101
|
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021; 21:481-499. [PMID: 34083781 PMCID: PMC8173513 DOI: 10.1038/s41568-021-00363-z] [Citation(s) in RCA: 353] [Impact Index Per Article: 117.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Interleukins and associated cytokines serve as the means of communication for innate and adaptive immune cells as well as non-immune cells and tissues. Thus, interleukins have a critical role in cancer development, progression and control. Interleukins can nurture an environment enabling and favouring cancer growth while simultaneously being essential for a productive tumour-directed immune response. These properties of interleukins can be exploited to improve immunotherapies to promote effectiveness as well as to limit side effects. This Review aims to unravel some of these complex interactions.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Janina Dörr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany.
- German Center for Translational Cancer Research (DKTK), Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
102
|
Negi S, Saini S, Tandel N, Sahu K, Mishra RP, Tyagi RK. Translating Treg Therapy for Inflammatory Bowel Disease in Humanized Mice. Cells 2021; 10:1847. [PMID: 34440615 PMCID: PMC8393385 DOI: 10.3390/cells10081847] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Crohn's disease and ulcerative colitis, two major forms of inflammatory bowel disease (IBD) in humans, afflicted in genetically predisposed individuals due to dysregulated immune response directed against constituents of gut flora. The defective immune responses mounted against the regulatory mechanisms amplify and maintain the IBD-induced mucosal inflammation. Therefore, restoring the balance between inflammatory and anti-inflammatory immunepathways in the gut may contribute to halting the IBD-associated tissue-damaging immune response. Phenotypic and functional characterization of various immune-suppressive T cells (regulatory T cells; Tregs) over the last decade has been used to optimize the procedures for in vitro expansion of these cells for developing therapeutic interventional strategies. In this paper, we review the mechanisms of action and functional importance of Tregs during the pathogenesis of IBD and modulating the disease induced inflammation as well as role of mouse models including humanized mice repopulated with the human immune system (HIS) to study the IBD. "Humanized" mouse models provide new tools to analyze human Treg ontogeny, immunobiology, and therapy and the role of Tregs in developing interventional strategies against IBD. Overall, humanized mouse models replicate the human conditions and prove a viable tool to study molecular functions of human Tregs to harness their therapeutic potential.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/therapy
- Crohn Disease/genetics
- Crohn Disease/immunology
- Crohn Disease/metabolism
- Crohn Disease/therapy
- Disease Models, Animal
- Hematopoietic Stem Cell Transplantation
- Humans
- Mice, Transgenic
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Sushmita Negi
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
- BERPDC Department, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Sheetal Saini
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India;
| | - Kiran Sahu
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| | - Ravi P.N. Mishra
- BERPDC Department, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Rajeev K. Tyagi
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| |
Collapse
|
103
|
Danelli L, Cornish G, Merkenschlager J, Kassiotis G. Default polyfunctional T helper 1 response to ample signal 1 alone. Cell Mol Immunol 2021; 18:1809-1822. [PMID: 32313208 PMCID: PMC8245500 DOI: 10.1038/s41423-020-0415-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/14/2020] [Indexed: 12/27/2022] Open
Abstract
CD4+ T cells integrate well-defined signals from the T-cell receptor (TCR) (signal 1) and a host of costimulatory molecules (signal 2) to initiate clonal expansion and differentiation into diverse functional T helper (Th) subsets. However, our ability to guide the expansion of context-appropriate Th subsets by deploying these signals in vaccination remains limited. Using cell-based vaccines, we selectively amplified signal 1 by exclusive presentation of an optimized peptide:MHC II (pMHC II) complex in the absence of classic costimulation. Contrary to expectations, amplified signal 1 alone was strongly immunogenic and selectively expanded high-affinity TCR clonotypes, despite delivering intense TCR signals. In contrast to natural infection or standard vaccines, amplified signal 1, presented by a variety of professional and nonprofessional antigen-presenting cells (APCs), induced exclusively polyfunctional Th1 effector and memory cells, which protected against retroviral infection and tumor challenge, and expanded tumor-reactive CD4+ T cells otherwise rendered unresponsive in tumor-bearing hosts. Together, our findings uncover a default Th1 response to ample signal 1 and offer a means to selectively prime such protective responses by vaccination.
Collapse
Affiliation(s)
- Luca Danelli
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Georgina Cornish
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julia Merkenschlager
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
104
|
Tumor infiltrating and peripheral CD4 +ILT2 + T cells are a cytotoxic subset selectively inhibited by HLA-G in clear cell renal cell carcinoma patients. Cancer Lett 2021; 519:105-116. [PMID: 34186161 DOI: 10.1016/j.canlet.2021.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022]
Abstract
HLA-G ILT2 has recently been positioned as a major immune checkpoint in urologic cancers. In clear cell renal cell carcinoma (ccRCC), tumor-infiltrating CD8+ T cells expressing ILT2 are a highly cytotoxic cell population, distinct from PD1+ T cells, and whose function is inhibited by HLA-G+ targets. Here we report that ILT2 receptor can also be expressed by CD4+ T cells in urologic cancer patients. In the course of deciphering the role of these ILT2+CD4+ T cells, we found a statistical association between the tumor context and these T cells, and a positive correlation between the levels of peripheral and intra-tumoral CD4+ILT2+ T cells. Phenotypic analyses revealed that CD4+ILT2+ T cells express memory T cell (CD27-CD28-CD57+) and cytotoxicity (Tbet+Perforin+KLRG1+NKp80+GPR56+) markers, consistent with a CD4+CTL phenotype. Functional assays showed that ccRCC-infiltrating CD4+ILT2+ T cells indeed have high cytolytic properties and therefore function as proper CD4+CTLs, but are selectively inhibited by HLA-G+ targets. Clinical relevance was provided by immunohistochemical analyses on ccRCC tumor lesions with HLA-G+ HLA class II+ tumor cells next to CD4+ T cell infiltrates. Our findings provide evidence supporting that ILT2+ T cells constitute a reservoir of intratumor cytotoxic T cells that is not targeted by the current checkpoint inhibitors, but could be by anti-HLA-G/anti-ILT2 antibodies as novel immunotherapy in HLA-G+ tumors.
Collapse
|
105
|
Abstract
Therapeutic cancer vaccines have undergone a resurgence in the past decade. A better understanding of the breadth of tumour-associated antigens, the native immune response and development of novel technologies for antigen delivery has facilitated improved vaccine design. The goal of therapeutic cancer vaccines is to induce tumour regression, eradicate minimal residual disease, establish lasting antitumour memory and avoid non-specific or adverse reactions. However, tumour-induced immunosuppression and immunoresistance pose significant challenges to achieving this goal. In this Review, we deliberate on how to improve and expand the antigen repertoire for vaccines, consider developments in vaccine platforms and explore antigen-agnostic in situ vaccines. Furthermore, we summarize the reasons for failure of cancer vaccines in the past and provide an overview of various mechanisms of resistance posed by the tumour. Finally, we propose strategies for combining suitable vaccine platforms with novel immunomodulatory approaches and standard-of-care treatments for overcoming tumour resistance and enhancing clinical efficacy.
Collapse
Affiliation(s)
- Mansi Saxena
- Vaccine and Cell Therapy Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hematology and Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | | | - Nina Bhardwaj
- Vaccine and Cell Therapy Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Hematology and Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
106
|
Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors. Int J Mol Sci 2021; 22:ijms22115736. [PMID: 34072260 PMCID: PMC8199456 DOI: 10.3390/ijms22115736] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
The understanding of the tumor microenvironment (TME) has been expanding in recent years in the context of interactions among different cell types, through direct cell–cell communication as well as through soluble factors. It has become evident that the development of a successful antitumor response depends on several TME factors. In this context, the number, type, and subsets of immune cells, as well as the functionality, memory, and exhaustion state of leukocytes are key factors of the TME. Both the presence and functionality of immune cells, in particular T cells, are regulated by cellular and soluble factors of the TME. In this regard, one fundamental reason for failure of antitumor responses is hijacked immune cells, which contribute to the immunosuppressive TME in multiple ways. Specifically, reactive oxygen species (ROS), metabolites, and anti-inflammatory cytokines have central roles in generating an immunosuppressive TME. In this review, we focused on recent developments in the immune cell constituents of the TME, and the micromilieu control of antitumor responses. Furthermore, we highlighted the current challenges of T cell-based immunotherapies and potential future strategies to consider for strengthening their effectiveness.
Collapse
|
107
|
Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines (Basel) 2021; 9:vaccines9050454. [PMID: 34064410 PMCID: PMC8147771 DOI: 10.3390/vaccines9050454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy has become a standard treatment in many cancers and it is based on three main therapeutic axes: immune checkpoint blockade (ICB), vaccination and adoptive cell transfer (ACT). If originally these therapies mainly focused on exploiting CD8 T cells given their role in the direct elimination of tumor cells, increasing evidence highlights the crucial role CD4 T cells play in the antitumor immune response. Indeed, these cells can profoundly modulate the tumor microenvironment (TME) by secreting different types of cytokine or by directly eliminating cancer cells. In this review, we describe how different CD4 T cell subsets can contribute to tumor immune responses during immunotherapy and the novel high-throughput immune monitoring tools that are expected to facilitate the study of CD4 T cells, at antigen-specific and single cell level, thus accelerating bench-to-bed translational research in cancer.
Collapse
|
108
|
Kent A, Longino NV, Christians A, Davila E. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:658611. [PMID: 34012443 PMCID: PMC8126620 DOI: 10.3389/fimmu.2021.658611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
T cell-based immunotherapies including genetically engineered T cells, adoptive transfer of tumor-infiltrating lymphocytes, and immune checkpoint blockade highlight the impressive anti-tumor effects of T cells. These successes have provided new hope to many cancer patients with otherwise poor prognoses. However, only a fraction of patients demonstrates durable responses to these forms of therapies and many develop significant immune-mediated toxicity. These heterogeneous clinical responses suggest that underlying nuances in T cell genetics, phenotypes, and activation states likely modulate the therapeutic impact of these approaches. To better characterize known genetic variations that may impact T cell function, we 1) review the function of early T cell receptor-specific signaling mediators, 2) offer a synopsis of known mutations and genetic alterations within the associated molecules, 3) discuss the link between these mutations and human disease and 4) review therapeutic strategies under development or in clinical testing that target each of these molecules for enhancing anti-tumor T cell activity. Finally, we discuss novel engineering approaches that could be designed based on our understanding of the function of these molecules in health and disease.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Natalie V. Longino
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Allison Christians
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
109
|
Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, Goswami S, Allison JP. The Next Decade of Immune Checkpoint Therapy. Cancer Discov 2021; 11:838-857. [DOI: 10.1158/2159-8290.cd-20-1680] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
|
110
|
Jones DM, Read KA, Oestreich KJ. Dynamic Roles for IL-2-STAT5 Signaling in Effector and Regulatory CD4 + T Cell Populations. THE JOURNAL OF IMMUNOLOGY 2021; 205:1721-1730. [PMID: 32958706 DOI: 10.4049/jimmunol.2000612] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
CD4+ Th cells are responsible for orchestrating diverse, pathogen-specific immune responses through their differentiation into a number of subsets, including TH1, TH2, TH9, T follicular helper, T follicular regulatory, and regulatory T cells. The differentiation of each subset is guided by distinct regulatory requirements, including those derived from extracellular cytokine signals. IL-2 has emerged as a critical immunomodulatory cytokine that both positively and negatively affects the differentiation of individual Th cell subsets. IL-2 signals are propagated, in part, via activation of STAT5, which functions as a key regulator of CD4+ T cell gene programs. In this review, we discuss current understanding of the mechanisms that allow IL-2-STAT5 signaling to exert divergent effects across CD4+ T cell subsets and highlight specific roles for this pathway in the regulation of individual Th cell differentiation programs.
Collapse
Affiliation(s)
- Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and
| |
Collapse
|
111
|
Ren X, Zhang L, Zhang Y, Li Z, Siemers N, Zhang Z. Insights Gained from Single-Cell Analysis of Immune Cells in the Tumor Microenvironment. Annu Rev Immunol 2021; 39:583-609. [PMID: 33637019 DOI: 10.1146/annurev-immunol-110519-071134] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding tumor immune microenvironments is critical for identifying immune modifiers of cancer progression and developing cancer immunotherapies. Recent applications of single-cell RNA sequencing (scRNA-seq) in dissecting tumor microenvironments have brought important insights into the biology of tumor-infiltrating immune cells, including their heterogeneity, dynamics, and potential roles in both disease progression and response to immune checkpoint inhibitors and other immunotherapies. This review focuses on the advances in knowledge of tumor immune microenvironments acquired from scRNA-seq studies across multiple types of human tumors, with a particular emphasis on the study of phenotypic plasticity and lineage dynamics of immune cells in the tumor environment. We also discuss several imminent questions emerging from scRNA-seq observations and their potential solutions on the horizon.
Collapse
Affiliation(s)
- Xianwen Ren
- Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China;
| | - Lei Zhang
- Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China; .,Current affiliation: Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Yuanyuan Zhang
- Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China;
| | - Ziyi Li
- Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China;
| | - Nathan Siemers
- Abiosciences, South San Francisco, California 94080, USA
| | - Zemin Zhang
- Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China;
| |
Collapse
|
112
|
Vincenti I, Merkler D. New advances in immune components mediating viral control in the CNS. Curr Opin Virol 2021; 47:68-78. [PMID: 33636592 DOI: 10.1016/j.coviro.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Protective immune responses in the central nervous system (CNS) must act efficiently but need to be tightly controlled to avoid excessive damage to this vital organ. Under homeostatic conditions, the immune surveillance of the CNS is mediated by innate immune cells together with subsets of memory lymphocytes accumulating over lifetime. Accordingly, a wide range of immune responses can be triggered upon pathogen infection that can be associated with devastating clinical outcomes, and which most frequently are due to neurotropic viruses. Here, we discuss recent advances about our understanding of anti-viral immune responses with special emphasis on mechanisms operating in the various anatomical compartments of the CNS.
Collapse
Affiliation(s)
- Ilena Vincenti
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Doron Merkler
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland.
| |
Collapse
|
113
|
Cachot A, Bilous M, Liu YC, Li X, Saillard M, Cenerenti M, Rockinger GA, Wyss T, Guillaume P, Schmidt J, Genolet R, Ercolano G, Protti MP, Reith W, Ioannidou K, de Leval L, Trapani JA, Coukos G, Harari A, Speiser DE, Mathis A, Gfeller D, Altug H, Romero P, Jandus C. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. SCIENCE ADVANCES 2021; 7:7/9/eabe3348. [PMID: 33637530 PMCID: PMC7909889 DOI: 10.1126/sciadv.abe3348] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/14/2021] [Indexed: 05/04/2023]
Abstract
CD4 T cells have been implicated in cancer immunity for their helper functions. Moreover, their direct cytotoxic potential has been shown in some patients with cancer. Here, by mining single-cell RNA-seq datasets, we identified CD4 T cell clusters displaying cytotoxic phenotypes in different human cancers, resembling CD8 T cell profiles. Using the peptide-MHCII-multimer technology, we confirmed ex vivo the presence of cytolytic tumor-specific CD4 T cells. We performed an integrated phenotypic and functional characterization of these cells, down to the single-cell level, through a high-throughput nanobiochip consisting of massive arrays of picowells and machine learning. We demonstrated a direct, contact-, and granzyme-dependent cytotoxic activity against tumors, with delayed kinetics compared to classical cytotoxic lymphocytes. Last, we found that this cytotoxic activity was in part dependent on SLAMF7. Agonistic engagement of SLAMF7 enhanced cytotoxicity of tumor-specific CD4 T cells, suggesting that targeting these cells might prove synergistic with other cancer immunotherapies.
Collapse
Affiliation(s)
- Amélie Cachot
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Mariia Bilous
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Yen-Cheng Liu
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Xiaokang Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Margaux Saillard
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, CH-1211, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, CH-1066, Switzerland
| | - Georg Alexander Rockinger
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Tania Wyss
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Philippe Guillaume
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Julien Schmidt
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Raphaël Genolet
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Giuseppe Ercolano
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, CH-1211, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, CH-1066, Switzerland
| | - Maria Pia Protti
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, CH-1211, Switzerland
| | - Kalliopi Ioannidou
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne 3000, Australia
| | - George Coukos
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Alexandre Harari
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Daniel E Speiser
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Alexander Mathis
- Harvard University, Cambridge, MA, USA
- Center for Neuroprosthetics, Center for Intelligent Systems, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, CH-1015, Switzerland
| | - David Gfeller
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Pedro Romero
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, CH-1066, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, CH-1211, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, CH-1066, Switzerland
| |
Collapse
|
114
|
Kim SI, Cassella CR, Byrne KT. Tumor Burden and Immunotherapy: Impact on Immune Infiltration and Therapeutic Outcomes. Front Immunol 2021; 11:629722. [PMID: 33597954 PMCID: PMC7882695 DOI: 10.3389/fimmu.2020.629722] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy has revolutionized the treatment landscape in medical oncology, but its efficacy has been variable across patients. Biomarkers to predict such differential response to immunotherapy include cytotoxic T lymphocyte infiltration, tumor mutational burden, and microsatellite instability. A growing number of studies also suggest that baseline tumor burden, or tumor size, predicts response to immunotherapy. In this review, we discuss the changes in immune profile and therapeutic responses that occur with increasing tumor size. We also overview therapeutic approaches to reduce tumor burden and favorably modulate the immune microenvironment of larger tumors.
Collapse
Affiliation(s)
- Samuel I Kim
- Program in Biochemistry, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher R Cassella
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katelyn T Byrne
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
115
|
Boukhaled GM, Harding S, Brooks DG. Opposing Roles of Type I Interferons in Cancer Immunity. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:167-198. [PMID: 33264572 DOI: 10.1146/annurev-pathol-031920-093932] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The immune system is tasked with identifying malignant cells to eliminate or prevent cancer spread. This involves a complex orchestration of many immune cell types that together recognize different aspects of tumor transformation and growth. In response, tumors have developed mechanisms to circumvent immune attack. Type I interferons (IFN-Is) are a class of proinflammatory cytokines produced in response to viruses and other environmental stressors. IFN-Is are also emerging as essential drivers of antitumor immunity, potently stimulating the ability of immune cells to eliminate tumor cells. However, a more complicated role for IFN-Is has arisen, as prolonged stimulation can promote feedback inhibitory mechanisms that contribute to immune exhaustion and other deleterious effects that directly or indirectly permit cancer cells to escape immune clearance. We review the fundamental and opposing functions of IFN-Is that modulate tumor growth and impact immune function and ultimately how these functions can be harnessed for the design of new cancer therapies.
Collapse
Affiliation(s)
- Giselle M Boukhaled
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shane Harding
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
116
|
Dersh D, Phelan JD, Gumina ME, Wang B, Arbuckle JH, Holly J, Kishton RJ, Markowitz TE, Seedhom MO, Fridlyand N, Wright GW, Huang DW, Ceribelli M, Thomas CJ, Lack JB, Restifo NP, Kristie TM, Staudt LM, Yewdell JW. Genome-wide Screens Identify Lineage- and Tumor-Specific Genes Modulating MHC-I- and MHC-II-Restricted Immunosurveillance of Human Lymphomas. Immunity 2021; 54:116-131.e10. [PMID: 33271120 PMCID: PMC7874576 DOI: 10.1016/j.immuni.2020.11.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
Tumors frequently subvert major histocompatibility complex class I (MHC-I) peptide presentation to evade CD8+ T cell immunosurveillance, though how this is accomplished is not always well defined. To identify the global regulatory networks controlling antigen presentation, we employed genome-wide screening in human diffuse large B cell lymphomas (DLBCLs). This approach revealed dozens of genes that positively and negatively modulate MHC-I cell surface expression. Validated genes clustered in multiple pathways including cytokine signaling, mRNA processing, endosomal trafficking, and protein metabolism. Genes can exhibit lymphoma subtype- or tumor-specific MHC-I regulation, and a majority of primary DLBCL tumors displayed genetic alterations in multiple regulators. We established SUGT1 as a major positive regulator of both MHC-I and MHC-II cell surface expression. Further, pharmacological inhibition of two negative regulators of antigen presentation, EZH2 and thymidylate synthase, enhanced DLBCL MHC-I presentation. These and other genes represent potential targets for manipulating MHC-I immunosurveillance in cancers, infectious diseases, and autoimmunity.
Collapse
Affiliation(s)
- Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan E Gumina
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesse H Arbuckle
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaroslav Holly
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rigel J Kishton
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mina O Seedhom
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Fridlyand
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nicholas P Restifo
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
117
|
Elyahu Y, Monsonego A. Thymus involution sets the clock of the aging T-cell landscape: Implications for declined immunity and tissue repair. Ageing Res Rev 2021; 65:101231. [PMID: 33248315 DOI: 10.1016/j.arr.2020.101231] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Aging is generally characterized as a gradual increase in tissue damage, which is associated with senescence and chronic systemic inflammation and is evident in a variety of age-related diseases. The extent to which such tissue damage is a result of a gradual decline in immune regulation, which consequently compromises the capacity of the body to repair damages, has not been fully explored. Whereas CD4 T lymphocytes play a critical role in the orchestration of immunity, thymus involution initiates gradual changes in the CD4 T-cell landscape, which may significantly compromise tissue repair. In this review, we describe the lifespan accumulation of specific dysregulated CD4 T-cell subsets and their coevolution with systemic inflammation in the process of declined immunity and tissue repair capacity with age. Then, we discuss the process of thymus involution-which appears to be most pronounced around puberty-as a possible driver of the aging T-cell landscape. Finally, we identify individualized T cell-based early diagnostic biomarkers and therapeutic strategies for age-related diseases.
Collapse
Affiliation(s)
- Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
118
|
Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci 2020; 21:E8011. [PMID: 33126494 PMCID: PMC7663252 DOI: 10.3390/ijms21218011] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a critical role in protecting hosts from the invasion of organisms. CD4 T cells, as a key component of the immune system, are central in orchestrating adaptive immune responses. After decades of investigation, five major CD4 T helper cell (Th) subsets have been identified: Th1, Th2, Th17, Treg (T regulatory), and Tfh (follicular T helper) cells. Th1 cells, defined by the expression of lineage cytokine interferon (IFN)-γ and the master transcription factor T-bet, participate in type 1 immune responses to intracellular pathogens such as mycobacterial species and viruses; Th2 cells, defined by the expression of lineage cytokines interleukin (IL)-4/IL-5/IL-13 and the master transcription factor GAΤA3, participate in type 2 immune responses to larger extracellular pathogens such as helminths; Th17 cells, defined by the expression of lineage cytokines IL-17/IL-22 and the master transcription factor RORγt, participate in type 3 immune responses to extracellular pathogens including some bacteria and fungi; Tfh cells, by producing IL-21 and expressing Bcl6, help B cells produce corresponding antibodies; whereas Foxp3-expressing Treg cells, unlike Th1/Th2/Th17/Tfh exerting their effector functions, regulate immune responses to maintain immune cell homeostasis and prevent immunopathology. Interestingly, innate lymphoid cells (ILCs) have been found to mimic the functions of three major effector CD4 T helper subsets (Th1, Th2, and Th17) and thus can also be divided into three major subsets: ILC1s, ILC2s, and ILC3s. In this review, we will discuss the differentiation and functions of each CD4 T helper cell subset in the context of ILCs and human diseases associated with the dysregulation of these lymphocyte subsets particularly caused by monogenic mutations.
Collapse
Affiliation(s)
- Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
119
|
Ulmert I, Henriques-Oliveira L, Pereira CF, Lahl K. Mononuclear phagocyte regulation by the transcription factor Blimp-1 in health and disease. Immunology 2020; 161:303-313. [PMID: 32799350 PMCID: PMC7692253 DOI: 10.1111/imm.13249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/04/2023] Open
Abstract
B lymphocyte‐induced maturation protein‐1 (Blimp‐1), the transcription factor encoded by the gene Prdm1, plays a number of crucial roles in the adaptive immune system, which result in the maintenance of key effector functions of B‐ and T‐cells. Emerging clinical data, as well as mechanistic evidence from mouse studies, have additionally identified critical functions of Blimp‐1 in the maintenance of immune homeostasis by the mononuclear phagocyte (MNP) system. Blimp‐1 regulation of gene expression affects various aspects of MNP biology, including developmental programmes such as fate decisions of monocytes entering peripheral tissue, and functional programmes such as activation, antigen presentation and secretion of soluble inflammatory mediators. The highly tissue‐, subset‐ and state‐specific regulation of Blimp‐1 expression in MNPs suggests that Blimp‐1 is a dynamic regulator of immune activation, integrating environmental cues to fine‐tune the function of innate cells. In this review, we will discuss the current knowledge regarding Blimp‐1 regulation and function in macrophages and dendritic cells.
Collapse
Affiliation(s)
- Isabel Ulmert
- Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | | | - Carlos-Filipe Pereira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Katharina Lahl
- Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.,Immunology Section, Lund University, Lund, Sweden
| |
Collapse
|
120
|
Li T, Wu B, Yang T, Zhang L, Jin K. The outstanding antitumor capacity of CD4 + T helper lymphocytes. Biochim Biophys Acta Rev Cancer 2020; 1874:188439. [PMID: 32980465 DOI: 10.1016/j.bbcan.2020.188439] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Over the past decades, tumor-resident immune cells have been extensively studied to dissect their biological functions and clinical roles. Tumor-infiltrating CD8+ T cells, because of their cytotoxic and killing ability, have been under the spotlight for a long time, whereas CD4+ T cells are considered just a supporting actor in the field of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the ability of CD4+ T cells in eradicating solid tumors, and their functions in mediating antitumor immunity have been investigated in various orientations. In this review, we highlight the pivotal role of CD4+ T cells in eliciting vigorous antitumor immune responses, summarize key signaling axes and molecular networks behind these antitumor functions, and also propose possible targets and promising strategies which might translate into more efficient immunotherapies against human cancers.
Collapse
Affiliation(s)
- Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Wu
- School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
121
|
A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol 2020; 21:116-128. [PMID: 32820267 DOI: 10.1038/s41577-020-0390-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/25/2022]
Abstract
The remarkable success of immune checkpoint inhibitors demonstrates the potential of tumour-specific CD8+ T cells to prevent and treat cancer. Although the number of lives saved by immunotherapy mounts, only a relatively small fraction of patients are cured. Here, we review two of the factors that limit the application of CD8+ T cell immunotherapies: difficulties in identifying tumour-specific peptides presented by MHC class I molecules and the ability of tumour cells to impair antigen presentation as they evolve under T cell selection. We describe recent advances in understanding how peptides are generated from non-canonical translation of defective ribosomal products, relate this to the dysregulated translation that is a feature of carcinogenesis and propose dysregulated translation as an important new source of tumour-specific peptides. We discuss how the synthesis and function of components of the antigen-processing and presentation pathway, including the recently described immunoribosome, are manipulated by tumours for immunoevasion and point to common druggable targets that may enhance immunotherapy.
Collapse
|
122
|
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 2020; 19:116. [PMID: 32680511 PMCID: PMC7367382 DOI: 10.1186/s12943-020-01234-1] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) characterized by the expression of the master transcription factor forkhead box protein p3 (Foxp3) suppress anticancer immunity, thereby hindering protective immunosurveillance of tumours and hampering effective antitumour immune responses in tumour-bearing hosts, constitute a current research hotspot in the field. However, Tregs are also essential for the maintenance of the immune tolerance of the body and share many molecular signalling pathways with conventional T cells, including cytotoxic T cells, the primary mediators of tumour immunity. Hence, the inability to specifically target and neutralize Tregs in the tumour microenvironment without globally compromising self-tolerance poses a significant challenge. Here, we review recent advances in characterizing tumour-infiltrating Tregs with a focus on the functional roles of costimulatory and inhibitory receptors in Tregs, evaluate their potential as clinical targets, and systematically summarize their roles in potential treatment strategies. Also, we propose modalities to integrate our increasing knowledge on Tregs phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Finally, we propose possible treatment strategies that can be used to develop Treg-targeted therapies.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
123
|
杨 定, 张 志. [The role of helper T cell in the pathogenesis of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:932-938. [PMID: 32666741 PMCID: PMC8180432 DOI: 10.7507/1002-1892.201910063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/20/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To review and summarize the role of helper T cell (Th) in the pathogenesis of osteoarthritis (OA) and research progress of Th cell-related treatment for OA. METHODS The domestic and foreign literature in recent years was reviewed. The role of Th cells [Th1, Th2, Th9, Th17, Th22, and follicular helper T cell (Tfh)] and related cytokines in the pathogenesis of OA and the latest research progress of treatment were summarized. RESULTS Th cells play an important role in the pathogenesis of OA. Th1, Th9, and Th17 cells are more important than Th2, Th22, and Tfh cells in the pathogenesis of OA. Cytokines such as tumor necrosis factor α and interleukin 17 can cause damage to articular cartilage significantly. CONCLUSION At present, the role of Th cells in the pathogenesis of OA has been played in the spotlight. The specific mechanism has not been clear. Regulating the Th cell-associated cytokines, intracellular and extracellular signals, and cellular metabolism is a potential method for prevention and treatment of OA.
Collapse
Affiliation(s)
- 定龙 杨
- 山西医科大学(太原 030000)Shanxi Medical University, Taiyuan Shanxi, 030000, P.R.China
| | - 志强 张
- 山西医科大学(太原 030000)Shanxi Medical University, Taiyuan Shanxi, 030000, P.R.China
| |
Collapse
|
124
|
Abstract
CD4+ T cells with cytotoxic capability are increasingly recognized as potentially key actors in anti-tumor immunity. A new report in Cell elucidates the presence and potential role of a population of cytotoxic CD4+ T cells in bladder cancer using single cell sequencing technology.
Collapse
Affiliation(s)
- Adrian G Sacher
- Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, ON M5G 2M9, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, ON M5G 2M9, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christopher J Paige
- Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, ON M5G 2M9, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, ON M5G 2M9, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
125
|
Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4 + T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther 2020; 28:5-17. [PMID: 32457487 PMCID: PMC7886651 DOI: 10.1038/s41417-020-0183-x] [Citation(s) in RCA: 446] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has revolutionised cancer treatment, with immune checkpoint blockade (ICB) therapy and adoptive cell therapy (ACT) increasingly becoming standard of care across a growing number of cancer indications. While the majority of cancer immunotherapies focus on harnessing the anti-tumour CD8+ cytotoxic T cell response, the potential role of CD4+ 'helper' T cells has largely remained in the background. In this review, we give an overview of the multifaceted role of CD4+ T cells in the anti-tumour immune response, with an emphasis on recent evidence that CD4+ T cells play a bigger role than previously thought. We illustrate their direct anti-tumour potency and their role in directing a sustained immune response against tumours. We further highlight the emerging observation that CD4+ T cell responses against tumours tend to be against self-derived epitopes. These recent trends raise vital questions and considerations that will profoundly affect the rational design of immunotherapies to leverage on the full potential of the immune system against cancer.
Collapse
Affiliation(s)
- Rong En Tay
- Singapore Immunology Network, Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore
| | - Emma K Richardson
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Han Chong Toh
- Singapore Immunology Network, Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore. .,Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore.
| |
Collapse
|
126
|
Uhl LFK, Gérard A. Modes of Communication between T Cells and Relevance for Immune Responses. Int J Mol Sci 2020; 21:E2674. [PMID: 32290500 PMCID: PMC7215318 DOI: 10.3390/ijms21082674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
T cells are essential mediators of the adaptive immune system, which constantly patrol the body in search for invading pathogens. During an infection, T cells that recognise the pathogen are recruited, expand and differentiate into subtypes tailored to the infection. In addition, they differentiate into subsets required for short and long-term control of the pathogen, i.e., effector or memory. T cells have a remarkable degree of plasticity and heterogeneity in their response, however, their overall response to a given infection is consistent and robust. Much research has focused on how individual T cells are activated and programmed. However, in order to achieve a critical level of population-wide reproducibility and robustness, neighbouring cells and surrounding tissues have to provide or amplify relevant signals to tune the overall response accordingly. The characteristics of the immune response-stochastic on the individual cell level, robust on the global level-necessitate coordinated responses on a system-wide level, which facilitates the control of pathogens, while maintaining self-tolerance. This global coordination can only be achieved by constant cellular communication between responding cells, and faults in this intercellular crosstalk can potentially lead to immunopathology or autoimmunity. In this review, we will discuss how T cells mount a global, collective response, by describing the modes of T cell-T cell (T-T) communication they use and highlighting their physiological relevance in programming and controlling the T cell response.
Collapse
Affiliation(s)
| | - Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
127
|
Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol 2020; 20:680-693. [PMID: 32269380 DOI: 10.1038/s41577-020-0296-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Regulatory T (Treg) cells constitute a dynamic population that is essential for controlling immune responses in health and disease. Defects in Treg cell function and decreases in Treg cell numbers have been observed in patients with autoimmunity and the opposite effects on Treg cells occur in cancer settings. Current research on new therapies for these diseases is focused on modulating Treg cell function to increase or decrease suppressive activity in autoimmunity and cancer, respectively. In this regard, several co-inhibitory receptors that are preferentially expressed by Treg cells under homeostatic conditions have recently been shown to control Treg cell function and stability in different disease settings. These receptors could be amenable to therapeutic targeting aimed at modulating Treg cell function and plasticity. This Review summarizes recent data regarding the role of co-inhibitory molecules in the control of Treg cell function and stability, with a focus on their roles and potential therapeutic use in autoimmunity and cancer.
Collapse
|
128
|
Tan WCC, Nerurkar SN, Cai HY, Ng HHM, Wu D, Wee YTF, Lim JCT, Yeong J, Lim TKH. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun (Lond) 2020; 40:135-153. [PMID: 32301585 PMCID: PMC7170662 DOI: 10.1002/cac2.12023] [Citation(s) in RCA: 325] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Conventional immunohistochemistry (IHC) is a widely used diagnostic technique in tissue pathology. However, this technique is associated with a number of limitations, including high inter-observer variability and the capacity to label only one marker per tissue section. This review details various highly multiplexed techniques that have emerged to circumvent these constraints, allowing simultaneous detection of multiple markers on a single tissue section and the comprehensive study of cell composition, cellular functional and cell-cell interactions. Among these techniques, multiplex Immunohistochemistry/Immunofluorescence (mIHC/IF) has emerged to be particularly promising. mIHC/IF provides high-throughput multiplex staining and standardized quantitative analysis for highly reproducible, efficient and cost-effective tissue studies. This technique has immediate potential for translational research and clinical practice, particularly in the era of cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Chang Colin Tan
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore169856Singapore
| | | | - Hai Yun Cai
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore169856Singapore
| | - Harry Ho Man Ng
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
- Duke‐NUS Medical SchoolSingapore169856Singapore
| | - Duoduo Wu
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore169856Singapore
| | - Yu Ting Felicia Wee
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR)Singapore169856Singapore
| | - Joe Yeong
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR)Singapore169856Singapore
- Singapore Immunology NetworkAgency of Science (SIgN)Technology and Research (A*STAR)Singapore169856Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
| |
Collapse
|