nevertheless, histopathology of post-mortem human tissues and mouse models of cerebral malaria have indicated involvement of the blood-brain barrier in cerebral malaria. In contrast to viruses and bacteria, malaria parasites do not infiltrate and infect the brain parenchyma. Instead, rupture of the blood-brain barrier occurs and may lead to hemorrhages resulting in neurological alterations. Here, we review the most recent findings from human studies and mouse models on the interactions of malaria parasites and the blood-brain barrier, shedding light on the pathogenesis of cerebral malaria, which may provide directions for possible interventions.
Collapse
Affiliation(s)
- Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A STAR), Biopolis, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Gay F, Zougbédé S, N’Dilimabaka N, Rebollo A, Mazier D, Moreno A. Cerebral malaria: What is known and what is on research. Rev Neurol (Paris) 2012; 168:239-56. [DOI: 10.1016/j.neurol.2012.01.582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/27/2012] [Indexed: 01/21/2023]
|
109
|
Abstract
The blood-brain barrier (BBB) is a structural and functional barrier that protects the central nervous system (CNS) from invasion by blood-borne pathogens including parasites. However, some intracellular and extracellular parasites can traverse the BBB during the course of infection and cause neurological disturbances and/or damage which are at times fatal. The means by which parasites cross the BBB and how the immune system controls the parasites within the brain are still unclear. In this review we present the current understanding of the processes utilized by two human neuropathogenic parasites, Trypanosoma brucei spp and Toxoplasma gondii, to go across the BBB and consequences of CNS invasion. We also describe briefly other parasites that can invade the brain and how they interact with or circumvent the BBB. The roles played by parasite-derived and host-derived molecules during parasitic and white blood cell invasion of the brain are discussed.
Collapse
Affiliation(s)
- Willias Masocha
- Department of Applied Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | | |
Collapse
|
110
|
Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM, Esiri MM, Day NPJ, White NJ, Turner GDH. Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis 2012; 205:663-71. [PMID: 22207648 PMCID: PMC3266137 DOI: 10.1093/infdis/jir812] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 04/04/2011] [Indexed: 01/04/2023] Open
Abstract
The pathogenesis of coma in severe Plasmodium falciparum malaria remains poorly understood. Obstruction of the brain microvasculature because of sequestration of parasitized red blood cells (pRBCs) represents one mechanism that could contribute to coma in cerebral malaria. Quantitative postmortem microscopy of brain sections from Vietnamese adults dying of malaria confirmed that sequestration in the cerebral microvasculature was significantly higher in patients with cerebral malaria (CM; n = 21) than in patients with non-CM (n = 23). Sequestration of pRBCs and CM was also significantly associated with increased microvascular congestion by infected and uninfected erythrocytes. Clinicopathological correlation showed that sequestration and congestion were significantly associated with deeper levels of premortem coma and shorter time to death. Microvascular congestion and sequestration were highly correlated as microscopic findings but were independent predictors of a clinical diagnosis of CM. Increased microvascular congestion accompanies coma in CM, associated with parasite sequestration in the cerebral microvasculature.
Collapse
Affiliation(s)
| | | | - Panote Prapansilp
- Nuffield Department of Clinical Laboratory Sciences
- Nuffield Department of Clinical Medicine, The John Radcliffe Hospital, University of Oxford, United Kingdom
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tran Tinh Hien
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | - Arjen M. Dondorp
- Nuffield Department of Clinical Medicine, The John Radcliffe Hospital, University of Oxford, United Kingdom
- Mahidol-Oxford Research Unit
| | | | - Nicholas P. J. Day
- Nuffield Department of Clinical Medicine, The John Radcliffe Hospital, University of Oxford, United Kingdom
- Mahidol-Oxford Research Unit
| | - Nicholas J. White
- Nuffield Department of Clinical Medicine, The John Radcliffe Hospital, University of Oxford, United Kingdom
- Mahidol-Oxford Research Unit
| | - Gareth D. H. Turner
- Nuffield Department of Clinical Medicine, The John Radcliffe Hospital, University of Oxford, United Kingdom
- Mahidol-Oxford Research Unit
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
111
|
Macrophage inflammatory protein-1alpha mediates matrix metalloproteinase-9 enhancement in human adherent monocytes fed with malarial pigment. ASIAN PAC J TROP MED 2012; 4:925-30. [PMID: 22118025 DOI: 10.1016/s1995-7645(11)60220-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the role of macrophage inflammatory protein-1alpha (MIP-1alpha) in the detrimental enhancement of matrix metalloproteinase-9 (MMP-9) expression, release and activity induced by phagocytosis of malarial pigment (haemozoin, HZ) in human monocytes. METHODS Human adherent monocytes were unfed/fed with native HZ for 2 h. After 24 hours, MIP-1alpha production was evaluated by ELISA in cell supernatants. Alternatively, HZ-unfed/fed monocytes were treated in presence/absence of anti-human MIP-1alpha blocking antibodies or recombinant human MIP-1alpha for 15 h (RNA studies) or 24 h (protein studies); therefore, MMP-9 mRNA expression was evaluated in cell lysates by Real Time RT-PCR, whereas proMMP-9 and active MMP-9 protein release were measured in cell supernatants by Western blotting and gelatin zymography. RESULTS Phagocytosis of HZ by human monocytes increased production of MIP-1 alpha, mRNA expression of MMP-9 and protein release of proMMP-9 and active MMP-9. All the HZ-enhancing effects on MMP-9 were abrogated by anti-human MIP-1alpha blocking antibodies and mimicked by recombinant human MIP-1alpha. CONCLUSIONS The present work suggests a role for MIP-1alpha in the HZ-dependent enhancement of MMP-9 expression, release and activity observed in human monocytes, highlighting new detrimental effects of HZ-triggered proinflammatory response by phagocytic cells in falciparum malaria.
Collapse
|
112
|
|
113
|
Grau GER, Craig AG. Cerebral malaria pathogenesis: revisiting parasite and host contributions. Future Microbiol 2012; 7:291-302. [DOI: 10.2217/fmb.11.155] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cerebral malaria is one of a number of clinical syndromes associated with infection by human malaria parasites of the genus Plasmodium. The etiology of cerebral malaria derives from sequestration of parasitized red cells in brain microvasculature and is thought to be enhanced by the proinflammatory status of the host and virulence characteristics of the infecting parasite variant. In this article we examine the range of factors thought to influence the development of Plasmodium falciparum cerebral malaria in humans and review the evidence to support their role.
Collapse
Affiliation(s)
- Georges Emile Raymond Grau
- Vascular Immunology Unit, Department of Pathology, Sydney Medical School, The University of Sydney, Camperdown NSW 2042, Australia
- La Jolla Infectious Disease Institute, San Diego, CA 92109, USA
| | | |
Collapse
|
114
|
Mohanty S, Mishra SK, Patnaik R, Dutt AK, Pradhan S, Das B, Patnaik J, Mohanty AK, Lee SJ, Dondorp AM. Brain swelling and mannitol therapy in adult cerebral malaria: a randomized trial. Clin Infect Dis 2012; 53:349-55. [PMID: 21810747 PMCID: PMC3148260 DOI: 10.1093/cid/cir405] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mild cerebral swelling on CT-scan was common in adult patients with cerebral malaria, but severity of swelling was not correlated with coma depth or survival. Mannitol as adjunctive treatment for cerebral malaria prolonged coma duration and may be harmful. Background. Coma is a frequent presentation of severe malaria in adults and an important cause of death. The role of cerebral swelling in its pathogenesis, and the possible benefit of intravenous mannitol therapy to treat this, is uncertain. Methods. A computed tomographic (CT) scan of the cerebrum and lumbar puncture with measurement of cerebrospinal fluid (CSF) pressure were performed on admission for 126 consecutive adult Indian patients with cerebral malaria. Patients with brain swelling on CT scan were randomized to adjunctive treatment with intravenous mannitol (1.5 g/kg followed by 0.5 g/kg every 8 hours; n = 30) or no adjunctive therapy (n = 31). Results. On CT scan 80 (63%) of 126 patients had cerebral swelling, of whom 36 (29%) had moderate or severe swelling. Extent of brain swelling was not related to coma depth or mortality. CSF pressures were elevated (≥200 mm H2O) in 43 (36%) of 120 patients and correlated with CT scan findings (P for trend = .001). Mortality with mannitol therapy was 9 (30%) of 30 versus 4 (13%) of 31 without adjunctive therapy (hazard ratio, 2.4 [95% confidence interval, 0.8–7.3]; P = .11). Median coma recovery time was 90 hours (range, 22–380 hours) with mannitol versus 32 hours (range, 5–168 hours) without (P = .02). Conclusions. Brain swelling on CT scan is a common finding in adult patients with cerebral malaria but is not related to coma depth or survival. Mannitol therapy as adjunctive treatment for brain swelling in adult cerebral malaria prolongs coma duration and may be harmful.
Collapse
Affiliation(s)
- Sanjib Mohanty
- Depatment of Medicine and Radiology, Ispat General Hospital, Rourkela, Orissa, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Melo GD, Machado GF. Glial reactivity in dogs with visceral leishmaniasis: correlation with T lymphocyte infiltration and with cerebrospinal fluid anti-Leishmania antibody titres. Cell Tissue Res 2011; 346:293-304. [PMID: 22160561 DOI: 10.1007/s00441-011-1290-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/17/2011] [Indexed: 01/23/2023]
Abstract
Visceral leishmaniasis is a multisystemic zoonotic disease that can manifest with several symptoms, including neurological disorders. Because glial cells are extensively associated with the immune response within the brain, we evaluated the morphology of astrocytes and microglia of dogs naturally infected with Leishmania chagasi. We used immunohistochemical and lectin-histochemical techniques for morphological analyses and we also examined the glial correlation with lymphocyte infiltration of the brain and with the presence of anti-Leishmania antibodies within the cerebrospinal fluid of the dogs. Although we did not detect a shared morphological pattern in the astrocytes or microglia in the brain tissue, these cells were more intensely labelled in infected dogs than in the control group. The density of microglia was increased in the ependymal/subependymal area, thus demonstrating a strong correlation with the presence of T lymphocytes and with cerebrospinal fluid antibody titres. Thus, our results indicate a pro-inflammatory state in the brains of dogs naturally infected with L. chagasi and strongly suggest that microglia and astrocytes are involved in the pathogenesis of the neurological disorders of visceral leishmaniasis in dogs.
Collapse
Affiliation(s)
- Guilherme D Melo
- College of Veterinary Medicine, UNESP-Univ Estadual Paulista, Araçatuba, São Paulo, Brazil.
| | | |
Collapse
|
116
|
A novel carbon monoxide-releasing molecule fully protects mice from severe malaria. Antimicrob Agents Chemother 2011; 56:1281-90. [PMID: 22155828 DOI: 10.1128/aac.05571-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Severe forms of malaria infection, such as cerebral malaria (CM) and acute lung injury (ALI), are mainly caused by the apicomplexan parasite Plasmodium falciparum. Primary therapy with quinine or artemisinin derivatives is generally effective in controlling P. falciparum parasitemia, but mortality from CM and other forms of severe malaria remains unacceptably high. Herein, we report the design and synthesis of a novel carbon monoxide-releasing molecule (CO-RM; ALF492) that fully protects mice against experimental CM (ECM) and ALI. ALF492 enables controlled CO delivery in vivo without affecting oxygen transport by hemoglobin, the major limitation in CO inhalation therapy. The protective effect is CO dependent and induces the expression of heme oxygenase-1, which contributes to the observed protection. Importantly, when used in combination with the antimalarial drug artesunate, ALF492 is an effective adjunctive and adjuvant treatment for ECM, conferring protection after the onset of severe disease. This study paves the way for the potential use of CO-RMs, such as ALF492, as adjunctive/adjuvant treatment in severe forms of malaria infection.
Collapse
|
117
|
Geurts N, Opdenakker G, Van den Steen PE. Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther 2011; 133:257-79. [PMID: 22138604 DOI: 10.1016/j.pharmthera.2011.11.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 10/28/2011] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are associated with processes of tissue remodeling and are expressed in all infections with protozoan parasites. We here report the status of MMP research in malaria, trypanosomiasis, leishmaniasis and toxoplasmosis. In all these infections, the balances between MMPs and endogenous MMP inhibitors are disturbed, mostly in favor of active proteolysis. When the infection is associated with leukocyte influx into specific organs, immunopathology and collateral tissue damage may occur. These pathologies include cerebral malaria, sleeping sickness (human African trypanosomiasis), Chagas disease (human American trypanosomiasis), leishmaniasis and toxoplasmic encephalitis in immunocompromised hosts. Destruction of the integrity of the blood-brain barrier (BBB) is a common denominator that may be executed by leukocytic MMPs under the control of host cytokines and chemokines as well as influenced by parasite products. Mechanisms by which parasite-derived products alter host expression of MMP and endogenous MMP inhibitors, have only been described for hemozoin (Hz) in malaria. Hence, understanding these interactions in other parasitic infections remains an important challenge. Furthermore, the involved parasites are also known to produce their own metalloproteinases, and this forms an extra stimulus to investigate MMP inhibitory drugs as therapeutics. MMP inhibitors (MMPIs) may dampen collateral tissue damage, as is anecdotically reported for tetracyclines as MMP regulators in parasite infections.
Collapse
Affiliation(s)
- Nathalie Geurts
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Minderbroedersstraat 10, B3000 Leuven, Belgium
| | | | | |
Collapse
|
118
|
Malaria parasite tyrosyl-tRNA synthetase secretion triggers pro-inflammatory responses. Nat Commun 2011; 2:530. [DOI: 10.1038/ncomms1522] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/29/2011] [Indexed: 11/08/2022] Open
|
119
|
Abstract
BACKGROUND Cerebral malaria, defined as otherwise unexplained coma in a patient with circulating parasitemia, is a common disease in the developing world. The clinical diagnosis lacks specificity and children with other underlying causes of coma might be misdiagnosed as having cerebral malaria. The presence of malarial retinopathy can be used to differentiate children whose comas are caused by Plasmodium falciparum and its attendant pathophysiologies from those with other reasons for their abnormal mental status. Children with cerebral malaria who lack malarial retinopathy have not previously been described. METHODS All patients admitted to Queen Elizabeth Central Hospital in Blantyre, Malawi, during a 12-month period with a clinical diagnosis of cerebral malaria were evaluated for the presence of malarial retinopathy. Thirty-two patients lacked retinopathy findings. Clinical, laboratory, and radiologic information data were collected. RESULTS Thirty-two cases of retinopathy-negative cerebral malaria are presented. CONCLUSIONS Children with retinopathy-negative cerebral malaria share a common clinical phenotype with lower rates of mortality compared with those who have malarial retinopathy. There are at least 4 possible pathophysiologic explanations for this common condition.
Collapse
MESH Headings
- Antimalarials/administration & dosage
- Antimalarials/therapeutic use
- Child
- Child, Preschool
- Coma/complications
- Coma/diagnosis
- Coma/drug therapy
- Coma/epidemiology
- Coma/parasitology
- Coma/physiopathology
- Diagnosis, Differential
- Female
- Humans
- Infant
- Malaria, Cerebral/complications
- Malaria, Cerebral/diagnosis
- Malaria, Cerebral/drug therapy
- Malaria, Cerebral/epidemiology
- Malaria, Cerebral/parasitology
- Malaria, Cerebral/physiopathology
- Malaria, Falciparum/complications
- Malaria, Falciparum/diagnosis
- Malaria, Falciparum/drug therapy
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/physiopathology
- Malawi
- Male
- Parasitemia/drug therapy
- Parasitemia/physiopathology
- Plasmodium falciparum/drug effects
- Plasmodium falciparum/physiology
- Retinal Diseases/diagnosis
- Retinal Diseases/epidemiology
- Retinal Diseases/parasitology
Collapse
Affiliation(s)
- Douglas G Postels
- Department of Neurology and Ophthalmology, Michigan State University, International Neurologic and Psychiatric Epidemiology Program (INPEP), East Lansing, MI 48824, USA.
| | | |
Collapse
|
120
|
Wu Y, Szestak T, Stins M, Craig AG. Amplification of P. falciparum Cytoadherence through induction of a pro-adhesive state in host endothelium. PLoS One 2011; 6:e24784. [PMID: 22043276 PMCID: PMC3197193 DOI: 10.1371/journal.pone.0024784] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/17/2011] [Indexed: 01/03/2023] Open
Abstract
This study examined the ability of P.falciparum-infected erythrocytes (IE) to induce a pro-adhesive environment in the host endothelium during malaria infection, prior to the systemic cytokine activation seen in the later phase of disease. Previous work had shown increases in receptor levels but had not measured to actual impact on IE binding. Using a co-culture system with a range of endothelial cells (EC) and IE with different cytoadherent properties, we have characterised the specific expression of adhesion receptors and subsequent IE binding by FACS and adhesion assays. We have also examined the specific signalling pathways induced during co-culture that are potentially involved in the induction of receptor expression. The results confirmed that ICAM-1 is up-regulated, albeit at much lower levels than seen with TNF activation, in response to co-culture with infected erythrocytes in all three tissue endothelial cell types tested but that up-regulation of VCAM-1 is tissue-dependent. This small increase in the levels of EC receptors correlated with large changes in IE adhesion ability. Co-culture with either RBC or IE increased the potential of subsequent adhesion indicating priming/modulation effects on EC which make them more susceptible to adhesion and thereby the recruitment of IE. Trypsin surface digestion of IE and the use of a Pfsbp1-knockout (ko) parasite line abrogated the up-regulation of ICAM-1 and reduced IE binding to EC suggesting that PfEMP-1 and other molecules exported to the IE surface via the PfSBP1 pathway are major mediators of this phenotype. This was also supported by the higher induction of EC adhesion receptors by adherent IE compared to isogenic, non-adherent lines.
Collapse
Affiliation(s)
- Yang Wu
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tadge Szestak
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Monique Stins
- RT Johnson Division of NeuroImmunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Alister G. Craig
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
121
|
Epithelial cell coculture models for studying infectious diseases: benefits and limitations. J Biomed Biotechnol 2011; 2011:852419. [PMID: 22007147 PMCID: PMC3189631 DOI: 10.1155/2011/852419] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/19/2011] [Accepted: 07/27/2011] [Indexed: 12/20/2022] Open
Abstract
Countless in vitro cell culture models based on the use of epithelial cell types of single lineages have been characterized and have provided insight into the mechanisms of infection for various microbial pathogens. Diverse culture models based on disease-relevant mucosal epithelial cell types derived from gastrointestinal, genitourinary, and pulmonary organ systems have delineated many key host-pathogen interactions that underlie viral, parasitic, and bacterial disease pathogenesis. An alternative to single lineage epithelial cell monoculture, which offers more flexibility and can overcome some of the limitations of epithelial cell culture models based on only single cell types, is coculture of epithelial cells with other host cell types. Various coculture models have been described, which incorporate epithelial cell types in culture combination with a wide range of other cell types including neutrophils, eosinophils, monocytes, and lymphocytes. This paper will summarize current models of epithelial cell coculture and will discuss the benefits and limitations of epithelial cell coculture for studying host-pathogen dynamics in infectious diseases.
Collapse
|
122
|
Proteolytic breakdown of cytoskeleton induces neurodegeneration during pathology of murine cerebral malaria. Brain Res 2011; 1417:103-14. [DOI: 10.1016/j.brainres.2011.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/26/2011] [Accepted: 08/11/2011] [Indexed: 12/20/2022]
|
123
|
Medana IM, Day NPJ, Sachanonta N, Mai NTH, Dondorp AM, Pongponratn E, Hien TT, White NJ, Turner GDH. Coma in fatal adult human malaria is not caused by cerebral oedema. Malar J 2011; 10:267. [PMID: 21923924 PMCID: PMC3182981 DOI: 10.1186/1475-2875-10-267] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/17/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. METHODS The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. RESULTS The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). CONCLUSIONS Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria. Enhanced expression of AQP4 water channels in the brainstem may, therefore, reflect a mix of both neuropathological or attempted neuroprotective responses to oedema formation.
Collapse
Affiliation(s)
- Isabelle M Medana
- Nuffield Department of Clinical Laboratory Sciences, The John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
The neuropathology of fatal cerebral malaria in malawian children. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2146-58. [PMID: 21514429 PMCID: PMC3081150 DOI: 10.1016/j.ajpath.2011.01.016] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/26/2010] [Accepted: 01/07/2011] [Indexed: 12/21/2022]
Abstract
We examined the brains of 50 Malawian children who satisfied the clinical definition of cerebral malaria (CM) during life; 37 children had sequestration of infected red blood cells (iRBCs) and no other cause of death, and 13 had a nonmalarial cause of death with no cerebral sequestration. For comparison, 18 patients with coma and no parasitemia were included. We subdivided the 37 CM cases into two groups based on the cerebral microvasculature pathology: iRBC sequestration only (CM1) or sequestration with intravascular and perivascular pathology (CM2). We characterized and quantified the axonal and myelin damage, blood-brain barrier (BBB) disruption, and cellular immune responses and correlated these changes with iRBC sequestration and microvascular pathology. Axonal and myelin damage was associated with ring hemorrhages and vascular thrombosis in the cerebral and cerebellar white matter and brainstem of the CM2 cases. Diffuse axonal and myelin damage were present in CM1 and CM2 cases in areas of prominent iRBC sequestration. Disruption of the BBB was associated with ring hemorrhages and vascular thrombosis in CM2 cases and with sequestration in both CM1 and CM2 groups. Monocytes with phagocytosed hemozoin accumulated within microvessels containing iRBCs in CM2 cases but were not present in the adjacent neuropil. These findings are consistent with a link between iRBC sequestration and intravascular and perivascular pathology in fatal pediatric CM, resulting in myelin damage, axonal injury, and breakdown of the BBB.
Collapse
|
125
|
Hempel C, Combes V, Hunt NH, Kurtzhals JAL, Grau GER. CNS hypoxia is more pronounced in murine cerebral than noncerebral malaria and is reversed by erythropoietin. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1939-50. [PMID: 21854739 DOI: 10.1016/j.ajpath.2011.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/18/2011] [Accepted: 06/28/2011] [Indexed: 01/13/2023]
Abstract
Cerebral malaria (CM) is associated with high mortality and risk of sequelae, and development of adjunct therapies is hampered by limited knowledge of its pathogenesis. To assess the role of cerebral hypoxia, we used two experimental models of CM, Plasmodium berghei ANKA in CBA and C57BL/6 mice, and two models of malaria without neurologic signs, P. berghei K173 in CBA mice and P. berghei ANKA in BALB/c mice. Hypoxia was demonstrated in brain sections using intravenous pimonidazole and staining with hypoxia-inducible factor-1α-specific antibody. Cytopathic hypoxia was studied using poly (ADP-ribose) polymerase-1 (PARP-1) gene knockout mice. The effect of erythropoietin, an oxygen-sensitive cytokine that mediates protection against CM, on cerebral hypoxia was studied in C57BL/6 mice. Numerous hypoxic foci of neurons and glial cells were observed in mice with CM. Substantially fewer and smaller foci were observed in mice without CM, and hypoxia seemed to be confined to neuronal cell somas. PARP-1-deficient mice were not protected against CM, which argues against a role for cytopathic hypoxia. Erythropoietin therapy reversed the development of CM and substantially reduced the degree of neural hypoxia. These findings demonstrate cerebral hypoxia in malaria, strongly associated with cerebral dysfunction and a possible target for adjunctive therapy.
Collapse
Affiliation(s)
- Casper Hempel
- Centre for Medical Parasitology, Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
126
|
Mirchev R, Lam A, Golan DE. Membrane compartmentalization in Southeast Asian ovalocytosis red blood cells. Br J Haematol 2011; 155:111-21. [PMID: 21793815 DOI: 10.1111/j.1365-2141.2011.08805.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Red blood cells (RBCs) from individuals with Southeast Asian ovalocytosis (SAO) contain a mutant band 3 protein that causes the formation of unique linear oligomers in the RBC membrane. We used single-particle tracking to measure the lateral diffusion of individual glycophorin C (GPC), band 3, and CD58 proteins in membranes of intact SAO RBCs and normal RBCs (nRBCs). GPC, an integral protein that binds with high affinity to the RBC membrane skeleton, showed oscillatory motion within confinement areas that were smaller in SAO RBCs than in nRBCs. The additional confinement in SAO RBCs could be due to membrane stiffening associated with the SAO phenotype. Band 3 in both SAO RBCs and nRBCs also showed confined motion over short times (ms) and distances (nm), and the area of confinement was smaller in SAO RBCs than in nRBCs. These data presumably reflect the constraints imposed by band 3 oligomerization. Similarly, the glycosylphosphatidylinositol-linked protein CD58 showed loosely confined diffusion in nRBCs and a substantially higher degree of confinement in SAO RBCs. Restricted protein mobility could contribute to the altered adherence of parasite-infected RBCs to vascular endothelium that is thought to protect individuals with SAO from severe manifestations of malaria.
Collapse
Affiliation(s)
- Rossen Mirchev
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
127
|
Prato M, D'Alessandro S, Van den Steen PE, Opdenakker G, Arese P, Taramelli D, Basilico N. Natural haemozoin modulates matrix metalloproteinases and induces morphological changes in human microvascular endothelium. Cell Microbiol 2011; 13:1275-85. [PMID: 21707906 DOI: 10.1111/j.1462-5822.2011.01620.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Severe malaria, including cerebral malaria (CM), is characterized by the sequestration of parasitized erythrocytes in the microvessels after cytoadherence to endothelial cells. Products of parasite origin, such as haemozoin (HZ), contribute to the pathogenesis of severe malaria by interfering with host inflammatory response. In human monocytes, HZ enhanced the levels of matrix metalloproteinase-9 (MMP-9), a protease involved in neuroinflammation. Here the effects of HZ on the regulation of MMPs by the human microvascular endothelial cell line HMEC-1 were investigated. Cells treated with natural (n)HZ appeared elongated instead of polygonal, and formed microtubule-like vessels on synthetic basement membrane. nHZ enhanced total gelatinolytic activity by inducing proMMP-9 and MMP-9 without affecting basal MMP-2. The level of the endogenous tissue inhibitor of MMP-9 (TIMP-1) was not altered by nHZ, while TIMP-2, the MMP-2 inhibitor, was enhanced. Additionally, nHZ induced MMP-1 and MMP-3, two enzymes sequentially involved in collagenolysis and proMMP-9 proteolytic activation. Lipid-free HZ did not reproduce nHZ effects. Present data suggest that the lipid moiety of HZ alters the MMP/TIMP balances and promotes the proteolytic activation of proMMP-9 in HMEC-1, thereby enhancing total gelatinolytic activity, cell activation and inflammation. These findings might help understanding the mechanisms of blood brain barrier damage during CM.
Collapse
Affiliation(s)
- Mauro Prato
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
128
|
Caspase-1 activation of interleukin-1β (IL-1β) and IL-18 is dispensable for induction of experimental cerebral malaria. Infect Immun 2011; 79:3633-41. [PMID: 21708993 DOI: 10.1128/iai.05459-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria infection is initiated by sporozoite invasion of hepatocytes and asexual reproduction of liver stages, processes that are regarded to be "clinically and diagnostically silent." Merozoites, which egress from hepatocytes, infect erythrocytes in periodic cycles and induce disease. How the host innate immune system contributes to disease outcomes and to the induction of effector cells during malaria remains unclear. Likewise, how the initial liver stages may shape responses to blood-stage parasites is unknown. Here, using both sporozoite- and blood-stage-induced infections with the rodent malaria parasite Plasmodium berghei ANKA, we show that the MyD88 and Toll-like receptor 2/4 (TLR2/4) pathways play critical roles in the development of experimental cerebral malaria (ECM). Strikingly, an absolute dependence on MyD88 and TLR2/4 was observed when infections were initiated with sporozoites. In addition, we show that caspase-1 activation of interleukin-1β (IL-1β) and IL-18, which is associated with the inflammasome pathway, does not contribute to P. berghei ANKA-induced immunopathology. Consistent with these data, prophylactic cover with the IL-1β antagonist anakinra did not reduce the incidence of ECM. Therefore, we propose that protection against ECM due to loss of TLR signaling functions is caused by effector mechanisms other than IL-1β activation.
Collapse
|
129
|
Matrix Metalloproteinase-9 and Haemozoin: Wedding Rings for Human Host and Plasmodium falciparum Parasite in Complicated Malaria. J Trop Med 2011; 2011:628435. [PMID: 21760809 PMCID: PMC3134216 DOI: 10.1155/2011/628435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/07/2011] [Indexed: 11/17/2022] Open
Abstract
It is generally accepted that the combination of both Plasmodium falciparum parasite and human host factors is involved in the pathogenesis of complicated severe malaria, including cerebral malaria (CM). Among parasite products, the malarial pigment haemozoin (HZ) has been shown to impair the functions of mononuclear and endothelial cells. Different CM models were associated with enhanced levels of matrix metalloproteinases (MMPs), a family of proteolytic enzymes able to disrupt subendothelial basement membrane and tight junctions and shed, activate, or inactivate cytokines, chemokines, and other MMPs through cleavage from their precursors. Among MMPs, a good candidate for targeted therapy might be MMP-9, whose mRNA and protein expression enhancement as well as direct proenzyme activation by HZ have been recently investigated in a series of studies by our group and others. In the present paper the role of HZ and MMP-9 in complicated malaria, as well as their interactions, will be discussed.
Collapse
|
130
|
Schmidt KE, Schumak B, Specht S, Dubben B, Limmer A, Hoerauf A. Induction of pro-inflammatory mediators in Plasmodium berghei infected BALB/c mice breaks blood-brain-barrier and leads to cerebral malaria in an IL-12 dependent manner. Microbes Infect 2011; 13:828-36. [PMID: 21609776 DOI: 10.1016/j.micinf.2011.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/24/2011] [Accepted: 04/18/2011] [Indexed: 01/07/2023]
Abstract
A severe complication of Plasmodium infection is cerebral malaria, a condition mainly attributed to overwhelming inflammatory immune reactions of the host. Murine models differing in susceptibility to experimental cerebral malaria (ECM) allow detailed studies of the host response. We show that ECM- resistant BALB/c mice were driven into interferon gamma- and IL-12-dependent ECM and subsequent death if they received CpG-oligonucleotides after Plasmodium berghei ANKA (PbA) infection. CpG application triggered production of pro-inflammatory cytokines systemically as well in spleen and brain and induced neuropathological symptoms, leading to increased mortality. Experiments with genetically deficient mice confirmed the role of IFN-γ and IL-12 during CpG-triggered immunopathology. Furthermore, the application of CpG and downstream production of pro-inflammatory cytokines contributed to the break down of the blood brain barrier visualized by Evan's Blue, comparable to PbA-infected C57BL/6 mice. Taken together, resistance of BALB/c mice towards ECM development could be altered through induction of pro-inflammatory cytokines by CpG. Therefore, approaches discussed earlier to induce pro-inflammatory immune reactions for malaria protection should be considered with caution.
Collapse
Affiliation(s)
- Kim E Schmidt
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
131
|
Finney CA, Hawkes CA, Kain DC, Dhabangi A, Musoke C, Cserti-Gazdewich C, Oravecz T, Liles WC, Kain KC. S1P is associated with protection in human and experimental cerebral malaria. Mol Med 2011; 17:717-25. [PMID: 21556483 DOI: 10.2119/molmed.2010.00214] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 05/04/2011] [Indexed: 11/06/2022] Open
Abstract
Cerebral malaria (CM) is associated with excessive inflammatory responses and endothelial activation. Sphingosine 1-phosphate (S1P) is a signaling sphingolipid implicated in regulating vascular integrity, inflammation and T-cell migration. We hypothesized that altered S1P signaling during malaria contributes to endothelial activation and inflammation, and show that plasma S1P levels were decreased in Ugandan children with CM compared with children with uncomplicated malaria. Using the Plasmodium berghei ANKA (PbA) model of experimental CM (ECM), we demonstrate that humanized S1P lyase (hS1PL)(-/-) mice with reduced S1P lyase activity (resulting in increased bio-available S1P) had improved survival compared with wild-type littermates. Prophylactic and therapeutic treatment of infected mice with compounds that modulate the S1P pathway and are in human trials for other conditions (FTY720 or LX2931) significantly improved survival in ECM. FTY720 treatment improved vascular integrity as indicated by reduced levels of soluble intercellular adhesion molecule (sICAM), increased angiopoietin 1 (Ang1) (regulator of endothelial quiescence) levels, and decreased Evans blue dye leakage into brain parenchyma. Furthermore, treatment with FTY720 decreased IFNγ levels in plasma as well as CD4(+) and CD8(+) T-cell infiltration into the brain. Finally, when administered during infection in combination with artesunate, FTY720 treatment resulted in increased survival to ECM. These findings implicate dysregulation of the S1P pathway in the pathogenesis of human and murine CM and suggest a novel therapeutic strategy to improve clinical outcome in severe malaria.
Collapse
Affiliation(s)
- Constance Am Finney
- SA Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network and University of Toronto, Canada Faculty of Medicine, University of Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B. Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 2011; 37:24-39. [PMID: 20946472 DOI: 10.1111/j.1365-2990.2010.01140.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leucocyte migration into the central nervous system is a key stage in the development of multiple sclerosis. While much has been learnt regarding the sequential steps of leucocyte capture, adhesion and migration across the vasculature, the molecular basis of leucocyte extravasation is only just being unravelled. It is now recognized that bidirectional crosstalk between the immune cell and endothelium is an essential element in mediating diapedesis during both normal immune surveillance and under inflammatory conditions. The induction of various signalling networks, through engagement of cell surface molecules such as integrins on the leucocyte and immunoglobulin superfamily cell adhesion molecules on the endothelial cell, play a major role in determining the pattern and route of leucocyte emigration. In this review we discuss the extent of our knowledge regarding leucocyte migration across the blood-brain barrier and in particular the endothelial cell signalling pathways contributing to this process.
Collapse
Affiliation(s)
- J Greenwood
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
133
|
Host fibrinogen stably bound to hemozoin rapidly activates monocytes via TLR-4 and CD11b/CD18-integrin: a new paradigm of hemozoin action. Blood 2011; 117:5674-82. [PMID: 21460246 DOI: 10.1182/blood-2010-10-312413] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Natural hemozoin (nHZ), prepared after schizogony, consists of crystalline ferriprotoporphyrin-IX dimers from undigested heme bound to host and parasite proteins and lipids. Phagocytosed nHZ alters important functions of host phagocytes. Most alterations are long-term effects. We show that host fibrinogen (FG) was constantly present (at ~ 1 FG per 25 000 HZ-heme molecules) and stably bound to nHZ from plasma-cultured parasites. FG was responsible for the rapid 100-fold stimulation of reactive oxygen species production and 50-fold increase of TNF and monocyte chemotactic protein 1 by human monocytes. Those effects, starting within minutes after nHZ cell contact, were because of interaction of FG with FG-receptors TLR4 and integrin CD11b/CD18. Receptor blockage by specific mAbs or removal of FG from nHZ abrogated the effects. nHZ-opsonizing IgGs contribute to the stimulatory response but are not essential for FG effects. Immediate increase in reactive oxygen species and TNF may switch on previously described long-term effects of nHZ, largely because of HZ-generated lipo-peroxidation products 15(S,R)-hydroxy-6,8,11,13-eicosatetraenoic acid and 4-hydroxynonenal. The FG/HZ effects mediated by TLR4/integrins represent a novel paradigm of nHZ activity and allow expansion of nHZ effects to nonphagocytic cells, such as endothelia and airway epithelia, and lead to a better understanding of organ pathology in malaria.
Collapse
|
134
|
Erdman LK, Dhabangi A, Musoke C, Conroy AL, Hawkes M, Higgins S, Rajwans N, Wolofsky KT, Streiner DL, Liles WC, Cserti-Gazdewich CM, Kain KC. Combinations of host biomarkers predict mortality among Ugandan children with severe malaria: a retrospective case-control study. PLoS One 2011; 6:e17440. [PMID: 21364762 PMCID: PMC3045453 DOI: 10.1371/journal.pone.0017440] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/02/2011] [Indexed: 01/17/2023] Open
Abstract
Background Severe malaria is a leading cause of childhood mortality in Africa. However, at presentation, it is difficult to predict which children with severe malaria are at greatest risk of death. Dysregulated host inflammatory responses and endothelial activation play central roles in severe malaria pathogenesis. We hypothesized that biomarkers of these processes would accurately predict outcome among children with severe malaria. Methodology/Findings Plasma was obtained from children with uncomplicated malaria (n = 53), cerebral malaria (n = 44) and severe malarial anemia (n = 59) at time of presentation to hospital in Kampala, Uganda. Levels of angiopoietin-2, von Willebrand Factor (vWF), vWF propeptide, soluble P-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), soluble endoglin, soluble FMS-like tyrosine kinase-1 (Flt-1), soluble Tie-2, C-reactive protein, procalcitonin, 10 kDa interferon gamma-induced protein (IP-10), and soluble triggering receptor expressed on myeloid cells-1 (TREM-1) were determined by ELISA. Receiver operating characteristic (ROC) curve analysis was used to assess predictive accuracy of individual biomarkers. Six biomarkers (angiopoietin-2, soluble ICAM-1, soluble Flt-1, procalcitonin, IP-10, soluble TREM-1) discriminated well between children who survived severe malaria infection and those who subsequently died (area under ROC curve>0.7). Combinational approaches were applied in an attempt to improve accuracy. A biomarker score was developed based on dichotomization and summation of the six biomarkers, resulting in 95.7% (95% CI: 78.1–99.9) sensitivity and 88.8% (79.7–94.7) specificity for predicting death. Similar predictive accuracy was achieved with models comprised of 3 biomarkers. Classification tree analysis generated a 3-marker model with 100% sensitivity and 92.5% specificity (cross-validated misclassification rate: 15.4%, standard error 4.9%). Conclusions We identified novel host biomarkers of pediatric severe and fatal malaria (soluble TREM-1 and soluble Flt-1) and generated simple biomarker combinations that accurately predicted death in an African pediatric population. While requiring validation in further studies, these results suggest the utility of combinatorial biomarker strategies as prognostic tests for severe malaria.
Collapse
Affiliation(s)
- Laura K. Erdman
- S.A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital-University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aggrey Dhabangi
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Charles Musoke
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrea L. Conroy
- S.A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital-University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Michael Hawkes
- S.A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital-University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Higgins
- S.A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital-University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Nimerta Rajwans
- S.A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital-University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kayla T. Wolofsky
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - David L. Streiner
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - W. Conrad Liles
- S.A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital-University Health Network, University of Toronto, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | - Christine M. Cserti-Gazdewich
- Laboratory Medicine Program (Transfusion Medicine), University Health Network/University of Toronto, Toronto, Ontario, Canada
| | - Kevin C. Kain
- S.A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital-University Health Network, University of Toronto, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, Toronto General Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
135
|
Prato M, Gallo V, Giribaldi G, Aldieri E, Arese P. Role of the NF-κB transcription pathway in the haemozoin- and 15-HETE-mediated activation of matrix metalloproteinase-9 in human adherent monocytes. Cell Microbiol 2011; 12:1780-91. [PMID: 20678173 DOI: 10.1111/j.1462-5822.2010.01508.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Haemozoin (HZ, malarial pigment) is a crystalline ferriprotoporphyrin IX polymer derived from undigested host haemoglobin haem, present in late stages of Plasmodium falciparum-parasitized RBCs and in residual bodies shed after schizogony. It was shown previously that phagocytosed HZ or HZ-containing trophozoites increased monocyte matrix metalloproteinase-9 (MMP-9) activity and enhanced production of MMP-9-related cytokines TNF and IL-1beta. Here we show that in human monocytes the HZ/trophozoite phagocytosis effects and their recapitulation by 15(S,R)-hydroxy-6,8,11,13-eicosatetraenoic acid (15-HETE), a potent lipoperoxidation derivative generated by HZ from arachidonic acid via haem catalysis, were mediated via activation of NF-κB transcription pathway. After phagocytosis of HZ/trophozoites or treatment with 15-HETE, the NF-κB complex migrated to the nuclear fraction while the inhibitory cytosolic IκBalpha protein was phosphorylated and degraded. All HZ/trophozoite/15-HETE effects on MMP-9 activity and TNF/IL-1beta production were abrogated by quercetin, artemisinin and parthenolide, inhibitors of IκBalpha phosphorylation and subsequent degradation, NF-κB nuclear translocation, and NF-κB-p65 binding to DNA respectively. In conclusion, enhanced activation of MMP-9, and release of pro-inflammatory cytokines TNF and IL-1beta, a triad of effects involved in malaria pathogenesis, elicited in human monocytes by trophozoite and HZ phagocytosis and recapitulated by 15-HETE, appear to be causally connected to persisting activation of the NF-κB system.
Collapse
Affiliation(s)
- Mauro Prato
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Via Santena 5 bis, 10126 Torino, Italy
| | | | | | | | | |
Collapse
|
136
|
Core A, Hempel C, Kurtzhals JA, Penkowa M. Plasmodium berghei ANKA: Erythropoietin activates neural stem cells in an experimental cerebral malaria model. Exp Parasitol 2011; 127:500-5. [DOI: 10.1016/j.exppara.2010.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/31/2010] [Accepted: 09/22/2010] [Indexed: 10/18/2022]
|
137
|
Zougbédé S, Miller F, Ravassard P, Rebollo A, Cicéron L, Couraud PO, Mazier D, Moreno A. Metabolic acidosis induced by Plasmodium falciparum intraerythrocytic stages alters blood-brain barrier integrity. J Cereb Blood Flow Metab 2011; 31:514-26. [PMID: 20683453 PMCID: PMC3049507 DOI: 10.1038/jcbfm.2010.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of cerebral malaria (CM) remains largely unknown. There is growing evidence that combination of both parasite and host factors could be involved in blood-brain barrier (BBB) breakdown. However, lack of adequate in vitro model of human BBB so far hampered molecular studies. In this article, we propose the use of hCMEC/D3 cells, a well-established human cerebral microvascular endothelial cell (EC) line, to study BBB breakdown induced by Plasmodium falciparum-parasitized red blood cells and environmental conditions. We show that coculture of parasitized erythrocytes with hCMEC/D3 cells induces cell adhesion and paracellular permeability increase, which correlates with disorganization of zonula occludens protein 1 expression pattern. Permeability increase and modification of tight junction proteins distribution are cytoadhesion independent. Finally, we show that permeability of hCMEC/D3 cell monolayers is mediated through parasite induced metabolic acidosis, which in turns correlates with apoptosis of parasitized erythrocytes. This new coculture model represents a very useful tool, which will improve the knowledge of BBB breakdown and the development of adjuvant therapies, together with antiparasitic drugs.
Collapse
|
138
|
Conroy AL, Phiri H, Hawkes M, Glover S, Mallewa M, Seydel KB, Taylor TE, Molyneux ME, Kain KC. Endothelium-based biomarkers are associated with cerebral malaria in Malawian children: a retrospective case-control study. PLoS One 2010; 5:e15291. [PMID: 21209923 PMCID: PMC3012131 DOI: 10.1371/journal.pone.0015291] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/10/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Differentiating cerebral malaria (CM) from other causes of serious illness in African children is problematic, owing to the non-specific nature of the clinical presentation and the high prevalence of incidental parasitaemia. CM is associated with endothelial activation. In this study we tested the hypothesis that endothelium-derived biomarkers are associated with the pathophysiology of severe malaria and may help identify children with CM. METHODS AND FINDINGS Plasma samples were tested from children recruited with uncomplicated malaria (UM; n = 32), cerebral malaria with retinopathy (CM-R; n = 38), clinically defined CM without retinopathy (CM-N; n = 29), or non-malaria febrile illness with decreased consciousness (CNS; n = 24). Admission levels of angiopoietin-2 (Ang-2), Ang-1, soluble Tie-2 (sTie-2), von Willebrand factor (VWF), its propeptide (VWFpp), vascular endothelial growth factor (VEGF), soluble ICAM-1 (sICAM-1) and interferon-inducible protein 10 (IP-10) were measured by ELISA. Children with CM-R had significantly higher median levels of Ang-2, Ang-2:Ang-1, sTie-2, VWFpp and sICAM-1 compared to children with CM-N. Children with CM-R had significantly lower median levels of Ang-1 and higher median concentrations of Ang-2:Ang-1, sTie-2, VWF, VWFpp, VEGF and sICAM-1 compared to UM, and significantly lower median levels of Ang-1 and higher median levels of Ang-2, Ang-2:Ang-1, VWF and VWFpp compared to children with fever and altered consciousness due to other causes. Ang-1 was the best discriminator between UM and CM-R and between CNS and CM-R (areas under the ROC curve of 0.96 and 0.93, respectively). A comparison of biomarker levels in CM-R between admission and recovery showed uniform increases in Ang-1 levels, suggesting this biomarker may have utility in monitoring clinical response. CONCLUSIONS These results suggest that endothelial proteins are informative biomarkers of malarial disease severity. These results require validation in prospective studies to confirm that this group of biomarkers improves the diagnostic accuracy of CM from similar conditions causing fever and altered consciousness.
Collapse
Affiliation(s)
- Andrea L. Conroy
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Happy Phiri
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Michael Hawkes
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Simon Glover
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Mac Mallewa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- School of Tropical Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Karl B. Seydel
- Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Internal Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Terrie E. Taylor
- Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Internal Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Malcolm E. Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- College of Medicine, University of Malawi, Blantyre, Malawi
- School of Tropical Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kevin C. Kain
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
139
|
Medana IM, Day NPJ, Roberts R, Sachanonta N, Turley H, Pongponratn E, Hien TT, White NJ, Turner GDH. Induction of the vascular endothelial growth factor pathway in the brain of adults with fatal falciparum malaria is a non-specific response to severe disease. Histopathology 2010; 57:282-94. [PMID: 20716170 PMCID: PMC2941727 DOI: 10.1111/j.1365-2559.2010.03619.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Medana I M, Day N P J, Roberts R, Sachanonta N, Turley H, Pongponratn E, Hien T T, White N J. & Turner G D H (2010) Histopathology57, 282–294 Induction of the vascular endothelial growth factor pathway in the brain of adults with fatal falciparum malaria is a non-specific response to severe disease
Collapse
Affiliation(s)
- Isabelle M Medana
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Giribaldi G, Prato M, Ulliers D, Gallo V, Schwarzer E, Akide-Ndunge OB, Valente E, Saviozzi S, Calogero RA, Arese P. Involvement of inflammatory chemokines in survival of human monocytes fed with malarial pigment. Infect Immun 2010; 78:4912-21. [PMID: 20732999 PMCID: PMC2976350 DOI: 10.1128/iai.00455-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/11/2010] [Accepted: 08/05/2010] [Indexed: 11/20/2022] Open
Abstract
Hemozoin (HZ)-fed monocytes are exposed to strong oxidative stress, releasing large amounts of peroxidation derivatives with subsequent impairment of numerous functions and overproduction of proinflammatory cytokines. However, the histopathology at autopsy of tissues from patients with severe malaria showed abundant HZ in Kupffer cells and other tissue macrophages, suggesting that functional impairment and cytokine production are not accompanied by cell death. The aim of the present study was to clarify the role of HZ in cell survival, focusing on the qualitative and temporal expression patterns of proinflammatory and antiapoptotic molecules. Immunocytochemical and flow cytometric analyses showed that the long-term viability of human monocytes was unaffected by HZ. Short-term analysis by macroarray of a complete panel of cytokines and real-time reverse transcription (RT)-PCR experiments showed that HZ immediately induced interleukin-1β (IL-1β) gene expression, followed by transcription of eight additional chemokines (IL-8, epithelial cell-derived neutrophil-activating peptide 78 [ENA-78], growth-regulated oncogene α [GROα], GROβ, GROγ, macrophage inflammatory protein 1α [MIP-1α], MIP-1β, and monocyte chemoattractant protein 1 [MCP-1]), two cytokines (tumor necrosis factor alpha [TNF-α] and IL-1receptor antagonist [IL-1RA]), and the cytokine/chemokine-related proteolytic enzyme matrix metalloproteinase 9 (MMP-9). Furthermore, real-time RT-PCR showed that 15-HETE, a potent lipoperoxidation derivative generated by HZ through heme catalysis, recapitulated the effects of HZ on the expression of four of the chemokines. Intermediate-term investigation by Western blotting showed that HZ increased expression of HSP27, a chemokine-related protein with antiapoptotic properties. Taken together, the present data suggest that apoptosis of HZ-fed monocytes is prevented through a cascade involving 15-HETE-mediated upregulation of IL-1β transcription, rapidly sustained by chemokine, TNF-α, MMP-9, and IL-1RA transcription and upregulation of HSP27 protein expression.
Collapse
Affiliation(s)
- Giuliana Giribaldi
- Department of Genetics, Biology and Biochemistry, University of Torino Medical School, Turin, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
A rapid murine coma and behavior scale for quantitative assessment of murine cerebral malaria. PLoS One 2010; 5. [PMID: 20957049 PMCID: PMC2948515 DOI: 10.1371/journal.pone.0013124] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/20/2010] [Indexed: 11/19/2022] Open
Abstract
Background Cerebral malaria (CM) is a neurological syndrome that includes coma and seizures following malaria parasite infection. The pathophysiology is not fully understood and cannot be accounted for by infection alone: patients still succumb to CM, even if the underlying parasite infection has resolved. To that effect, there is no known adjuvant therapy for CM. Current murine CM (MCM) models do not allow for rapid clinical identification of affected animals following infection. An animal model that more closely mimics the clinical features of human CM would be helpful in elucidating potential mechanisms of disease pathogenesis and evaluating new adjuvant therapies. Methodology/Principal Findings A quantitative, rapid murine coma and behavior scale (RMCBS) comprised of 10 parameters was developed to assess MCM manifested in C57BL/6 mice infected with Plasmodium berghei ANKA (PbA). Using this method a single mouse can be completely assessed within 3 minutes. The RMCBS enables the operator to follow the evolution of the clinical syndrome, validated here by correlations with intracerebral hemorrhages. It provides a tool by which subjects can be identified as symptomatic prior to the initiation of trial treatment. Conclusions/Significance Since the RMCBS enables an operator to rapidly follow the course of disease, label a subject as affected or not, and correlate the level of illness with neuropathologic injury, it can ultimately be used to guide the initiation of treatment after the onset of cerebral disease (thus emulating the situation in the field). The RMCBS is a tool by which an adjuvant therapy can be objectively assessed.
Collapse
|
142
|
Neuroinflammation and brain infections: historical context and current perspectives. ACTA ACUST UNITED AC 2010; 66:152-73. [PMID: 20883721 DOI: 10.1016/j.brainresrev.2010.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 12/25/2022]
Abstract
An overview of current concepts on neuroinflammation and on the dialogue between neurons and non-neuronal cells in three important infections of the central nervous systems (rabies, cerebral malaria, and human African trypanosomiasis or sleeping sickness) is here presented. Large numbers of cases affected by these diseases are currently reported. In the context of an issue dedicated to Camillo Golgi, historical notes on seminal discoveries on these diseases are also presented. Neuroinflammation is currently closely associated with pathogenetic mechanisms of chronic neurodegenerative diseases. Neuroinflammatory signaling in brain infections is instead relatively neglected in the neuroscience community, despite the fact that the above infections provide paradigmatic examples of alterations of the intercellular crosstalk between neurons and non-neuronal cells. In rabies, strategies of immune evasion of the host lead to silencing neuroinflammatory signaling. In the intravascular pathology which characterizes cerebral malaria, leukocytes and Plasmodium do not enter the brain parenchyma. In sleeping sickness, leukocytes and African trypanosomes invade the brain parenchyma at an advanced stage of infection. Both the latter pathologies leave open many questions on the targeting of neuronal functions and on the pathogenetic role of non-neuronal cells, and in particular astrocytes and microglia, in these diseases. All three infections are hallmarked by very severe clinical pictures and relative sparing of neuronal structure. Multidisciplinary approaches and a concerted action of the neuroscience community are needed to shed light on intercellular crosstalk in these dreadful brain diseases. Such effort could also lead to new knowledge on non-neuronal mechanisms which determine neuronal death or survival.
Collapse
|
143
|
Jambou R, Combes V, Jambou MJ, Weksler BB, Couraud PO, Grau GE. Plasmodium falciparum adhesion on human brain microvascular endothelial cells involves transmigration-like cup formation and induces opening of intercellular junctions. PLoS Pathog 2010; 6:e1001021. [PMID: 20686652 PMCID: PMC2912387 DOI: 10.1371/journal.ppat.1001021] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 06/30/2010] [Indexed: 11/18/2022] Open
Abstract
Cerebral malaria, a major cause of death during malaria infection, is characterised by the sequestration of infected red blood cells (IRBC) in brain microvessels. Most of the molecules implicated in the adhesion of IRBC on endothelial cells (EC) are already described; however, the structure of the IRBC/EC junction and the impact of this adhesion on the EC are poorly understood. We analysed this interaction using human brain microvascular EC monolayers co-cultured with IRBC. Our study demonstrates the transfer of material from the IRBC to the brain EC plasma membrane in a trogocytosis-like process, followed by a TNF-enhanced IRBC engulfing process. Upon IRBC/EC binding, parasite antigens are transferred to early endosomes in the EC, in a cytoskeleton-dependent process. This is associated with the opening of the intercellular junctions. The transfer of IRBC antigens can thus transform EC into a target for the immune response and contribute to the profound EC alterations, including peri-vascular oedema, associated with cerebral malaria.
Collapse
Affiliation(s)
- Ronan Jambou
- Vascular Immunology Unit, Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
144
|
Elsheikha HM, Khan NA. Protozoa traversal of the blood–brain barrier to invade the central nervous system. FEMS Microbiol Rev 2010; 34:532-53. [DOI: 10.1111/j.1574-6976.2010.00215.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
145
|
Rao A, Kumar MK, Joseph T, Bulusu G. Cerebral malaria: insights from host-parasite protein-protein interactions. Malar J 2010; 9:155. [PMID: 20529383 PMCID: PMC2891816 DOI: 10.1186/1475-2875-9-155] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 06/09/2010] [Indexed: 11/17/2022] Open
Abstract
Background Cerebral malaria is a form of human malaria wherein Plasmodium falciparum-infected red blood cells adhere to the blood capillaries in the brain, potentially leading to coma and death. Interactions between parasite and host proteins are important in understanding the pathogenesis of this deadly form of malaria. It is, therefore, necessary to study available protein-protein interactions to identify lesser known interactions that could throw light on key events of cerebral malaria. Methods Sequestration, haemostasis dysfunction, systemic inflammation and neuronal damage are key processes of cerebral malaria. Key events were identified from literature as being crucial to these processes. An integrated interactome was created using available experimental and predicted datasets as well as from literature. Interactions from this interactome were filtered based on Gene Ontology and tissue-specific annotations, and further analysed for relevance to the key events. Results PfEMP1 presentation, platelet activation and astrocyte dysfunction were identified as the key events influencing the disease. 48896 host-parasite along with other host-parasite, host-host and parasite-parasite protein-protein interactions obtained from a disease-specific corpus were combined to form an integrated interactome. Filtering of the interactome resulted in five host-parasite PPI, six parasite-parasite and two host-host PPI. The analysis of these interactions revealed the potential significance of apolipoproteins and temperature/Hsp expression on efficient PfEMP1 presentation; role of MSP-1 in platelet activation; effect of parasite proteins in TGF-β regulation and the role of albumin in astrocyte dysfunction. Conclusions This work links key host-parasite, parasite-parasite and host-host protein-protein interactions to key processes of cerebral malaria and generates hypotheses for disease pathogenesis based on a filtered interaction dataset. These hypotheses provide novel and significant insights to cerebral malaria.
Collapse
Affiliation(s)
- Aditya Rao
- Life Sciences Division, TCS Innovation Labs Hyderabad, Tata Consultancy Services Ltd, 1, Software Units Layout, Madhapur, Hyderabad-500081, India.
| | | | | | | |
Collapse
|
146
|
Hunt NH, Grau GE, Engwerda C, Barnum SR, van der Heyde H, Hansen DS, Schofield L, Golenser J. Murine cerebral malaria: the whole story. Trends Parasitol 2010; 26:272-4. [DOI: 10.1016/j.pt.2010.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 01/10/2023]
|
147
|
Abstract
The past decade has seen an unprecedented surge in political commitment and international funding for malaria control. Coverage with existing control methods (ie, vector control and artemisinin-based combination therapy) is increasing, and, in some Asian and African countries, childhood morbidity and mortality from malaria caused by Plasmodium falciparum are starting to decline. Consequently, there is now renewed interest in the possibility of malaria elimination. But the ability of the parasite to develop resistance to antimalarial drugs and increasing insecticide resistance of the vector threaten to reduce and even reverse current gains. Plasmodium vivax, with its dormant liver stage, will be particularly difficult to eliminate, and access to effective and affordable treatment at community level is a key challenge. New drugs and insecticides are needed urgently, while use of an effective vaccine as part of national malaria control programmes remains an elusive goal. This Seminar, which is aimed at clinicians who manage children with malaria, especially in resource-poor settings, discusses present knowledge and controversies in relation to the epidemiology, pathophysiology, diagnosis, treatment, and prevention of malaria in children.
Collapse
Affiliation(s)
- Jane Crawley
- Medical Research Council Clinical Trials Unit, London, UK
| | | | | | | |
Collapse
|
148
|
Lacerda-Queiroz N, Rodrigues DH, Vilela MC, Miranda ASD, Amaral DCG, Camargos ERDS, Carvalho LJDM, Howe CL, Teixeira MM, Teixeira AL. Inflammatory changes in the central nervous system are associated with behavioral impairment in Plasmodium berghei (strain ANKA)-infected mice. Exp Parasitol 2010; 125:271-8. [PMID: 20138873 DOI: 10.1016/j.exppara.2010.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 12/13/2022]
Abstract
Experimental cerebral malaria is a neuroinflammatory condition that results from the host immune response to the parasite. Using intravital microscopy, we investigated leukocyte recruitment in the brain microcirculation and the temporal relationship of this process to the behavioral changes observed in Plasmodium berghei (strain ANKA)-infected C57Bl/6 mice. We found that leukocyte recruitment was increased from day 5 post-infection (p.i.) onwards. Histopathological changes and increased levels of inflammatory cytokines in the brain were also observed. Behavioral performance evaluated by the SHIRPA protocol showed functional impairment from day 6 p.i. onwards. Thus, early leukocyte migration into the brain and associated inflammatory changes may be involved in neurological impairment in parasite-infected C57Bl/6 mice.
Collapse
Affiliation(s)
- Norinne Lacerda-Queiroz
- Department of Cellular Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Conroy AL, Lafferty EI, Lovegrove FE, Krudsood S, Tangpukdee N, Liles WC, Kain KC. Whole blood angiopoietin-1 and -2 levels discriminate cerebral and severe (non-cerebral) malaria from uncomplicated malaria. Malar J 2009; 8:295. [PMID: 20003529 PMCID: PMC2806378 DOI: 10.1186/1475-2875-8-295] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 12/15/2009] [Indexed: 12/02/2022] Open
Abstract
Background Severe and cerebral malaria are associated with endothelial activation. Angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2) are major regulators of endothelial activation and integrity. The aim of this study was to investigate the clinical utility of whole blood angiopoietin (ANG) levels as biomarkers of disease severity in Plasmodium falciparum malaria. Methods The utility of whole blood ANG levels was examined in Thai patients to distinguish cerebral (CM; n = 87) and severe (non-cerebral) malaria (SM; n = 36) from uncomplicated malaria (UM; n = 70). Comparative statistics are reported using a non-parametric univariate analysis (Kruskal-Wallis test or Chi-squared test, as appropriate). Multivariate binary logistic regression was used to examine differences in whole blood protein levels between groups (UM, SM, CM), adjusting for differences due to ethnicity, age, parasitaemia and sex. Receiver operating characteristic curve analysis was used to assess the diagnostic accuracy of the ANGs in their ability to distinguish between UM, SM and CM. Cumulative organ injury scores were obtained for patients with severe disease based on the presence of acute renal failure, jaundice, severe anaemia, circulatory collapse or coma. Results ANG-1 and ANG-2 were readily detectable in whole blood. Compared to UM there were significant decreases in ANG-1 (p < 0.001) and significant increases in ANG-2 (p < 0.001) levels and the ratio of ANG-2: ANG-1 (p < 0.001) observed in patients with SM and CM. This effect was independent of covariates (ethnicity, age, parasitaemia, sex). Further, there was a significant decrease in ANG-1 levels in patients with SM (non-cerebral) versus CM (p < 0.001). In participants with severe disease, ANG-2, but not ANG-1, levels correlated with cumulative organ injury scores; however, ANG-1 correlated with the presence of renal dysfunction and coma. Receiver operating characteristic curve analysis demonstrated that the level of ANG-1, the level of ANG-2 or the ratio of ANG-2: ANG-1 discriminated between individuals with UM and SM (area under the curve, p-value: ANG-2, 0.763, p < 0.001; ANG-1, 0.884, p < 0.001; Ratio, 0.857, p < 0.001) or UM and CM (area under the curve, p-value: ANG-2, 0.772, p < 0.001; ANG-1, 0.778, p < 0.001; Ratio, 0.820, p < 0.001). Conclusions These results suggest that whole blood ANG-1/2 levels are promising clinically informative biomarkers of disease severity in malarial syndromes.
Collapse
Affiliation(s)
- Andrea L Conroy
- Sandra A, Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto ON, Canada
| | | | | | | | | | | | | |
Collapse
|
150
|
Suidan GL, Dickerson JW, Chen Y, McDole JR, Tripathi P, Pirko I, Seroogy KB, Johnson AJ. CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. THE JOURNAL OF IMMUNOLOGY 2009; 184:1031-40. [PMID: 20008293 DOI: 10.4049/jimmunol.0902773] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dysregulation of the blood-brain barrier (BBB) is a hallmark feature of numerous neurologic disorders as diverse as multiple sclerosis, stroke, epilepsy, viral hemorrhagic fevers, cerebral malaria, and acute hemorrhagic leukoencephalitis. CD8 T cells are one immune cell type that have been implicated in promoting vascular permeability in these conditions. Our laboratory has created a murine model of CD8 T cell-mediated CNS vascular permeability using a variation of the Theiler's murine encephalomyelitis virus system traditionally used to study multiple sclerosis. Previously, we demonstrated that CD8 T cells have the capacity to initiate astrocyte activation, cerebral endothelial cell tight junction protein alterations and CNS vascular permeability through a perforin-dependent process. To address the downstream mechanism by which CD8 T cells promote BBB dysregulation, in this study, we assess the role of vascular endothelial growth factor (VEGF) expression in this model. We demonstrate that neuronal expression of VEGF is significantly upregulated prior to, and coinciding with, CNS vascular permeability. Phosphorylation of fetal liver kinase-1 is significantly increased early in this process indicating activation of this receptor. Specific inhibition of neuropilin-1 significantly reduced CNS vascular permeability and fetal liver kinase-1 activation, and preserved levels of the cerebral endothelial cell tight junction protein occludin. Our data demonstrate that CD8 T cells initiate neuronal expression of VEGF in the CNS under neuroinflammatory conditions, and that VEGF may be a viable therapeutic target in neurologic disease characterized by inflammation-induced BBB disruption.
Collapse
Affiliation(s)
- Georgette L Suidan
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|