101
|
The Role of Imaging in Preventive Cardiology in Women. Curr Cardiol Rep 2023; 25:29-40. [PMID: 36576679 DOI: 10.1007/s11886-022-01828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW The prevalence of CVD in women is increasing and is due to the increased prevalence of CV risk factors. Traditional CV risk assessment tools for prevention have failed to accurately determine CVD risk in women. CAC has shown to more precisely determine CV risk and is a better predictor of CV outcomes. Coronary CTA provides an opportunity to determine the presence of CAD and initiate prevention in women presenting with angina. Identifying women with INOCA due to CMD with use of cPET or cMRI with MBFR is vital in managing these patients. This review article outlines the role of imaging in preventive cardiology for women and will include the latest evidence supporting the use of these imaging tests for this purpose. RECENT FINDINGS CV mortality is higher in women who have more extensive CAC burden. Women have a greater prevalence of INOCA which is associated with higher MACE. INOCA is due to CMD in most cases which is associated with traditional CVD risk factors. Over half of these women are untreated or undertreated. Recent study showed that stratified medical therapy, tailored to the specific INOCA endotype, is feasible and improves angina in women. Coronary CTA is useful in the setting of women presenting with acute chest pain to identify CAD and initiate preventive therapy. CAC confers greater relative risk for CV mortality in women versus (vs.) men. cMRI or cPET is useful to assess MBFR to diagnose CMD and is another useful imaging tool in women for CV prevention.
Collapse
|
102
|
A teenage boy with acute myocarditis and reversible microvascular angina: A case report. J Cardiol Cases 2023. [DOI: 10.1016/j.jccase.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
|
103
|
Sueda S, Sakaue T. Sex-related differences in coronary vasomotor disorders: Comparisons between Western and Japanese populations. J Cardiol 2023; 81:161-167. [PMID: 35534347 DOI: 10.1016/j.jjcc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Sex-related differences in the prevalence of cardiac disorders have been elucidated beyond races. Angina/ischemia with nonobstructive coronary artery disease (AINOCA) is often observed in females. Coronary microvascular dysfunction (CMD) and coronary epicardial spasm (CES) are the principal cause of AINOCA. The clinical outcomes of Western patients with CMD were less satisfactory than expected, while the prognosis of Japanese patients with CES treated with medications including calcium channel blockers was favorable. However, the incidence and clinical features of coronary spasm endotypes were different between Western and Japanese populations. Furthermore, sex-related differences in the clinical manifestations and outcomes of patients with different spasm endotypes remain uncertain beyond race. In this article, we will review the sex differences in Japanese AINOCA patients with coronary vasomotor disorders, including CMD and CES, and compare them with those of Western patients.
Collapse
Affiliation(s)
- Shozo Sueda
- Department of Cardiology, Ehime Prefectural Niihama Hospital, Niihama City, Ehime Prefecture, Japan.
| | - Tomoki Sakaue
- Department of Cardiology, Yawatahama City General Hospital, Yawatahama City, Ehime Prefecture, Japan
| |
Collapse
|
104
|
Chabowski DS, Hughes WE, Hockenberry JC, LoGiudice J, Beyer AM, Gutterman DD. Lipid phosphate phosphatase 3 maintains NO-mediated flow-mediated dilatation in human adipose resistance arterioles. J Physiol 2023; 601:469-481. [PMID: 36575638 PMCID: PMC10979460 DOI: 10.1113/jp283923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Microvascular dysfunction predicts adverse cardiovascular events despite absence of large vessel disease. A shift in the mediator of flow-mediated dilatation (FMD) from nitric oxide (NO) to mitochondrial-derived hydrogen peroxide (H2 O2 ) occurs in arterioles from patients with coronary artery disease (CAD). The underlying mechanisms governing this shift are not completely defined. Lipid phosphate phosphatase 3 (LPP3) is a transmembrane protein that dephosphorylates lysophosphatidic acid, a bioactive lipid, causing a receptor-mediated increase in reactive oxygen species. A single nucleotide loss-of-function polymorphism in the gene coding for LPP3 (rs17114036) is associated with elevated risk for CAD, independent of traditional risk factors. LPP3 is suppressed by miR-92a, which is elevated in the circulation of patients with CAD. Repression of LPP3 increases vascular inflammation and atherosclerosis in animal models. We investigated the role of LPP3 and miR-92a as a mechanism for microvascular dysfunction in CAD. We hypothesized that modulation of LPP3 is critically involved in the disease-associated shift in mediator of FMD. LPP3 protein expression was reduced in left ventricle tissue from CAD relative to non-CAD patients (P = 0.004), with mRNA expression unchanged (P = 0.96). Reducing LPP3 expression (non-CAD) caused a shift from NO to H2 O2 (% maximal dilatation: Control 78.1 ± 11.4% vs. Peg-Cat 30.0 ± 11.2%; P < 0.0001). miR-92a is elevated in CAD arterioles (fold change: 1.9 ± 0.01 P = 0.04), while inhibition of miR-92a restored NO-mediated FMD (CAD), and enhancing miR-92a expression (non-CAD) elicited H2 O2 -mediated dilatation (P < 0.0001). Our data suggests LPP3 is crucial in the disease-associated switch in the mediator of FMD. KEY POINTS: Lipid phosphate phosphatase 3 (LPP3) expression is reduced in heart tissue patients with coronary artery disease (CAD). Loss of LPP3 in CAD is associated with an increase in the LPP3 inhibitor, miR-92a. Inhibition of LPP3 in the microvasculature of healthy patients mimics the CAD flow-mediated dilatation (FMD) phenotype. Inhibition of miR-92a restores nitric oxide-mediated FMD in the microvasculature of CAD patients.
Collapse
Affiliation(s)
- Dawid S Chabowski
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William E Hughes
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph C Hockenberry
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John LoGiudice
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andreas M Beyer
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David D Gutterman
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
105
|
Ma P, Liu J, Hu Y, Chen L, Liang H, Zhou X, Shang Y, Wang J. Stress CMR T1-mapping technique for assessment of coronary microvascular dysfunction in a rabbit model of type II diabetes mellitus: Validation against histopathologic changes. Front Cardiovasc Med 2023; 9:1066332. [PMID: 36741851 PMCID: PMC9895118 DOI: 10.3389/fcvm.2022.1066332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Background Coronary microvascular dysfunction (CMD) is an early character of type 2 diabetes mellitus (T2DM), and is indicative of adverse events. The present study aimed to validate the performance of the stress T1 mapping technique on cardiac magnetic resonance (CMR) for identifying CMD from a histopathologic perspective and to establish the time course of CMD-related parameters in a rabbit model of T2DM. Methods New Zealand white rabbits (n = 30) were randomly divided into a control (n = 8), T2DM 5-week (n = 6), T2DM 10-week (n = 9), and T2DM 15-week (n = 7) groups. The CMR protocol included rest and adenosine triphosphate (ATP) stress T1-mapping imaging using the 5b(20b)3b-modified look-locker inversion-recovery (MOLLI) schema to quantify stress T1 response (stress ΔT1), and first-pass perfusion CMR to quantify myocardial perfusion reserve index (MPRI). After the CMR imaging, myocardial tissue was subjected to hematoxylin-eosin staining to evaluate pathological changes, Masson trichrome staining to measure collagen volume fraction (CVF), and CD31 staining to measure microvascular density (MVD). The associations between CMR parameters and pathological findings were determined using Pearson correlation analysis. Results The stress ΔT1 values were 6.21 ± 0.59%, 4.88 ± 0.49%, 3.80 ± 0.40%, and 3.06 ± 0.54% in the control, T2DM 5-week, 10-week, and 15-week groups, respectively (p < 0.001) and were progressively weakened with longer duration of T2DM. Furthermore, a significant correlation was demonstrated between the stress ΔT1 vs. CVF and MVD (r = -0.562 and 0.886, respectively; p < 0.001). Conclusion The stress T1 response correlated well with the histopathologic measures in T2DM rabbits, indicating that it may serve as a sensitive CMD-related indicator in early T2DM.
Collapse
Affiliation(s)
- Peisong Ma
- Department of Radiology, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China,Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Yurou Hu
- Department of Radiology, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Radiology, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Hongqin Liang
- Department of Radiology, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Yongning Shang
- Department of Ultrasound, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China,*Correspondence: Yongning Shang,
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China,Jian Wang,
| |
Collapse
|
106
|
Bourque JM. ISCHEMIA Sheds Light on INOCA: Understanding Population Heterogeneity to Inform Prognosis and Guide Management. JACC. CARDIOVASCULAR IMAGING 2023; 16:75-77. [PMID: 36599571 DOI: 10.1016/j.jcmg.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/20/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Jamieson M Bourque
- Division of Cardiovascular Medicine and the Cardiac Imaging Center, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA.
| |
Collapse
|
107
|
Elbaum L, Tomacruz IDV, Bangalore S. Clinical Implications of Coronary Microvascular Dysfunction in Patients with CKD. Kidney Int Rep 2023; 8:10-13. [PMID: 36644362 PMCID: PMC9832052 DOI: 10.1016/j.ekir.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Lindsay Elbaum
- Division of Cardiovascular Medicine, New York University, New York, New York, USA
| | - Isabelle Dominique V. Tomacruz
- Division of Nephrology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Metro Manila, Philippines
| | - Sripal Bangalore
- Division of Cardiovascular Medicine, New York University, New York, New York, USA
| |
Collapse
|
108
|
Pruthi S, Siddiqui E, Smilowitz NR. Beyond Coronary Artery Disease: Assessing the Microcirculation. Interv Cardiol Clin 2023; 12:119-129. [PMID: 36372455 PMCID: PMC10019932 DOI: 10.1016/j.iccl.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ischemic heart disease (IHD) affects more than 20 million adults in the United States. Although classically attributed to atherosclerosis of the epicardial coronary arteries, nearly half of patients with stable angina and IHD who undergo invasive coronary angiography do not have obstructive epicardial coronary artery disease. Ischemia with nonobstructive coronary arteries is frequently caused by microvascular angina with underlying coronary microvascular dysfunction (CMD). Greater understanding the pathophysiology, diagnosis, and treatment of CMD holds promise to improve clinical outcomes of patients with ischemic heart disease.
Collapse
Affiliation(s)
- Sonal Pruthi
- Division of Cardiology, Department of Medicine, NYU Langone Health, 550 First Avenue, New York, NY 10016, USA
| | - Emaad Siddiqui
- Division of Cardiology, Department of Medicine, NYU Langone Health, 550 First Avenue, New York, NY 10016, USA
| | - Nathaniel R Smilowitz
- Division of Cardiology, Department of Medicine, NYU Langone Health, 550 First Avenue, New York, NY 10016, USA; Cardiology Section, Department of Medicine, VA New York Harbor Healthcare System, 423 East 23rd Street, New York, NY 10010, USA; The Leon H. Charney Division of Cardiology, NYU Langone Health, NYU School of Medicine, 423 East 23rd Street, 12-West, New York, NY 10010, USA.
| |
Collapse
|
109
|
Stehli J, Candreva A, Stähli BE. [Angina Pectoris and the Importance of Coronary Microcirculation in Practice]. PRAXIS 2023; 112:22-27. [PMID: 36597688 DOI: 10.1024/1661-8157/a003956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Angina Pectoris and the Importance of Coronary Microcirculation in Practice Abstract. Microvascular angina is a common manifestation of coronary microvascular dysfunction, particulary prevalent in post-menopausal women above the age of 50 and associated with impaired quality of life and poor clinical outcomes. However, microvascular angina remains largely undetected given the underuse of diagnostic tools for the assessment of coronary microvascular function. As a consequence, many of these patients suffering from coronary microvascular dysfunction fail to receive the appropriate medical treatment and remain in the long term symptomatic. Invasive coronary catheterization with measurement of coronary flow reserve and intracoronary acetylcholine provocation testing allows for the assessment of coronary microvascular dysfunction, and a therapy targeting specific physiological pathways can be implemented. A targeted therapy includes lifestyle modifications, secondary prevention measures, and anti-anginal medication. Ongoing clinical research in the field is expected to deliver novel diagnostic and therapeutic concepts for an improved management of patients with coronary microvascular disease.
Collapse
Affiliation(s)
- Julia Stehli
- Klinik für Kardiologie, Universitätsspital Zürich, Schweiz
| | | | | |
Collapse
|
110
|
Mohammed AA, Zhang H, Abdu FA, Liu L, Singh S, Lv X, Shi T, Mareai RM, Mohammed A, Yin G, Zhang W, Xu Y, Che W. Effect of nonobstructive coronary stenosis on coronary microvascular dysfunction and long-term outcomes in patients with INOCA. Clin Cardiol 2022; 46:204-213. [PMID: 36567512 PMCID: PMC9933113 DOI: 10.1002/clc.23962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ischemic pain with no-obstructive coronary artery (INOCA) is clinically significant and defined by nonobstructive coronary stenosis <50%. Coronary microvascular dysfunction (CMD) is a relevant cause associated with adverse outcomes. OBJECTIVES Investigated the effect of no-stenosis (0% stenosis) and non-obstructive (0% < stenosis < 50%) on the prognostic impact of CMD in INOCA. METHOD A retrospective study assessed the coronary microvascular function in 151 INOCA patients who underwent invasive angiography by the coronary angiography-derived index of microcirculation-resistance (caIMR). CZT-SPECT was performed to evaluate myocardial perfusion imaging (MPI) abnormalities. Chi-square test/Fisher exact test, Student t-test, Kaplan-Meier curve, and Uni-multivariable Cox proportional models were used for analysis. Clinical outcomes were major adverse cardiovascular events (MACE) during a median follow-up of 35 months. RESULT No-stenosis was present in 71 (47%) INOCA patients, and 80 (53%) were with nonobstructive. CMD (caIMR ≥ 25) was more prevalent in patients with no-stenosis than nonobstructive (76.1% vs. 48.8%, p = .001), along with abnormal MPI (39.4% vs. 22.5%, p = .024). The MACE rates were not different between no-stenosis and nonobstructive stenosis. CMD showed an increased risk of MACE for all INOCA. No-stenosis with CMD had the worst prognosis. Cox regression analysis identified CMD and abnormal MPI as predictors of MACE in all INOCA and patients with no-stenosis. However, no-stenosis and nonobstructive stenosis were not predictors of MACE in INOCA. CONCLUSION CMD was more frequently present in INOCA with no-stenosis. However, there was no difference in long-term clinical outcomes between no-stenosis and nonobstructive stenosis. CMD could independently predict poor outcomes in INOCA, particularly in patients with no-stenosis.
Collapse
Affiliation(s)
- Ayman A. Mohammed
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina,Department of Internal Medicine, Faculty of Medicine and Health ScienceTaiz UniversityTaizYemen
| | - Hengbin Zhang
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Fuad A. Abdu
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Lu Liu
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Shekhar Singh
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Xian Lv
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Tingting Shi
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Redhwan M. Mareai
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Abdul‐Quddus Mohammed
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Guoqing Yin
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Wen Zhang
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina,Department of CardiologyShanghai Tenth People's Hospital Chongming branchShanghaiChina
| |
Collapse
|
111
|
Perera D, Berry C, Hoole SP, Sinha A, Rahman H, Morris PD, Kharbanda RK, Petraco R, Channon K. Invasive coronary physiology in patients with angina and non-obstructive coronary artery disease: a consensus document from the coronary microvascular dysfunction workstream of the British Heart Foundation/National Institute for Health Research Partnership. Heart 2022; 109:88-95. [PMID: 35318254 PMCID: PMC9811089 DOI: 10.1136/heartjnl-2021-320718] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Nearly half of all patients with angina have non-obstructive coronary artery disease (ANOCA); this is an umbrella term comprising heterogeneous vascular disorders, each with disparate pathophysiology and prognosis. Approximately two-thirds of patients with ANOCA have coronary microvascular disease (CMD). CMD can be secondary to architectural changes within the microcirculation or secondary to vasomotor dysfunction. An inability of the coronary vasculature to augment blood flow in response to heightened myocardial demand is defined as an impaired coronary flow reserve (CFR), which can be measured non-invasively, using imaging, or invasively during cardiac catheterisation. Impaired CFR is associated with myocardial ischaemia and adverse cardiovascular outcomes.The CMD workstream is part of the cardiovascular partnership between the British Heart Foundation and The National Institute for Health Research in the UK and comprises specialist cardiac centres with expertise in coronary physiology assessment. This document outlines the two main modalities (thermodilution and Doppler techniques) for estimation of coronary flow, vasomotor testing using acetylcholine, and outlines a standard operating procedure that could be considered for adoption by national networks. Accurate and timely disease characterisation of patients with ANOCA will enable clinicians to tailor therapy according to their patients' coronary physiology. This has been shown to improve patients' quality of life and may lead to improved cardiovascular outcomes in the long term.
Collapse
Affiliation(s)
- Divaka Perera
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Colin Berry
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
- Cardiology, Golden Jubilee National Hospital, Clydebank, UK
| | | | - Aish Sinha
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Haseeb Rahman
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Paul D Morris
- Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | | | - Ricardo Petraco
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Keith Channon
- Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
112
|
Ang DTY, Berry C, Kaski JC. Phenotype-based management of coronary microvascular dysfunction. J Nucl Cardiol 2022; 29:3332-3340. [PMID: 35672569 PMCID: PMC9834338 DOI: 10.1007/s12350-022-03000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/10/2022] [Indexed: 01/22/2023]
Abstract
40-70% of patients undergoing invasive coronary angiography with signs and symptoms of ischemia are found to have no obstructive coronary artery disease (INOCA). When this heterogeneous group undergo coronary function testing, approximately two-thirds have demonstrable coronary microvascular dysfunction (CMD), which is independently associated with adverse prognosis. There are four distinct phenotypes, or subgroups, each with unique pathophysiological mechanisms and responses to therapies. The clinical phenotypes are microvascular angina, vasospastic angina, mixed (microvascular and vasospastic), and non-cardiac symptoms (reclassification as non-INOCA). The Coronary Vasomotor Disorders International Study Group (COVADIS) have proposed standardized criteria for diagnosis. There is growing awareness of these conditions among clinicians and within guidelines. Testing for CMD can be done using invasive or non-invasive modalities. The CorMicA study advocates the concept of 'functional angiography' to guide stratified medical therapy. Therapies broadly fall into two categories: those that modulate cardiovascular risk and those to alleviate angina. Management should be tailored to the individual, with periodic reassessment for efficacy. Phenotype-based management is a worthy endeavor for both patients and clinicians, aligning with the concept of 'precision medicine' to improve prognosis, symptom burden, and quality of life. Here, we present a contemporary approach to the phenotype-based management of patients with INOCA.
Collapse
Affiliation(s)
- Daniel Tze Yee Ang
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Juan-Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, United Kingdom
| |
Collapse
|
113
|
Suda A, Takahashi J, Schwidder M, Ong P, Ang D, Berry C, Camici PG, Crea F, Carlos Kaski J, Pepine C, Rimoldi O, Sechtem U, Yasuda S, Beltrame JF, Noel Bairey Merz C, Shimokawa H, on behalf of the Coronary Vasomotor Disorders International Study COVADIS Group. Prognostic association of plasma NT-proBNP levels in patients with microvascular angina -A report from the international cohort study by COVADIS. IJC HEART & VASCULATURE 2022; 43:101139. [PMID: 36338319 PMCID: PMC9626381 DOI: 10.1016/j.ijcha.2022.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
BackgroudThe aim of this study was to assess the prognostic association of plasma levels of N-terminal prohormone of brain natriuretic peptide (NT-proBNP) with clinical outcomes of patients with microvascular angina (MVA). Methods In this international prospective cohort study of MVA by the Coronary Vasomotor Disorders International Study (COVADIS) group, we examined the association between plasma NT-proBNP levels and the incidence of major adverse cardiovascular events (MACE), including cardiovascular death, non-fatal myocardial infarction, non-fatal stroke, and hospitalization due to heart failure or unstable angina. Results We examined a total of 226 MVA patients (M/F 66/160, 61.9 ± 10.2 [SD] yrs.) with both plasma NT-proBNP levels and echocardiography data available at the time of enrolment. The median level of NT-proBNP level was 94 pg/ml, while mean left ventricular ejection fraction was 69.2 ± 10.9 % and E/e' 10.7 ± 5.2. During follow-up period of a median of 365 days (IQR 365-482), 29 MACEs occurred. Receiver-operating characteristics curve analysis identified plasma NT-proBNP level of 78 pg/ml as the optimal cut-off value. Multivariable logistic regression analysis revealed that plasma NT-proBNP level ≥ 78 pg/ml significantly correlated with the incidence of MACE (odds ratio (OR) [95 % confidence interval (CI)] 3.11[1.14-8.49], P = 0.001). Accordingly, Kaplan-Meier survival analysis showed a significantly worse prognosis in the group with NT-proBNP ≥ 78 (log-rank test, P < 0.03). Finally, a significant positive correlation was observed between plasma NT-proBNP levels and E/e' (R = 0.445, P < 0.0001). Conclusions These results indicate that plasma NT-proBNP levels may represent a novel prognostic biomarker for MVA patients.
Collapse
Affiliation(s)
- Akira Suda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maike Schwidder
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Peter Ong
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Daniel Ang
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Paolo G. Camici
- Vita Salute University and San Raffaele Hospital, Milan, Italy
| | - Filippo Crea
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Juan Carlos Kaski
- Cardiovascular and Cell Sciences Res Institute, St George’s, University of London, UK
| | - Carl Pepine
- Division of Cardiovascular Medicine, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Ornella Rimoldi
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Udo Sechtem
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - John F. Beltrame
- The Discipline of Medicine, University of Adelaide, Basil Hetzel Institute, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - C. Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- International University of Health and Welfare, Narita, Japan
| | - on behalf of the Coronary Vasomotor Disorders International Study COVADIS Group
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
- Vita Salute University and San Raffaele Hospital, Milan, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- Cardiovascular and Cell Sciences Res Institute, St George’s, University of London, UK
- Division of Cardiovascular Medicine, University of Florida, College of Medicine, Gainesville, FL, USA
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Segrate, Italy
- The Discipline of Medicine, University of Adelaide, Basil Hetzel Institute, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- International University of Health and Welfare, Narita, Japan
| |
Collapse
|
114
|
Mehta PK, Huang J, Levit RD, Malas W, Waheed N, Bairey Merz CN. Ischemia and no obstructive coronary arteries (INOCA): A narrative review. Atherosclerosis 2022; 363:8-21. [PMID: 36423427 PMCID: PMC9840845 DOI: 10.1016/j.atherosclerosis.2022.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Myocardial ischemia with no obstructive coronary arteries (INOCA) is a chronic coronary syndrome condition that is increasingly being recognized as a substantial contributor to adverse cardiovascular mortality and outcomes, including myocardial infarction and heart failure with preserved ejection fraction (HFpEF). While INOCA occurs in both women and men, women are more likely to have the finding of INOCA and are more adversely impacted by angina, with recurrent hospitalizations and a lower quality of life with this condition. Abnormal epicardial coronary vascular function and coronary microvascular dysfunction (CMD) have been identified in a majority of INOCA patients on invasive coronary function testing. CMD can co-exist with obstructive epicardial coronary artery disease (CAD), diffuse non-obstructive epicardial CAD, and with coronary vasospasm. Epicardial vasospasm can also occur with normal coronary arteries that have no atherosclerotic plaque on intravascular imaging. While all predisposing factors are not clearly understood, cardiometabolic risk factors, and endothelium dependent and independent mechanisms that increase oxidative stress and inflammation are associated with microvascular injury, CMD and INOCA. Cardiac autonomic dysfunction has also been implicated in abnormal vasoreactivity and persistent symptoms. INOCA is under-recognized and under-diagnosed, partly due to the heterogenous patient populations and mechanisms. However, diagnostic testing methods are available to guide INOCA management. Treatment of INOCA is evolving, and focuses on cardiac risk factor control, improving ischemia, reducing atherosclerosis progression, and improving angina and quality of life. This review focuses on INOCA, relations to HFpEF, available diagnostics, current and investigational therapeutic strategies, and knowledge gaps in this condition.
Collapse
Affiliation(s)
- Puja K Mehta
- Emory Women's Heart Center and Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Jingwen Huang
- J. Willis Hurst Internal Medicine Residency Training Program, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca D Levit
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Waddah Malas
- Cardiovascular Disease Fellowship Training Program, Loyola Medical Center, Chicago, IL, USA
| | - Nida Waheed
- Cardiovascular Disease Fellowship Training Program, Emory University School of Medicine, Atlanta, GA, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| |
Collapse
|
115
|
Avtaar Singh SS, Nappi F. Pathophysiology and Outcomes of Endothelium Function in Coronary Microvascular Diseases: A Systematic Review of Randomized Controlled Trials and Multicenter Study. Biomedicines 2022; 10:3010. [PMID: 36551766 PMCID: PMC9775403 DOI: 10.3390/biomedicines10123010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Coronary macrovascular disease is a concept that has been well-studied within the literature and has long been the subject of debates surrounding coronary artery bypass grafting (CABG) vs. Percutaneous Coronary Intervention (PCI). ISCHEMIA trial reported no statistical difference in the primary clinical endpoint between initial invasive management and initial conservative management, while in the ORBITA trial PCI did not improve angina frequency score significantly more than placebo, albeit PCI resulted in more patient-reported freedom from angina than placebo. However, these results did not prove the superiority of the PCI against OMT, therefore do not indicate the benefit of PCI vs. the OMT. Please rephrase the sentence. We reviewed the role of different factors responsible for endothelial dysfunction from recent randomized clinical trials (RCTs) and multicentre studies. METHODS A detailed search strategy was performed using a dataset that has previously been published. Data of pooled analysis include research articles (human and animal models), CABG, and PCI randomized controlled trials (RCTs). Details of the search strategy and the methods used for data pooling have been published previously and registered with Open-Source Framework. RESULTS The roles of nitric oxide (NO), endothelium-derived contracting factors (EDCFs), and vasodilator prostaglandins (e.g., prostacyclin), as well as endothelium-dependent hyperpolarization (EDH) factors, are crucial for the maintenance of vasomotor tone within the coronary vasculature. These homeostatic mechanisms are affected by sheer forces and other several factors that are currently being studied, such as vaping. The role of intracoronary testing is crucial when determining the effects of therapeutic medications with further studies on the horizon. CONCLUSION The true impact of coronary microvascular dysfunction (CMD) is perhaps underappreciated, which supports the role of medical therapy in determining outcomes. Ongoing trials are underway to further investigate the role of therapeutic agents in secondary prevention.
Collapse
Affiliation(s)
| | - Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord of Saint-Denis, 93200 Saint-Denis, France
| |
Collapse
|
116
|
Impairment in quantitative microvascular function in non-ischemic cardiomyopathy as demonstrated using cardiovascular magnetic resonance. PLoS One 2022; 17:e0264454. [DOI: 10.1371/journal.pone.0264454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Microvascular dysfunction (MVD) is present in various cardiovascular diseases and portends worse outcomes. We assessed the prevalence of MVD in patients with non-ischemic cardiomyopathy (NICM) as compared to subjects with preserved ejection fraction (EF) using stress cardiovascular magnetic resonance (CMR).
Methods
We retrospectively studied consecutive patients with NICM and 58 subjects with preserved left ventricular (LV) EF who underwent stress CMR between 2011–2016. MVD was defined visually as presence of a subendocardial perfusion defect and semiquantitatively by myocardial perfusion reserve index (MPRI<1.51). MPRI was compared between groups using univariate analysis and multivariable linear regression.
Results
In total, 41 patients with NICM (mean age 51 ± 14, 59% male) and 58 subjects with preserved LVEF (mean age 51 ± 13, 31% male) were identified. In the NICM group, MVD was present in 23 (56%) and 11 (27%) by semiquantitative and visual evaluation respectively. Compared to those with preserved LVEF, NICM patients had lower rest slope (3.9 vs 4.9, p = 0.05) and stress perfusion slope (8.8 vs 11.7, p<0.001), and MPRI (1.41 vs 1.74, p = 0.02). MPRI remained associated with NICM after controlling for age, gender, hypertension, ethnicity, diabetes, and late gadolinium enhancement (log MPR, β coefficient = -0.19, p = 0.007).
Conclusions
MVD—as assessed using CMR—is highly prevalent in NICM as compared to subjects with preserved LVEF even after controlling for covariates. Semiquantitative is able to detect a greater number of incidences of MVD compared to visual methods alone. Further studies are needed to determine whether treatment of MVD is beneficial in NICM.
Collapse
|
117
|
Lin X, Wu G, Gao B, Wang S, Huang J. Bibliometric and visual analysis of coronary microvascular dysfunction. Front Cardiovasc Med 2022; 9:1021346. [PMID: 36457808 PMCID: PMC9705352 DOI: 10.3389/fcvm.2022.1021346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2023] Open
Abstract
Background Coronary microvascular dysfunction (CMD) may play an important role in various cardiovascular diseases, including HFpEF and both obstructive and non-obstructive coronary artery disease (CAD). To date, there has been no bibliometric analysis to summarize this field. Here, we aim to conduct a bibliometric analysis of CMD to determine the current status and frontiers in this field. Materials and methods Publications about CMD were taken from the Web of Science Core Collection database (WOSCC). WOSCC's literature analysis wire, the VOSviewer 1.6.16, and CiteSpace 5.1.3 were used to conduct the analysis. Results A total of 785 publications containing 206 reviews and 579 articles are included in the sample. The leading authors are Iacopo Olivotto, Paolo G. Camici, and Carl J. Pepine. The most productive institutions are the University of Florence, Cedars Sinai Medical Center, and Harvard University. The most productive countries are the USA, Italy, and England. There are a total of 237 journals that contribute to this field, and the leading journals in our study were the International Journal of Cardiology, the European Heart Journal and the JACC. From 2012 to 2021, the top three most-cited articles focused on the association between HFpEF and CMD. The important keywords are heart failure, hypertrophic cardiomyopathy, chest pain, women, coronary flow reserve (CFR), endothelial dysfunction and prognostic value. "Positron emission tomography" shows the strongest burst strength, followed by "blow flow" and "artery." The keywords that started to burst from 2015 are particularly emphasized, including "heart failure," "coronary flow reserve," and "management." Conclusion Studies about CMD are relatively limited, and the largest contribution comes from the USA, Italy and England. More studies are needed, and publications from other countries should be enhanced. The main research hotspots in the CMD field include CMD in patients with HFpEF, sex differences, the new methods of diagnosis for CMD, and the effective treatment of CMD. Attention should be given to CMD in patients with HFpEF, and untangling the association between CMD and HFpEF could be helpful in the development of physiology-stratified treatment for patients with CMD and HFpEF.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guomin Wu
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beibei Gao
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Wang
- Department of Translation Medicine Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
118
|
Varrichione G, Biccirè FG, Di Pietro R, Prati F, Battisti P. The risk of acute coronary events in microvascular disease. Eur Heart J Suppl 2022; 24:I127-I130. [PMID: 36380795 PMCID: PMC9653131 DOI: 10.1093/eurheartjsupp/suac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The microvascular disease represents a widespread clinical entity in the general population, especially among women. The dysfunction of the microcirculation is often responsible for myocardial ischaemia and angina in the absence of significant stenosis of the epicardial district, while in other cases it can represent a contributing cause of angina even in the presence of coronary artery disease, cardiomyopathies or heart failure. The cardiovascular risk factors of people with microvascular disease are similar to those who develop epicardial atherosclerotic disease. However, the prognostic significance of microvascular disease remains a matter of debate. An element to be clarified, in fact, is whether subjects with dysfunction of the microcirculation and coronary tree without significant stenoses present an increased risk of myocardial infarction and sudden death. In recent years, several studies seem to confirm an association between microvascular disease and progression of coronary epicardial atherosclerosis. The prognosis of microvascular disease would therefore not be benign as was previously believed, but associated with an increased risk of cardiovascular events including revascularization, heart attack, and cardiac death.
Collapse
|
119
|
Gao J, Meng T, Li M, Du R, Ding J, Li A, Yu S, Li Y, He Q. Global trends and frontiers in research on coronary microvascular dysfunction: a bibliometric analysis from 2002 to 2022. Eur J Med Res 2022; 27:233. [PMID: 36335406 PMCID: PMC9636644 DOI: 10.1186/s40001-022-00869-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) is a leading cause of ischemic heart disease. Over the past few decades, considerable progress has been made with respect to research on CMD. The present study summarized the current research hotspots and trends on CMD by applying a bibliometric approach. METHODS Relevant publications between 2002 and 2022 were extracted from the Web of Science Core Collection. Visualization network maps of countries, institutions, authors, and co-cited authors were built using VOSviewer. CiteSpace was used for keyword analysis and the construction of a dual-map overlay of journals and a timeline view of co-cited references. RESULTS 1539 CMD-related publications were extracted for bibliometric analysis. The annual publications generally showed an upward trend. The United States of America was the most prolific country, with 515 publications (33.5%). Camici P. G. was the most influential author, whereas the European Heart Journal, Circulation, and Journal of the American College of Cardiology were the most authoritative journals. Research hotspot analysis revealed that endothelial dysfunction as well as reduced nitric oxide production or bioavailability played critical roles in CMD development. Positron emission tomography was the most widely used imaging method for diagnosis. In addition, microvascular angina, hypertrophic cardiomyopathy, and heart failure have attracted much attention as the main clinical implications. Furthermore, international standards for CMD diagnosis and management may be the future research directions. CONCLUSIONS This study offers a comprehensive view about the hotspots and development trends of CMD, which can assist subsequent researchers and guide future directions.
Collapse
Affiliation(s)
- Jing Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruolin Du
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anqi Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Yu
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yixiang Li
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
120
|
Murai T, Hikita H, van de Hoef TP, Kanno Y, Abe F, Hishikari K, Iiya M, Ito N, Yoshikawa H, Yano H, Tsuno W, Takahashi A, Yonetsu T, Kakuta T, Sasano T. Impact of the downstream myocardial mass on values of coronary microvascular resistance. Physiol Rep 2022; 10:e15503. [PMID: 36324285 PMCID: PMC9630753 DOI: 10.14814/phy2.15503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023] Open
Abstract
The assessment of hyperemic microvascular resistance (HMR) may be dependent on the assessment location in the coronary artery and the amount of partial myocardial mass (PMM) distal to the assessment locations. The aim of this study was to investigate the differences in HMR values between the distal and proximal sites in the same coronary arteries as well as the relationship between HMR and PMM. Twenty-nine vessels from 26 patients who had undergone intracoronary physiological assessments including Doppler flow velocity at the distal third part and the proximal third part in the same vessels were assessed. The mean values of HMR and PMM at the distal sites were 2.08 ± 0.75 mmHg/cm/sec and 22.2 ± 10.4 g, respectively. At the proximal sites, the values of HMR and PMM were 1.19 ± 0.33 mmHg/cm/sec and 59.9 ± 18.3 g, respectively. All HMR values at the distal sites were significantly higher than those at the proximal sites (p < 0.001). Smaller PMM at the distal sites was significantly associated with higher HMR (r = -0.544, p = 0.002) and was the strongest factor affecting the HMR values (p = 0.009), while this relationship was not observed at the proximal sites (r = -0.262, p = 0.17). The impact of PMM on HMR was diminished at assessment locations where PMM was greater than 35 g. In conclusion, a small amount of downstream myocardial mass could be related to high HMR values. The assessment location around the proximal coronary artery with over 35 g of myocardium would be appropriate to assess HMR because it minimizes the influence of the assessment location.
Collapse
Affiliation(s)
- Tadashi Murai
- Cardiovascular CenterYokosuka Kyosai HospitalYokosukaJapan
| | | | | | - Yoshinori Kanno
- Department of Cardiovascular MedicineTokyo Medical Dental University HospitalTokyoJapan
| | - Fumiyuki Abe
- Department of CardiologyOme Municipal General HospitalTokyoJapan
| | | | - Munehiro Iiya
- Cardiovascular CenterYokosuka Kyosai HospitalYokosukaJapan
| | - Naruhiko Ito
- Cardiovascular CenterYokosuka Kyosai HospitalYokosukaJapan
| | | | - Hirotaka Yano
- Cardiovascular CenterYokosuka Kyosai HospitalYokosukaJapan
| | - Wataru Tsuno
- Cardiovascular CenterYokosuka Kyosai HospitalYokosukaJapan
| | | | - Taishi Yonetsu
- Department of Cardiovascular MedicineTokyo Medical Dental University HospitalTokyoJapan
| | - Tsunekazu Kakuta
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraJapan
| | - Tetsuo Sasano
- Department of Cardiovascular MedicineTokyo Medical Dental University HospitalTokyoJapan
| |
Collapse
|
121
|
Rinaldi R, Salzillo C, Caffè A, Montone RA. Invasive Functional Coronary Assessment in Myocardial Ischemia with Non-Obstructive Coronary Arteries: from Pathophysiological Mechanisms to Clinical Implications. Rev Cardiovasc Med 2022; 23:371. [PMID: 39076191 PMCID: PMC11269058 DOI: 10.31083/j.rcm2311371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 07/31/2024] Open
Abstract
Despite ischemic heart disease (IHD) has been commonly identified as the consequence of obstructive coronary artery disease (OCAD), a significant percentage of patients undergoing coronary angiography because of signs and/or symptoms of myocardial ischemia do not have any significant coronary artery stenosis. Several mechanisms other than coronary atherosclerosis, including coronary microvascular dysfunction (CMD), coronary endothelial dysfunction and epicardial coronary vasospasm, can determine myocardial ischemia or even myocardial infarction in the absence of flow-limiting epicardial coronary stenosis, highlighting the need of performing adjunctive diagnostic tests at the time of coronary angiography to achieve a correct diagnosis. This review provides updated evidence of the pathophysiologic mechanisms of myocardial ischemia with non-obstructive coronary arteries, focusing on the diagnostic and therapeutic implications of performing a comprehensive invasive functional evaluation consisting of the assessment of both vasodilation and vasoconstriction disorders. Moreover, performing a comprehensive invasive functional assessment may have important prognostic and therapeutic implications both in patients presenting with myocardial ischemia with non-obstructive coronary arteries (INOCA) or myocardial infarction with non-obstructive coronary arteries (MINOCA), as the implementation of a tailored patient management demonstrated to improve patient's symptoms and prognosis. However, given the limited knowledge of myocardial ischaemia with non-obstructive coronary arteries, there are no specific therapeutic interventions for these patients, and further research is warranted aiming to elucidate the underlying mechanisms and risk factors and to develop personalized forms of treatment.
Collapse
Affiliation(s)
- Riccardo Rinaldi
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Carmine Salzillo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Andrea Caffè
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Rocco A. Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
122
|
Boerhout CKM, de Waard GA, Lee JM, Mejia-Renteria H, Lee SH, Jung JH, Hoshino M, Echavarria-Pinto M, Meuwissen M, Matsuo H, Madera-Cambero M, Eftekhari A, Effat MA, Murai T, Marques K, Appelman Y, Doh JH, Christiansen EH, Banerjee R, Nam CW, Niccoli G, Nakayama M, Tanaka N, Shin ES, Beijk MAM, Knaapen P, Escaned J, Kakuta T, Koo BK, Piek JJ, van de Hoef TP. Prognostic value of structural and functional coronary microvascular dysfunction in patients with non-obstructive coronary artery disease; from the multicentre international ILIAS registry. EUROINTERVENTION 2022; 18:719-728. [PMID: 35694826 PMCID: PMC10241297 DOI: 10.4244/eij-d-22-00043] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/02/2022] [Indexed: 07/21/2023]
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) is an important contributor to angina syndromes. Recently, two distinct endotypes were identified using combined assessment of coronary flow reserve (CFR) and minimal microvascular resistance (MR), termed structural and functional CMD. AIMS We aimed to assess the relevance of the combined assessment of CFR and MR in patients with angina and no obstructive coronary arteries. METHODS Patients with chronic coronary syndromes (CCS) and non-obstructive coronary artery disease (fractional flow reserve [FFR] ≥0.80) were selected (N=1,102). Functional CMD was defined as abnormal CFR in combination with normal MR and structural CMD as abnormal CFR with abnormal MR. Clinical endpoints were the incidence of major adverse cardiac events (MACE) and target vessel failure (TVF) at 5-year follow-up. RESULTS Abnormal CFR was associated with an increased risk of MACE and TVF at 5-year follow-up. Microvascular resistance parameters were not associated with MACE or TVF at 5-year follow-up. The risk of MACE and TVF at 5-year follow-up was similarly increased for patients with structural or functional CMD compared with patients with normal microvascular function. There were no differences between both endotypes (p=0.88 for MACE, and p=0.55 for TVF). CONCLUSIONS Coronary microvascular dysfunction, identified by an impaired CFR, was unequivocally associated with increased MACE and TVF rates over a 5-year follow-up period. In contrast, impaired MR was not associated with 5-year adverse clinical events. Moreover, there was no significant difference in the risk of MACE and TVF between a low CFR accompanied by pathologically increased MR (structural CMD) or not (functional CMD). CLINICALTRIALS gov: NCT04485234.
Collapse
Affiliation(s)
- Coen K M Boerhout
- Department of Cardiology, Amsterdam UMC - location AMC, Amsterdam, the Netherlands
| | - Guus A de Waard
- Department of Cardiology, Amsterdam UMC - location VUmc, Amsterdam, the Netherlands
| | - Joo Myung Lee
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hernan Mejia-Renteria
- Hospital Clínico San Carlos, IDISSC, and Universidad Complutense de Madrid, Madrid, Spain
| | - Seung Hun Lee
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ji-Hyun Jung
- Sejong General Hospital, Sejong Heart Institute, Bucheon, Republic of Korea
| | - Masahiro Hoshino
- Gifu Heart Center, Department of Cardiovascular Medicine, Gifu, Japan
| | - Mauro Echavarria-Pinto
- Hospital General ISSSTE Querétaro - Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | | | - Hitoshi Matsuo
- Gifu Heart Center, Department of Cardiovascular Medicine, Gifu, Japan
| | | | - Ashkan Eftekhari
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Mohamed A Effat
- Division of Cardiovascular Health and Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tadashi Murai
- Tsuchiura Kyodo General Hospital, Department of Cardiology, Tsuchiura City, Japan
| | - Koen Marques
- Department of Cardiology, Amsterdam UMC - location VUmc, Amsterdam, the Netherlands
| | - Yolande Appelman
- Department of Cardiology, Amsterdam UMC - location VUmc, Amsterdam, the Netherlands
| | - Joon-Hyung Doh
- Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | | | - Rupak Banerjee
- Mechanical and Materials Engineering Department, University of Cincinnati, Cincinnati, OH, USA; and Research Services, Veteran Affairs Medical Center, Cincinnati, OH, USA
| | - Chang-Wook Nam
- Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Giampaolo Niccoli
- Department of Cardiovascular Medicine, Catholic University of the Sacred Heart, Institute of Cardiology, Rome, Italy
| | - Masafumi Nakayama
- Gifu Heart Center, Department of Cardiovascular Medicine, Gifu, Japan
- Cardiovascular Center, Toda Central General Hospital, Toda, Japan
| | - Nobuhiro Tanaka
- Department of Cardiology, Tokyo Medical University, Hachioji Medical Center, Tokyo, Japan
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Marcel A M Beijk
- Department of Cardiology, Amsterdam UMC - location AMC, Amsterdam, the Netherlands
| | - Paul Knaapen
- Department of Cardiology, Amsterdam UMC - location VUmc, Amsterdam, the Netherlands
| | - Javier Escaned
- Hospital Clínico San Carlos, IDISSC, and Universidad Complutense de Madrid, Madrid, Spain
| | - Tsunekazu Kakuta
- Tsuchiura Kyodo General Hospital, Department of Cardiology, Tsuchiura City, Japan
| | - Bon-Kwon Koo
- Department of Internal Medicine, Seoul National University Hospital, Cardiovascular Center, Seoul, Republic of Korea
| | - Jan J Piek
- Department of Cardiology, Amsterdam UMC - location AMC, Amsterdam, the Netherlands
| | - Tim P van de Hoef
- Department of Cardiology, Amsterdam UMC - location AMC, Amsterdam, the Netherlands
- Department of Cardiology, Amsterdam UMC - location VUmc, Amsterdam, the Netherlands
- Department of Cardiology, NoordWest Ziekenhuisgroep, the Netherlands
| |
Collapse
|
123
|
Tune JD, Goodwill AG, Baker HE, Dick GM, Warne CM, Tucker SM, Essajee SI, Bailey CA, Klasing JA, Russell JJ, McCallinhart PE, Trask AJ, Bender SB. Chronic high-rate pacing induces heart failure with preserved ejection fraction-like phenotype in Ossabaw swine. Basic Res Cardiol 2022; 117:50. [PMID: 36222894 PMCID: PMC12010922 DOI: 10.1007/s00395-022-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 01/31/2023]
Abstract
The lack of pre-clinical large animal models of heart failure with preserved ejection fraction (HFpEF) remains a growing, yet unmet obstacle to improving understanding of this complex condition. We examined whether chronic cardiometabolic stress in Ossabaw swine, which possess a genetic propensity for obesity and cardiovascular complications, produces an HFpEF-like phenotype. Swine were fed standard chow (lean; n = 13) or an excess calorie, high-fat, high-fructose diet (obese; n = 16) for ~ 18 weeks with lean (n = 5) and obese (n = 8) swine subjected to right ventricular pacing (180 beats/min for ~ 4 weeks) to induce heart failure (HF). Baseline blood pressure, heart rate, LV end-diastolic volume, and ejection fraction were similar between groups. High-rate pacing increased LV end-diastolic pressure from ~ 11 ± 1 mmHg in lean and obese swine to ~ 26 ± 2 mmHg in lean HF and obese HF swine. Regression analyses revealed an upward shift in LV diastolic pressure vs. diastolic volume in paced swine that was associated with an ~ twofold increase in myocardial fibrosis and an ~ 50% reduction in myocardial capillary density. Hemodynamic responses to graded hemorrhage revealed an ~ 40% decrease in the chronotropic response to reductions in blood pressure in lean HF and obese HF swine without appreciable changes in myocardial oxygen delivery or transmural perfusion. These findings support that high-rate ventricular pacing of lean and obese Ossabaw swine initiates underlying cardiac remodeling accompanied by elevated LV filling pressures with normal ejection fraction. This distinct pre-clinical tool provides a unique platform for further mechanistic and therapeutic studies of this highly complex syndrome.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Adam G Goodwill
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Hana E Baker
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Gregory M Dick
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Cooper M Warne
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Salman I Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Chastidy A Bailey
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Jessica A Klasing
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Jacob J Russell
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Patricia E McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
124
|
Shuaishuai D, Jingyi L, Zhiqiang Z, Guanwei F. Sex differences and related estrogenic effects in heart failure with preserved ejection fraction. Heart Fail Rev 2022:10.1007/s10741-022-10274-2. [PMID: 36190606 DOI: 10.1007/s10741-022-10274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an essential subtype of heart failure accounting for 40% of the total. However, the related pathological mechanism and drug therapy research have been stagnant for a long time. The direct cause of this dilemma is the heterogeneity of HFpEF. And some researchers believe that there is no common pathway to reach the origin of HFpEF; others argue that there is an unidentified unified pathophysiological process hidden beneath the ice surface. Aside from the debate, a series of clinical studies have shown that hypertension and obesity play a fundamental role in the pathogenesis of HFpEF. These results imply that there may be two parallel pathological processes interweaved in one disease, manifested as multiple coexistent pathological phenomena, like a shadow. Meanwhile, the prevalence of HFpEF in women is higher than in men in any given age group, especially prominent in elderly patients. These pathological processes and epidemiological data reflect gender differences, reminding us to shift our attention to estrogen. This article will review the parallel pathogenesis of HFpEF, and also introduce sex differences and the potential effect of estrogen in this condition below.
Collapse
Affiliation(s)
- Deng Shuaishuai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Lin Jingyi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Zhao Zhiqiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Fan Guanwei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China. .,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
125
|
Jovanovic I, Tesic M, Djordjevic-Dikic A, Giga V, Beleslin B, Aleksandric S, Boskovic N, Petrovic O, Marjanovic M, Vratonjic J, Paunovic I, Ivanovic B, Trifunovic-Zamaklar D. Role of different echocardiographic modalities in the assessment of microvascular function in women with ischemia and no obstructive coronary arteries. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1134-1142. [PMID: 36218210 DOI: 10.1002/jcu.23313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
This review summarizes current knowledge about echocardiographic modalities used to assess microvascular function and left ventricular (LV) systolic function in women with ischemia and no obstructive coronary arteries (INOCA). Although the entire pathophysiological background of this clinical entity still remains elusive, it is primarily linked to microvascular dysfunction which can be assessed by coronary flow velocity reserve. Subtle impairments of LV systolic function in women with INOCA are difficult to assess by interpretation of wall motion abnormalities. LV longitudinal function impairment is considered to be an early marker of subclinical systolic dysfunction and can be assessed by global longitudinal strain quantification.
Collapse
Affiliation(s)
- Ivana Jovanovic
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
| | - Milorad Tesic
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic-Dikic
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vojislav Giga
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branko Beleslin
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Srdjan Aleksandric
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Boskovic
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
| | - Olga Petrovic
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Marjanovic
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
| | - Jelena Vratonjic
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
| | - Ivana Paunovic
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
| | - Branislava Ivanovic
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Trifunovic-Zamaklar
- Clinic for Cardiology, University clinical center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
126
|
Liu Y, Chen S, Liu S, Sun G, Sun Z, Liu H. Association of endothelial glycocalyx shedding and coronary microcirculation assessed by an angiography-derived index of microcirculatory resistance in patients with suspected coronary artery disease. Front Cardiovasc Med 2022; 9:950102. [PMID: 36158787 PMCID: PMC9493183 DOI: 10.3389/fcvm.2022.950102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Background The endothelial glycocalyx (EG) is essential for maintaining microvascular homeostasis. However, the relationship between the EG and coronary microcirculation remains to be elucidated. One of the main components of EG is syndecan-1, and its shedding has been claimed to represent the state of the EG. In this study, we aimed to analyze the association between syndecan-1 and the coronary microcirculation. Methods We enrolled suspected coronary artery disease (CAD) patients who consecutively underwent coronary angiography (CAG) and angiography-based analysis of physiological indices in the left anterior descending artery (LAD). Serum syndecan-1 was measured by enzyme-linked immunosorbent assay (ELISA). The coronary microcirculation was evaluated by the presence of coronary microvascular dysfunction (CMD) and an impaired microvascular vasodilatory capacity (IMVC), which were quantified by an angiography-derived index of microcirculatory resistance (IMRangio) in the maximum hyperemic state (H-IMRangio) induced by adenosine triphosphate and the ratio (RRRangio) of IMRangio in the non-hyperemic phase to H-IMRangio, respectively. Results A total of 528 patients were enrolled in this study. There was no difference in epicardial coronary complexity between patients with high syndecan-1 (HSG) and low syndecan-1 (LSG) levels grouped by the median concentration of syndecan-1 (SYNTAX: 7[3, 10] vs. 9[4, 12], P = 0.15). However, H-IMRangio and RRRangio were different between the LSG and HSG groups (H-IMRangio: 23.64 ± 6.28 vs. 27.67 ± 5.59, P < 0.01; RRRangio: 1.74[1.46, 2.08] vs. 1.55[1.34, 1.72], P < 0.01). Patients with CMD (H-IMRangio > 25) and patients with IMVC (RRRangio below the median value) both had higher syndecan-1 levels (CMD: 86.44 ± 54.15 vs. 55.2 ± 43.72, P < 0.01; IMVC: 83.86 ± 55.41 vs. 59.68 ± 45.06, P < 0.01). After adjustment for confounding factors, HSG remained associated with the presence of CMD and IMVC (CMD: odds ratio [OR]: 2.769, P < 0.01; IMVC: OR: 1.908, P < 0.01). Conclusion High levels of syndecan-1 are independently associated with the presence of CMD and IMVC among patients with suspected CAD.
Collapse
Affiliation(s)
- Yang Liu
- Medical School of Chinese People’s Liberation Army, Beijing, China
- Department of Cardiology, Second Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Si Chen
- Department of Cardiology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Shaoyan Liu
- Department of Cardiology, Yantai Municipal Laiyang Central Hospital, Yantai, China
| | - Guoqiang Sun
- Department of Cardiology, Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Zhijun Sun
- Department of Cardiology, Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Hongbin Liu
- Medical School of Chinese People’s Liberation Army, Beijing, China
- Department of Cardiology, Second Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing, China
- *Correspondence: Hongbin Liu,
| |
Collapse
|
127
|
Badran M, Bender SB, Khalyfa A, Padilla J, Martinez-Lemus LA, Gozal D. Temporal changes in coronary artery function and flow velocity reserve in mice exposed to chronic intermittent hypoxia. Sleep 2022; 45:6602135. [DOI: 10.1093/sleep/zsac131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Study Objectives
Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH) that is implicated in an increased risk of cardiovascular disease (i.e., coronary heart disease, CHD) and associated with increased overall and cardiac-specific mortality. Accordingly, we tested the hypothesis that experimental IH progressively impairs coronary vascular function and in vivo coronary flow reserve.
Methods
Male C57BL/6J mice (8-week-old) were exposed to IH (FiO2 21% 90 s–6% 90 s) or room air (RA; 21%) 12 h/day during the light cycle for 2, 6, 16, and 28 weeks. Coronary artery flow velocity reserve (CFVR) was measured at each time point using a Doppler system. After euthanasia, coronary arteries were micro-dissected and mounted on wire myograph to assess reactivity to acetylcholine (ACh) and sodium nitroprusside (SNP).
Results
Endothelium-dependent coronary relaxation to ACh was preserved after 2 weeks of IH (80.6 ± 7.8%) compared to RA (87.8 ± 7.8%, p = 0.23), but was significantly impaired after 6 weeks of IH (58.7 ± 16.2%, p = 0.02). Compared to ACh responses at 6 weeks, endothelial dysfunction was more pronounced in mice exposed to 16 weeks (48.2 ± 5.3%) but did not worsen following 28 weeks of IH (44.8 ± 11.6%). A 2-week normoxic recovery after a 6-week IH exposure reversed the ACh abnormalities. CFVR was significantly reduced after 6 (p = 0.0006) and 28 weeks (p < 0.0001) of IH when compared to controls.
Conclusion
Chronic IH emulating the hypoxia-re-oxygenation cycles of moderate-to-severe OSA promotes coronary artery endothelial dysfunction and CFVR reductions in mice, which progressively worsen until reaching asymptote between 16 and 28 weeks. Normoxic recovery after 6 weeks exposure reverses the vascular abnormalities.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri , Columbia, MO , USA
| | - Shawn B Bender
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, MO , USA
- Department of Biomedical Sciences, University of Missouri , Columbia, MO , USA
- Research Service, Harry S. Truman Memorial Veterans Hospital , Columbia, MO , USA
| | - Abdelnaby Khalyfa
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri , Columbia, MO , USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, MO , USA
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, MO , USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, MO , USA
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri , Columbia, MO , USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri , Columbia, MO , USA
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri , Columbia, MO , USA
| |
Collapse
|
128
|
Minissian MB, Mehta PK, Hayes SN, Park K, Wei J, Bairey Merz CN, Cho L, Volgman AS, Elgendy IY, Mamas M, Davis MB, Reynolds HR, Epps K, Lindley K, Wood M, Quesada O, Piazza G, Pepine CJ. Ischemic Heart Disease in Young Women: JACC Review Topic of the Week. J Am Coll Cardiol 2022; 80:1014-1022. [PMID: 36049799 PMCID: PMC9847245 DOI: 10.1016/j.jacc.2022.01.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/21/2023]
Abstract
The Cardiovascular Disease in Women Committee of the American College of Cardiology convened a working group to develop a consensus regarding the continuing rise of mortality rates in young women aged 35 to 54 years. Heart disease mortality rates in young women continue to increase. Young women have increased mortality secondary to ischemic heart disease (IHD) compared with comparably aged men and similar mortality to that observed among older women. The authors reviewed the published evidence, including observational and mechanistic/translational data, and identified knowledge gaps pertaining to young women. This paper provides clinicians with pragmatic, evidence-based management strategies for young women at risk for IHD. Next-step research opportunities are outlined. This report presents highlights of the working group review and a summary of suggested research directions to advance the IHD field in the next decade.
Collapse
Affiliation(s)
- Margo B Minissian
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Brawerman Nursing Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Puja K Mehta
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sharonne N Hayes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ki Park
- University of Florida, Gainesville, Florida, USA
| | - Janet Wei
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Leslie Cho
- Cleveland Clinic, Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Islam Y Elgendy
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Mamas Mamas
- Keele Cardiovascular Research Group, Keele University, Keele, United Kingdom
| | | | - Harmony R Reynolds
- Sarah Ross Soter Center for Women's Cardiovascular Research, NYU School of Medicine, New York, New York, USA
| | - Kelly Epps
- Inova Heart and Vascular Institute, Falls Church, Virginia, USA
| | | | - Malissa Wood
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Odayme Quesada
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Women's Heart Center, The Christ Hospital Heart and Vascular Institute, Cincinnati, Ohio, USA
| | - Gregory Piazza
- Harvard Medical School, Division of Cardiovascular Medicine at the Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
129
|
Ait-Aissa K, Norwood-Toro LE, Terwoord J, Young M, Paniagua LA, Hader SN, Hughes WE, Hockenberry JC, Beare JE, Linn J, Kohmoto T, Kim J, Betts DH, LeBlanc AJ, Gutterman DD, Beyer AM. Noncanonical Role of Telomerase in Regulation of Microvascular Redox Environment With Implications for Coronary Artery Disease. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac043. [PMID: 36168588 PMCID: PMC9508843 DOI: 10.1093/function/zqac043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 01/28/2023]
Abstract
Telomerase reverse transcriptase (TERT) (catalytic subunit of telomerase) is linked to the development of coronary artery disease (CAD); however, whether the role of nuclear vs. mitchondrial actions of TERT is involved is not determined. Dominant-negative TERT splice variants contribute to decreased mitochondrial integrity and promote elevated reactive oxygen species production. We hypothesize that a decrease in mitochondrial TERT would increase mtDNA damage, promoting a pro-oxidative redox environment. The goal of this study is to define whether mitochondrial TERT is sufficient to maintain nitric oxide as the underlying mechanism of flow-mediated dilation by preserving mtDNA integrity.Immunoblots and quantitative polymerase chain reaction were used to show elevated levels of splice variants α- and β-deletion TERT tissue from subjects with and without CAD. Genetic, pharmacological, and molecular tools were used to manipulate TERT localization. Isolated vessel preparations and fluorescence-based quantification of mtH2O2 and NO showed that reduction of TERT in the nucleus increased flow induced NO and decreased mtH2O2 levels, while prevention of mitochondrial import of TERT augmented pathological effects. Further elevated mtDNA damage was observed in tissue from subjects with CAD and initiation of mtDNA repair mechanisms was sufficient to restore NO-mediated dilation in vessels from patients with CAD. The work presented is the first evidence that catalytically active mitochondrial TERT, independent of its nuclear functions, plays a critical physiological role in preserving NO-mediated vasodilation and the balance of mitochondrial to nuclear TERT is fundamentally altered in states of human disease that are driven by increased expression of dominant negative splice variants.
Collapse
Affiliation(s)
- K Ait-Aissa
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - L E Norwood-Toro
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - J Terwoord
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - M Young
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - L A Paniagua
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
| | - S N Hader
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - W E Hughes
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - J C Hockenberry
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - J E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, USA
| | - J Linn
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - T Kohmoto
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - J Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - D H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - A J LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA,Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - D D Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - A M Beyer
- Address correspondence to A.M.B. (e-mail: )
| |
Collapse
|
130
|
Preda A, Liberale L, Montecucco F. Imaging techniques for the assessment of adverse cardiac remodeling in metabolic syndrome. Heart Fail Rev 2022; 27:1883-1897. [PMID: 34796433 DOI: 10.1007/s10741-021-10195-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome (MetS) includes different metabolic conditions (i.e. abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension) that concour in the development of cardiovascular disease and diabetes. MetS individuals often show adverse cardiac remodeling and myocardial dysfunction even in the absence of overt coronary artery disease or valvular affliction. Diastolic impairment and hypertrophy are hallmarks of MetS-related cardiac remodeling and represent the leading cause of heart failure with preserved ejection fraction (HFpEF). Altered cardiomyocyte function, increased neurohormonal tone, interstitial fibrosis, coronary microvascular dysfunction, and a myriad of metabolic abnormalities have all been implicated in the development and progression of adverse cardiac remodeling related to MetS. However, despite the enormous amount of literature produced on this argument, HF remains a leading cause of morbidity and mortality in such population. The early detection of initial adverse cardiac remodeling would enable the optimal implementation of effective therapies aiming at preventing the progression of the disease to the symptomatic phase. Beyond conventional imaging techniques, such as echocardiography, cardiac tomography, and magnetic resonance, novel post-processing tools and techniques provide information on the biological processes that underlie metabolic heart disease. In this review, we summarize the pathophysiology of MetS-related cardiac remodeling and illustrate the relevance of state-of-the-art multimodality cardiac imaging to identify and quantify the degree of myocardial involvement, prognosticate long-term clinical outcome, and potentially guide therapeutic strategies.
Collapse
Affiliation(s)
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy.
| |
Collapse
|
131
|
Lin Y, Hu X, Wang W, Yu B, Zhou L, Zhou Y, Li G, Dong H. D-Dimer Is Associated With Coronary Microvascular Dysfunction in Patients With Non-obstructive Coronary Artery Disease and Preserved Ejection Fraction. Front Cardiovasc Med 2022; 9:937952. [PMID: 35983182 PMCID: PMC9378984 DOI: 10.3389/fcvm.2022.937952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Coronary microvascular dysfunction (CMVD), an important etiology of ischemic heart disease, has been widely studied. D-dimer is a simple indicator of microthrombosis and inflammation. However, whether an increase in D-dimer is related to CMVD is still unclear. MATERIALS AND METHODS This retrospective study consecutively enrolled patients with myocardial ischemia and excluded those with obstructive coronary artery. D-dimer was measured at admission and the TIMI myocardial perfusion grade (TMPG) was used to distinguish CMVD. Patients were divided into the two groups according to whether the D-dimer was elevated (>500 ng/ml). Logistic models and restricted cubic splines were used to explore the relationship between elevated D-dimer and CMVD. RESULTS A total of 377 patients were eventually enrolled in this study. Of these, 94 (24.9%) patients with CMVD had older age and higher D-dimer levels than those without CMVD. After full adjustment for other potential clinical risk factors, patients with high D-dimer levels (>500 ng/ml) had a 1.89-times (95% CI: 1.09-3.27) higher risk of CMVD than patients with low D-dimer levels. A non-linear relationship was found between concentrations of D-dimer and CMVD. With increased D-dimer level, the incidence of CMVD increased and then remained at a high level. Stratified analysis was performed and showed similar results. CONCLUSION Elevated D-dimer level is associated with the incidence of CMVD and potentially serves as a simple biomarker to facilitate the diagnosis of CMVD for patients with angina.
Collapse
Affiliation(s)
- Yan Lin
- Shantou University Medical College, Shantou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangming Hu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weimian Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bingyan Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Langping Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingling Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guang Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haojian Dong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
132
|
Bradley C, Berry C. Definition and epidemiology of coronary microvascular disease. J Nucl Cardiol 2022; 29:1763-1775. [PMID: 35534718 PMCID: PMC9345825 DOI: 10.1007/s12350-022-02974-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022]
Abstract
Ischemic heart disease remains one of the leading causes of death and disability worldwide. However, most patients referred for a noninvasive computed tomography coronary angiogram (CTA) or invasive coronary angiogram for the investigation of angina do not have obstructive coronary artery disease (CAD). Approximately two in five referred patients have coronary microvascular disease (CMD) as a primary diagnosis and, in addition, CMD also associates with CAD and myocardial disease (dual pathology). CMD underpins excess morbidity, impaired quality of life, significant health resource utilization, and adverse cardiovascular events. However, CMD often passes undiagnosed and the onward management of these patients is uncertain and heterogeneous. International standardized diagnostic criteria allow for the accurate diagnosis of CMD, ensuring an often overlooked patient population can be diagnosed and stratified for targeted medical therapy. Key to this is assessing coronary microvascular function-including coronary flow reserve, coronary microvascular resistance, and coronary microvascular spasm. This can be done by invasive methods (intracoronary temperature-pressure wire, intracoronary Doppler flow-pressure wire, intracoronary provocation testing) and non-invasive methods [positron emission tomography (PET), cardiac magnetic resonance imaging (CMR), transthoracic Doppler echocardiography (TTDE), cardiac computed tomography (CT)]. Coronary CTA is insensitive for CMD. Functional coronary angiography represents the combination of CAD imaging and invasive diagnostic procedures.
Collapse
Affiliation(s)
- Conor Bradley
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
- NHS Golden Jubilee Hospital, Clydebank, United Kingdom
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.
- NHS Golden Jubilee Hospital, Clydebank, United Kingdom.
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, United Kingdom.
| |
Collapse
|
133
|
De Vita A, Pizzi C, Tritto I, Morrone D, Villano A, Bergamaschi L, Lanza GA. Clinical outcomes of patients with coronary microvascular dysfunction in absence of obstructive coronary atherosclerosis. J Cardiovasc Med (Hagerstown) 2022; 23:421-426. [PMID: 35763761 DOI: 10.2459/jcm.0000000000001305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Up to 50% of patients presenting with stable, mainly exercise-induced, chest pain and 10-20% of those admitted to hospital with chest pain suggesting an acute coronary syndrome show normal or near-normal coronary arteries at angiography. Coronary microvascular dysfunction (CMD) is a major cause of symptoms in these patients. However, controversial data exist about their prognosis. In this article, we critically review characteristics and results of the main studies that assessed clinical outcome of patients with angina chest pain and nonobstructive coronary artery disease presenting with either a stable angina pattern or an acute coronary syndrome. Published data indicate that the patients included in most studies are heterogeneous and a major determinant of clinical outcome is the presence of atherosclerotic, albeit not obstructive, coronary artery disease. Long-term prognosis seems instead excellent in patients with totally normal coronary arteries and a syndrome of CMD-related stable angina (microvascular angina). On the other hand, the prognostic impact of CMD in patients presenting with an acute coronary syndrome needs to be better assessed in future studies.
Collapse
Affiliation(s)
- Antonio De Vita
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Dipartimento di Medicina Cardiovascolare, Rome
| | - Carmine Pizzi
- Università di Bologna, Alma Mater Studiorum, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Bologna
| | - Isabella Tritto
- Università di Perugia, Dipartimento di Medicina, Sezione di Cardiologia e Fisiopatologia Cardiovascolare, Perugia
| | - Doralisa Morrone
- Università di Pisa, Dipartimento di patologia chirurgica, medica, molecolare e dell'area critica, Pisa, Italy
| | - Angelo Villano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Dipartimento di Medicina Cardiovascolare, Rome
| | - Luca Bergamaschi
- Università di Bologna, Alma Mater Studiorum, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Bologna
| | - Gaetano A Lanza
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Dipartimento di Medicina Cardiovascolare, Rome
| |
Collapse
|
134
|
Lantz R, Quesada O, Mattingly G, Henry TD. Contemporary Management of Refractory Angina. Interv Cardiol Clin 2022; 11:279-292. [PMID: 35710283 PMCID: PMC9275781 DOI: 10.1016/j.iccl.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Refractory angina (RA) is defined as chest pain caused by coronary ischemia in patients on maximal medical therapy and is not amenable to revascularization despite advanced coronary artery disease (CAD). The long-term prognosis has improved with optimal medical therapy including risk factor modification. Still, patients are left with major impairment in quality of life and have high resource utilization with limited treatment options. We review the novel invasive and noninvasive therapies under investigation for RA.
Collapse
Affiliation(s)
- Rebekah Lantz
- The Lindner Research Center at the Christ Hospital, 2123 Auburn Avenue, Suite 424, Cincinnati, OH 45219, USA
| | - Odayme Quesada
- Women's Heart Program at The Christ Hospital, 2123 Auburn Avenue, Suite 424, Cincinnati, OH 45219, USA. https://twitter.com/Odayme
| | - Georgia Mattingly
- The Lindner Research Center at the Christ Hospital, 2123 Auburn Avenue, Suite 424, Cincinnati, OH 45219, USA
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, 2123 Auburn Avenue, Suite 424, Cincinnati, OH 45219, USA.
| |
Collapse
|
135
|
Zhao F, Satyanarayana G, Zhang Z, Zhao J, Ma XL, Wang Y. Endothelial Autophagy in Coronary Microvascular Dysfunction and Cardiovascular Disease. Cells 2022; 11:2081. [PMID: 35805165 PMCID: PMC9265562 DOI: 10.3390/cells11132081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) refers to a subset of structural and/or functional disorders of coronary microcirculation that lead to impaired coronary blood flow and eventually myocardial ischemia. Amid the growing knowledge of the pathophysiological mechanisms and the development of advanced tools for assessment, CMD has emerged as a prevalent cause of a broad spectrum of cardiovascular diseases (CVDs), including obstructive and nonobstructive coronary artery disease, diabetic cardiomyopathy, and heart failure with preserved ejection fraction. Of note, the endothelium exerts vital functions in regulating coronary microvascular and cardiac function. Importantly, insufficient or uncontrolled activation of endothelial autophagy facilitates the pathogenesis of CMD in diverse CVDs. Here, we review the progress in understanding the pathophysiological mechanisms of autophagy in coronary endothelial cells and discuss their potential role in CMD and CVDs.
Collapse
Affiliation(s)
- Fujie Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | | | - Zheng Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| |
Collapse
|
136
|
Dora KA, Borysova L, Ye X, Powell C, Beleznai TZ, Stanley CP, Bruno VD, Starborg T, Johnson E, Pielach A, Taggart M, Smart N, Ascione R. Human coronary microvascular contractile dysfunction associates with viable synthetic smooth muscle cells. Cardiovasc Res 2022; 118:1978-1992. [PMID: 34173824 PMCID: PMC9239576 DOI: 10.1093/cvr/cvab218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Coronary microvascular smooth muscle cells (SMCs) respond to luminal pressure by developing myogenic tone (MT), a process integral to the regulation of microvascular perfusion. The cellular mechanisms underlying poor myogenic reactivity in patients with heart valve disease are unknown and form the focus of this study. METHODS AND RESULTS Intramyocardial coronary micro-arteries (IMCAs) isolated from human and pig right atrial (RA) appendage and left ventricular (LV) biopsies were studied using pressure myography combined with confocal microscopy. All RA- and LV-IMCAs from organ donors and pigs developed circa 25% MT. In contrast, 44% of human RA-IMCAs from 88 patients with heart valve disease had poor (<10%) MT yet retained cell viability and an ability to raise cytoplasmic Ca2+ in response to vasoconstrictor agents. Comparing across human heart chambers and species, we found that based on patient medical history and six tests, the strongest predictor of poor MT in IMCAs was increased expression of the synthetic marker caldesmon relative to the contractile marker SM-myosin heavy chain. In addition, high resolution imaging revealed a distinct layer of longitudinally aligned SMCs between ECs and radial SMCs, and we show poor MT was associated with disruptions in these cellular alignments. CONCLUSION These data demonstrate the first use of atrial and ventricular biopsies from patients and pigs to reveal that impaired coronary MT reflects a switch of viable SMCs towards a synthetic phenotype, rather than a loss of SMC viability. These arteries represent a model for further studies of coronary microvascular contractile dysfunction.
Collapse
Affiliation(s)
- Kim A Dora
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Lyudmyla Borysova
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Xi Ye
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Chloe Powell
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Timea Z Beleznai
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Christopher P Stanley
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Vito D Bruno
- Bristol Heart Institute and Translational Biomedical Research Centre, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Tobias Starborg
- Division of Cell Matrix Biology and Regenerative Medicine School of Biological Sciences Faculty of Biology, Medical and Health Sciences, University of Manchester, B.3016 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Anna Pielach
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Michael Taggart
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Raimondo Ascione
- Bristol Heart Institute and Translational Biomedical Research Centre, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| |
Collapse
|
137
|
Zhan J, Zhong L, Wu J. Assessment and Treatment for Coronary Microvascular Dysfunction by Contrast Enhanced Ultrasound. Front Cardiovasc Med 2022; 9:899099. [PMID: 35795368 PMCID: PMC9251174 DOI: 10.3389/fcvm.2022.899099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
With growing evidence in clinical practice, the understanding of coronary syndromes has gradually evolved out of focusing on the well-established link between stenosis of epicardial coronary artery and myocardial ischemia to the structural and functional abnormalities at the level of coronary microcirculation, known as coronary microvascular dysfunction (CMD). CMD encompasses several pathophysiological mechanisms of coronary microcirculation and is considered as an important cause of myocardial ischemia in patients with angina symptoms without obstructive coronary artery disease (CAD). As a result of growing knowledge of the understanding of CMD assessed by multiple non-invasive modalities, CMD has also been found to be involved in other cardiovascular diseases, including primary cardiomyopathies as well as heart failure with preserved ejection fraction (HFpEF). In the past 2 decades, almost all the imaging modalities have been used to non-invasively quantify myocardial blood flow (MBF) and promote a better understanding of CMD. Myocardial contrast echocardiography (MCE) is a breakthrough as a non-invasive technique, which enables assessment of myocardial perfusion and quantification of MBF, exhibiting promising diagnostic performances that were comparable to other non-invasive techniques. With unique advantages over other non-invasive techniques, MCE has gradually developed into a novel modality for assessment of the coronary microvasculature, which may provide novel insights into the pathophysiological role of CMD in different clinical conditions. Moreover, the sonothrombolysis and the application of artificial intelligence (AI) will offer the opportunity to extend the use of contrast ultrasound theragnostics.
Collapse
|
138
|
Patel KK, Shaw L, Spertus JA, Sperry B, McGhie AI, Kennedy K, Thompson RC, Chan PS, Bateman TM. Association of Sex, Reduced Myocardial Flow Reserve and Long-term Mortality Across Spectrum of Atherosclerotic Disease. JACC Cardiovasc Imaging 2022; 15:1635-1644. [DOI: 10.1016/j.jcmg.2022.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/14/2022] [Accepted: 03/10/2022] [Indexed: 12/20/2022]
|
139
|
Kassab K, Al-Ogaili A, Malhotra S. Abnormal vasodilator stress electrocardiogram with normal myocardial perfusion: Clinical decision-making and review of literature. J Nucl Cardiol 2022; 29:1257-1265. [PMID: 33386537 DOI: 10.1007/s12350-020-02452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Ischemic electrocardiographic (ECG) changes during vasodilator stress testing in the presence of abnormal myocardial perfusion imaging (MPI) are associated with more severe coronary artery disease (CAD). However, significance of ECG changes during vasodilator stress test with normal MPI has been controversial. Here, we discuss two cases of significant ischemic ECG changes with vasodilator stress and normal MPI, whose subsequent workup revealed severe obstructive CAD. We also review the available literature on the occurrence and mechanism of these discrepant findings and propose recommendations for management.
Collapse
Affiliation(s)
- Kameel Kassab
- Division of Cardiology, Cook County Health, Chicago, IL, USA
| | - Ahmed Al-Ogaili
- Division of Cardiology, Cook County Health, Chicago, IL, USA
| | - Saurabh Malhotra
- Division of Cardiology, Cook County Health, Chicago, IL, USA.
- Division of Cardiology, Rush Medical College, Chicago, IL, USA.
| |
Collapse
|
140
|
Demir OM, Boerhout CKM, de Waard GA, van de Hoef TP, Patel N, Beijk MAM, Williams R, Rahman H, Everaars H, Kharbanda RK, Knaapen P, van Royen N, Piek JJ, Perera D. Comparison of Doppler Flow Velocity and Thermodilution Derived Indexes of Coronary Physiology. JACC Cardiovasc Interv 2022; 15:1060-1070. [PMID: 35589236 PMCID: PMC9126183 DOI: 10.1016/j.jcin.2022.03.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to compare Doppler flow velocity and thermodilution-derived indexes and to determine the optimal thermodilution-based diagnostic thresholds for coronary flow reserve (CFR). BACKGROUND The majority of clinical data and diagnostic thresholds for flow-based indexes are derived from Doppler measurements, and correspondence with thermodilution-derived indices remain unclear. METHODS An international multicenter registry was conducted among patients who had coronary flow measurements using both Doppler and thermodilution techniques in the same vessel and during the same procedure. RESULTS Physiological data from 250 vessels (in 149 patients) were included in the study. A modest correlation was found between thermodilution-derived CFR (CFRthermo) and Doppler-derived CFR (CFRDoppler) (r2 = 0.36; P < 0.0001). CFRthermo overestimated CFRDoppler (mean 2.59 ± 1.46 vs 2.05 ± 0.89; P < 0.0001; mean bias 0.59 ± 1.24 by Bland-Altman analysis), the relationship being described by the equation CFRthermo = 1.04 × CFRDoppler + 0.50. The commonly used dichotomous CFRthermo threshold of 2.0 had poor sensitivity at predicting a CFRDoppler value <2.5. The optimal CFRthermo threshold was 2.5 (sensitivity 75.54%, specificity 81.25%). There was only a weak correlation between hyperemic microvascular resistance and index of microvascular resistance (r2 = 0.19; P < 0.0001), due largely to variation in the measurement of flow by each modality. Forty-four percent of patients were discordantly classified as having abnormal microvascular resistance by hyperemic microvascular resistance (≥2.5 mm Hg · cm-1 · s) and index of microvascular resistance (≥25). CONCLUSIONS CFR calculated by thermodilution overestimates Doppler-derived CFR, while both parameters show modest correlation. The commonly used CFRthermo threshold of 2.0 has poor sensitivity for identifying vessels with diminished CFR, but using the same binary diagnostic threshold as for Doppler (<2.5) yields reasonable diagnostic accuracy. There was only a weak correlation between microvascular resistance indexes assessed by the 2 modalities.
Collapse
Affiliation(s)
- Ozan M Demir
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Coen K M Boerhout
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Guus A de Waard
- Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Tim P van de Hoef
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Niket Patel
- Oxford Heart Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Marcel A M Beijk
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rupert Williams
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Haseeb Rahman
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Henk Everaars
- Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Rajesh K Kharbanda
- Oxford Heart Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Paul Knaapen
- Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan J Piek
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Divaka Perera
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
141
|
Cattaneo M, Halasz G, Cattaneo MM, Younes A, Gallino C, Sudano I, Gallino A. The Central Nervous System and Psychosocial Factors in Primary Microvascular Angina. Front Cardiovasc Med 2022; 9:896042. [PMID: 35647077 PMCID: PMC9136057 DOI: 10.3389/fcvm.2022.896042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
Patients diagnosed with ischemia without obstructive coronary artery disease (INOCA) comprise the group of patients with primary microvascular angina (MVA). The pathophysiology underlying ischemia and angina is multifaceted. Differences in vascular tone, collateralization, environmental and psychosocial factors, pain thresholds, and cardiac innervation seem to contribute to clinical manifestations. There is evidence suggesting potential interactions between the clinical manifestations of MVA and non-cardiac conditions such as abnormal function of the central autonomic network (CAN) in the central nervous system (CNS), pain modulation pathways, and psychological, psychiatric, and social conditions. A few unconventional non-pharmacological and pharmacological techniques targeting these psychosocial conditions and modulating the CNS pathways have been proposed to improve symptoms and quality of life. Most of these unconventional approaches have shown encouraging results. However, these results are overall characterized by low levels of evidence both in observational studies and interventional trials. Awareness of the importance of microvascular dysfunction and MVA is gradually growing in the scientific community. Nonetheless, therapeutic success remains frustratingly low in clinical practice so far. This should promote basic and clinical research in this relevant cardiovascular field investigating, both pharmacological and non-pharmacological interventions. Standardization of definitions, clear pathophysiological-directed inclusion criteria, crossover design, adequate sample size, and mid-term follow-up through multicenter randomized trials are mandatory for future study in this field.
Collapse
Affiliation(s)
- Mattia Cattaneo
- Cardiology Department, Istituto Cardiocentro Ticino, Lugano, Switzerland
- Human Medicine Department, Università della Svizzera italiana, Lugano, Switzerland
- Cardiovascular Research Unit, Hospital of San Giovanni, Bellinzona, Switzerland
- *Correspondence: Mattia Cattaneo ;
| | - Geza Halasz
- Heart Failure Unit, Guglielmo da Saliceto Hospital, Azienda unità sanitaria locale (AUSL) Piacenza, University of Parma, Parma, Italy
| | - Magdalena Maria Cattaneo
- Human Medicine Department, Università della Svizzera italiana, Lugano, Switzerland
- Cardiovascular Research Unit, Hospital of San Giovanni, Bellinzona, Switzerland
| | - Adel Younes
- Cardiology Department, Istituto Cardiocentro Ticino, Lugano, Switzerland
| | - Camilla Gallino
- Human Medicine Department, Università della Svizzera italiana, Lugano, Switzerland
- Cardiovascular Research Unit, Hospital of San Giovanni, Bellinzona, Switzerland
| | - Isabella Sudano
- Human Medicine Department, University of Zurich, Zurich, Switzerland
- Cardiology Department, University Hospital, University Heart Center Zurich, Zurich, Switzerland
| | - Augusto Gallino
- Human Medicine Department, Università della Svizzera italiana, Lugano, Switzerland
- Cardiovascular Research Unit, Hospital of San Giovanni, Bellinzona, Switzerland
- Human Medicine Department, University of Zurich, Zurich, Switzerland
| |
Collapse
|
142
|
Bastiany A, Pacheco C, Sedlak T, Saw J, Miner SE, Liu S, Lavoie A, Kim DH, Gulati M, Graham MM. A Practical Approach to Invasive Testing in Ischemia with No Obstructive Coronary Arteries (INOCA). CJC Open 2022; 4:709-720. [PMID: 36035733 PMCID: PMC9402961 DOI: 10.1016/j.cjco.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Up to 65% of women and approximately 30% of men have ischemia with no obstructive coronary artery disease (CAD; commonly known as INOCA) on invasive coronary angiography performed for stable angina. INOCA can be due to coronary microvascular dysfunction or coronary vasospasm. Despite the absence of obstructive CAD, those with INOCA have an increased risk of all-cause mortality and adverse outcomes, including recurrent angina and cardiovascular events. These patients often undergo repeat testing, including cardiac catheterization, resulting in lifetime healthcare costs that rival those for obstructive CAD. Patients with INOCA often remain undiagnosed and untreated. This review discusses the symptoms and prognosis of INOCA, offers a systematic approach to the diagnostic evaluation of these patients, and summarizes therapeutic management, including tailored therapy according to underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Alexandra Bastiany
- Thunder Bay Regional Health Sciences Centre, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
- Corresponding author: Dr Alexandra Bastiany, Thunder Bay Regional Health Sciences Centre, Catheterization Laboratory, 980 Oliver Rd, Thunder Bay, Ontario P7B 6V4, Canada. Tel.: +1-807-622-3091; fax: +1-807-333-0903.
| | - Christine Pacheco
- Hôpital Pierre-Boucher, Université de Montréal, Montreal, Quebec, Canada
- Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Tara Sedlak
- Department of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jaqueline Saw
- Department of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Shuangbo Liu
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea Lavoie
- Saskatchewan Health Authority and Regina Mosaic Heart Centre, Regina, Saskatchewan, Canada
| | - Daniel H. Kim
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Martha Gulati
- Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | - Michelle M. Graham
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| |
Collapse
|
143
|
The danger of underdiagnosing coronary microvascular disease in women. J Am Assoc Nurse Pract 2022; 34:780-783. [PMID: 35486868 DOI: 10.1097/jxx.0000000000000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Heart disease is the number one killer of women in the United States. Part of the difficulty with diagnosing heart disease in women is related to a disease process called coronary microvascular disease (CMVD; previously called syndrome X). Also known as nonobstructive coronary artery disease, CMVD is challenging to identify because often there is a lack of convincing evidence of an acute problem during evaluation. In these patients, the epicardial coronary arteries do not have visible blockages, and stress tests often are interpreted as normal or false positive. Therefore, symptomatic patients often are left undiagnosed, frustrated, and at risk of adverse cardiac events. Frequently, the only method of diagnosis is treatment of the symptoms. This information is provided to help advanced practice nurses and other clinicians diagnose and treat CMVD.
Collapse
|
144
|
Markousis-Mavrogenis G, Bacopoulou F, Mavragani C, Voulgari P, Kolovou G, Kitas GD, Chrousos GP, Mavrogeni SI. Coronary microvascular disease: The "Meeting Point" of Cardiology, Rheumatology and Endocrinology. Eur J Clin Invest 2022; 52:e13737. [PMID: 34939183 DOI: 10.1111/eci.13737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Exertional chest pain/dyspnea or chest pain at rest are the main symptoms of coronary artery disease (CAD), which are traditionally attributed to insufficiency of the epicardial coronary arteries. However, 2/3 of women and 1/3 of men with angina and 10% of patients with acute myocardial infarction have no evidence of epicardial coronary artery stenosis in X-ray coronary angiography. In these cases, coronary microvascular disease (CMD) is the main causative factor. AIMS To present the pathophysiology of CMD in Cardiology, Rheumatology and Endocrinology. MATERIALS-METHODS The pathophysiology of CMD in Cardiology, Rheumatology and Endocrinology was evaluated. It includes impaired microvascular vasodilatation, which leads to inability of the organism to deal with myocardial oxygen needs and, hence, development of ischemic pain. CMD, observed in inflammatory autoimmune rheumatic and endocrine/metabolic disorders, brings together Cardiology, Rheumatology and Endocrinology. Causative factors include persistent systemic inflammation and endocrine/metabolic abnormalities influencing directly the coronary microvasculature. In the past, the evaluation of microcirculation was feasible only with the use of invasive techniques, such as coronary flow reserve assessment. Currently, the application of advanced imaging modalities, such as cardiovascular magnetic resonance (CMR), can evaluate CMD non-invasively and without ionizing radiation. RESULTS CMD may present with a variety of symptoms with 1/3 to 2/3 of them expressed as typical chest pain in effort, more commonly found in women during menopause than in men. Atypical presentation includes chest pain at rest or exertional dyspnea,but post exercise symptoms are not uncommon. The treatment with nitrates is less effective in CMD, because their vasodilator action in coronary micro-circulation is less pronounced than in the epicardial coronary arteries. DISCUSSION Although both classic and new medications have been used in the treatment of CMD, there are still many questions regarding both the pathophysiology and the treatment of this disorder. The potential effects of anti-rheumatic and endocrine medications on the evolution of CMD need further evaluation. CONCLUSION CMD is a multifactorial disease leading to myocardial ischemia/fibrosis alone or in combination with epicardial coronary artery disease. Endothelial dysfunction/vasospasm, systemic inflammation, and/or neuroendocrine activation may act as causative factors and bring Cardiology, Rheumatology and Endocrinology together. Currently, the application of advanced imaging modalities, and specifically CMR, allows reliable assessment of the extent and severity of CMD. These measurements should not be limited to "pure cardiac patients", as it is known that CMD affects the majority of patients with autoimmune rheumatic and endocrine/metabolic disorders.
Collapse
Affiliation(s)
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Clio Mavragani
- Pathophysiology Department, University of Athens, Athens, Greece
| | | | - Genovefa Kolovou
- Onassis Cardiac Surgery Hospital, Athens, Greece.,Epidemiology Department, University of Manchester, Manchester, UK
| | - George D Kitas
- Epidemiology Department, University of Manchester, Manchester, UK
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | |
Collapse
|
145
|
Lee SH, Shin D, Lee JM, van de Hoef TP, Hong D, Choi KH, Hwang D, Boerhout CKM, de Waard GA, Jung JH, Mejia-Renteria H, Hoshino M, Echavarria-Pinto M, Meuwissen M, Matsuo H, Madera-Cambero M, Eftekhari A, Effat MA, Murai T, Marques K, Doh JH, Christiansen EH, Banerjee R, Kim HK, Nam CW, Niccoli G, Nakayama M, Tanaka N, Shin ES, Chamuleau SAJ, van Royen N, Knaapen P, Koo BK, Kakuta T, Escaned J, Piek JJ. Clinical Relevance of Ischemia with Nonobstructive Coronary Arteries According to Coronary Microvascular Dysfunction. J Am Heart Assoc 2022; 11:e025171. [PMID: 35475358 PMCID: PMC9238617 DOI: 10.1161/jaha.121.025171] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background In the absence of obstructive coronary stenoses, abnormality of noninvasive stress tests (NIT) in patients with chronic coronary syndromes may indicate myocardial ischemia of nonobstructive coronary arteries (INOCA). The differential prognosis of INOCA according to the presence of coronary microvascular dysfunction (CMD) and incremental prognostic value of CMD with intracoronary physiologic assessment on top of NIT information remains unknown. Methods and Results From the international multicenter registry of intracoronary physiologic assessment (ILIAS [Inclusive Invasive Physiological Assessment in Angina Syndromes] registry, N=2322), stable patients with NIT and nonobstructive coronary stenoses with fractional flow reserve >0.80 were selected. INOCA was diagnosed when patients showed positive NIT results. CMD was defined as coronary flow reserve ≤2.5. According to the presence of INOCA and CMD, patients were classified into 4 groups: group 1 (no INOCA nor CMD, n=116); group 2 (only CMD, n=90); group 3 (only INOCA, n=41); and group 4 (both INOCA and CMD, n=40). The primary outcome was major adverse cardiovascular events, a composite of all‐cause death, target vessel myocardial infarction, or clinically driven target vessel revascularization at 5 years. Among 287 patients with nonobstructive coronary stenoses (fractional flow reserve=0.91±0.06), 81 patients (38.2%) were diagnosed with INOCA based on positive NIT. By intracoronary physiologic assessment, 130 patients (45.3%) had CMD. Regardless of the presence of INOCA, patients with CMD showed a significantly lower coronary flow reserve and higher hyperemic microvascular resistance compared with patients without CMD (P<0.001 for all). The cumulative incidence of major adverse cardiovascular events at 5 years were 7.4%, 21.3%, 7.7%, and 34.4% in groups 1 to 4. By documenting CMD (groups 2 and 4), intracoronary physiologic assessment identified patients at a significantly higher risk of major adverse cardiovascular events at 5 years compared with group 1 (group 2: adjusted hazard ratio [HRadjusted], 2.88; 95% CI, 1.52–7.19; P=0.024; group 4: HRadjusted, 4.00; 95% CI, 1.41–11.35; P=0.009). Conclusions In stable patients with nonobstructive coronary stenoses, a diagnosis of INOCA based only on abnormal NIT did not identify patients with higher risk of long‐term cardiovascular events. Incorporating intracoronary physiologic assessment to NIT information in patients with nonobstructive disease allowed identification of patient subgroups with up to 4‐fold difference in long‐term cardiovascular events. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04485234.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Cardiology Department of Internal Medicine Chonnam National University HospitalChonnam National University Medical School Gwangju Korea
| | - Doosup Shin
- Division of Cardiovascular Medicine Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA
| | - Joo Myung Lee
- Division of Cardiology Department of Medicine Heart Vascular Stroke InstituteSamsung Medical CenterSungkyunkwan University School of Medicine Seoul Korea
| | - Tim P van de Hoef
- Department of Cardiology Amsterdam UMC - location AMC Amsterdam The Netherlands.,Department of Cardiology Amsterdam UMC - location VUmc Amsterdam The Netherlands.,Department of Cardiology NoordWest Ziekenhuisgroep The Netherlands
| | - David Hong
- Division of Cardiology Department of Medicine Heart Vascular Stroke InstituteSamsung Medical CenterSungkyunkwan University School of Medicine Seoul Korea
| | - Ki Hong Choi
- Division of Cardiology Department of Medicine Heart Vascular Stroke InstituteSamsung Medical CenterSungkyunkwan University School of Medicine Seoul Korea
| | - Doyeon Hwang
- Department of Internal Medicine Cardiovascular CenterSeoul National University Hospital Seoul Korea
| | - Coen K M Boerhout
- Department of Cardiology Amsterdam UMC - location AMC Amsterdam The Netherlands
| | - Guus A de Waard
- Department of Cardiology Amsterdam UMC - location VUmc Amsterdam The Netherlands
| | - Ji-Hyun Jung
- Sejong General HospitalSejong Heart Institute Bucheon Korea
| | - Hernan Mejia-Renteria
- Hospital Clínico San CarlosIDISSC, and Universidad Complutense de Madrid Madrid Spain
| | - Masahiro Hoshino
- Department of Cardiology Tsuchiura Kyodo General Hospital Tsuchiura City Japan
| | - Mauro Echavarria-Pinto
- Hospital General ISSSTE Querétaro - Facultad de MedicinaUniversidad Autónoma de Querétaro Querétaro México
| | | | - Hitoshi Matsuo
- Department of Cardiovascular Medicine Gifu Heart Center Gifu Japan
| | | | - Ashkan Eftekhari
- Department of Cardiology Aarhus University Hospital Aarhus Denmark
| | - Mohamed A Effat
- Division of Cardiovascular Health and Disease University of Cincinnati Cincinnati Ohio
| | - Tadashi Murai
- Department of Cardiology Tsuchiura Kyodo General Hospital Tsuchiura City Japan
| | - Koen Marques
- Department of Cardiology Amsterdam UMC - location VUmc Amsterdam The Netherlands
| | - Joon-Hyung Doh
- Department of Medicine Inje University Ilsan Paik Hospital Goyang Korea
| | | | - Rupak Banerjee
- Department of Mechanical and Materials Engineering University of CincinnatiVeterans Affairs Medical Center Cincinnati Ohio
| | - Hyun Kuk Kim
- Department of Internal Medicine and Cardiovascular Center Chosun University HospitalUniversity of Chosun College of Medicine Gwangju Korea
| | - Chang-Wook Nam
- Department of Medicine Keimyung University Dongsan Medical Center Daegu Korea
| | | | - Masafumi Nakayama
- Department of Cardiovascular Medicine Gifu Heart Center Gifu Japan.,Toda Central General HospitalCardiovascular Center Toda Japan
| | - Nobuhiro Tanaka
- Department of Cardiology Tokyo Medical University Hachioji Medical Center Tokyo Japan
| | - Eun-Seok Shin
- Department of Cardiology Ulsan University HospitalUniversity of Ulsan College of Medicine Ulsan Korea
| | - Steven A J Chamuleau
- Department of Cardiology Amsterdam UMC - location AMC Amsterdam The Netherlands.,Department of Cardiology Amsterdam UMC - location VUmc Amsterdam The Netherlands
| | - Niels van Royen
- Department of Cardiology Radboud University Medical Center Nijmegen The Netherlands
| | - Paul Knaapen
- Department of Cardiology Amsterdam UMC - location VUmc Amsterdam The Netherlands
| | - Bon Kwon Koo
- Department of Internal Medicine Cardiovascular CenterSeoul National University Hospital Seoul Korea
| | - Tsunekazu Kakuta
- Department of Cardiology Tsuchiura Kyodo General Hospital Tsuchiura City Japan
| | - Javier Escaned
- Hospital Clínico San CarlosIDISSC, and Universidad Complutense de Madrid Madrid Spain
| | - Jan J Piek
- Department of Cardiology Amsterdam UMC - location AMC Amsterdam The Netherlands
| | | |
Collapse
|
146
|
Xie Y, Nishijima Y, Zinkevich NS, Korishettar A, Fang J, Mathison AJ, Zimmermann MT, Wilcox DA, Gutterman DD, Shen Y, Zhang DX. NADPH oxidase 4 contributes to TRPV4-mediated endothelium-dependent vasodilation in human arterioles by regulating protein phosphorylation of TRPV4 channels. Basic Res Cardiol 2022; 117:24. [PMID: 35469044 PMCID: PMC9119129 DOI: 10.1007/s00395-022-00932-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Impaired endothelium-dependent vasodilation has been suggested to be a key component of coronary microvascular dysfunction (CMD). A better understanding of endothelial pathways involved in vasodilation in human arterioles may provide new insight into the mechanisms of CMD. The goal of this study is to investigate the role of TRPV4, NOX4, and their interaction in human arterioles and examine the underlying mechanisms. Arterioles were freshly isolated from adipose and heart tissues obtained from 71 patients without coronary artery disease, and vascular reactivity was studied by videomicroscopy. In human adipose arterioles (HAA), ACh-induced dilation was significantly reduced by TRPV4 inhibitor HC067047 and by NOX 1/4 inhibitor GKT137831, but GKT137831 did not further affect the dilation in the presence of TRPV4 inhibitors. GKT137831 also inhibited TRPV4 agonist GSK1016790A-induced dilation in HAA and human coronary arterioles (HCA). NOX4 transcripts and proteins were detected in endothelial cells of HAA and HCA. Using fura-2 imaging, GKT137831 significantly reduced GSK1016790A-induced Ca2+ influx in the primary culture of endothelial cells and TRPV4-WT-overexpressing human coronary artery endothelial cells (HCAEC). However, GKT137831 did not affect TRPV4-mediated Ca2+ influx in non-phosphorylatable TRPV4-S823A/S824A-overexpressing HCAEC. In addition, treatment of HCAEC with GKT137831 decreased the phosphorylation level of Ser824 in TRPV4. Finally, proximity ligation assay (PLA) revealed co-localization of NOX4 and TRPV4 proteins. In conclusion, both TRPV4 and NOX4 contribute to ACh-induced dilation in human arterioles from patients without coronary artery disease. NOX4 increases TRPV4 phosphorylation in endothelial cells, which in turn enhances TRPV4-mediated Ca2+ entry and subsequent endothelium-dependent dilation in human arterioles.
Collapse
Affiliation(s)
- Yangjing Xie
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.,Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Biopharmaceutical Institute, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yoshinori Nishijima
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Natalya S. Zinkevich
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Biology, College of Liberal Arts and Sciences, University of Illinois at Springfield, Springfield, IL, USA
| | - Ankush Korishettar
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Angela J. Mathison
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David A. Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - David D. Gutterman
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.,Biopharmaceutical Institute, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.,Article correspondence to: David X. Zhang, Ph.D., Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA, Tel: (414) 955-5633, Fax: (414) 955-6572, And Yuxian Shen, Ph.D., School of Basic Medical Sciences and Biopharmaceutical Institute, Anhui Medical University, 81 Meishan Road, Hefei 230032, China, Tel: +86-551-6511-3776,
| | - David X. Zhang
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Article correspondence to: David X. Zhang, Ph.D., Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA, Tel: (414) 955-5633, Fax: (414) 955-6572, And Yuxian Shen, Ph.D., School of Basic Medical Sciences and Biopharmaceutical Institute, Anhui Medical University, 81 Meishan Road, Hefei 230032, China, Tel: +86-551-6511-3776,
| |
Collapse
|
147
|
Kelshiker MA, Seligman H, Howard JP, Rahman H, Foley M, Nowbar AN, Rajkumar CA, Shun-Shin MJ, Ahmad Y, Sen S, Al-Lamee R, Petraco R. Coronary flow reserve and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J 2022; 43:1582-1593. [PMID: 34849697 PMCID: PMC9020988 DOI: 10.1093/eurheartj/ehab775] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
AIMS This meta-analysis aims to quantify the association of reduced coronary flow with all-cause mortality and major adverse cardiovascular events (MACE) across a broad range of patient groups and pathologies. METHODS AND RESULTS We systematically identified all studies between 1 January 2000 and 1 August 2020, where coronary flow was measured and clinical outcomes were reported. The endpoints were all-cause mortality and MACE. Estimates of effect were calculated from published hazard ratios (HRs) using a random-effects model. Seventy-nine studies with a total of 59 740 subjects were included. Abnormal coronary flow reserve (CFR) was associated with a higher incidence of all-cause mortality [HR: 3.78, 95% confidence interval (CI): 2.39-5.97] and a higher incidence of MACE (HR 3.42, 95% CI: 2.92-3.99). Each 0.1 unit reduction in CFR was associated with a proportional increase in mortality (per 0.1 CFR unit HR: 1.16, 95% CI: 1.04-1.29) and MACE (per 0.1 CFR unit HR: 1.08, 95% CI: 1.04-1.11). In patients with isolated coronary microvascular dysfunction, an abnormal CFR was associated with a higher incidence of mortality (HR: 5.44, 95% CI: 3.78-7.83) and MACE (HR: 3.56, 95% CI: 2.14-5.90). Abnormal CFR was also associated with a higher incidence of MACE in patients with acute coronary syndromes (HR: 3.76, 95% CI: 2.35-6.00), heart failure (HR: 6.38, 95% CI: 1.95-20.90), heart transplant (HR: 3.32, 95% CI: 2.34-4.71), and diabetes mellitus (HR: 7.47, 95% CI: 3.37-16.55). CONCLUSION Reduced coronary flow is strongly associated with increased risk of all-cause mortality and MACE across a wide range of pathological processes. This finding supports recent recommendations that coronary flow should be measured more routinely in clinical practice, to target aggressive vascular risk modification for individuals at higher risk.
Collapse
Affiliation(s)
- Mihir A Kelshiker
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Henry Seligman
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - James P Howard
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Haseeb Rahman
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Michael Foley
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Alexandra N Nowbar
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Christopher A Rajkumar
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Matthew J Shun-Shin
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Yousif Ahmad
- Yale School of Medicine, Yale University, 333 Cedar St, New Haven, Connecticut 06510, USA
| | - Sayan Sen
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Rasha Al-Lamee
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Ricardo Petraco
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| |
Collapse
|
148
|
Paradossi U, Taglieri N, Massarelli G, Palmieri C, De Caterina AR, Bruno AG, Taddei A, Nardi E, Ghetti G, Palmerini T, Trianni G, Mazzone A, Pizzi C, Donati F, Bendandi F, Marrozzini C, Ravani M, Galiè N, Saia F, Berti S. Female gender and mortality in ST-segment-elevation myocardial infarction treated with primary PCI. J Cardiovasc Med (Hagerstown) 2022; 23:234-241. [PMID: 35081074 DOI: 10.2459/jcm.0000000000001300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS To investigate gender difference in mortality among patients with ST-segment elevation myocardial infarction (STEMI) treated with primary percutaneous angioplasty (PPCI). METHODS We analyzed data from the prospective registries of two hub PPCI centres over a 10-year period to assess the role of female gender as an independent predictor of both all-cause and cardiac death at 30 days and 1 year. To account for all confounding variables, a propensity score (PS)-adjusted multivariable Cox regression model and a PS-matched comparison between the male and female were used. RESULTS Among 4370 consecutive STEMI patients treated with PPCI at participating centres, 1188 (27.2%) were women. The survival rate at 30 days and 1 year were significantly lower in women (Log-rank P-value < 0.001). At PS-adjusted multivariable Cox regression analysis, female gender was independently associated with an increased risk of 30-day all-cause death [hazard ratio (HR) = 2.09; 95% confidence interval (CI): 1.45-3.01, P < 0.001], 30-day cardiac death (HR = 2.03;95% CI:1.41-2.93, P < 0.001), 1-year all-cause death (HR = 1.45; 95% CI:1.16-1.82, P < 0.001) and 1-year cardiac death (HR = 1.51; 95% CI:1.15-1.97, P < 0.001). For the study outcome, we found a significant interaction of gender with the multivessel disease in females who were at increased risk of mortality in comparison with men in absence of multivessel disease. After the PS matching procedure, a subset of 2074 patients were identified. Women still had a lower survival rate and survival free from cardiac death rate both at 30-day and at 1-year follow-up. CONCLUSION As compared with men, women with STEMI treated with PPCI have higher risk of both all-cause death and cardiac mortality at 30-day and 1-year follow-up.
Collapse
Affiliation(s)
| | - Nevio Taglieri
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giulia Massarelli
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | | - Antonio Giulio Bruno
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Elena Nardi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gabriele Ghetti
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Tullio Palmerini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesco Donati
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesco Bendandi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Cinzia Marrozzini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Nazzareno Galiè
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesco Saia
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS-Policlinico di St. Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Sergio Berti
- Fondazione Toscana G. Monasterio, Ospedale del Cuore, Massa
| |
Collapse
|
149
|
Bonanni A, d’Aiello A, Pedicino D, Di Sario M, Vinci R, Ponzo M, Ciampi P, Lo Curto D, Conte C, Cribari F, Canonico F, Russo G, Montone RA, Trani C, Severino A, Crea F, Liuzzo G. Molecular Hallmarks of Ischemia with Non-Obstructive Coronary Arteries: The "INOCA versus Obstructive CCS" Challenge. J Clin Med 2022; 11:jcm11061711. [PMID: 35330036 PMCID: PMC8951436 DOI: 10.3390/jcm11061711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022] Open
Abstract
Up to 4 million patients with signs of myocardial ischemia have no obstructive coronary artery disease (CAD). The absence of precise guidelines for diagnosis and treatment in non-obstructive CAD encourages the scientific community to fill the gap knowledge, to provide non-invasive and less expensive diagnostic tools. The aim of our study was to explore the biological profile of Ischemia with Non-Obstructive Coronary Arteries (INOCA) patients with microvascular dysfunction compared to patients presenting with obstructive chronic coronary syndrome (ObCCS) in order to find specific hallmarks of each clinical condition. We performed a gene expression array from peripheral blood mononuclear cells (PBMCs) isolated from INOCA (n = 18) and ObCCS (n = 20) patients. Our results showed a significantly reduced gene expression of molecules involved in cell adhesion, signaling, vascular motion, and inflammation in INOCA as compared to the ObCCS group. In detail, we found lower expression of Platelet and Endothelial Cell Adhesion Molecule 1 (CD31, p < 0.0001), Intercellular Adhesion Molecule-1 (ICAM1, p = 0.0004), Tumor Necrosis Factor (TNF p = 0.0003), Transferrin Receptor (TFRC, p = 0.002), and Vascular Endothelial Growth Factor A (VEGFA, p = 0.0006) in the INOCA group compared with ObCCS. Meanwhile, we observed an increased expression of Hyaluronidase (HYAL2, p < 0.0001) in INOCA patients in comparison to ObCCS. The distinct expression of molecular biomarkers might allow an early and non-invasive differential diagnosis between ObCCS and INOCA, improving clinical management and treatment options, in the era of personalized medicine.
Collapse
Affiliation(s)
- Alice Bonanni
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Alessia d’Aiello
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Daniela Pedicino
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Correspondence: ; Tel.: +39-06-3015-4187
| | - Marianna Di Sario
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
| | - Ramona Vinci
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Myriana Ponzo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
| | - Pellegrino Ciampi
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
| | - Denise Lo Curto
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
| | - Cristina Conte
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
| | - Francesco Cribari
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
| | - Francesco Canonico
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Giulio Russo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Rocco Antonio Montone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Carlo Trani
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Anna Severino
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Giovanna Liuzzo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.B.); (A.d.); (M.D.S.); (R.V.); (M.P.); (P.C.); (D.L.C.); (C.C.); (F.C.); (G.R.); (R.A.M.); (C.T.); (A.S.); (F.C.); (G.L.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
150
|
Mileva N, Nagumo S, Mizukami T, Sonck J, Berry C, Gallinoro E, Monizzi G, Candreva A, Munhoz D, Vassilev D, Penicka M, Barbato E, De Bruyne B, Collet C. Prevalence of Coronary Microvascular Disease and Coronary Vasospasm in Patients With Nonobstructive Coronary Artery Disease: Systematic Review and Meta-Analysis. J Am Heart Assoc 2022; 11:e023207. [PMID: 35301851 PMCID: PMC9075440 DOI: 10.1161/jaha.121.023207] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background A relevant proportion of patients with suspected coronary artery disease undergo invasive coronary angiography showing normal or nonobstructive coronary arteries. However, the prevalence of coronary microvascular disease (CMD) and coronary spasm in patients with nonobstructive coronary artery disease remains to be determined. The objective of this study was to determine the prevalence of coronary CMD and coronary vasospastic angina in patients with no obstructive coronary artery disease. Methods and Results A systematic review and meta‐analysis of studies assessing the prevalence of CMD and vasospastic angina in patients with no obstructive coronary artery disease was performed. Random‐effects models were used to determine the prevalence of these 2 disease entities. Fifty‐six studies comprising 14 427 patients were included. The pooled prevalence of CMD was 0.41 (95% CI, 0.36–0.47), epicardial vasospasm 0.40 (95% CI, 0.34–0.46) and microvascular spasm 24% (95% CI, 0.21–0.28). The prevalence of combined CMD and vasospastic angina was 0.23 (95% CI, 0.17–0.31). Female patients had a higher risk of presenting with CMD compared with male patients (risk ratio, 1.45 [95% CI, 1.11–1.90]). CMD prevalence was similar when assessed using noninvasive or invasive diagnostic methods. Conclusions In patients with no obstructive coronary artery disease, approximately half of the cases were reported to have CMD and/or coronary spasm. CMD was more prevalent among female patients. Greater awareness among physicians of ischemia with no obstructive coronary arteries is urgently needed for accurate diagnosis and patient‐tailored management.
Collapse
Affiliation(s)
- Niya Mileva
- Cardiovascular Center Aalst OLV Hospital Aalst Belgium.,Cardiology Clinic Alexandrovska University Hospital Sofia Bulgaria
| | - Sakura Nagumo
- Cardiovascular Center Aalst OLV Hospital Aalst Belgium.,Division of Cardiology Department of Internal Medicine Showa UniversityFujigaoka Hospital Kanagawa Japan
| | - Takuya Mizukami
- Division of Cardiology Department of Internal Medicine Showa UniversityFujigaoka Hospital Kanagawa Japan
| | - Jeroen Sonck
- Cardiovascular Center Aalst OLV Hospital Aalst Belgium.,Department of Advanced Biomedical Sciences University of Naples, Federico II Naples Italy
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow United Kingdom
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst OLV Hospital Aalst Belgium.,Department of Translational Medical Sciences University of Campania "Luigi Vanvitelli" Naples Italy
| | | | | | - Daniel Munhoz
- Cardiovascular Center Aalst OLV Hospital Aalst Belgium.,Department of Clinical Medicine Discipline of Cardiology University of Campinas UNICAMP Campinas Brazil.,Department of Advanced Biomedical Sciences University of Naples, Federico II Naples Italy
| | - Dobrin Vassilev
- Cardiology Clinic Alexandrovska University Hospital Sofia Bulgaria
| | | | - Emanuele Barbato
- Cardiovascular Center Aalst OLV Hospital Aalst Belgium.,Department of Advanced Biomedical Sciences University of Naples, Federico II Naples Italy
| | - Bernard De Bruyne
- Cardiovascular Center Aalst OLV Hospital Aalst Belgium.,Department of Cardiology Lausanne University Hospital Lausanne Switzerland
| | - Carlos Collet
- Cardiovascular Center Aalst OLV Hospital Aalst Belgium
| |
Collapse
|