101
|
Öztürk AA, Namlı İ, Güleç K, Görgülü Ş. Design of Lamivudine Loaded Nanoparticles for Oral Application by Nano Spray Drying Method: A New Approach to use an Antiretroviral Drug for Lung Cancer Treatment. Comb Chem High Throughput Screen 2021; 23:1064-1079. [PMID: 32209039 DOI: 10.2174/1386207323666200325155020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 11/22/2022]
Abstract
AIMS To prepare lamivudine (LAM)-loaded-nanoparticles (NPs) that can be used in lung cancer treatment. To change the antiviral indication of LAM to anticancer. BACKGROUND The development of anticancer drugs is a difficult process. One approach to accelerate the availability of drugs is to reclassify drugs approved for other conditions as anticancer. The most common route of administration of anticancer drugs is intravenous injection. Oral administration of anticancer drugs may considerably change current treatment modalities of chemotherapy and improve the life quality of cancer patients. There is also a potentially significant economic advantage. OBJECTIVE To characterize the LAM-loaded-NPs and examine the anticancer activity. METHODS LAM-loaded-NPs were prepared using Nano Spray-Dryer. Properties of NPs were elucidated by particle size (PS), polydispersity index (PDI), zeta potential (ZP), SEM, encapsulation efficiency (EE%), dissolution, release kinetics, DSC and FT-IR. Then, the anticancer activity of all NPs was examined. RESULTS The PS values of the LAM-loaded-NPs were between 373 and 486 nm. All NPs prepared have spherical structure and positive ZP. EE% was in a range of 61-79%. NPs showed prolonged release and the release kinetics fitted to the Weibull model. NPs structures were clarified by DSC and FT-IR analysis. The results showed that the properties of NPs were directly related to the drug:polymer ratio of feed solution. NPs have potential anticancer properties against A549 cell line at low concentrations and non-toxic to CCD 19-Lu cell line. CONCLUSION NPs have potential anticancer properties against human lung adenocarcinoma cells and may induce cell death effectively and be a potent modality to treat this type of cancer. These experiments also indicate that our formulations are non-toxic to normal cells. It is clear that this study would bring a new perspective to cancer therapy.
Collapse
Affiliation(s)
- Ahmet Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - İrem Namlı
- Department of Pharmaceutical Technology, Graduate School of Health Sciences, Anadolu University, Eskisehir 26470, Turkey
| | - Kadri Güleç
- Department of Analytical Chemistry, Graduate School of Health Sciences, Anadolu University, Eskisehir 26470, Turkey
| | - Şennur Görgülü
- Department of Pharmaceutical Technology, Graduate School of Health Sciences, Anadolu University, Eskisehir 26470, Turkey
| |
Collapse
|
102
|
Polysaccharide Matrices for the Encapsulation of Tetrahydrocurcumin-Potential Application as Biopesticide against Fusarium graminearum. Molecules 2021; 26:molecules26133873. [PMID: 34202905 PMCID: PMC8270288 DOI: 10.3390/molecules26133873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
Cereals are subject to contamination by pathogenic fungi, which damage grains and threaten public health with their mycotoxins. Fusarium graminearum and its mycotoxins, trichothecenes B (TCTBs), are especially targeted in this study. Recently, the increased public and political awareness concerning environmental issues tends to limit the use of traditional fungicides against these pathogens in favor of eco-friendlier alternatives. This study focuses on the development of biofungicides based on the encapsulation of a curcumin derivative, tetrahydrocurcumin (THC), in polysaccharide matrices. Starch octenylsuccinate (OSA-starch) and chitosan have been chosen since they are generally recognized as safe. THC has been successfully trapped into particles obtained through a spray-drying or freeze-drying processes. The particles present different properties, as revealed by visual observations and scanning electron microscopy. They are also different in terms of the amount and the release of encapsulated THC. Although freeze-dried OSA-starch has better trapped THC, it seems less able to protect the phenolic compound than spray-dried particles. Chitosan particles, both spray-dried and lyophilized, have shown promising antifungal properties. The IC50 of THC-loaded spray-dried chitosan particles is as low as 0.6 ± 0.3 g/L. These particles have also significantly decreased the accumulation of TCTBs by 39%.
Collapse
|
103
|
Gomez M, Archer M, Barona D, Wang H, Ordoubadi M, Bin Karim S, Carrigy NB, Wang Z, McCollum J, Press C, Gerhardt A, Fox CB, Kramer RM, Vehring R. Microparticle encapsulation of a tuberculosis subunit vaccine candidate containing a nanoemulsion adjuvant via spray drying. Eur J Pharm Biopharm 2021; 163:23-37. [PMID: 33753213 PMCID: PMC8096719 DOI: 10.1016/j.ejpb.2021.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022]
Abstract
Spray drying is a technique that can be used to stabilize biopharmaceuticals, such as vaccines, within dry particles. Compared to liquid pharmaceutical products, dry powder has the potential to reduce costs associated with refrigerated storage and transportation. In this study, spray drying was investigated for processing an adjuvanted tuberculosis subunit vaccine, formulated as an oil-in-water nanoemulsion, into a dry powder composed of microparticles. Applying in-silico approaches to the development of formulation and processing conditions, successful encapsulation of the adjuvanted vaccine within amorphous microparticles was achieved in only one iteration, with high retention (>90%) of both the antigen and adjuvant system. Moisture-controlled stability studies on the powder were conducted over 26 months at temperatures up to 40 °C. Results showed that the powder was physically stable after 26 months of storage for all tested temperatures. Adjuvant system integrity was maintained at temperatures up to 25 °C after 26 months and after one month of storage at 40 °C. The spray-dried product demonstrated improved antigen thermostability when stored above refrigerated temperatures as compared to the liquid product. These results demonstrate the feasibility of spray drying as a method of encapsulating and stabilizing an adjuvanted vaccine.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - David Barona
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Shabab Bin Karim
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Nicholas B Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Zheng Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Chris Press
- Infectious Disease Research Institute, Seattle, WA, USA
| | | | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ryan M Kramer
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
104
|
Single step nanospray drying preparation technique of gabapentin-loaded nanoparticles-mediated brain delivery for effective treatment of PTZ-induced seizures. Int J Pharm 2021; 602:120604. [PMID: 33862132 DOI: 10.1016/j.ijpharm.2021.120604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
In the present study, gabapentin (GBP)-loaded chitosan nanosized particles were fabricated applying the nanospray drying technique. Different preparation parameters (spray mesh diameter, chitosan concentration and presence of D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) were studied while fixing other parameters (spraying rate, inlet temperature and gas flow rate). An optimized formulation with a particle size 107 ± 13 nm was obtained upon spraying 0.1% (w/v) chitosan solution containing 0.05% (w/v) of TPGS utilizing the small nozzle (4 μm spray mesh hole size). Drug entrapment efficiency and yield were as high as 95% and 83%, respectively. A 98.1 ± 6.1% (w/w) cumulative drug release was recorded after 2 h. Confocal laser scanning microscopy showed higher fluorescent dye penetration into brain tissue following intranasal administration of Rhodamine B labeled spray dried chitosan nanoparticles (NPs) as compared to Rhodamine B solution. Pentylenetetrazole (PTZ) was used to induce convulsions in rats through elevating seizure stages, releasing neuroinflammatory mediators and reducing excitatory amino acid transporter 2 (EAAT 2) and γ-aminobutyric acid (GABA) brain contents. Nanospray dried GBP-loaded chitosan NPs reduced seizure score, neuroinflammation; TNF-α and TGF-β, elevated EAAT 2 and GABA as well as decreased degeneration in pyramidal neurons compared to marketed product Conventin® capsules. Thus, it can be concluded from the aforementioned data that nanospray dried GBP-loaded chitosan NPs could comprise an appropriate treatment of epilepsy.
Collapse
|
105
|
Verma V, Ryan KM, Padrela L. Production and isolation of pharmaceutical drug nanoparticles. Int J Pharm 2021; 603:120708. [PMID: 33992712 DOI: 10.1016/j.ijpharm.2021.120708] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022]
Abstract
Nanosizing of pharmaceutical drug particles is one of the most important drug delivery platforms approaches for the commercial development of poorly water-soluble drug molecules. Though nanosizing of drug particles has been proven to greatly enhance drugs dissolution rate and apparent solubility, nanosized materials have presented significant challenges for their formulation as solid dosage forms (e.g. tablets, capsules). This is due to the strong Van der Waals attraction forces between dry nanoparticles leading to aggregation, cohesion, and consequently poor flowability. In this review, the broad area of nanomedicines is overviewed with the primary focus on drug nanocrystals and the top-down and bottom-up methods used in their fabrication. The review also looks at how nanosuspensions of pharmaceutical drugs are generated and stabilised, followed by subsequent strategies for isolation of the nanoparticles. A perspective on the future outlook for drug nanocrystals is also presented.
Collapse
Affiliation(s)
- Vivek Verma
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kevin M Ryan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Luis Padrela
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
106
|
Akbari-Alavijeh S, Shaddel R, Jafari SM. In vivo assessments for predicting the bioavailability of nanoencapsulated food bioactives and the safety of nanomaterials. Crit Rev Food Sci Nutr 2021; 62:7460-7478. [PMID: 33938781 DOI: 10.1080/10408398.2021.1915239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Use of nano-sized materials to design novel delivery systems is actually a double-edged sword regarding the enhancement of absorption and bioavailability of encapsulated bioactives as well as the unpredictable phenomena inside the living cells causing health concerns. So, comprehensive investigations on the use of nanomaterials in foods and their biological fate are needed. To reach this goal, both in vitro and in vivo techniques have been extensively applied. Besides the in vitro models such as cell culture and yeast/bacteria, different live animal models like mice, rat, Drosophila melanogaster, Caenorhabditis elegans, Zebrafish and dog can be applied to study bioavailability and safety of nanodelivery systems. However, considering the low correlation between the achieved results of in vitro and in vivo assays, in vivo tests are the first priority due to providing a real physiological condition. On the other hand, uncorrelated results by in vivo assays represent a serious problem to compare them. To defeat the issues in setting an in vivo research for the nanodelivery systems, all restrictions and FDA regulations is likely to be considered to improve the assays authenticity. This review takes a comprehensive look at the different types of in vivo assays and model organisms that has been utilized for the investigation of bioavailability, release profile and possible toxicity of food-based nanomaterials so far.
Collapse
Affiliation(s)
- Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rezvan Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
107
|
de Oliveira WQ, Neri-Numa IA, Arruda HS, Lopes AT, Pelissari FM, Barros FFC, Pastore GM. Special emphasis on the therapeutic potential of microparticles with antidiabetic effect: Trends and possible applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
108
|
Akbarbaglu Z, Peighambardoust SH, Sarabandi K, Jafari SM. Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chem 2021; 359:129965. [PMID: 33975145 DOI: 10.1016/j.foodchem.2021.129965] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
Spray-drying is known as a common and economical technique for the encapsulation of various nutrients and bioactive compounds. However, shear and thermal tensions during atomization and dehydration, as well as physicochemical instability during storage, result in a loss of these compounds. As a solution, bioactives are stabilized into different carriers, among which proteins and peptides are of particular importance due to their functional properties, surface activity, and film/shell formability around particles. Given the importance of stabilization of bioactive compounds during spray drying, this paper focuses on the role of composition and type of carriers, as well as the characteristics and efficiency of various protein-based carriers in the encapsulation and maintaining of physicochemical, structural, and functional properties, along with biological activity of bioactive compounds (e.g., oleoresins, sterols, polyphenols, anthocyanins, carotenoids, probiotics, and peptides), and nutrients (e.g., vitamins, fatty acids and minerals) alone or in combination with other biopolymers.
Collapse
Affiliation(s)
- Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
109
|
Rostamabadi H, Falsafi SR, Rostamabadi MM, Assadpour E, Jafari SM. Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv Colloid Interface Sci 2021; 290:102384. [PMID: 33706198 DOI: 10.1016/j.cis.2021.102384] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Hydrophobicity and low aqueous-solubility of different drugs/nutraceuticals remain a persistent challenge for their development and clinical/food applications. A range of nanotechnology strategies have been implemented to address this issue, and amongst which a particular emphasis has been made on those that afford an improved biological performance and tunable release kinetic of bioactives through a one-step process. More recently, the technique of electrospraying (or electrohydrodynamic atomization) has attained notable impulse in virtue of its potential to tune attributes of nano/micro-structured particles (e.g., porosity, particle size, etc.), rendering a near zero-order release kinetics, diminished burst release manner, as well as its simplicity, reproducibility, and applicability to a broad spectrum of hydrophobic and poorly water-soluble bioactives. Controlled morphology or monodispersity of designed particles could be properly obtained via electrospraying, with a high encapsulation efficiency and without unfavorable denaturation of thermosensitive bioactives upon encapsulation. This paper overviews the recent technological advances in electrospraying for the encapsulation of low queues-soluble bioactive agents. State-of-the-art, advantages, applications, and challenges for its implementation in pharmaceutical/food researches are also discussed.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Mahdi Rostamabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
110
|
Van der Verren M, Smeets V, Vander Straeten A, Dupont-Gillain C, Debecker DP. Hybrid chemoenzymatic heterogeneous catalyst prepared in one step from zeolite nanocrystals and enzyme-polyelectrolyte complexes. NANOSCALE ADVANCES 2021; 3:1646-1655. [PMID: 36132563 PMCID: PMC9417918 DOI: 10.1039/d0na00834f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/25/2021] [Accepted: 01/30/2021] [Indexed: 05/04/2023]
Abstract
The combination of inorganic heterogeneous catalysts and enzymes, in so-called hybrid chemoenzymatic heterogeneous catalysts (HCEHCs), is an attractive strategy to effectively run chemoenzymatic reactions. Yet, the preparation of such bifunctional materials remains challenging because both the inorganic and the biological moieties must be integrated in the same solid, while preserving their intrinsic activity. Combining an enzyme and a zeolite, for example, is complicated because the pores of the zeolite are too small to accommodate the enzyme and a covalent anchorage on the surface is often ineffective. Herein, we developed a new pathway to prepare a nanostructured hybrid catalyst built from glucose oxidase and TS-1 zeolite. Such hybrid material can catalyse the in situ biocatalytic formation of H2O2, which is subsequently used by the zeolite to trigger the epoxidation of allylic alcohol. Starting from an enzymatic solution and a suspension of zeolite nanocrystals, the hybrid catalyst is obtained in one step, using a continuous spray drying method. While enzymes are expectedly unable to resist the conditions used in spray drying (temperature, shear stress, etc.), we leverage on the preparation of "enzyme-polyelectrolyte complexes" (EPCs) to increase the enzyme stability. Interestingly, the use of EPCs also prevents enzyme leaching and appears to stabilize the enzyme against pH changes. We show that the one-pot preparation by spray drying gives access to hybrid chemoenzymatic heterogeneous catalysts with unprecedented performance in the targeted chemoenzymatic reaction. The bifunctional catalyst performs much better than the two catalysts operating as separate entities. We anticipate that this strategy could be used as an adaptable method to prepare other types of multifunctional materials starting from a library of functional nanobuilding blocks and biomolecules.
Collapse
Affiliation(s)
- Margot Van der Verren
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Valentin Smeets
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Aurélien Vander Straeten
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
111
|
Fu Y, Ding Y, Zhang L, Zhang Y, Liu J, Yu P. Poly ethylene glycol (PEG)-Related controllable and sustainable antidiabetic drug delivery systems. Eur J Med Chem 2021; 217:113372. [PMID: 33744689 DOI: 10.1016/j.ejmech.2021.113372] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is one of the most challenging threats to global public health. To improve the therapy efficacy of antidiabetic drugs, numerous drug delivery systems have been developed. Polyethylene glycol (PEG) is a polymeric family sharing the same skeleton but with different molecular weights which is considered as a promising material for drug delivery. In the delivery of antidiabetic drugs, PEG captures much attention in the designing and preparation of sustainable and controllable release systems due to its unique features including hydrophilicity, biocompatibility and biodegradability. Due to the unique architecture, PEG molecules are also able to shelter delivery systems to decrease their immunogenicity and avoid undesirable enzymolysis. PEG has been applied in plenty of delivery systems such as micelles, vesicles, nanoparticles and hydrogels. In this review, we summarized several commonly used PEG-contained antidiabetic drug delivery systems and emphasized the advantages of stimuli-responsive function in these sustainable and controllable formations.
Collapse
Affiliation(s)
- Yupeng Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Ying Ding
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Litao Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China; Sorbonne Université, CNRS, IPCM, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
112
|
Jafari SM, Arpagaus C, Cerqueira MA, Samborska K. Nano spray drying of food ingredients; materials, processing and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
113
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
114
|
Wang Y, Zhang T, Liu R, Chang M, Wei W, Jin Q, Wang X. New perspective toward nutritional support for malnourished cancer patients: Role of lipids. Compr Rev Food Sci Food Saf 2021; 20:1381-1421. [PMID: 33533186 DOI: 10.1111/1541-4337.12706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/01/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
To improve the difficulties related to malnutrition, nutritional support has become an essential part of multidisciplinary comprehensive treatment for cancer. Lipids are essential nutrient source for the human body, and nowadays in clinical practices, it has a positive interventional effect on patients suffering from cancer. However, contribution of lipids in nutritional support of cancer patients is still poorly understood. Moreover, the sensory and physicochemical properties of lipids can severely restrict their applications in lipid-rich formula foods. In this review article, for the first time, we have presented a summary of the existing studies which were related to the associations between different lipids and improved malnutrition in cancer patients and discussed possible mechanisms. Subsequently, we discussed the challenges and effective solutions during processing of lipids into formula foods. Further, by considering existing problems in current lipid nutritional support, we proposed a novel method for the treatment of malnutrition, including developing individualized lipid nutrition for different patients depending on the individual's genotype and enterotype. Nonetheless, this review study provides a new direction for future research on nutritional support and the development of lipid-rich formula foods for cancer patients, and probably will help to improve the efficacy of lipids in the treatment of cancer malnutrition.
Collapse
Affiliation(s)
- Yandan Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tao Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
115
|
Okada S, Ohsaki S, Nakamura H, Watano S. Numerical Study on Spray Drying Process: Effect of Nonuniform Temperature Field and Interaction between Droplets on Evaporation Rates of Individual Droplets. Chem Pharm Bull (Tokyo) 2021; 69:203-210. [PMID: 33518603 DOI: 10.1248/cpb.c20-00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spray drying process is widely used to produce particulate materials in the pharmaceutical industries, such as porous materials for direct compression, solid dispersion for improvement of drug dissolution properties, micro encapsulation to stabilize active compounds, taste masking, preparation of dry powder for inhalation. However, as many factors affect the physical properties of dried particles and the spray drying processes have complex behaviors in which heat and mass transfer occur simultaneously, the detailed mechanisms of dry particle generation have yet to be sufficiently elucidated. In this study, computational fluid dynamics was used to simulate water droplet evaporation in a spray dryer, and the evaporation kinetics of "individual droplets" in the droplet aggregate (group) were analyzed. The numerical simulation revealed that each droplet had different evaporation rates owing to the following two reasons. First, the driving force of evaporation, ΔT, changed every moment as the droplets traveled through different temperature fields in the drying tower. Second, it was calculated the driving force for droplet evaporation differed from the ideal system because the evaporation of other droplets changed the fluid characteristics around the droplets. The obtained results are important findings that lead to the understanding the spray drying process to design and manufacture the pharmaceutical products.
Collapse
Affiliation(s)
- Sayaka Okada
- Department of Chemical Engineering, Osaka Prefecture University
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Prefecture University
| | - Hideya Nakamura
- Department of Chemical Engineering, Osaka Prefecture University
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Prefecture University
| |
Collapse
|
116
|
Yu JY, Roh SH, Park HJ. Characterization of ferulic acid encapsulation complexes with maltodextrin and hydroxypropyl methylcellulose. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
117
|
Abstract
Tableting by direct compression (DC) is one of the simplest and most cost-effective drug manufacturing approaches. However, most active pharmaceutical ingredients (APIs) and excipients lack the compression and flow properties required to meet the needs of high-speed industrial tablet presses. Therefore, the majority of DC APIs and excipients are modified via processing/co-processing particle engineering techniques to boost their properties. Spray drying is one of the most commonly employed techniques to prepare DC grades of APIs and excipients with prominent advantages. This review aims to present an overview of the commercially marketed and investigationally-prepared DC APIs and excipients produced by spray drying.
Collapse
|
118
|
Grego EA, Siddoway AC, Uz M, Liu L, Christiansen JC, Ross KA, Kelly SM, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles. Curr Top Microbiol Immunol 2021; 433:29-76. [PMID: 33165869 PMCID: PMC8107186 DOI: 10.1007/82_2020_226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As vaccine formulations have progressed from including live or attenuated strains of pathogenic components for enhanced safety, developing new adjuvants to more effectively generate adaptive immune responses has become necessary. In this context, polymeric nanoparticles have emerged as a promising platform with multiple advantages, including the dual capability of adjuvant and delivery vehicle, administration via multiple routes, induction of rapid and long-lived immunity, greater shelf-life at elevated temperatures, and enhanced patient compliance. This comprehensive review describes advances in nanoparticle-based vaccines (i.e., nanovaccines) with a particular focus on polymeric particles as adjuvants and delivery vehicles. Examples of the nanovaccine approach in respiratory infections, biodefense, and cancer are discussed.
Collapse
Affiliation(s)
- Elizabeth A Grego
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alaric C Siddoway
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Metin Uz
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Luman Liu
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - John C Christiansen
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Kathleen A Ross
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Sean M Kelly
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Michael J Wannemuehler
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
119
|
Loi P, Anzalone DA, Palazzese L, Dinnyés A, Saragusty J, Czernik M. Dry storage of mammalian spermatozoa and cells: state-of-the-art and possible future directions. Reprod Fertil Dev 2021; 33:82-90. [PMID: 38769676 DOI: 10.1071/rd20264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review provides a snapshot of the current state-of-the-art of drying cells and spermatozoa. The major successes and pitfalls of the most relevant literature are described separately for spermatozoa and cells. Overall, the data published so far indicate that we are closer to success in spermatozoa, whereas the situation is far more complex with cells. Critical for success is the presence of xeroprotectants inside the spermatozoa and, even more so, inside cells to protect subcellular compartments, primarily DNA. We highlight workable strategies to endow gametes and cells with the right combination of xeroprotectants, mostly sugars, and late embryogenesis abundant (LEA) or similar 'intrinsically disordered' proteins to help them withstand reversible desiccation. We focus on the biological aspects of water stress, and in particular cellular and DNA damage, but also touch on other still unexplored issues, such as the choice of both dehydration and rehydration methods or approaches, because, in our view, they play a primary role in reducing desiccation damage. We conclude by highlighting the need to exhaustively explore desiccation strategies other than lyophilisation, such as air drying, spin drying or spray drying, ideally with new prototypes, other than the food and pharmaceutical drying strategies currently used, tailored for the unique needs of cells and spermatozoa.
Collapse
Affiliation(s)
- P Loi
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy; and Corresponding author
| | - D A Anzalone
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy
| | - L Palazzese
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy
| | - A Dinnyés
- BioTalentum Ltd, Gödöllo, 2100 Gödöllo, Hungary; and HCEMM-USZ, StemCell Research Group, University of Szeged, Szeged, Hungary; and Sichuan University, College of Life Sciences, Chengdu, China
| | - J Saragusty
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy
| | - M Czernik
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy; and Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| |
Collapse
|
120
|
Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM. The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Crit Rev Food Sci Nutr 2020; 62:3208-3231. [PMID: 33356489 DOI: 10.1080/10408398.2020.1863907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioactive compounds may lose their antioxidant activity (e.g., phenolic compounds) at elevated temperatures, enhanced oxidative conditions and severe light exposures so they should be protected by various strategies such as nano/microencapsulation methods. Encapsulation technology has been employed as a proper method for using antioxidant ingredients and to provide easy dispersibility of antioxidants in all matrices including food and pharmaceutical products. It can improve the food fortification processes, release of antioxidant ingredients, and extending the shelf-life and bioavailability of them when ingested in the intestine. In this study, our main goal is to have an overview of the influence of nanoencapsulation on the bioactivity and bioavailability, and cellular activities of antioxidant ingredients in different delivery systems. Also, the effect of encapsulation process conditions, storage conditions, carrier wall materials, and release profile on the antioxidant activity of different natural bioactives are explained. Finally, analytical techniques for measuring antioxidant activity of nanoencapsulated ingredients will be covered.
Collapse
Affiliation(s)
- Atefe Maqsoudlou
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hossein Mohebodini
- Department of Animal Science and Food Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
121
|
Liu RK, Hu TT, Jia J, Yang DL, Sun Q, Wang JX, Chen JF. Efficient Fabrication of Polymer Shell Colloidosomes by a Spray Drying Process. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rong-Kun Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ting-Ting Hu
- Beijing Aerospace Petrochemical EC and EP Technology Corporation Limited, Beijing 100176, PR China
| | - Jia Jia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Dan-Lei Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jie-Xin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jian-Feng Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
122
|
Comunian T, Babazadeh A, Rehman A, Shaddel R, Akbari-Alavijeh S, Boostani S, Jafari S. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit Rev Food Sci Nutr 2020; 62:3301-3322. [DOI: 10.1080/10408398.2020.1865258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- T. Comunian
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - A. Babazadeh
- Center for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - A. Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - R. Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Boostani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S.M. Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
123
|
Maina TW, Grego EA, Boggiatto PM, Sacco RE, Narasimhan B, McGill JL. Applications of Nanovaccines for Disease Prevention in Cattle. Front Bioeng Biotechnol 2020; 8:608050. [PMID: 33363134 PMCID: PMC7759628 DOI: 10.3389/fbioe.2020.608050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most important tools available to prevent and reduce the incidence of infectious diseases in cattle. Despite their availability and widespread use to combat many important pathogens impacting cattle, several of these products demonstrate variable efficacy and safety in the field, require multiple doses, or are unstable under field conditions. Recently, nanoparticle-based vaccine platforms (nanovaccines) have emerged as promising alternatives to more traditional vaccine platforms. In particular, polymer-based nanovaccines provide sustained release of antigen payloads, stabilize such payloads, and induce enhanced antibod- and cell-mediated immune responses, both systemically and locally. To improve vaccine administrative strategies and efficacy, they can be formulated to contain multiple antigenic payloads and have the ability to protect fragile proteins from degradation. Nanovaccines are also stable at room temperature, minimizing the need for cold chain storage. Nanoparticle platforms can be synthesized for targeted delivery through intranasal, aerosol, or oral administration to induce desired mucosal immunity. In recent years, several nanovaccine platforms have emerged, based on biodegradable and biocompatible polymers, liposomes, and virus-like particles. While most nanovaccine candidates have not yet advanced beyond testing in rodent models, a growing number have shown promise for use against cattle infectious diseases. This review will highlight recent advancements in polymeric nanovaccine development and the mechanisms by which nanovaccines may interact with the bovine immune system. We will also discuss the positive implications of nanovaccines use for combating several important viral and bacterial disease syndromes and consider important future directions for nanovaccine development in beef and dairy cattle.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
124
|
Srivastava A, Prajapati A. Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications. ASIAN BIOMED 2020; 14:217-242. [PMID: 37551304 PMCID: PMC10373404 DOI: 10.1515/abm-2020-0032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The inherent properties of albumin facilitate its effective use as a raw material to prepare a nanosized drug delivery vehicles. Because of the enhanced surface area, biocompatibility, and extended half-life of albumin nanoparticles, a number of drugs have been incorporated in albumin matrices in recent years. Furthermore, its ability to be conjugated to various receptor ligands makes albumin an ideal candidate for the increased delivery of drugs to specific sites. The present review provides an in-depth discussion of production strategies for the preparation of albumin and conjugated albumin nanoparticles and for the targeting of these formulations to specific organs and cancer cells. This review also provides insights into drug loading, release patterns, and cytotoxicity of various drug-loaded albumin nanoparticles.
Collapse
Affiliation(s)
- Abhishek Srivastava
- Department of Chemistry, GLA University, Chaumuhan, Mathura, Uttar Pradesh281406, India
| | - Anjali Prajapati
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh281406, India
| |
Collapse
|
125
|
Almansour K, Alfagih IM, Ali R, Elsayed MM. Inhalable microparticles containing terbinafine for management of pulmonary fungal infections: Spray drying process engineering using lactose vs. mannitol as excipients. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
126
|
Rashidinejad A, Bahrami A, Rehman A, Rezaei A, Babazadeh A, Singh H, Jafari SM. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit Rev Food Sci Nutr 2020; 62:2470-2494. [PMID: 33251846 DOI: 10.1080/10408398.2020.1854169] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral administration of live probiotics along with prebiotics has been suggested with numerous beneficial effects for several conditions including certain infectious disorders, diarrheal illnesses, some inflammatory bowel diseases, and most recently, irritable bowel syndrome. Though, delivery of such viable bacteria to the host intestine is a major challenge, due to the poor survival of the ingested probiotic bacteria during the gastric transit, especially within the stomach where the pH is highly acidic. Although microencapsulation has been known as a promising approach for improving the viability of probiotics in the human digestive tract, the success rate is not satisfactory. For this reason, co-encapsulation of probiotics with probiotics has been practised as a novel alternative approach for further improvement of the oral delivery of viable probiotics toward their targeted release in the host intestine. This paper discusses the co-encapsulation technologies used for delivery of probiotics toward better stability and viability, as well the incorporation of co-encapsulated probiotics and prebiotics in functional/synbiotic dairy foods. The common encapsulation technologies (and the materials) used for this purpose, the stability and survival of co-encapsulated probiotics in the food, and the release behavior of the co-encapsulated probiotics in the gastrointestinal tract have also been explained. Most studies reported a significant improvement particularly in the viability of bacteria associated with the presence of prebiotics. Nevertheless, the previous research has mostly been carried out in the simulated digestion, meaning that future systematic research is to be carried out to investigate the efficacy of the co-encapsulation on the survival of the bacteria in the gut in vivo.
Collapse
Affiliation(s)
- Ali Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Akbar Bahrami
- Program of Applied Science and Technology, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Babazadeh
- Center for Motor Neuron Disease Research, Faculty of medicine, health and human sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engendering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
127
|
Mahalakshmi L, Leena MM, Moses JA, Anandharamakrishnan C. Micro- and nano-encapsulation of β-carotene in zein protein: size-dependent release and absorption behavior. Food Funct 2020; 11:1647-1660. [PMID: 32025676 DOI: 10.1039/c9fo02088h] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
β-Carotene is a lipophilic bioactive compound, providing significant health benefits. Formulation of β-carotene-enriched functional foods is a challenge, due to its poor stability, sensitivity towards light, temperature, oxygen, and its poor water solubility which leads to low bioaccessibility and bioavailability. Targeted delivery and controlled release of bioactive compounds directly depend on the encapsulating matrix and particle size. This work reports an effective encapsulation of β-carotene in zein matrix with glycerol as stabilizing agent. β-Carotene was encapsulated in zein protein matrix with different core-to-wall ratios (1 : 10, 1 : 50 and 1 : 100) at micro- and nano-level, through spray drying and electrospraying techniques, respectively. A comparative evaluation of processing technique, resulting particle size and its impact on powder flow properties, dissolution, release and absorption behaviour was conducted. Results showed that up to 81% of encapsulation efficiency was achieved for the nanoencapsulated form obtained through the electrospraying technique. Nanoencapsulates showed excellent dissolution behaviour compared to microencapsulates due to reduced particle size and larger surface area. Further, under simulated in vitro gastrointestinal conditions, nanoencapsulates showed faster release than microparticles. Among the three ratios tested, nanoencapsulates at 1 : 50 were found to be optimal with ∼73% encapsulation efficiency, exhibiting faster release giving more bioaccessibility, with 1.29- and 1.36-fold higher permeability than 1 : 10 and 1 : 100 formulations, respectively. Additionally, the 1 : 50 nanoencapsulates gave ∼1.7-fold increased permeability compared to microparticles at the end of 3 h using an ex vivo everted gut sac technique. This study proves the potential of zein nanoparticles for enhanced permeability and bioavailability of β-carotene.
Collapse
Affiliation(s)
- L Mahalakshmi
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. of India, Tamil Nadu - 613005, India.
| | | | | | | |
Collapse
|
128
|
Khoshnoudi-Nia S, Forghani Z, Jafari SM. A systematic review and meta-analysis of fish oil encapsulation within different micro/nanocarriers. Crit Rev Food Sci Nutr 2020; 62:2061-2082. [PMID: 33207958 DOI: 10.1080/10408398.2020.1848793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fish oil is one of the most important sources of omega 3 polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid and docosahexaenoic acid which are the most important PUFAs with several health benefits. However, PUFAs are prone to oxidation and have a poor water solubility which limits the use of fish oils into food formulations. Encapsulation techniques can be applied to overcome these challenges. There is a large number of published micro/nanoencapsulation papers, where each of them contains a limited number of wall materials, feed formulation, encapsulation technique, and storage conditions. Therefore, without systematic evaluation of the data extracted from available studies, the design of functional foods containing fish oil would not be very successful. The objective of this systematic review is a meta-analysis of published researches on the nano/microencapsulation of fish oil. A comprehensive literature search was performed between 1 October and 31 December 2019 with encapsulation, fish oil, and oxidative stability keywords. Overall, 39 qualified articles were selected for the statistical analysis. Based on the technique used for encapsulation, the fish oil-loaded carriers were classified into four main groups: (a) spray-dried particles; (b) freeze-dried particles; (c) electrospun fibers and electrosprayed capsules; and (d) other carriers prepared by supercritical antisolvent, gelation, liposomes, spray-freeze drying, and transglutaminase catalyzed cross-linking. The three most frequent methods applied for fish oil encapsulation were spray drying (42.86%), freeze drying (21.43%), and electrohydrodynamic (19.04%) methods, respectively. Averagely, the best encapsulation efficiency was obtained for electrohydrodynamic processes. Also, the combination of polysaccharide-protein based wall materials provided the best performance in terms of fish oil encapsulation efficiency.
Collapse
Affiliation(s)
- Sara Khoshnoudi-Nia
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Forghani
- Department Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
129
|
Huguet-Casquero A, Gainza E, Pedraz JL. Towards Green Nanoscience: From extraction to nanoformulation. Biotechnol Adv 2020; 46:107657. [PMID: 33181241 DOI: 10.1016/j.biotechadv.2020.107657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
The use of nanotechnology has revolutionized many biotechnological sectors, from bioengineering to medicine, passing through food and cosmetic fields. However, their clinic and industrial application has been into the spotlight due to their safety risk and related side effects. As a result, Green Nanoscience/Nanotechnology emerged as a strategy to prevent any associated nanotoxicity, via implementation of sustainable processes across the whole lifecycle of nanoformulation. Notwithstanding its success across inorganic nanoparticles, the green concept for organic nanoparticle elaboration is still at its infancy. This, coupled with the organic nanoparticles being the most commonly used in biomedicine, highlights the need to implement specific green principles for their elaboration. In this review, we will discuss the possible green routes for the proper design of organic nanoparticles under the umbrella of Green Nanoscience: from the extraction of nanomaterials and active compounds to their final nanoformulation.
Collapse
Affiliation(s)
- Amaia Huguet-Casquero
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, Vitoria- Gasteiz 01006, Spain; Biosasun S.A, Iturralde 10, Etxabarri-Ibiña, Zigoitia 01006, Spain
| | - Eusebio Gainza
- Biosasun S.A, Iturralde 10, Etxabarri-Ibiña, Zigoitia 01006, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, Vitoria- Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
130
|
Abdel-Mageed HM, Fouad SA, Teaima MH, Radwan RA, Mohamed SA, AbuelEzz NZ. Engineering Lipase Enzyme Nano-powder Using Nano Spray Dryer BÜCHI B-90: Experimental and Factorial Design Approach for a Stable Biocatalyst Production. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09515-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
131
|
Garavand F, Cacciotti I, Vahedikia N, Rehman A, Tarhan Ö, Akbari-Alavijeh S, Shaddel R, Rashidinejad A, Nejatian M, Jafarzadeh S, Azizi-Lalabadi M, Khoshnoudi-Nia S, Jafari SM. A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging. Crit Rev Food Sci Nutr 2020; 62:1383-1416. [DOI: 10.1080/10408398.2020.1843133] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Cork, Ireland
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome “Niccolò Cusano”, Roma, Italy
| | - Nooshin Vahedikia
- Department of Food Technology, Institute of Chemical Technologies, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Özgür Tarhan
- Department of Food Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Rezvan Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Rashidinejad
- Riddet Institute Centre of Research Excellence, Massey University, Palmerston North, New Zealand
| | - Mohammad Nejatian
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Jafarzadeh
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Maryam Azizi-Lalabadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Khoshnoudi-Nia
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
132
|
Musa N, Wong TW. Design of polysaccharidic nano-in-micro soft agglomerates as primary oral drug delivery vehicle for colon-specific targeting. Carbohydr Polym 2020; 247:116673. [DOI: 10.1016/j.carbpol.2020.116673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/22/2023]
|
133
|
Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020; 13:E335. [PMID: 33114120 PMCID: PMC7690787 DOI: 10.3390/ph13110335] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers are defined as structures and devices that are constructed using nanomaterials which add functionality to the encapsulants. Being small in size and having a customized surface, improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles influence their interaction with living cells and determine the route of administration, clearance, as well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and biomedical applications as a matrix material of nanocarriers due to its inherent biological properties, including good biocompatibility and biodegradability. Various techniques have been adopted to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and cost-effective properties. This review highlights the most used and recent manufacturing techniques of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation, layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the main processing and formulation parameters on alginate nanoparticles are also summarized.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| |
Collapse
|
134
|
Abstract
Spray drying is an efficient technique that is used not only for rapid evaporation of the solvent from different systems but also for designing ultra-fine particles with various desirable characteristics. The obtained powders demonstrate reasonably narrow size distribution with a submicron-to-micron size range. It is one of the recent techniques applied to present acceptable solutions to enhance the absorption and bioavailability of some challenging drugs. In view of that, the purpose of this review is to shed some light on the wide variety of the recently developed fine particulate products that can be produced from spray-drying technique. This article reports the most outstanding advantages and challenges that could be overcome by exploiting the spray-drying technique for the production of different pharmaceuticals, including pure drug particles and drug-loaded polymeric carriers. The potential of this technique, whether used alone or in combination with other methods, in order to develop reproducible and scalable procedures for the best translation of bench-to-bedside innovation of pharmaceutical products is hereby discussed.
Collapse
|
135
|
Rehman A, Jafari SM, Tong Q, Riaz T, Assadpour E, Aadil RM, Niazi S, Khan IM, Shehzad Q, Ali A, Khan S. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv Colloid Interface Sci 2020; 284:102251. [PMID: 32949812 DOI: 10.1016/j.cis.2020.102251] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Drug nanodelivery systems (DNDSs) are fascinated cargos to achieve outstanding therapeutic results of various drugs or natural bioactive compounds owing to their unique structures. The efficiency of several pharmaceutical drugs or natural bioactive ingredients is restricted because of their week bioavailability, poor bioaccessibility and pharmacokinetics after orally pathways. In order to handle such constraints, usage of native/natural polysaccharides (NPLS) in fabrication of DNDSs has gained more popularity in the arena of nanotechnology for controlled drug delivery to enhance safety, biocompatibility, better retention time, bioavailability, lower toxicity and enhanced permeability. The main commonly used NPLS in nanoencapsulation systems include chitosan, pectin, alginates, cellulose, starches, and gums recognized as potential materials for fabrication of cargos. Herein, this review is centered on different polysaccharide-based nanocarriers including nanoemulsions, nanohydrogels, nanoliposomes, nanoparticles and nanofibers, which have already served as encouraging candidates for entrapment of therapeutic drugs as well as for their sustained controlled release. Furthermore, the current article explicitly offers comprehensive details regarding application of NPLS-based nanocarriers encapsulating several drugs intended for the handling of numerous disorders, including diabetes, cancer, HIV, malaria, cardiovascular and respiratory as well as skin diseases.
Collapse
Affiliation(s)
- Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China.
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Qayyum Shehzad
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Ahmad Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Sohail Khan
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
136
|
Vidinamo F, Fawzia S, Karim MA. Effect of drying methods and storage with agro-ecological conditions on phytochemicals and antioxidant activity of fruits: a review. Crit Rev Food Sci Nutr 2020; 62:353-361. [PMID: 32907340 DOI: 10.1080/10408398.2020.1816891] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Choice of drying methods significantly impacts the nutritive and non-nutritive compounds in fruits and vegetables. Phytochemicals such as total phenolics and total flavonoids are non-nutritive bioactive compounds and are found in plants which are of important value due to their antioxidant properties in minimizing the oxidation reaction. However, drying and storage conditions and duration significantly affect these important quality attributes. There is currently no review article on the impact of the drying and storage conditions on these quality attributes. Therefore, the aim of this review paper is to investigate the impact of drying methods on these important phytochemicals and their antioxidant activity on dried products during the storage period. Different drying methods cause desirable and undesirable changes to dried products both physically and chemically. It is found that during the drying process at various temperature ranges from 40 to 80 °C, chemical changes occurs which affects the phenolic and the flavonoid content of dried products to increase or decrease. The increase in antioxidant activity after drying is also due to oxidized polyphenols and Maillard reaction products. This results to changes in the antioxidant potential of the dried food product and its impact on the shelf life.
Collapse
Affiliation(s)
- Frank Vidinamo
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia.,Department of Agriculture, PNG University of Technology, Lae, Papua New Guinea
| | - Sabrina Fawzia
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| | - M A Karim
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
137
|
Hadavi R, Jafari SM, Katouzian I. Nanoliposomal encapsulation of saffron bioactive compounds; characterization and optimization. Int J Biol Macromol 2020; 164:4046-4053. [PMID: 32910968 DOI: 10.1016/j.ijbiomac.2020.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/01/2022]
Abstract
Nanoliposomes are among the most important lipid-based nanocarriers for both hydrophilic and hydrophobic bioactives. In this study, saffron-loaded nanoliposomes were produced by evaluating the influence of lecithin (0.5, 1.0, 1.5% w/w), saffron extract (0.15, 0.33, 0.50% w/w), and sunflower oil (25, 30, 35% w/w) on encapsulation efficiency, creaming stability, size and color indices of nanoliposomes. For each response, a second-order polynomial model with a high R2 value (0.950-0.989) was obtained using multiple linear regression analysis. The creaming stability revealed that when oil and saffron contents are enhanced, lecithin level was not enough for the formation of a stable network (reduction of surface tension) and thus stability was lowered. Dynamic light scattering results demonstrated nanoliposomal size of around 100 nm and polydispersity index (PDI) of 98.12 ± 0.11. Moreover, transmission electron microscopy (TEM) images illustrated spherical particles with a homogenous distribution and smooth surfaces. Also, lecithin level (P < 0.01), and saffron concentration (P < 0.05) significantly influenced the color indices, while sunflower oil content had no significant effect. Overall, the optimization results revealed that 0.15% saffron, 35% sunflower oil, and 1% lecithin was the optimum sample in terms of encapsulation efficiency, size and color indices.
Collapse
Affiliation(s)
- Roxana Hadavi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Iman Katouzian
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
138
|
Surface Disinfection to Protect against Microorganisms: Overview of Traditional Methods and Issues of Emergent Nanotechnologies. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sterilization methods for individuals and facilities are extremely important to enable human beings to continue the basic tasks of life and to enable safe and continuous interaction of citizens in society when outbreaks of viral pandemics such as the coronavirus. Sterilization methods, their availability in gatherings, and the efficiency of their work are among the important means to contain the spread of viruses and epidemics and enable societies to practice their activities almost naturally. Despite the effective solutions given by traditional methods of surface disinfection, modern nanotechnology has proven to be an emergent innovation to protect against viruses. On this note, recent scientific breakthroughs have highlighted the ability of nanospray technology to attach to air atoms in terms of size and time-period of existence as a sterilizer for renewed air in large areas for human gatherings. Despite the ability of this method to control the outbreak of infections, the mutation of bactericidal mechanisms presents a great issue for scientists. In recent years, science has explored a more performant approach and techniques based on a surface-resistance concept. The most emergent is the self-defensive antimicrobial known as the self-disinfection surface. It consists of the creation of a bacteria cell wall to resist the adhesion of bacteria or to kill bacteria by chemical or physical changes. Besides, plasma-mediated virus inactivation was shown as a clean, effective, and human healthy solution for surface disinfection. The purpose of this article is to deepen the discussion on the threat of traditional methods of surface disinfection and to assess the state of the art and potential solutions using emergent nanotechnology.
Collapse
|
139
|
ElKasabgy NA, Adel IM, Elmeligy MF. Respiratory Tract: Structure and Attractions for Drug Delivery Using Dry Powder Inhalers. AAPS PharmSciTech 2020; 21:238. [PMID: 32827062 DOI: 10.1208/s12249-020-01757-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Respiratory tract is one of the oldest routes for drug delivery. It can be used for local and systemic drug deliveries. Inhalation therapy has several advantages over oral. It delivers the drug efficiently to the lung with minimal systemic exposure, thus avoiding systemic side effects common with oral route. In this review, different types of inhaler devices are illustrated like metered dose inhalers (MDIs), dry powder inhalers (DPIs), nebulizers, and the new soft mist inhalers (SMIs). Since dry powder is more stable than when in liquid form, we will discuss in detail DPIs highlighting different techniques utilized in preparation of dry powders with or without carrier to improve flowability and drug delivery to deep lungs. Types of DPIs are briefly discussed with examples from the market. Several mechanisms for particle deposition are mentioned with factors governing the process. Pharmacokinetic profile of the inhaled particles is detailed starting from the dissolution, followed by the rapid absorption and ending with systemic clearance. New technologies like 3D printing in pulmonary field are also highlighted.
Collapse
|
140
|
Zhang H, Liu X, Ma X. The preparation of felodipine/zein amorphous solid dispersions and in vitro evaluation using a dynamic gastrointestinal system. Pharm Dev Technol 2020; 25:1226-1237. [PMID: 32787680 DOI: 10.1080/10837450.2020.1809456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ABSTRCT Felodipine has been widely used as a poorly water-soluble model drug for various studies to improve its oral bioavailability and in vivo efficacy. In this study, we developed amorphous solid dispersions (ASDs) via spray drying to enhance the bioavailability of felodipine through using natural zein protein as a novel polymeric excipient. The solid state characterization results demonstrated a single glass transition temperature (Tg ) around 128.6 °C and good physical stability post 3 months accelerated study under the condition of 40 °C and 75% relative humidity (RH), which is possibly accounted for the molecular immobilization and hydrogen bonding interactions between felodipine and zein. By combining the in vitro dissolution study with TIM-1 gastrointestinal simulation investigation, it is indicated that felodipine was rapidly released from the ASD in 30 mins, and the supersaturation of felodipine was well maintained over 6 h, which resulted in a significant enhancement of felodipine bioavailability during simulated digestive processes in the upper GI tract. This study suggests that spray drying combined with natural excipient zein is an efficient formulation strategy for the development of ASDs with enhanced aqueous solubility and bioavailability.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Zhejiang Hisun Pharmaceutical Co. Ltd, Hangzhou, China
| | - Xu Liu
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Xiangyu Ma
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
141
|
Ma Y, Wang Y, Wang X, Guo J, Yan B, Guan W. Development and solidification of multifunction stabilizers formulated self-assembled core-shell Deacetyl mycoepoxydience nanosuspensions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
142
|
Geranpour M, Assadpour E, Jafari SM. Recent advances in the spray drying encapsulation of essential fatty acids and functional oils. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
143
|
Bamidele OP, Emmambux MN. Encapsulation of bioactive compounds by “extrusion” technologies: a review. Crit Rev Food Sci Nutr 2020; 61:3100-3118. [DOI: 10.1080/10408398.2020.1793724] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Oluwaseun P. Bamidele
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| | | |
Collapse
|
144
|
Spray Drying for the Preparation of Nanoparticle-Based Drug Formulations as Dry Powders for Inhalation. Processes (Basel) 2020. [DOI: 10.3390/pr8070788] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanoparticle-based therapeutics have been used in pulmonary formulations to enhance delivery of poorly water-soluble drugs, protect drugs against degradation and achieve modified release and drug targeting. This review focuses on the use of spray drying as a solidification technique to produce microparticles containing nanoparticles (i.e., nanoparticle (NP) agglomerates) with suitable properties as dry powders for inhalation. The review covers the general aspects of pulmonary drug delivery with emphasis on nanoparticle-based dry powders for inhalation and the principles of spray drying as a method for the conversion of nanosuspensions to microparticles. The production and therapeutic applications of the following types of NP agglomerates are presented: nanoporous microparticles, nanocrystalline agglomerates, lipid-based and polymeric formulations. The use of alternative spray-drying techniques, namely nano spray drying, and supercritical CO2-assisted spray drying is also discussed as a way to produce inhalable NP agglomerates.
Collapse
|
145
|
Spray-dried raloxifene submicron particles for pulmonary delivery: Development and in vivo pharmacokinetic evaluation in rats. Int J Pharm 2020; 585:119429. [DOI: 10.1016/j.ijpharm.2020.119429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/02/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
|
146
|
Marson GV, Saturno RP, Comunian TA, Consoli L, Machado MTDC, Hubinger MD. Maillard conjugates from spent brewer's yeast by-product as an innovative encapsulating material. Food Res Int 2020; 136:109365. [PMID: 32846542 DOI: 10.1016/j.foodres.2020.109365] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Yeast-based by-products are greatly available, have a rich nutritional composition and functional properties. The spent brewer's yeast (SBY) cells after enzymatic hydrolysis may be a sustainable and low-cost alternative as carrier material for encapsulation processes by spray drying. Our work had as main purpose to characterise the hydrolysed SBY cell debris after the Maillard reaction and to study their potential as a microencapsulation wall material. SBY-based Maillard reaction products (MRPs) were used to encapsulate ascorbic acid (AA) by spray drying. The Maillard Reaction was able to improve the solubility of solids and proteins by 15% and promoted brown color development (230% higher Browning Index). SBY-based MRPs resulted in particles of a high encapsulation yield of AA (101.90 ± 5.5%), a moisture content of about 3.4%, water activity of 0.15, hygroscopicity values ranging from 13.8 to 19.3 gH2O/100 g and a glass transition temperature around 71 °C. The shape and microstructure of the produced particles were confirmed by scanning electron microscopy (MEV), indicating very similar structure for control and AA encapsulated particles. Fourier Transform Infrared Spectroscopy (FT-IR) results confirmed the presence of yeast cell debris in the surface of particles. Ascorbic acid was successfully encapsulated in Maillard conjugates of hydrolyzsd yeast cell debris of Saccharomyces pastorianus and maltodextrin as confirmed by optical microscopy, differential scanning calorimetry, MEV and FT-IR.
Collapse
Affiliation(s)
- Gabriela Vollet Marson
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| | - Rafaela Polessi Saturno
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Talita Aline Comunian
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Larissa Consoli
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | | | - Miriam Dupas Hubinger
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| |
Collapse
|
147
|
Dajic Stevanovic Z, Sieniawska E, Glowniak K, Obradovic N, Pajic-Lijakovic I. Natural Macromolecules as Carriers for Essential Oils: From Extraction to Biomedical Application. Front Bioeng Biotechnol 2020; 8:563. [PMID: 32671026 PMCID: PMC7330110 DOI: 10.3389/fbioe.2020.00563] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
Essential oils (EOs) and their main constituents, the terpenes, are widely studied, mostly relating to their antioxidant ability and bioactivity, such as antimicrobial, anticancer, anti-inflammatory, and range of other actions in the living systems. However, there is limited information on their bioavailability, especially upon clinical studies. Having in mind both strong biological effects and health benefits of EOs and their specific physicochemical properties (volatility, lipophilic character, low water solubility or insolubility, viscosity, expressed odor, concentration-dependent toxicity, etc.), there is a need for their encapsulation for target delivery. Encapsulation of EOs and their constituents is the prerequisite for enhancing their oxidative stability, thermostability, photostability, shelf life, and biological activity. We considered various carrier types such a (1) monophase and polyphase polysaccharide hydrogel carriers, (2) polysaccharide-protein carriers, and (3) lipid carriers in the context of physicochemical and engineering factors. Physicochemical factors are encapsulation efficiency, chemical stability under gastric conditions, mechanical stability, and thermal stability of carrier matrices. Choice of carrier material also determines the encapsulation technique. Consequently, the engineering factors are related to the advantage and disadvantage of various encapsulation techniques frequently used in the literature. In addition, it was intended to address the interactions between (1) main carrier components, such as polysaccharides, proteins, and lipids themselves (in order to form chemically and mechanically stable structure); (2) main carrier components with pepsin under gastric conditions (in order to form resistant material under gastric conditions); and (3) main carrier components with EOs (in order to enhance encapsulation efficiency), as a necessary precondition for whole process optimization. Finally, different sources for obtaining natural carrier macromolecules are surveyed, especially the agro-waste materials and agricultural and food by-products. This review article highlights the bioavailability aspects of encapsulated EOs and physicochemical and engineering factors concerning natural macromolecule carriers for their target delivery and application.
Collapse
Affiliation(s)
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Kazimierz Glowniak
- Department of Cosmetology, University of Information, Technology and Management in Rzeszow, Rzeszow, Poland
| | - Natasa Obradovic
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Ivana Pajic-Lijakovic
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
148
|
Aguirre-Joya JA, Chacón-Garza LE, Valdivia-Najár G, Arredondo-Valdés R, Castro-López C, Ventura-Sobrevilla JM, Aguilar-Gonzáles CN, Boone-Villa D. Nanosystems of plant-based pigments and its relationship with oxidative stress. Food Chem Toxicol 2020; 143:111433. [PMID: 32569796 DOI: 10.1016/j.fct.2020.111433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
Abstract
Plant-based pigments are widely present in nature, they are classified depending on their chemical structure as tetrapyrroles, carotenoids, polyphenolic compounds, and alkaloids and are extensively used in medicine, food industry, clothes, and others. Recently they have been investigated due to their role in the areas of food processing, food safety and quality, packaging, and nutrition. Many studies indicate a relationship between bioactive pigments and Non-Communicable Diseases derived from oxidative stress. Their biological applications can help in preventing oxidative injuries in the cell caused by oxygen and nitrogen reactive species. Those pigments are easily degraded by light, oxygen, temperature, pH conditions, among others. Nanotechnology offers the possibility to protect bioactive ingredients and increase its bioavailability after oral administration. Safety to humans (mainly evaluated from toxicity data) is the first concern for these products. In the present work, we present a comprehensive outlook of the most important plant-based pigments used as food colorants, the principal nanotechnology systems prepared with them, and the relationship of these compounds with the oxidative stress and related Non-Communicable Disease.
Collapse
Affiliation(s)
- Jorge A Aguirre-Joya
- School of Health Science, Universidad Autonoma de Coahuila, Unidad Norte, Piedras Negras, Coahuila, Mexico
| | - Luis E Chacón-Garza
- School of Health Science, Universidad Autonoma de Coahuila, Unidad Norte, Piedras Negras, Coahuila, Mexico
| | - Guillermo Valdivia-Najár
- CONACYT - Department of Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco, Mexico
| | - Roberto Arredondo-Valdés
- Nanobioscience Group, Chemistry School, Universidad Autonoma de Coahuila, Blvd. V. Carranza e Ing. J. Cardenas V., Saltillo, Coahuila, Mexico; Research Group of Chemist Pharmacist Biologist, Chemistry School, Universidad Autonoma de Coahuila, Blvd. V. Carranza e Ing. J. Cardenas V., Saltillo, Coahuila, Mexico
| | - Cecilia Castro-López
- Laboratory of Chemistry and Biotechnology of Dairy Products, Research Centre in Food & Development, A.C (CIAD, A.C.), Gustavo Enrique Astiazarán Rosas Highway, Hermosillo, Sonora, Mexico
| | | | - Cristóbal N Aguilar-Gonzáles
- Food Research Group, Chemistry School, Universidad Autonoma de Coahuila, Blvd. V. Carranza e Ing. J. Cardenas V., Saltillo, Coahuila, Mexico
| | - Daniel Boone-Villa
- School of Medicine North Unit, Universidad Autonoma de Coahuila, Unidad Norte, Piedras Negras, Coahuila, Mexico.
| |
Collapse
|
149
|
Sharif N, Khoshnoudi-Nia S, Jafari SM. Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res Int 2020; 132:109077. [DOI: 10.1016/j.foodres.2020.109077] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/11/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
|
150
|
Beck-Broichsitter M. Polymer-coated aperture plates for tailored atomization processes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110666. [PMID: 32204093 DOI: 10.1016/j.msec.2020.110666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
There is a significant industrial demand for minimizing the size of droplets for various technical applications. Herein, conformal polymer coatings were used to decrease the orifice dimensions of aperture plates to almost any desired dimension. The generated droplet size revealed a relevant impact on the final dried particle size in a spray-drying process. Likewise, the smaller droplets generated resulted in an improved lung deposition following inhalation. Overall, the current results help increase the understanding on how to manipulate the size distribution of droplets produced by actuated aperture plates, especially in the sub-10 μm range.
Collapse
Affiliation(s)
- Moritz Beck-Broichsitter
- Medical Clinic II, Department of Internal Medicine, Justus-Liebig-Universität, Giessen, Germany.
| |
Collapse
|