101
|
Ji Y, Fioravanti J, Zhu W, Wang H, Wu T, Hu J, Lacey NE, Gautam S, Le Gall JB, Yang X, Hocker JD, Escobar TM, He S, Dell'Orso S, Hawk NV, Kapoor V, Telford WG, Di Croce L, Muljo SA, Zhang Y, Sartorelli V, Gattinoni L. miR-155 harnesses Phf19 to potentiate cancer immunotherapy through epigenetic reprogramming of CD8 + T cell fate. Nat Commun 2019; 10:2157. [PMID: 31089138 PMCID: PMC6517388 DOI: 10.1038/s41467-019-09882-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
T cell senescence and exhaustion are major barriers to successful cancer immunotherapy. Here we show that miR-155 increases CD8+ T cell antitumor function by restraining T cell senescence and functional exhaustion through epigenetic silencing of drivers of terminal differentiation. miR-155 enhances Polycomb repressor complex 2 (PRC2) activity indirectly by promoting the expression of the PRC2-associated factor Phf19 through downregulation of the Akt inhibitor, Ship1. Phf19 orchestrates a transcriptional program extensively shared with miR-155 to restrain T cell senescence and sustain CD8+ T cell antitumor responses. These effects rely on Phf19 histone-binding capacity, which is critical for the recruitment of PRC2 to the target chromatin. These findings establish the miR-155–Phf19–PRC2 as a pivotal axis regulating CD8+ T cell differentiation, thereby paving new ways for potentiating cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate. The inability of T cells to properly mount anti-tumour immunity underlies failed cancer immune surveillance or therapy. Here the authors show that a microRNA, miR-155, suppresses Ship1 phosphatase expression to modulate epigenetic reprogramming of CD8 T cell differentiation via the Phf19/PRC2 axis, thereby implicating a novel aspect of cancer immunity regulation.
Collapse
Affiliation(s)
- Yun Ji
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Cellular Biomedicine Group (CBMG), Gaithersburg, MD, 20877, USA.
| | - Jessica Fioravanti
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Zhu
- Department of Bioinformatics, Inova Translational Medicine Institute, Fairfax, VA, 22031, USA
| | - Hongjun Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tuoqi Wu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinhui Hu
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Neal E Lacey
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sanjivan Gautam
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John B Le Gall
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xia Yang
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James D Hocker
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thelma M Escobar
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shan He
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Stefania Dell'Orso
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nga V Hawk
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William G Telford
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.,ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Stefan A Muljo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
102
|
|
103
|
Innate and Adaptive Immune Memory: an Evolutionary Continuum in the Host's Response to Pathogens. Cell Host Microbe 2019; 25:13-26. [PMID: 30629914 DOI: 10.1016/j.chom.2018.12.006] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunological memory is an important evolutionary trait that improves host survival upon reinfection. Memory is a characteristic recognized within both the innate and adaptive arms of the immune system. Although the mechanisms and properties through which innate and adaptive immune memory are induced are distinct, they collude to improve host defense to pathogens. Here, we propose that innate immune memory, or "trained immunity," is a primitive form of adaptation in host defense, resulting from chromatin structure rearrangement, which provides an increased but non-specific response to reinfection. In contrast, adaptive immune memory is more advanced, with increased magnitude of response mediated through epigenetic changes, as well as specificity mediated by gene recombination. An integrative model of immune memory is important for broad understanding of host defense, and for identifying the most effective approaches to modulate it for the benefit of patients with infections and immune-mediated diseases.
Collapse
|
104
|
Abstract
DNA methylation inhibitors have become the mainstay for treatment of certain haematological malignancies. In addition to their abilities to reactivate genes, including tumour suppressors, that have acquired DNA methylation during carcinogenesis, they induce the expression of thousands of transposable elements including endogenous retroviruses and latent cancer testis antigens normally silenced by DNA methylation in most somatic cells. This results in a state of viral mimicry in which treated cells mount an innate immune response by turning on viral defence genes and potentially expressing neoantigens. Furthermore, these changes mediated by DNA methylation inhibitors can also alter the function of immune cells relevant to acquired immunity. Additionally, other inhibitors of epigenetic processes, such as histone deacetylases, methylases and demethylases, can elicit similar effects either individually or in combinations with DNA methylation inhibitors. These findings together with rapid development of immunotherapies open new avenues for cancer treatment.
Collapse
Affiliation(s)
- Peter A Jones
- Van Andel Research Institute (VARI), Grand Rapids, MI, USA
| | - Hitoshi Ohtani
- Van Andel Research Institute (VARI), Grand Rapids, MI, USA
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
105
|
CD4 + T help promotes influenza virus-specific CD8 + T cell memory by limiting metabolic dysfunction. Proc Natl Acad Sci U S A 2019; 116:4481-4488. [PMID: 30787194 DOI: 10.1073/pnas.1808849116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is continued interest in developing novel vaccine strategies that induce establish optimal CD8+ cytotoxic T lymphocyte (CTL) memory for pathogens like the influenza A viruses (IAVs), where the recall of IAV-specific T cell immunity is able to protect against serologically distinct IAV infection. While it is well established that CD4+ T cell help is required for optimal CTL responses and the establishment of memory, when and how CD4+ T cell help contributes to determining the ideal memory phenotype remains unclear. We assessed the quality of IAV-specific CD8+ T cell memory established in the presence or absence of a concurrent CD4+ T cell response. We demonstrate that CD4+ T cell help appears to be required at the initial priming phase of infection for the maintenance of IAV-specific CTL memory, with "unhelped" memory CTL exhibiting intrinsic dysfunction. High-throughput RNA-sequencing established that distinct transcriptional signatures characterize the helped vs. unhelped IAV-specific memory CTL phenotype, with the unhelped set showing a more "exhausted T cell" transcriptional profile. Moreover, we identify that unhelped memory CTLs exhibit defects in a variety of energetic pathways, leading to diminished spare respiratory capacity and diminished capacity to engage glycolysis upon reactivation. Hence, CD4+ T help at the time of initial priming promotes molecular pathways that limit exhaustion by channeling metabolic processes essential for the rapid recall of memory CD8+ T cells.
Collapse
|
106
|
Epigenetic programming of T cells impacts immune reconstitution in hematopoietic stem cell transplant recipients. Blood Adv 2019; 2:656-668. [PMID: 29563122 DOI: 10.1182/bloodadvances.2018015909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/24/2018] [Indexed: 12/31/2022] Open
Abstract
Immune reconstitution following hematopoietic stem cell transplantation (HSCT) is critical in preventing harmful sequelae in recipients with cytomegalovirus (CMV) infection. To understand the molecular mechanisms underlying immune reconstitution kinetics, we profiled the transcriptome-chromatin accessibility landscape of CMV-specific CD8+ T cells from HCST recipients with different immune reconstitution efficiencies. CMV-specific T cells from HSCT recipients with stable antiviral immunity expressed higher levels of interferon/defense response and cell cycle genes in an interconnected network involving PI3KCG, STAT5B, NFAT, RBPJ, and lower HDAC6, increasing chromatin accessibility at the enhancer regions of immune and T-cell receptor signaling pathway genes. By contrast, the transcriptional and epigenomic signatures of CMV-specific T cells from HSCT recipients with unstable immune reconstitution showed commonalities with T-cell responses in other nonresolving chronic infections. These signatures included higher levels of EGR and KLF factors that, along with lower JARID2 expression, maintained higher accessibility at promoter and CpG-rich regions of genes associated with apoptosis. Furthermore, epigenetic targeting via inhibition of HDAC6 or JARID2 enhanced the transcription of genes associated with differential responses, suggesting that drugs targeting epigenomic modifiers may have therapeutic potential for enhancing immune reconstitution in HSCT recipients. Taken together, these analyses demonstrate that transcription factors and chromatin modulators create different chromatin accessibility landscapes in T cells of HSCT recipients that not only affect immediate gene expression but also differentially prime cells for responses to additional signals. Epigenetic therapy may be a promising strategy to promote immune reconstitution in HSCT recipients.
Collapse
|
107
|
Kartikasari AER, Prakash MD, Cox M, Wilson K, Boer JC, Cauchi JA, Plebanski M. Therapeutic Cancer Vaccines-T Cell Responses and Epigenetic Modulation. Front Immunol 2019; 9:3109. [PMID: 30740111 PMCID: PMC6357987 DOI: 10.3389/fimmu.2018.03109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
There is great interest in developing efficient therapeutic cancer vaccines, as this type of therapy allows targeted killing of tumor cells as well as long-lasting immune protection. High levels of tumor-infiltrating CD8+ T cells are associated with better prognosis in many cancers, and it is expected that new generation vaccines will induce effective production of these cells. Epigenetic mechanisms can promote changes in host immune responses, as well as mediate immune evasion by cancer cells. Here, we focus on epigenetic modifications involved in both vaccine-adjuvant-generated T cell immunity and cancer immune escape mechanisms. We propose that vaccine-adjuvant systems may be utilized to induce beneficial epigenetic modifications and discuss how epigenetic interventions could improve vaccine-based therapies. Additionally, we speculate on how, given the unique nature of individual epigenetic landscapes, epigenetic mapping of cancer progression and specific subsequent immune responses, could be harnessed to tailor therapeutic vaccines to each patient.
Collapse
Affiliation(s)
- Apriliana E R Kartikasari
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Monica D Prakash
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Momodou Cox
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Kirsty Wilson
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Jennifer C Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jennifer A Cauchi
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
108
|
Wang D, Diao H, Getzler AJ, Rogal W, Frederick MA, Milner J, Yu B, Crotty S, Goldrath AW, Pipkin ME. The Transcription Factor Runx3 Establishes Chromatin Accessibility of cis-Regulatory Landscapes that Drive Memory Cytotoxic T Lymphocyte Formation. Immunity 2019; 48:659-674.e6. [PMID: 29669249 PMCID: PMC6750808 DOI: 10.1016/j.immuni.2018.03.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
T cell receptor (TCR) stimulation of naive CD8+ T cells initiates reprogramming of cis-regulatory landscapes that specify effector and memory cytotoxic T lymphocyte (CTL) differentiation. We mapped regions of hyper-accessible chromatin in naive cells during TCR stimulation and discovered that the transcription factor (TF) Runx3 promoted accessibility to memory CTL-specific cis-regulatory regions before the first cell division and was essential for memory CTL differentiation. Runx3 was specifically required for accessibility to regions highly enriched with IRF, bZIP and Prdm1-like TF motifs, upregulation of TFs Irf4 and Blimp1, and activation of fundamental CTL attributes in early effector and memory precursor cells. Runx3 ensured that nascent CTLs differentiated into memory CTLs by preventing high expression of the TF T-bet, slowing effector cell proliferation, and repressing terminal CTL differentiation. Runx3 overexpression enhanced memory CTL differentiation during iterative infections. Thus, Runx3 governs chromatin accessibility during TCR stimulation and enforces the memory CTL developmental program.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Adam J Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Walter Rogal
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Megan A Frederick
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Justin Milner
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Bingfei Yu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery, The La Jolla Institute of Allergy and Immunology, La Jolla, CA, USA; Division of Infectious Diseases, Department of Medicine, UCSD School of Medicine, La Jolla, CA, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
109
|
Yamada T, Nabe S, Toriyama K, Suzuki J, Inoue K, Imai Y, Shiraishi A, Takenaka K, Yasukawa M, Yamashita M. Histone H3K27 Demethylase Negatively Controls the Memory Formation of Antigen-Stimulated CD8 + T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:1088-1098. [PMID: 30626691 DOI: 10.4049/jimmunol.1801083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
Although the methylation status of histone H3K27 plays a critical role in CD4+ T cell differentiation and its function, the role of Utx histone H3K27 demethylase in the CD8+ T cell-dependent immune response remains unclear. We therefore generated T cell-specific Utx flox/flox Cd4-Cre Tg (Utx KO) mice to determine the role of Utx in CD8+ T cells. Wild-type (WT) and Utx KO mice were infected with Listeria monocytogenes expressing OVA to analyze the immune response of Ag-specific CD8+ T cells. There was no significant difference in the number of Ag-specific CD8+ T cells upon primary infection between WT and Utx KO mice. However, Utx deficiency resulted in more Ag-specific CD8+ T cells upon secondary infection. Adoptive transfer of Utx KO CD8+ T cells resulted in a larger number of memory cells in the primary response than in WT. We observed a decreased gene expression of effector-associated transcription factors, including Prdm1 encoding Blimp1, in Utx KO CD8+ T cells. We confirmed that the trimethylation level of histone H3K27 in the Prdm1 gene loci in the Utx KO cells was higher than in the WT cells. The treatment of CD8+ T cells with Utx-cofactor α-ketoglutarate hampered the memory formation, whereas Utx inhibitor GSK-J4 enhanced the memory formation in WT CD8+ T cells. These data suggest that Utx negatively controls the memory formation of Ag-stimulated CD8+ T cells by epigenetically regulating the gene expression. Based on these findings, we identified a critical link between Utx and the differentiation of Ag-stimulated CD8+ T cells.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Tobe, Ehime 791-2101, Japan; .,Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shogo Nabe
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Koji Toriyama
- Department of Ophthalmology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Junpei Suzuki
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan.,Department of Translational Immunology, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kazuki Inoue
- Division of Integrative Pathophysiology, Department of Proteo-Inovation, Proteo-Science Center, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Department of Proteo-Inovation, Proteo-Science Center, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and
| | - Atsushi Shiraishi
- Department of Ophthalmology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan.,Division of Immune Regulation, Department of Proteo-Innovation, Proteo-Science Center, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; .,Department of Translational Immunology, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan.,Division of Immune Regulation, Department of Proteo-Innovation, Proteo-Science Center, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| |
Collapse
|
110
|
Lu C, Yang D, Klement JD, Oh IK, Savage NM, Waller JL, Colby AH, Grinstaff MW, Oberlies NH, Pearce CJ, Xie Z, Kulp SK, Coss CC, Phelps MA, Albers T, Lebedyeva IO, Liu K. SUV39H1 Represses the Expression of Cytotoxic T-Lymphocyte Effector Genes to Promote Colon Tumor Immune Evasion. Cancer Immunol Res 2019; 7:414-427. [PMID: 30610059 DOI: 10.1158/2326-6066.cir-18-0126] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/07/2018] [Accepted: 12/18/2018] [Indexed: 01/23/2023]
Abstract
Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human colon cancer does not respond to immune checkpoint inhibitor immunotherapy, and microsatellite instable (MSI) tumors are not naturally eliminated. The molecular mechanism underlying the inactivity of tumor-infiltrating CTLs is unknown. We report here that CTLs were present in both MSI and microsatellite stable colon tumors. The expression of the H3K9me3-specific histone methyltransferase SUV39H1 was significantly elevated in human colon carcinoma compared with normal colon tissues. Using a mouse colon carcinoma model, we further determined that tumor-infiltrating CTLs in the colon tumor microenvironment have high expression of SUV39H1. To target SUV39H1 in the tumor microenvironment, a virtual chemical library was screened on the basis of the SET (suppressor of variegation 3-9, enhancer of zeste and trithorax) domain structure of the human SUV39H1 protein. Functional enzymatic activity assays identified a small molecule that inhibits SUV39H1 enzymatic activity. On the basis of the structure of this small molecule, we modified it and chemically synthesized a small molecule, termed F5446, which has an EC50 of 0.496 μmol/L for SUV39H1 enzymatic activity. H3K9me3 was enriched in the promoters of GZMB, PRF1, FASLG, and IFNG in quiescent T cells. F5446 inhibited H3K9me3, thereby upregulating expression of these effectors in tumor-infiltrating CTLs and suppressing colon carcinoma growth in a CD8+ CTL-dependent manner in vivo Our data indicate that SUV39H1 represses CTL effector gene expression and, in doing so, confers colon cancer immune escape.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Histones/metabolism
- Humans
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Methyltransferases/antagonists & inhibitors
- Methyltransferases/immunology
- Methyltransferases/metabolism
- Mice
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/immunology
- Repressor Proteins/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Escape
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Il Kyu Oh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | - Natasha M Savage
- Department of Pathology, Medical College of Georgia, Augusta, Georgia
| | - Jennifer L Waller
- Department of Population Health Sciences, Medical College of Georgia, Augusta, Georgia
| | - Aaron H Colby
- Ionic Pharmaceuticals, Brookline, Massachusetts
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Mark W Grinstaff
- Ionic Pharmaceuticals, Brookline, Massachusetts
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina
| | | | - Zhiliang Xie
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Thomas Albers
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Iryna O Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
111
|
Chen Y, Zander R, Khatun A, Schauder DM, Cui W. Transcriptional and Epigenetic Regulation of Effector and Memory CD8 T Cell Differentiation. Front Immunol 2018; 9:2826. [PMID: 30581433 PMCID: PMC6292868 DOI: 10.3389/fimmu.2018.02826] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022] Open
Abstract
Immune protection and lasting memory are accomplished through the generation of phenotypically and functionally distinct CD8 T cell subsets. Understanding how these effector and memory T cells are formed is the first step in eventually manipulating the immune system for therapeutic benefit. In this review, we will summarize the current understanding of CD8 T cell differentiation upon acute infection, with a focus on the transcriptional and epigenetic regulation of cell fate decision and memory formation. Moreover, we will highlight the importance of high throughput sequencing approaches and single cell technologies in providing insight into genome-wide investigations and the heterogeneity of individual CD8 T cells.
Collapse
Affiliation(s)
- Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ryan Zander
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David M Schauder
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| |
Collapse
|
112
|
Assessing the role of the T-box transcription factor Eomes in B cell differentiation during either Th1 or Th2 cell-biased responses. PLoS One 2018; 13:e0208343. [PMID: 30521606 PMCID: PMC6283461 DOI: 10.1371/journal.pone.0208343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022] Open
Abstract
Successful T-dependent humoral responses require the production of antibody-secreting plasmablasts, as well as the formation of germinal centers which eventually form high-affinity B cell memory. The ability of B cells to differentiate into germinal center and plasma cells, as well as the ability to tailor responses to different pathogens, is driven by transcription factors. In T cells, the T-box transcription factors T-bet and Eomesodermin (Eomes) regulate effector and memory T cell differentiation, respectively. While T-bet has a critical role in regulating anti-viral B cell responses, a role for Eomes in B cells has yet to be described. We therefore investigated whether Eomes was required for B cell differentiation during either Th1 or Th2 cell-biased immune responses. Here, we demonstrate that deletion of Eomes specifically in B cells did not affect B cell differentiation in response to vaccination, as well as following viral or helminth infection. In contrast to its established role in CD8+ T cells, Eomes did not influence memory B cell differentiation. Finally, the use of an Eomes reporter mouse confirmed the lack of Eomes expression during immune responses. Thus, germinal center and plasma cell differentiation and the formation of isotype-switched memory B cells in response to infection are independent of Eomes expression.
Collapse
|
113
|
Medina-Gali R, Belló-Pérez M, Martínez-López A, Falcó A, Ortega-Villaizan MM, Encinar JA, Novoa B, Coll J, Perez L. Chromatin immunoprecipitation and high throughput sequencing of SVCV-infected zebrafish reveals novel epigenetic histone methylation patterns involved in antiviral immune response. FISH & SHELLFISH IMMUNOLOGY 2018; 82:514-521. [PMID: 30170110 DOI: 10.1016/j.fsi.2018.08.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Chromatin immunoprecipitation (ChIP) and high throughput sequencing (ChIP-seq) have been used to assess histone methylation (epigenetic modification) dynamics within the internal organs of zebrafish after spring viremia of carp virus (SVCV) infection. Our results show H3K4me3 up-methylation in gene promoters associated with innate immune response during the first 5 days after SVCV infection. Gene Ontology (GO) enrichment analysis confirmed up-methylation in 218 genes in the "immune system process" category. In particular, the promoters of interferon (ifn), interferon stimulated genes (isg), Toll-like receptors (tlr) and c-reactive protein (crp) multi gene sets were marked with the permissive H3K4 methylation. Higher histone 3 methylation was associated with higher transcription levels of the corresponding genes. Therefore, the evidence presented here suggests that transcriptional regulation at the promoter level of key immune genes of the interferon signaling pathway and c-reactive proteins genes can be modulated by epigenetic modification of histones. This study emphasizes the importance of epigenetic control in the response of zebrafish to SVCV infection.
Collapse
Affiliation(s)
- Regla Medina-Gali
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández de Elche, 03202, Elche, Spain.
| | - Melissa Belló-Pérez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández de Elche, 03202, Elche, Spain.
| | | | - A Falcó
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández de Elche, 03202, Elche, Spain.
| | - M M Ortega-Villaizan
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández de Elche, 03202, Elche, Spain.
| | - José A Encinar
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández de Elche, 03202, Elche, Spain.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, 36208, Vigo, Spain.
| | - Julio Coll
- Instituto Nacional de Investigaciones Agrarias, 28040, Madrid, Spain.
| | - Luis Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández de Elche, 03202, Elche, Spain.
| |
Collapse
|
114
|
Harland KL, Fox A, Nüssing S, Hensen L, Kedzierska K, Turner SJ, Kelso A. Limited Phenotypic and Functional Plasticity of Influenza Virus–Specific Memory CD8+T Cells during Activation in an Alternative Cytokine Environment. THE JOURNAL OF IMMUNOLOGY 2018; 201:3282-3293. [DOI: 10.4049/jimmunol.1701672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
|
115
|
Badamchi-Zadeh A, Moynihan KD, Larocca RA, Aid M, Provine NM, Iampietro MJ, Kinnear E, Penaloza-MacMaster P, Abbink P, Blass E, Tregoning JS, Irvine DJ, Barouch DH. Combined HDAC and BET Inhibition Enhances Melanoma Vaccine Immunogenicity and Efficacy. THE JOURNAL OF IMMUNOLOGY 2018; 201:2744-2752. [PMID: 30249811 DOI: 10.4049/jimmunol.1800885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
The combined inhibition of histone deacetylases (HDAC) and the proteins of the bromodomain and extraterminal (BET) family have recently shown therapeutic efficacy against melanoma, pancreatic ductal adenocarcinoma, testicular, and lymphoma cancers in murine studies. However, in such studies, the role of the immune system in therapeutically controlling these cancers has not been explored. We sought to investigate the effect of the HDAC inhibitor romidepsin (RMD) and the BET inhibitor IBET151, both singly and in combination, on vaccine-elicited immune responses. C57BL/6 mice were immunized with differing vaccine systems (adenoviral, protein) in prime-boost regimens under treatment with RMD, IBET151, or RMD+IBET151. The combined administration of RMD+IBET151 during vaccination resulted in a significant increase in the frequency and number of Ag-specific CD8+ T cells. RMD+IBET151 treatment significantly increased the frequency of vaccine-elicited IFN-γ+ splenic CD8+ T cells and conferred superior therapeutic and prophylactic protection against B16-OVA melanoma. RNA sequencing analyses revealed strong transcriptional similarity between RMD+IBET151 and untreated Ag-specific CD8+ T cells except in apoptosis and IL-6 signaling-related genes that were differentially expressed. Serum IL-6 was significantly increased in vivo following RMD+IBET151 treatment, with recombinant IL-6 administration replicating the effect of RMD+IBET151 treatment on vaccine-elicited CD8+ T cell responses. IL-6 sufficiency for protection was not assessed. Combined HDAC and BET inhibition resulted in greater vaccine-elicited CD8+ T cell responses and enhanced therapeutic and prophylactic protection against B16-OVA melanoma. Increased IL-6 production and the differential expression of pro- and anti-apoptotic genes following RMD+IBET151 treatment are likely contributors to the enhanced cancer vaccine responses.
Collapse
Affiliation(s)
- Alexander Badamchi-Zadeh
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Kelly D Moynihan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Nicholas M Provine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - M Justin Iampietro
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Ekaterina Kinnear
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Eryn Blass
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - John S Tregoning
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139; and.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; .,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139; and
| |
Collapse
|
116
|
Redd PS, Lu C, Klement JD, Ibrahim ML, Zhou G, Kumai T, Celis E, Liu K. H3K4me3 mediates the NF-κB p50 homodimer binding to the pdcd1 promoter to activate PD-1 transcription in T cells. Oncoimmunology 2018; 7:e1483302. [PMID: 30228953 DOI: 10.1080/2162402x.2018.1483302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/12/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
PD-1 is a co-repressive receptor that curbs T cell activation and thereby serves as a protection mechanism against autoimmunity under physiological conditions. Under pathological conditions, tumor cells express PD-L1 as an adaptive resistant mechanism to suppress PD-1+ T cells to evade host immunosurveillance. PD-1 therefore is a key target in cancer immunotherapy. Despite the extensive studies of PD-1 expression regulation, the pdcd1 transcription machinery and regulatory mechanisms are still not fully understood. We report here that the NF-κB p50 homodimer is a transcription regulator of PD-1 in activated T cells. A putative κB sequence exists at the pdcd1 promoter. All five NF-κB Rel subunits are activated in activated T cells. However, only the p50 homodimer directly binds to the κB sequence at the pccd1 promoter in CD4+ and CD8+ T cells. Deficiency in p50 results in reduced PD-1 expression in both CD4+ and CD8+ T cells in vitro. Using an in vivo mixed bone marrow chimera mouse model, we show that p50 regulates PD-1 expression in a cell-intrinsic way and p50 deficiency leads to decreased PD-1 expression in both antigen-specific CD4+ and CD8+ T cells in vivo. The expression levels of H3K4me3-specific histone methyltransferase increased significantly, resulting in a significant increase in H3K4me3 deposition at the pdcd1 promoter in activated CD4+ and CD8+ T cells. Inhibition of H3K4me3 significantly decreased p50 binding to the pdcd1 promoter and PD-1 expression in a T cell line. Our findings determine that the p50-H3K4me3 axis regulates pdcd1 transcription activation in activated T cells.
Collapse
Affiliation(s)
- Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA
| | - Takumi Kumai
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA
| | - Esteban Celis
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
117
|
Regulation of H3K4me3 at Transcriptional Enhancers Characterizes Acquisition of Virus-Specific CD8 + T Cell-Lineage-Specific Function. Cell Rep 2018; 21:3624-3636. [PMID: 29262339 DOI: 10.1016/j.celrep.2017.11.097] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/08/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs), we mapped the dynamics of ∼25,000 putative CD8+ T cell transcriptional enhancers (TEs) differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3+) chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8+ T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8+ T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation.
Collapse
|
118
|
Good-Jacobson KL. Strength in diversity: Phenotypic, functional, and molecular heterogeneity within the memory B cell repertoire. Immunol Rev 2018; 284:67-78. [DOI: 10.1111/imr.12663] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim L. Good-Jacobson
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology; Biomedicine Discovery Institute, Monash University; Clayton Vic. Australia
| |
Collapse
|
119
|
Adams NM, Lau CM, Fan X, Rapp M, Geary CD, Weizman OE, Diaz-Salazar C, Sun JC. Transcription Factor IRF8 Orchestrates the Adaptive Natural Killer Cell Response. Immunity 2018; 48:1172-1182.e6. [PMID: 29858012 PMCID: PMC6233715 DOI: 10.1016/j.immuni.2018.04.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/08/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that display features of adaptive immunity during viral infection. Biallelic mutations in IRF8 have been reported to cause familial NK cell deficiency and susceptibility to severe viral infection in humans; however, the precise role of this transcription factor in regulating NK cell function remains unknown. Here, we show that cell-intrinsic IRF8 was required for NK-cell-mediated protection against mouse cytomegalovirus infection. During viral exposure, NK cells upregulated IRF8 through interleukin-12 (IL-12) signaling and the transcription factor STAT4, which promoted epigenetic remodeling of the Irf8 locus. Moreover, IRF8 facilitated the proliferative burst of virus-specific NK cells by promoting expression of cell-cycle genes and directly controlling Zbtb32, a master regulator of virus-driven NK cell proliferation. These findings identify the function and cell-type-specific regulation of IRF8 in NK-cell-mediated antiviral immunity and provide a mechanistic understanding of viral susceptibility in patients with IRF8 mutations.
Collapse
Affiliation(s)
- Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiying Fan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moritz Rapp
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carlos Diaz-Salazar
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
120
|
Yi F, Frazzette N, Cruz AC, Klebanoff CA, Siegel RM. Beyond Cell Death: New Functions for TNF Family Cytokines in Autoimmunity and Tumor Immunotherapy. Trends Mol Med 2018; 24:642-653. [PMID: 29880309 DOI: 10.1016/j.molmed.2018.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Originally discovered as an inducer of apoptosis, the TNF-family receptor Fas (CD95, APO-1, TNFRSF6) has more recently been found to have functions beyond cell death, including T cell co-stimulation and promoting terminal differentiation of CD4+ and CD8+ T cells. Other TNF family members also discovered as apoptosis inducers, such as TRAIL (APO-2L, TNFSF10), can promote inflammation through caspase-8. Surprisingly, non-apoptotic signaling through Fas can protect from the autoimmunity seen in Fas deficiency independently from the cell death inducing functions of the receptor. Non-apoptotic Fas signaling can induce tumor cell growth and migration, and impair the efficacy of T cell adoptive immunotherapy. Blocking of non-apoptotic functions of these receptors may be a novel strategy to regulate autoimmunity and inflammation, and enhance antitumor immunity.
Collapse
Affiliation(s)
- Fei Yi
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Frazzette
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony C Cruz
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065 USA; Parker Institute for Cancer Immunotherapy, MSKCC, New York, NY, 10065 USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
121
|
Abstract
The immune system is characterized by the generation of structurally and functionally heterogeneous immune cells that constitute complex innate and adaptive immunity. This heterogeneity of immune cells results from changes in the expression of genes without altering DNA sequence. To achieve this heterogeneity, immune cells orchestrate the expression and functional status of transcription factor (TF) networks, which can be broadly categorized into 3 classes: pioneer TFs that facilitate initial commitment and differentiation of hematopoietic cells, subset-specific TFs that promote the generation of selected cell lineages, and immune-signaling TFs that regulate specialized function in differentiated cells. Epigenetic mechanisms are known to be critical for organizing the TF networks, thereby controlling immune cell lineage-fate decisions, plasticity, and function. The effects of epigenetic regulators can be heritable during cell mitosis, primarily through the modification of DNA and histone methylation patterns at gene loci. By doing so, the immune system is enabled to mount a selective but robust response to stimuli, such as pathogens, tumor cells, autoantigens, or allogeneic antigens in the setting of transplantation, while preserving the immune cell reservoir necessary for protecting the host against numerous other unexpected stimuli and limit detrimental effect of systemic inflammatory reactions.
Collapse
|
122
|
Kagoya Y, Nakatsugawa M, Saso K, Guo T, Anczurowski M, Wang CH, Butler MO, Arrowsmith CH, Hirano N. DOT1L inhibition attenuates graft-versus-host disease by allogeneic T cells in adoptive immunotherapy models. Nat Commun 2018; 9:1915. [PMID: 29765028 PMCID: PMC5954061 DOI: 10.1038/s41467-018-04262-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 04/11/2018] [Indexed: 12/24/2022] Open
Abstract
Adoptive T-cell therapy is a promising therapeutic approach for cancer patients. The use of allogeneic T-cell grafts will improve its applicability and versatility provided that inherent allogeneic responses are controlled. T-cell activation is finely regulated by multiple signaling molecules that are transcriptionally controlled by epigenetic mechanisms. Here we report that inhibiting DOT1L, a histone H3-lysine 79 methyltransferase, alleviates allogeneic T-cell responses. DOT1L inhibition reduces miR-181a expression, which in turn increases the ERK phosphatase DUSP6 expression and selectively ameliorates low-avidity T-cell responses through globally suppressing T-cell activation-induced gene expression alterations. The inhibition of DOT1L or DUSP6 overexpression in T cells attenuates the development of graft-versus-host disease, while retaining potent antitumor activity in xenogeneic and allogeneic adoptive immunotherapy models. These results suggest that DOT1L inhibition may enable the safe and effective use of allogeneic antitumor T cells by suppressing unwanted immunological reactions in adoptive immunotherapy.
Collapse
Affiliation(s)
- Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada. .,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
123
|
Abstract
Upon stimulation, small numbers of naive CD8+ T cells proliferate and differentiate into a variety of memory and effector cell types. CD8+ T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8+ T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8+ T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8+ T cell function in individuals with chronic infections and cancer.
Collapse
Affiliation(s)
- Amanda N Henning
- Center for Cell-Based Therapy, National Cancer Institute (NCI)
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Nicholas P Restifo
- Center for Cell-Based Therapy, National Cancer Institute (NCI)
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
124
|
Abdelsamed HA, Zebley CC, Youngblood B. Epigenetic Maintenance of Acquired Gene Expression Programs during Memory CD8 T Cell Homeostasis. Front Immunol 2018; 9:6. [PMID: 29403491 PMCID: PMC5778141 DOI: 10.3389/fimmu.2018.00006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Memory CD8 T cells have a unique ability to provide lifelong immunity against pathogens containing their cognate epitope. Because of their ability to provide lifelong protection, the generation of memory T cells is now a major focus for current vaccination or adoptive cell therapy approaches to treat chronic viral infections and cancer. It is now clear that maintenance of memory CD8 T cells occurs through a process of antigen-independent homeostatic proliferation, which is regulated in part by the gamma chain cytokines IL-7 and IL-15. Here, we will describe the role of these cytokines in the survival and self-renewal of memory CD8 T cells. Further, we will describe the role of epigenetics in the maintenance of acquired functions among memory CD8 T cells during homeostatic proliferation.
Collapse
Affiliation(s)
- Hossam A Abdelsamed
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Caitlin C Zebley
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
125
|
Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG, García-Sastre A. Influenza. Nat Rev Dis Primers 2018; 4:3. [PMID: 29955068 PMCID: PMC7097467 DOI: 10.1038/s41572-018-0002-y] [Citation(s) in RCA: 857] [Impact Index Per Article: 142.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza is an infectious respiratory disease that, in humans, is caused by influenza A and influenza B viruses. Typically characterized by annual seasonal epidemics, sporadic pandemic outbreaks involve influenza A virus strains of zoonotic origin. The WHO estimates that annual epidemics of influenza result in ~1 billion infections, 3–5 million cases of severe illness and 300,000–500,000 deaths. The severity of pandemic influenza depends on multiple factors, including the virulence of the pandemic virus strain and the level of pre-existing immunity. The most severe influenza pandemic, in 1918, resulted in >40 million deaths worldwide. Influenza vaccines are formulated every year to match the circulating strains, as they evolve antigenically owing to antigenic drift. Nevertheless, vaccine efficacy is not optimal and is dramatically low in the case of an antigenic mismatch between the vaccine and the circulating virus strain. Antiviral agents that target the influenza virus enzyme neuraminidase have been developed for prophylaxis and therapy. However, the use of these antivirals is still limited. Emerging approaches to combat influenza include the development of universal influenza virus vaccines that provide protection against antigenically distant influenza viruses, but these vaccines need to be tested in clinical trials to ascertain their effectiveness.
Collapse
Affiliation(s)
- Florian Krammer
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Gavin J. D. Smith
- 0000 0001 2180 6431grid.4280.eDuke–NUS Medical School, Singapore, Singapore ,0000 0004 1936 7961grid.26009.3dDuke Global Health Institute, Duke University, Durham, NC USA
| | - Ron A. M. Fouchier
- 000000040459992Xgrid.5645.2Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Malik Peiris
- 0000000121742757grid.194645.bWHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China ,0000000121742757grid.194645.bCenter of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Katherine Kedzierska
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Peter C. Doherty
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,0000 0001 0224 711Xgrid.240871.8Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Peter Palese
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDivision of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Megan L. Shaw
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Treanor
- 0000 0004 1936 9166grid.412750.5Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Robert G. Webster
- 0000 0001 0224 711Xgrid.240871.8Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
126
|
He S, Liu Y, Meng L, Sun H, Wang Y, Ji Y, Purushe J, Chen P, Li C, Madzo J, Issa JP, Soboloff J, Reshef R, Moore B, Gattinoni L, Zhang Y. Ezh2 phosphorylation state determines its capacity to maintain CD8 + T memory precursors for antitumor immunity. Nat Commun 2017; 8:2125. [PMID: 29242551 PMCID: PMC5730609 DOI: 10.1038/s41467-017-02187-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022] Open
Abstract
Memory T cells sustain effector T-cell production while self-renewing in reaction to persistent antigen; yet, excessive expansion reduces memory potential and impairs antitumor immunity. Epigenetic mechanisms are thought to be important for balancing effector and memory differentiation; however, the epigenetic regulator(s) underpinning this process remains unknown. Herein, we show that the histone methyltransferase Ezh2 controls CD8+ T memory precursor formation and antitumor activity. Ezh2 activates Id3 while silencing Id2, Prdm1 and Eomes, promoting the expansion of memory precursor cells and their differentiation into functional memory cells. Akt activation phosphorylates Ezh2 and decreases its control of these transcriptional programs, causing enhanced effector differentiation at the expense of T memory precursors. Engineering T cells with an Akt-insensitive Ezh2 mutant markedly improves their memory potential and capability of controlling tumor growth compared to transiently inhibiting Akt. These findings establish Akt-mediated phosphorylation of Ezh2 as a critical target to potentiate antitumor immunotherapeutic strategies. During an immune response naive CD8+ T cells can differentiate into either effector or memory T cells. Here the authors show that Akt-mediated phosphorylation of the epigenetic regulator Ezh2 is critical for the generation of an anti-tumor CD8 T cell response and promotes the expansion of memory-precursors.
Collapse
Affiliation(s)
- Shan He
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA.
| | - Yongnian Liu
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Lijun Meng
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Hongxing Sun
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Yun Ji
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Janaki Purushe
- Department of Microbiology & Immunology, Temple University, Philadelphia, PA, 19140, USA
| | - Pan Chen
- The Division of Endocrinology and the Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Changhong Li
- The Division of Endocrinology and the Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jozef Madzo
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Ran Reshef
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bethany Moore
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Luca Gattinoni
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA. .,Department of Microbiology & Immunology, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
127
|
Malka Y, Steiman-Shimony A, Rosenthal E, Argaman L, Cohen-Daniel L, Arbib E, Margalit H, Kaplan T, Berger M. Post-transcriptional 3´-UTR cleavage of mRNA transcripts generates thousands of stable uncapped autonomous RNA fragments. Nat Commun 2017; 8:2029. [PMID: 29229900 PMCID: PMC5725528 DOI: 10.1038/s41467-017-02099-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022] Open
Abstract
The majority of mammalian genes contain one or more alternative polyadenylation sites. Choice of polyadenylation sites was suggested as one of the underlying mechanisms for generating longer/shorter transcript isoforms. Here, we demonstrate that mature mRNA transcripts can undergo additional cleavage and polyadenylation at a proximal internal site in the 3′-UTR, resulting in two stable, autonomous, RNA fragments: a coding sequence with a shorter 3′-UTR (body) and an uncapped 3′-UTR sequence downstream of the cleavage point (tail). Analyses of the human transcriptome has revealed thousands of such cleavage positions, suggesting a widespread post-transcriptional phenomenon producing thousands of stable 3′-UTR RNA tails that exist alongside their transcripts of origin. By analyzing the impact of microRNAs, we observed a significantly stronger effect for microRNA regulation at the body compared to the tail fragments. Our findings open a variety of future research prospects and call for a new perspective on 3′-UTR-dependent gene regulation. Most mammalian genes contain alternative polyadenylation sites. Here, the authors provide evidence that mRNA can be cleaved post-transcriptionally to generate mRNAs with shorter 3-´UTRs and stable autonomous uncapped 3´-UTR sequences.
Collapse
Affiliation(s)
- Yuval Malka
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel.
| | - Avital Steiman-Shimony
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel
| | - Eran Rosenthal
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, 9190401, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel
| | - Leonor Cohen-Daniel
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel
| | - Eliran Arbib
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, 9190401, Israel.
| | - Michael Berger
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel.
| |
Collapse
|
128
|
Carty SA, Gohil M, Banks LB, Cotton RM, Johnson ME, Stelekati E, Wells AD, Wherry EJ, Koretzky GA, Jordan MS. The Loss of TET2 Promotes CD8 + T Cell Memory Differentiation. THE JOURNAL OF IMMUNOLOGY 2017; 200:82-91. [PMID: 29150566 DOI: 10.4049/jimmunol.1700559] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
T cell differentiation requires appropriate regulation of DNA methylation. In this article, we demonstrate that the methylcytosine dioxygenase ten-eleven translocation (TET)2 regulates CD8+ T cell differentiation. In a murine model of acute viral infection, TET2 loss promotes early acquisition of a memory CD8+ T cell fate in a cell-intrinsic manner without disrupting Ag-driven cell expansion or effector function. Upon secondary recall, TET2-deficient memory CD8+ T cells demonstrate superior pathogen control. Genome-wide methylation analysis identified a number of differentially methylated regions in TET2-deficient versus wild-type CD8+ T cells. These differentially methylated regions did not occur at the loci of differentially expressed memory markers; rather, several hypermethylated regions were identified in known transcriptional regulators of CD8+ T cell memory fate. Together, these data demonstrate that TET2 is an important regulator of CD8+ T cell fate decisions.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mercy Gohil
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lauren B Banks
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Renee M Cotton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Erietta Stelekati
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,The Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - E John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Gary A Koretzky
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
129
|
Aznar MA, Labiano S, Diaz-Lagares A, Molina C, Garasa S, Azpilikueta A, Etxeberria I, Sanchez-Paulete AR, Korman AJ, Esteller M, Sandoval J, Melero I. CD137 (4-1BB) Costimulation Modifies DNA Methylation in CD8+ T Cell–Relevant Genes. Cancer Immunol Res 2017; 6:69-78. [DOI: 10.1158/2326-6066.cir-17-0159] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/31/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022]
|
130
|
LaMere SA, Thompson RC, Meng X, Komori HK, Mark A, Salomon DR. H3K27 Methylation Dynamics during CD4 T Cell Activation: Regulation of JAK/STAT and IL12RB2 Expression by JMJD3. THE JOURNAL OF IMMUNOLOGY 2017; 199:3158-3175. [PMID: 28947543 DOI: 10.4049/jimmunol.1700475] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
The changes to the epigenetic landscape in response to Ag during CD4 T cell activation have not been well characterized. Although CD4 T cell subsets have been mapped globally for numerous epigenetic marks, little has been done to study their dynamics early after activation. We have studied changes to promoter H3K27me3 during activation of human naive and memory CD4 T cells. Our results show that these changes occur relatively early (1 d) after activation of naive and memory cells and that demethylation is the predominant change to H3K27me3 at this time point, reinforcing high expression of target genes. Additionally, inhibition of the H3K27 demethylase JMJD3 in naive CD4 T cells demonstrates how critically important molecules required for T cell differentiation, such as JAK2 and IL12RB2, are regulated by H3K27me3. Our results show that H3K27me3 is a dynamic and important epigenetic modification during CD4 T cell activation and that JMJD3-driven H3K27 demethylation is critical for CD4 T cell function.
Collapse
Affiliation(s)
- Sarah A LaMere
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Ryan C Thompson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Xiangzhi Meng
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - H Kiyomi Komori
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Adam Mark
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Daniel R Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
131
|
Bhat J, Helmuth J, Chitadze G, Kouakanou L, Peters C, Vingron M, Ammerpohl O, Kabelitz D. Stochastics of Cellular Differentiation Explained by Epigenetics: The Case of T-Cell Differentiation and Functional Plasticity. Scand J Immunol 2017; 86:184-195. [PMID: 28799233 DOI: 10.1111/sji.12589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/06/2017] [Indexed: 12/19/2022]
Abstract
Epigenetic marks including histone modifications and DNA methylation are associated with the regulation of gene expression and activity. In addition, an increasing number of non-coding RNAs with regulatory activity on gene expression have been identified. Alongside, technological advancements allow for the analysis of these mechanisms with high resolution up to the single-cell level. For instance, the assay for transposase-accessible chromatin using sequencing (ATAC-seq) simultaneously probes for chromatin accessibility and nucleosome positioning. Thus, it provides information on two levels of epigenetic regulation. Development and differentiation of T cells into functional subset cells including memory T cells are dynamic processes driven by environmental signals. Here, we briefly review the current knowledge of how epigenetic regulation contributes to subset specification, differentiation and memory development in T cells. Specifically, we focus on epigenetic mechanisms differentially active in the two distinct T cell populations expressing αβ or γδ T cell receptors. We also discuss examples of epigenetic alterations of T cells in autoimmune diseases. DNA methylation and histone acetylation are subject to modification by several classes of 'epigenetic modifiers', some of which are in clinical use or in preclinical development. Therefore, we address the impact of some epigenetic modifiers on T-cell activation and differentiation, and discuss possible synergies with T cell-based immunotherapeutic strategies.
Collapse
Affiliation(s)
- J Bhat
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - J Helmuth
- Otto-Warburg-Laboratories: Epigenomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - G Chitadze
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - L Kouakanou
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - C Peters
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - M Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - O Ammerpohl
- Institute of Human Genetics, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - D Kabelitz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
132
|
Extrinsically derived TNF is primarily responsible for limiting antiviral CD8+ T cell response magnitude. PLoS One 2017; 12:e0184732. [PMID: 28886201 PMCID: PMC5590991 DOI: 10.1371/journal.pone.0184732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/23/2017] [Indexed: 11/26/2022] Open
Abstract
TNF is a pro-inflammatory cytokine produced by both lymphoid and non-lymphoid cells. As a consequence of the widespread expression of its receptors (TNFR1 and 2), TNF plays a role in many important biological processes. In the context of influenza A virus (IAV) infection, TNF has variably been implicated in mediating immunopathology as well as suppression of the immune response. Although a number of cell types are able to produce TNF, the ability of CD8+ T cells to produce TNF following viral infection is a hallmark of their effector function. As such, the regulation and role of CD8+ T cell-derived TNF following viral infection is of great interest. Here, we show that the biphasic production of TNF by CD8+ T cells following in vitro stimulation corresponds to distinct patterns of epigenetic modifications. Further, we show that a global loss of TNF during IAV infection results in an augmentation of the peripheral virus-specific CD8+ T cell response. Subsequent adoptive transfer experiments demonstrated that this attenuation of the CD8+ T cell response was largely, but not exclusively, conferred by extrinsic TNF, with intrinsically-derived TNF making only modest contributions. In conclusion, TNF exerts an immunoregulatory role on CD8+ T cell responses following IAV infection, an effect that is largely mediated by extrinsically-derived TNF.
Collapse
|
133
|
Araki K, Morita M, Bederman AG, Konieczny BT, Kissick HT, Sonenberg N, Ahmed R. Translation is actively regulated during the differentiation of CD8 + effector T cells. Nat Immunol 2017; 18:1046-1057. [PMID: 28714979 PMCID: PMC5937989 DOI: 10.1038/ni.3795] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Translation is a critical process in protein synthesis, but translational regulation in antigen-specific T cells in vivo has not been well defined. Here we have characterized the translatome of virus-specific CD8+ effector T cells (Teff cells) during acute infection of mice with lymphocytic choriomeningitis virus (LCMV). Antigen-specific T cells exerted dynamic translational control of gene expression that correlated with cell proliferation and stimulation via the T cell antigen receptor (TCR). The translation of mRNAs that encode translation machinery, including ribosomal proteins, was upregulated during the T cell clonal-expansion phase, followed by inhibition of the translation of those transcripts when the CD8+ Teff cells stopped dividing just before the contraction phase. That translational suppression was more pronounced in terminal effector cells than in memory precursor cells and was regulated by antigenic stimulation and signals from the kinase mTOR. Our studies show that translation of transcripts encoding ribosomal proteins is regulated during the differentiation of CD8+ Teff cells and might have a role in fate 'decisions' involved in the formation of memory cells.
Collapse
Affiliation(s)
- Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Masahiro Morita
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Annelise G. Bederman
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bogumila T Konieczny
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haydn T. Kissick
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
134
|
Multilayer epigenetic analysis reveals novel transcription factor networks in CD8 T cells. Cell Mol Immunol 2017; 15:199-202. [PMID: 28757613 DOI: 10.1038/cmi.2017.46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/08/2022] Open
|
135
|
Dogra P, Ghoneim HE, Abdelsamed HA, Youngblood B. Generating long-lived CD8(+) T-cell memory: Insights from epigenetic programs. Eur J Immunol 2017; 46:1548-62. [PMID: 27230488 DOI: 10.1002/eji.201545550] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 12/13/2022]
Abstract
T-cell-based immunological memory has the potential to provide the host with life-long protection against pathogen reexposure and thus offers tremendous promise for the design of vaccines targeting chronic infections or cancer. In order to exploit this potential in the design of new vaccines, it is necessary to understand how and when memory T cells acquire their poised effector potential, and moreover, how they maintain these properties during homeostatic proliferation. To gain insight into the persistent nature of memory T-cell functions, investigators have turned their attention to epigenetic mechanisms. Recent efforts have revealed that many of the properties acquired among memory T cells are coupled to stable changes in DNA methylation and histone modifications. Furthermore, it has recently been reported that the delineating features among memory T cells subsets are also linked to distinct epigenetic events, such as permissive and repressive histone modifications and DNA methylation programs, providing exciting new hypotheses regarding their cellular ancestry. Here, we review recent studies focused on epigenetic programs acquired during effector and memory T-cell differentiation and discuss how these data may shed new light on the developmental path for generating long-lived CD8(+) T-cell memory.
Collapse
Affiliation(s)
- Pranay Dogra
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hazem E Ghoneim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hossam A Abdelsamed
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
136
|
Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, Carter R, Awad W, Neale G, Thomas PG, Youngblood B. De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation. Cell 2017. [PMID: 28648661 DOI: 10.1016/j.cell.2017.06.007] [Citation(s) in RCA: 525] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immune-checkpoint-blockade (ICB)-mediated rejuvenation of exhausted T cells has emerged as a promising approach for treating various cancers and chronic infections. However, T cells that become fully exhausted during prolonged antigen exposure remain refractory to ICB-mediated rejuvenation. We report that blocking de novo DNA methylation in activated CD8 T cells allows them to retain their effector functions despite chronic stimulation during a persistent viral infection. Whole-genome bisulfite sequencing of antigen-specific murine CD8 T cells at the effector and exhaustion stages of an immune response identified progressively acquired heritable de novo methylation programs that restrict T cell expansion and clonal diversity during PD-1 blockade treatment. Moreover, these exhaustion-associated DNA-methylation programs were acquired in tumor-infiltrating PD-1hi CD8 T cells, and approaches to reverse these programs improved T cell responses and tumor control during ICB. These data establish de novo DNA-methylation programming as a regulator of T cell exhaustion and barrier of ICB-mediated T cell rejuvenation.
Collapse
Affiliation(s)
- Hazem E Ghoneim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ardiana Moustaki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hossam A Abdelsamed
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pranay Dogra
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert Carter
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoff Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
137
|
Philip M, Fairchild L, Sun L, Horste EL, Camara S, Shakiba M, Scott AC, Viale A, Lauer P, Merghoub T, Hellmann MD, Wolchok JD, Leslie CS, Schietinger A. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 2017. [PMID: 28514453 DOI: 10.1038/nature22367.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumour-specific CD8 T cells in solid tumours are dysfunctional, allowing tumours to progress. The epigenetic regulation of T cell dysfunction and therapeutic reprogrammability (for example, to immune checkpoint blockade) is not well understood. Here we show that T cells in mouse tumours differentiate through two discrete chromatin states: a plastic dysfunctional state from which T cells can be rescued, and a fixed dysfunctional state in which the cells are resistant to reprogramming. We identified surface markers associated with each chromatin state that distinguished reprogrammable from non-reprogrammable PD1hi dysfunctional T cells within heterogeneous T cell populations from tumours in mice; these surface markers were also expressed on human PD1hi tumour-infiltrating CD8 T cells. Our study has important implications for cancer immunotherapy as we define key transcription factors and epigenetic programs underlying T cell dysfunction and surface markers that predict therapeutic reprogrammability.
Collapse
Affiliation(s)
- Mary Philip
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Lauren Fairchild
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Liping Sun
- Integrated Genomics Operation, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ellen L Horste
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Steven Camara
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Mojdeh Shakiba
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Weill Cornell Medical College, Cornell University, New York, New York 10065, USA
| | - Andrew C Scott
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Weill Cornell Medical College, Cornell University, New York, New York 10065, USA
| | - Agnes Viale
- Integrated Genomics Operation, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Peter Lauer
- Aduro Biotech, Inc., Berkeley, California 94720, USA
| | - Taha Merghoub
- Weill Cornell Medical College, Cornell University, New York, New York 10065, USA.,Melanoma and Immunotherapeutics Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Matthew D Hellmann
- Weill Cornell Medical College, Cornell University, New York, New York 10065, USA.,Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jedd D Wolchok
- Weill Cornell Medical College, Cornell University, New York, New York 10065, USA.,Melanoma and Immunotherapeutics Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Weill Cornell Medical College, Cornell University, New York, New York 10065, USA
| |
Collapse
|
138
|
Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 2017; 545:452-456. [PMID: 28514453 PMCID: PMC5693219 DOI: 10.1038/nature22367] [Citation(s) in RCA: 624] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
Abstract
Tumour-specific CD8 T cells in solid tumours are dysfunctional, allowing tumours to progress. The epigenetic regulation of T cell dysfunction and therapeutic reprogrammability (for example, to immune checkpoint blockade) is not well understood. Here we show that T cells in mouse tumours differentiate through two discrete chromatin states: a plastic dysfunctional state from which T cells can be rescued, and a fixed dysfunctional state in which the cells are resistant to reprogramming. We identified surface markers associated with each chromatin state that distinguished reprogrammable from non-reprogrammable PD1hi dysfunctional T cells within heterogeneous T cell populations from tumours in mice; these surface markers were also expressed on human PD1hi tumour-infiltrating CD8 T cells. Our study has important implications for cancer immunotherapy as we define key transcription factors and epigenetic programs underlying T cell dysfunction and surface markers that predict therapeutic reprogrammability.
Collapse
|
139
|
Phan AT, Goldrath AW, Glass CK. Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity. Immunity 2017; 46:714-729. [PMID: 28514673 PMCID: PMC5505665 DOI: 10.1016/j.immuni.2017.04.016] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023]
Abstract
Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection.
Collapse
Affiliation(s)
- Anthony T Phan
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
140
|
Abdelsamed HA, Moustaki A, Fan Y, Dogra P, Ghoneim HE, Zebley CC, Triplett BM, Sekaly RP, Youngblood B. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis. J Exp Med 2017; 214:1593-1606. [PMID: 28490440 PMCID: PMC5461005 DOI: 10.1084/jem.20161760] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/16/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022] Open
Abstract
Abdelsamed et al. demonstrate that the poised effector potential of human memory CD8 T cells is coupled to maintenance of effector-associated DNA methylation programs during in vitro and in vivo homeostatic proliferation. Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell–mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (TEM), and longer-lived central memory (TCM) and stem cell memory (TSCM) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7– and IL-15–mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of TCM and TSCM memory cells resulted in phenotypic conversion into TEM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired TEM-associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells.
Collapse
Affiliation(s)
- Hossam A Abdelsamed
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ardiana Moustaki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Pranay Dogra
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Hazem E Ghoneim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Caitlin C Zebley
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Brandon M Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
141
|
Yu B, Zhang K, Milner JJ, Toma C, Chen R, Scott-Browne JP, Pereira RM, Crotty S, Chang JT, Pipkin ME, Wang W, Goldrath AW. Epigenetic landscapes reveal transcription factors that regulate CD8 + T cell differentiation. Nat Immunol 2017; 18:573-582. [PMID: 28288100 PMCID: PMC5395420 DOI: 10.1038/ni.3706] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022]
Abstract
Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Bingfei Yu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Kai Zhang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - J Justin Milner
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Clara Toma
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Runqiang Chen
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, Florida, USA
| | - James P Scott-Browne
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Renata M Pereira
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, Florida, USA
| | - Wei Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
142
|
Scheer S, Zaph C. The Lysine Methyltransferase G9a in Immune Cell Differentiation and Function. Front Immunol 2017; 8:429. [PMID: 28443098 PMCID: PMC5387087 DOI: 10.3389/fimmu.2017.00429] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
G9a (KMT1C, EHMT2) is a lysine methyltransferase (KMT) whose primary function is to di-methylate lysine 9 of histone H3 (H3K9me2). G9a-dependent H3K9me2 is associated with gene silencing and acts primarily through the recruitment of H3K9me2-binding proteins that prevent transcriptional activation. Gene repression via G9a-dependent H3K9me2 is critically required in embryonic stem (ES) cells for the development of cellular lineages by repressing expression of pluripotency factors. In the immune system, lymphoid cells such as T cells and innate lymphoid cells (ILCs) can differentiate from a naïve state into one of several effector lineages that require both activating and repressive mechanisms to maintain the correct gene expression program. Furthermore, the long-term immunity to re-infection is mediated by memory T cells, which also require specific gene expression and repression to maintain a quiescent state. In this review, we examine the molecular machinery of G9a-dependent functions, address the role of G9a in lymphoid cell differentiation and function, and identify potential functions of T cells and ILCs that may be controlled by G9a. Together, this review will highlight the dynamic nature of G9a-dependent H3K9me2 in the immune system and shed light on the nature of repressive epigenetic modifications in cellular lineage choice.
Collapse
Affiliation(s)
- Sebastian Scheer
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colby Zaph
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
143
|
Gray SM, Amezquita RA, Guan T, Kleinstein SH, Kaech SM. Polycomb Repressive Complex 2-Mediated Chromatin Repression Guides Effector CD8 + T Cell Terminal Differentiation and Loss of Multipotency. Immunity 2017; 46:596-608. [PMID: 28410989 DOI: 10.1016/j.immuni.2017.03.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 11/24/2022]
Abstract
Understanding immunological memory formation depends on elucidating how multipotent memory precursor (MP) cells maintain developmental plasticity and longevity to provide long-term immunity while other effector cells develop into terminally differentiated effector (TE) cells with limited survival. Profiling active (H3K27ac) and repressed (H3K27me3) chromatin in naive, MP, and TE CD8+ T cells during viral infection revealed increased H3K27me3 deposition at numerous pro-memory and pro-survival genes in TE relative to MP cells, indicative of fate restriction, but permissive chromatin at both pro-memory and pro-effector genes in MP cells, indicative of multipotency. Polycomb repressive complex 2 deficiency impaired clonal expansion and TE cell differentiation, but minimally impacted CD8+ memory T cell maturation. Abundant H3K27me3 deposition at pro-memory genes occurred late during TE cell development, probably from diminished transcription factor FOXO1 expression. These results outline a temporal model for loss of memory cell potential through selective epigenetic silencing of pro-memory genes in effector T cells.
Collapse
Affiliation(s)
- Simon M Gray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tianxia Guan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
144
|
Tu WJ, Hardy K, Sutton CR, McCuaig R, Li J, Dunn J, Tan A, Brezar V, Morris M, Denyer G, Lee SK, Turner SJ, Seddiki N, Smith C, Khanna R, Rao S. Priming of transcriptional memory responses via the chromatin accessibility landscape in T cells. Sci Rep 2017; 7:44825. [PMID: 28317936 PMCID: PMC5357947 DOI: 10.1038/srep44825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
Memory T cells exhibit transcriptional memory and “remember” their previous pathogenic encounter to increase transcription on re-infection. However, how this transcriptional priming response is regulated is unknown. Here we performed global FAIRE-seq profiling of chromatin accessibility in a human T cell transcriptional memory model. Primary activation induced persistent accessibility changes, and secondary activation induced secondary-specific opening of previously less accessible regions associated with enhanced expression of memory-responsive genes. Increased accessibility occurred largely in distal regulatory regions and was associated with increased histone acetylation and relative H3.3 deposition. The enhanced re-stimulation response was linked to the strength of initial PKC-induced signalling, and PKC-sensitive increases in accessibility upon initial stimulation showed higher accessibility on re-stimulation. While accessibility maintenance was associated with ETS-1, accessibility at re-stimulation-specific regions was linked to NFAT, especially in combination with ETS-1, EGR, GATA, NFκB, and NR4A. Furthermore, NFATC1 was directly regulated by ETS-1 at an enhancer region. In contrast to the factors that increased accessibility, signalling from bHLH and ZEB family members enhanced decreased accessibility upon re-stimulation. Interplay between distal regulatory elements, accessibility, and the combined action of sequence-specific transcription factors allows transcriptional memory-responsive genes to “remember” their initial environmental encounter.
Collapse
Affiliation(s)
- Wen Juan Tu
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Kristine Hardy
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Christopher R Sutton
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Robert McCuaig
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Jasmine Li
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Microbiology &Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Jenny Dunn
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Abel Tan
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Vedran Brezar
- INSERM U955 Eq16 Faculte de medicine Henri Mondor and Universite Paris-Est, Creteil/Vaccine Research Institute, Creteil 94010, France
| | - Melanie Morris
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Gareth Denyer
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | - Sau Kuen Lee
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Microbiology &Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Nabila Seddiki
- INSERM U955 Eq16 Faculte de medicine Henri Mondor and Universite Paris-Est, Creteil/Vaccine Research Institute, Creteil 94010, France
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sudha Rao
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| |
Collapse
|
145
|
Bevington SL, Cauchy P, Withers DR, Lane PJL, Cockerill PN. T Cell Receptor and Cytokine Signaling Can Function at Different Stages to Establish and Maintain Transcriptional Memory and Enable T Helper Cell Differentiation. Front Immunol 2017; 8:204. [PMID: 28316598 PMCID: PMC5334638 DOI: 10.3389/fimmu.2017.00204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Experienced T cells exhibit immunological memory via a rapid recall response, responding to restimulation much faster than naïve T cells. The formation of immunological memory starts during an initial slow response, when naïve T cells become transformed to proliferating T blast cells, and inducible immune response genes are reprogrammed as active chromatin domains. We demonstrated that these active domains are supported by thousands of priming elements which cooperate with inducible transcriptional enhancers to enable efficient responses to stimuli. At the conclusion of this response, a small proportion of these cells return to the quiescent state as long-term memory T cells. We proposed that priming elements can be established in a hit-and-run process dependent on the inducible factor AP-1, but then maintained by the constitutive factors RUNX1 and ETS-1. This priming mechanism may also function to render genes receptive to additional differentiation-inducing factors such as GATA3 and TBX21 that are encountered under polarizing conditions. The proliferation of recently activated T cells and the maintenance of immunological memory in quiescent memory T cells are also dependent on various cytokine signaling pathways upstream of AP-1. We suggest that immunological memory is established by T cell receptor signaling, but maintained by cytokine signaling.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Peter J L Lane
- Institute of Immunology and Immunotherapy, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| |
Collapse
|
146
|
Elgizouli M, Logan C, Grychtol R, Rothenbacher D, Nieters A, Heinzmann A. Reduced PRF1 enhancer methylation in children with a history of severe RSV bronchiolitis in infancy: an association study. BMC Pediatr 2017; 17:65. [PMID: 28253869 PMCID: PMC5335730 DOI: 10.1186/s12887-017-0817-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/21/2017] [Indexed: 01/09/2023] Open
Abstract
Background Acute lower respiratory tract infection is the commonest disease affecting children under five worldwide. Respiratory syncytial virus (RSV) is among the most common causative pathogens. Epidemiological data suggest an association between severe viral respiratory infections in infancy and increased incidence of childhood wheeze and asthma. DNA methylation is involved in immune cell differentiation and identity. It provides an avenue for environmental influences on the genome and therefore has potential as a marker for sustained effects of infectious insults. In this study we investigated the association between DNA methylation patterns in the perforin gene (PRF1) in childhood and a history of hospitalisation for severe RSV disease in the first two years of life. Methods In this retrospective study, we explored patterns of whole blood DNA methylation at a methylation sensitive region of the proximal PRF1 enhancer in a group of children with a record of hospitalisation for severe RSV disease during infancy (n = 43) compared to healthy controls matched for age and sex with no similar hospitalisation history, no allergy and no persistent wheeze (n = 43). Univariate and bivariate conditional logistic regression analyses were conducted to test the association between PRF1 enhancer methylation and record of hospitalisation for RSV disease. Results Children with a record of hospitalisation for severe RSV bronchiolitis demonstrated markedly lower levels of DNA methylation at two cytosine-phosphate-guanine dinucleotide (CpG) loci of the PRF1 proximal enhancer, corresponding to a signal transducer and activator of transcription 5 (STAT5) responsive element, compared to controls, adjusted odds ratios of 0.82 (95% confidence interval [CI] 0.71, 0.94) and 0.73 (95% CI 0.58, 0.92) for each 1% increase in DNA methylation. Smoking in the household showed a significant influence on DNA methylation at the assayed positions. Conclusions Our findings support an association between childhood DNA methylation patterns in PRF1 and a record of severe RSV infection in infancy. Longitudinal studies are required to establish the utility of PRF1 methylation as a marker of severe RSV disease.
Collapse
Affiliation(s)
- Magdeldin Elgizouli
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 115 4, Freiburg, D-79106, Germany
| | - Chad Logan
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Ruth Grychtol
- Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Alexandra Nieters
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 115 4, Freiburg, D-79106, Germany.
| | - Andrea Heinzmann
- Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
147
|
T-Cell Receptor (TCR) Clonotype-Specific Differences in Inhibitory Activity of HIV-1 Cytotoxic T-Cell Clones Is Not Mediated by TCR Alone. J Virol 2017; 91:JVI.02412-16. [PMID: 28077649 DOI: 10.1128/jvi.02412-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8+ T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8+ T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8+ T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8+ T-cell function, we cloned the TCR α and β chain genes from one effective and two ineffective CD8+ T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8+ T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8+ T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8+ T cells in elite controllers to inhibit HIV infection.IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8+ T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8+ T cells in controlling HIV-1 replication. The contribution of TCR clonotype to inhibitory potency was investigated by delineating the responsiveness of effective and ineffective CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 Gag-derived peptide, KK10 (KRWIILGLNK). KK10-stimulated "effective" CD8+ T-cell clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained cytokine and chemokine secretion than "ineffective" CD8+ T-cell clones. However, TCRs cloned from an effective and one of two ineffective clones conferred upon primary CD8+ T cells the equivalent potent capacity to inhibit HIV-1 infection. Taken together, these data suggest that other factors aside from intrinsic TCR-peptide-major histocompatibility complex (TCR-peptide-MHC) reactivity can contribute to the potent antiviral capacity of some HIV-specific CD8+ T-cell clones.
Collapse
|
148
|
Kakaradov B, Arsenio J, Widjaja CE, He Z, Aigner S, Metz PJ, Yu B, Wehrens EJ, Lopez J, Kim SH, Zuniga EI, Goldrath AW, Chang JT, Yeo GW. Early transcriptional and epigenetic regulation of CD8 + T cell differentiation revealed by single-cell RNA sequencing. Nat Immunol 2017; 18:422-432. [PMID: 28218746 PMCID: PMC5360497 DOI: 10.1038/ni.3688] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
Abstract
During microbial infection, responding CD8+ T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA-sequencing approach and analyzed individual CD8+ T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants that controlled the fate specification of CD8+ T lymphocytes. Our findings suggest a model for the differentiation of terminal effector cells initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, which highlights the power and necessity of single-cell approaches.
Collapse
Affiliation(s)
- Boyko Kakaradov
- Department of Cellular and Molecular Medicine, University of California, San Diego, California, USA
| | - Janilyn Arsenio
- Department of Medicine, University of California, San Diego, California, USA
| | | | - Zhaoren He
- Department of Cellular and Molecular Medicine, University of California, San Diego, California, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California, San Diego, California, USA
| | - Patrick J Metz
- Department of Medicine, University of California, San Diego, California, USA
| | - Bingfei Yu
- Division of Biological Sciences, University of California, San Diego, California, USA
| | - Ellen J Wehrens
- Division of Biological Sciences, University of California, San Diego, California, USA
| | - Justine Lopez
- Department of Medicine, University of California, San Diego, California, USA
| | - Stephanie H Kim
- Department of Medicine, University of California, San Diego, California, USA
| | - Elina I Zuniga
- Division of Biological Sciences, University of California, San Diego, California, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, California, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, California, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, California, USA.,Institute for Genomic Medicine, University of California, San Diego, California, USA.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
149
|
Scharer CD, Bally APR, Gandham B, Boss JM. Cutting Edge: Chromatin Accessibility Programs CD8 T Cell Memory. THE JOURNAL OF IMMUNOLOGY 2017; 198:2238-2243. [PMID: 28179496 DOI: 10.4049/jimmunol.1602086] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022]
Abstract
CD8 T cell memory is characterized by rapid recall of effector function, increased proliferation, and reduced activation requirements. Despite the extensive functional characterization, the molecular mechanisms that facilitate these enhanced properties are not well characterized. In this study, the assay for transposase-accessible chromatin sequencing was employed to map the cis-regulatory elements in CD8 T cells responding to acute and chronic lymphocytic choriomeningitis virus infections. Integration of chromatin accessibility profiles with gene expression data identified unique regulatory modules that were enriched for distinct combinations of transcription factor-binding motifs. Memory CD8 T cells displayed a chromatin accessibility structure that was absent from other acute and exhausted cells types and included key effector and proliferative genes. Stimulation of memory cells revealed enhanced transcription of "memory-primed" genes compared with naive cells. Thus, memory CD8 T cells display a preprogrammed chromatin accessibility profile and maintain a molecular history of cis-element usage, thereby reducing the steps necessary to revive effector functions.
Collapse
Affiliation(s)
- Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322; and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Alexander P R Bally
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322; and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Bhanu Gandham
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322; and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322; and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
150
|
Moskowitz DM, Zhang DW, Hu B, Le Saux S, Yanes RE, Ye Z, Buenrostro JD, Weyand CM, Greenleaf WJ, Goronzy JJ. Epigenomics of human CD8 T cell differentiation and aging. Sci Immunol 2017; 2:eaag0192. [PMID: 28439570 PMCID: PMC5399889 DOI: 10.1126/sciimmunol.aag0192] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The efficacy of the adaptive immune response declines dramatically with age, but the cell-intrinsic mechanisms driving immune aging in humans remain poorly understood. Immune aging is characterized by a loss of self-renewing naïve cells and the accumulation of differentiated but dysfunctional cells within the CD8 T cell compartment. Using ATAC-seq, we inferred the transcription factor binding activities correlated with naive and central and effector memory CD8 T cell states in young adults. Integrating our results with RNA-seq, we identified transcription networks associated with CD8 T cell differentiation, with prominent roles implicated for BATF, ETS1, Eomes, and Sp1. Extending our analysis to aged humans, we found that the differences between the memory and naive subsets were largely preserved across age, but that naive and central memory cells from older individuals exhibited a shift toward more differentiated patterns of chromatin openness. Additionally, aged naive cells displayed a loss in chromatin accessibility at gene promoters, largely associated with a decrease in NRF1 binding. This shift was implicated in a marked drop-off in the ability of the aged naive cells to transcribe respiratory chain genes, which may explain the reduced capacity of oxidative phosphorylation in older naïve cells. Our findings identify BATF- and NRF1-driven gene regulation as potential targets for delaying CD8 T cell aging and restoring function.
Collapse
Affiliation(s)
- David M Moskowitz
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, California
| | - David W Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care, System, Palo Alto, CA 94306
| | - Bin Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care, System, Palo Alto, CA 94306
| | - Sabine Le Saux
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care, System, Palo Alto, CA 94306
| | - Rolando E Yanes
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care, System, Palo Alto, CA 94306
| | - Zhongde Ye
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care, System, Palo Alto, CA 94306
| | - Jason D Buenrostro
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University, School of Medicine, Stanford, California
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care, System, Palo Alto, CA 94306
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care, System, Palo Alto, CA 94306
| |
Collapse
|