101
|
Koser F, Hobbach AJ, Abdellatif M, Herbst V, Türk C, Reinecke H, Krüger M, Sedej S, Linke WA. Acetylation and phosphorylation changes to cardiac proteins in experimental HFpEF due to metabolic risk reveal targets for treatment. Life Sci 2022; 309:120998. [PMID: 36179815 DOI: 10.1016/j.lfs.2022.120998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
AIMS Despite the high prevalence of heart failure with preserved ejection fraction (HFpEF), the pathomechanisms remain elusive and specific therapy is lacking. Disease-causing factors include metabolic risk, notably obesity. However, proteomic changes in HFpEF are poorly understood, hampering therapeutic strategies. We sought to elucidate how metabolic syndrome affects cardiac protein expression, phosphorylation and acetylation in the Zucker diabetic fatty/Spontaneously hypertensive heart failure F1 (ZSF1) rat HFpEF model, and to evaluate changes regarding their potential for treatment. MAIN METHODS ZSF1 obese and lean rats were fed a Purina diet up to the onset of HFpEF in the obese animals. We quantified the proteome, phosphoproteome and acetylome of ZSF1 obese versus lean heart tissues by mass spectrometry and singled out targets for site-specific evaluation. KEY FINDINGS The acetylome of ZSF1 obese versus lean hearts was more severely altered (21 % of proteins changed) than the phosphoproteome (9 %) or proteome (3 %). Proteomic alterations, confirmed by immunoblotting, indicated low-grade systemic inflammation and endothelial remodeling in obese hearts, but low nitric oxide-dependent oxidative/nitrosative stress. Altered acetylation in ZSF1 obese hearts mainly affected pathways important for metabolism, energy production and mechanical function, including hypo-acetylation of mechanical proteins but hyper-acetylation of proteins regulating fatty acid metabolism. Hypo-acetylation and hypo-phosphorylation of elastic titin in ZSF1 obese hearts could explain myocardial stiffening. SIGNIFICANCE Cardiometabolic syndrome alters posttranslational modifications, notably acetylation, in experimental HFpEF. Pathway changes implicate a HFpEF signature of low-grade inflammation, endothelial dysfunction, metabolic and mechanical impairment, and suggest titin stiffness and mitochondrial metabolism as promising therapeutic targets.
Collapse
Affiliation(s)
- Franziska Koser
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Anastasia J Hobbach
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | | | - Viktoria Herbst
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging- Associated Diseases, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Holger Reinecke
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging- Associated Diseases, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany.
| |
Collapse
|
102
|
Schulz L, Werner S, Böttner J, Adams V, Lurz P, Besler C, Thiele H, Büttner P. Tubulin expression and modification in heart failure with preserved ejection fraction (HFpEF). Sci Rep 2022; 12:15734. [PMID: 36131110 PMCID: PMC9492725 DOI: 10.1038/s41598-022-19766-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Diastolic dysfunction in heart failure with preserved ejection fraction (HFpEF) is characterised by increased left ventricular stiffness and impaired active relaxation. Underpinning pathomechanisms are incompletely understood. Cardiac hypertrophy and end stage heart disease are associated with alterations in the cardiac microtubule (MT) network. Increased amounts and modifications of α-tubulin associate with myocardial stiffness. MT alterations in HFpEF have not been analysed yet. Using ZSF1 obese rats (O-ZSF1), a validated HFpEF model, we characterised MT-modifying enzymes, quantity and tyrosination/detyrosination pattern of α-tubulin at 20 and 32 weeks of age. In the left ventricle of O-ZSF1, α-tubulin concentration (20 weeks: 1.5-fold, p = 0.019; 32 weeks: 1.7-fold, p = 0.042) and detyrosination levels (20 weeks: 1.4-fold, p = 0.013; 32 weeks: 1.3-fold, p = 0.074) were increased compared to lean ZSF1 rats. Tyrosination/α-tubulin ratio was lower in O-ZSF1 (20 weeks: 0.8-fold, p = 0.020; 32 weeks: 0.7-fold, p = 0.052). Expression of α-tubulin modifying enzymes was comparable. These results reveal new alterations in the left ventricle in HFpEF that are detectable during early (20 weeks) and late (32 weeks) progression. We suppose that these alterations contribute to diastolic dysfunction in HFpEF and that reestablishment of MT homeostasis might represent a new target for pharmacological interventions.
Collapse
Affiliation(s)
- Lisa Schulz
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Sarah Werner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Julia Böttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Volker Adams
- Department of Cardiology, University Medicine TU Dresden, Dresden, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| | - Philipp Lurz
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Christian Besler
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Petra Büttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany.
| |
Collapse
|
103
|
Teuber JP, Essandoh K, Hummel SL, Madamanchi NR, Brody MJ. NADPH Oxidases in Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction. Antioxidants (Basel) 2022; 11:1822. [PMID: 36139898 PMCID: PMC9495396 DOI: 10.3390/antiox11091822] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases regulate production of reactive oxygen species (ROS) that cause oxidative damage to cellular components but also regulate redox signaling in many cell types with essential functions in the cardiovascular system. Research over the past couple of decades has uncovered mechanisms by which NADPH oxidase (NOX) enzymes regulate oxidative stress and compartmentalize intracellular signaling in endothelial cells, smooth muscle cells, macrophages, cardiomyocytes, fibroblasts, and other cell types. NOX2 and NOX4, for example, regulate distinct redox signaling mechanisms in cardiac myocytes pertinent to the onset and progression of cardiac hypertrophy and heart failure. Heart failure with preserved ejection fraction (HFpEF), which accounts for at least half of all heart failure cases and has few effective treatments to date, is classically associated with ventricular diastolic dysfunction, i.e., defects in ventricular relaxation and/or filling. However, HFpEF afflicts multiple organ systems and is associated with systemic pathologies including inflammation, oxidative stress, arterial stiffening, cardiac fibrosis, and renal, adipose tissue, and skeletal muscle dysfunction. Basic science studies and clinical data suggest a role for systemic and myocardial oxidative stress in HFpEF, and evidence from animal models demonstrates the critical functions of NOX enzymes in diastolic function and several HFpEF-associated comorbidities. Here, we discuss the roles of NOX enzymes in cardiovascular cells that are pertinent to the development and progression of diastolic dysfunction and HFpEF and outline potential clinical implications.
Collapse
Affiliation(s)
- James P. Teuber
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott L. Hummel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Affairs Health System, Ann Arbor, MI 48105, USA
| | | | - Matthew J. Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
104
|
Jia R, Ji Y, Sun D. Progress and prospects of Sacubitril/Valsartan: Based on heart failure with preserved ejection fraction. Biomed Pharmacother 2022; 155:113701. [PMID: 36116249 DOI: 10.1016/j.biopha.2022.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is present in nearly half of patients with heart failure. The prevalence of heart failure with normal or near-normal ejection fractions increases more rapidly than in patients with reduced ejection fractions. Angiotensin-converting enzyme inhibitor (ACEI), angiotensin receptor blocker (ARB), aldosterone antagonist, β-blocker, and calcium channel blocker have not shown significant efficacy in HFpEF clinical trials. Sacubitril/Valsartan, combined angiotensin receptor blocker (Valsartan) with neprilysin inhibitor (Sacubitril), was the first-of-its-kind angiotensin receptor-neprilysin inhibitor (ARNI) to be developed. It has shown significant efficacy on HFpEF in recent studies. It is considered that most of the current Sacubitril/Valsartan studies are still concentrated in the field of heart failure, especially heart failure with reduced ejection fraction (HFrEF). This review discusses the latest advances in cardiovascular, renal, and metabolic aspects of Sacubitril/Valsartan, mainly in HFpEF, providing more evidence for further future research on Sacubitril/Valsartan and raising issues that should be paid attention. At the same time, this review will introduce the academic consensus on Sacubitril/Valsartan in treating HFpEF in China.
Collapse
Affiliation(s)
- Ruoyu Jia
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Graduate School, Xuzhou Medical University, Xuzhou 221002, China
| | - Ying Ji
- Graduate School, Xuzhou Medical University, Xuzhou 221002, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Institute of Nephrology, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
105
|
Ferroptosis: The Potential Target in Heart Failure with Preserved Ejection Fraction. Cells 2022; 11:cells11182842. [PMID: 36139417 PMCID: PMC9496758 DOI: 10.3390/cells11182842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Ferroptosis is a recently identified cell death characterized by an excessive accumulation of iron-dependent reactive oxygen species (ROS) and lipid peroxides. Intracellular iron overload can not only cause damage to macrophages, endothelial cells, and cardiomyocytes through responses such as lipid peroxidation, oxidative stress, and inflammation, but can also affect cardiomyocyte Ca2+ handling, impair excitation–contraction coupling, and play an important role in the pathological process of heart failure with preserved ejection fraction (HFpEF). However, the mechanisms through which ferroptosis initiates the development and progression of HFpEF have not been established. This review explains the possible correlations between HFpEF and ferroptosis and provides a reliable theoretical basis for future studies on its mechanism.
Collapse
|
106
|
The Role of NLRP3 Inflammasome in Diabetic Cardiomyopathy and Its Therapeutic Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3790721. [PMID: 36111168 PMCID: PMC9470324 DOI: 10.1155/2022/3790721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus (DM). However, the precise molecular mechanisms remain largely unclear, and it is still a challenging disease to diagnose and treat. The nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome is a critical part of the innate immune system in the host to defend against endogenous danger and pathogenic microbial infections. Dysregulated NLRP3 inflammasome activation results in the overproduction of cytokines, primarily IL-1β and IL-18, and eventually, inflammatory cell death-pyroptosis. A series of studies have indicated that NLRP3 inflammasome activation participates in the development of DCM, and that corresponding interventions could mitigate disease progression. Accordingly, this narrative review is aimed at briefly summarizing the cell-specific role of the NLRP3 inflammasome in DCM and provides novel insights into developing DCM therapeutic strategies targeting the NLRP3 inflammasome.
Collapse
|
107
|
Tangos M, Budde H, Kolijn D, Sieme M, Zhazykbayeva S, Lódi M, Herwig M, Gömöri K, Hassoun R, Robinson EL, Meister TL, Jaquet K, Kovács Á, Mustroph J, Evert K, Babel N, Fagyas M, Lindner D, Püschel K, Westermann D, Mannherz HG, Paneni F, Pfaender S, Tóth A, Mügge A, Sossalla S, Hamdani N. SARS-CoV-2 infects human cardiomyocytes promoted by inflammation and oxidative stress. Int J Cardiol 2022; 362:196-205. [PMID: 35643215 PMCID: PMC9132721 DOI: 10.1016/j.ijcard.2022.05.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Introduction The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Although the mechanisms underlying SARS-CoV-2-related cardiac damage remain elusive, inflammation (i.e. ‘cytokine storm’) and oxidative stress are likely involved. Methods and results Here we sought to determine: 1) if cardiomyocytes are targeted by SARS-CoV-2 and 2) how inflammation and oxidative stress promote the viral entry into cardiac cells. We analysed pro-inflammatory and oxidative stress and its impact on virus entry and virus-associated cardiac damage from SARS-CoV-2 infected patients and compared it to left ventricular myocardial tissues obtained from non-infected transplanted hearts either from end stage heart failure or non-failing hearts (donor group). We found that neuropilin-1 potentiates SARS-CoV-2 entry into human cardiomyocytes, a phenomenon driven by inflammatory and oxidant signals. These changes accounted for increased proteases activity and apoptotic markers thus leading to cell damage and apoptosis. Conclusion This study provides new insights into the mechanisms of SARS-CoV-2 entry into the heart and defines promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities.
Collapse
Affiliation(s)
- Melina Tangos
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Detmar Kolijn
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Marcel Sieme
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Saltanat Zhazykbayeva
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Mária Lódi
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Medical Faculty, Bochum, Germany
| | - Melissa Herwig
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Kamilla Gömöri
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Emma Louise Robinson
- School of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Toni Luise Meister
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Kornelia Jaquet
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Miklós Fagyas
- Center for Molecular Cardiology, University of Zürich, University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | - Diana Lindner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Germany
| | - Hans Georg Mannherz
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland; University Heart Center, Cardiology, Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, Debrecen, Hungary
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany; Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
108
|
Abudoukelimu M, Ba B, Kai Guo Y, Xu J. Von Willebrand factor (vWF) in patients with heart failure with preserved ejection fraction (HFpEF): A retrospective observational study. Medicine (Baltimore) 2022; 101:e29854. [PMID: 35945712 PMCID: PMC9351886 DOI: 10.1097/md.0000000000029854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 01/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial damage and inflammation. In addition, von Willebrand factor (vWF) has been discovered as a biomarker of endothelial dysfunction. Therefore, the study aims to investigate the association between vWF level and HFpEF. Moreover, we analyzed a potential correlation between vWF and inflammatory factors, such as C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-6. We recruited altogether 272 hospitalized patients from The Fifth Affiliated Hospital of Xinjiang Medical University, 88 of whom were HFpEF patients, 88 were non-heart failure patients, and 96 were healthy controls from the medical examination center of the hospital. Enzyme-linked immunosorbent assay and double antibody sandwich immunochromatography were used for testing vWF, tissue plasminogen activator, galectin-3, nitric oxide, TNF-α, IL-6, and CRP. The HFpEF group's levels of vWF, IL-6, TNF-α, CRP, tissue plasminogen activator, galectin-3, and nitric oxide were statistically higher than those of non-heart failure and healthy control ones (F = 403.563, 21.825, 20.678, 39.609, 35.411, 86.407, 74.605; all P = .000). the highest level of vWF was observed in class IV (New York Heart Association) of HFpEF patients and the significant difference is <.05 (P < .001). An increasing level of vWF were shown in groups (CRP: CRP >3 mg/L group and CRP ≤3 mg/L group; IL-6: IL-6 <7.0 pg/mL group and IL-6 ≥7.0 pg/mL group; TNF-α: TNF-α <5.5 pg/mL group and TNF-α ≥5.5 pg/mL group) with higher level of IL-6, TNF-α, CRP. A multiple regression analysis regarding the relationship of vWF and inflammation markers was performed among the HFpEF patients. Further, statistical significance of the analysis remained after adjusting variables such as body mass index, low-density lipoprotein cholesterol, total cholesterol, coronary artery disease, and type 2 diabetes mellitus (β = 0.406, t = 4.579, P < .001; β = 0.323, t = 3.218, P < .001; β = 0.581, t = 6.922, P < .001). Our study shows that elevated vWF levels are associated with HFpEF, and it may serve as a potential biomarker for HFpEF severity. We also found that increased vWF levels are positively correlated to IL-6, TNF-α, and CRP, which may provide a clue for further researching the pathogenesis of HFpEF.
Collapse
Affiliation(s)
- Mayila Abudoukelimu
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Bayinsilema Ba
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Yan Kai Guo
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jie Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| |
Collapse
|
109
|
Smith AN, Altara R, Amin G, Habeichi NJ, Thomas DG, Jun S, Kaplan A, Booz GW, Zouein FA. Genomic, Proteomic, and Metabolic Comparisons of Small Animal Models of Heart Failure With Preserved Ejection Fraction: A Tale of Mice, Rats, and Cats. J Am Heart Assoc 2022; 11:e026071. [PMID: 35904190 PMCID: PMC9375492 DOI: 10.1161/jaha.122.026071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a medical anomaly that baffles researchers and physicians alike. The overall phenotypical changes of diastolic function and left ventricular hypertrophy observed in HFpEF are definable; however, the metabolic and molecular alterations that ultimately produce these changes are not well established. Comorbidities such as obesity, hypertension, and diabetes, as well as general aging, play crucial roles in its development and progression. Various animal models have recently been developed to better understand the pathophysiological and metabolic developments in HFpEF and to illuminate novel avenues for pharmacotherapy. These models include multi‐hit rodents and feline aortic constriction animals. Recently, genomic, proteomic, and metabolomic approaches have been used to define altered signaling pathways in the heart associated with HFpEF, including those involved in inflammation, cGMP‐related, Ca2+ handling, mitochondrial respiration, and the unfolded protein response in endoplasmic reticulum stress. This article aims to present an overview of what has been learnt by these studies, focusing mainly on the findings in common while highlighting unresolved issues. The knowledge gained from these research models will not simply be of benefit for treating HFpEF but will undoubtedly provide new insights into the mechanisms by which the heart deals with external stresses and how the processes involved can fail.
Collapse
Affiliation(s)
- Alex N Smith
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Raffaele Altara
- Department of Pathology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France
| | - Daniel G Thomas
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Seungho Jun
- Division of Cardiology The Johns Hopkins Medical Institutions Baltimore MD
| | - Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Cardiology Clinic Rumeli Hospital Istanbul Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS.,Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France.,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
110
|
Khalaf EM, Hassan HM, El-Baz AM, Shata A, Khodir AE, Yousef ME, Elgharabawy RM, Nouh NA, Saleh S, Bin-Meferij MM, El-kott AF, El-Sokkary MM, Eissa H. A novel therapeutic combination of dapagliflozin, Lactobacillus and crocin attenuates diabetic cardiomyopathy in rats: Role of oxidative stress, gut microbiota, and PPARγ activation. Eur J Pharmacol 2022; 931:175172. [DOI: 10.1016/j.ejphar.2022.175172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 02/09/2023]
|
111
|
Petraina A, Nogales C, Krahn T, Mucke H, Lüscher TF, Fischmeister R, Kass DA, Burnett JC, Hobbs AJ, Schmidt HHHW. Cyclic GMP modulating drugs in cardiovascular diseases: mechanism-based network pharmacology. Cardiovasc Res 2022; 118:2085-2102. [PMID: 34270705 PMCID: PMC9302891 DOI: 10.1093/cvr/cvab240] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanism-based therapy centred on the molecular understanding of disease-causing pathways in a given patient is still the exception rather than the rule in medicine, even in cardiology. However, recent successful drug developments centred around the second messenger cyclic guanosine-3'-5'-monophosphate (cGMP), which is regulating a number of cardiovascular disease modulating pathways, are about to provide novel targets for such a personalized cardiovascular therapy. Whether cGMP breakdown is inhibited or cGMP synthesis is stimulated via guanylyl cyclases or their upstream regulators in different cardiovascular disease phenotypes, the outcomes seem to be so far uniformly protective. Thus, a network of cGMP-modulating drugs has evolved that act in a mechanism-based, possibly causal manner in a number of cardiac conditions. What remains a challenge is the detection of cGMPopathy endotypes amongst cardiovascular disease phenotypes. Here, we review the growing clinical relevance of cGMP and provide a glimpse into the future on how drugs interfering with this pathway may change how we treat and diagnose cardiovascular diseases altogether.
Collapse
Affiliation(s)
- Alexandra Petraina
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Thomas Krahn
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hermann Mucke
- H.M. Pharma Consultancy, Enenkelstrasse 28/32, A-1160, Vienna, Austria
| | - Thomas F Lüscher
- Royal Brompton & Harefield Hospitals, Heart Division and National Heart and Lung Institute, Guy Scadding Building, Imperial College, Dovehouse Street London SW3 6LY, United Kingdom
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistreet 12, CH-8952 Schlieren, Switzerland
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Faculty of Pharmacy, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - David A Kass
- Division of Cardiology, Department of Medicine, Ross Research Building, Rm 858, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - John C Burnett
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London, UK
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
112
|
Exercise Training Effects on Circulating Endothelial and Progenitor Cells in Heart Failure. J Cardiovasc Dev Dis 2022; 9:jcdd9070222. [PMID: 35877584 PMCID: PMC9322098 DOI: 10.3390/jcdd9070222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a major public health issue worldwide with increased prevalence and a high number of hospitalizations. Patients with chronic HF and either reduced ejection fraction (HFrEF) or mildly reduced ejection fraction (HFmrEF) present vascular endothelial dysfunction and significantly decreased circulating levels of endothelial progenitor cells (EPCs). EPCs are bone marrow-derived cells involved in endothelium regeneration, homeostasis, and neovascularization. One of the unsolved issues in the field of EPCs is the lack of an established method of identification. The most widely approved method is the use of monoclonal antibodies and fluorescence-activated cell sorting (FACS) analysis via flow cytometry. The most frequently used markers are CD34, VEGFR-2, CD45, CD31, CD144, and CD146. Exercise training has demonstrated beneficial effects on EPCs by increasing their number in peripheral circulation and improving their functional capacities in patients with HFrEF or HFmrEF. There are two potential mechanisms of EPCs mobilization: shear stress and the hypoxic/ischemic stimulus. The combination of both leads to the release of EPCs in circulation promoting their repairment properties on the vascular endothelium barrier. EPCs are important therapeutic targets and one of the most promising fields in heart failure and, therefore, individualized exercise training programs should be developed in rehabilitation centers.
Collapse
|
113
|
Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs? Front Physiol 2022; 13:906272. [PMID: 35874523 PMCID: PMC9304560 DOI: 10.3389/fphys.2022.906272] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.
Collapse
|
114
|
Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current Understanding of Molecular Pathophysiology of Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:928232. [PMID: 35874547 PMCID: PMC9301384 DOI: 10.3389/fphys.2022.928232] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Heart Failure (HF) is the most common cause of hospitalization in the Western societies. HF is a heterogeneous and complex syndrome that may result from any dysfunction of systolic or diastolic capacity. Abnormal diastolic left ventricular function with impaired relaxation and increased diastolic stiffness is characteristic of heart failure with preserved ejection fraction (HFpEF). HFpEF accounts for more than 50% of all cases of HF. The prevalence increases with age: from around 1% for those aged <55 years to >10% in those aged 70 years or over. Nearly 50% of HF patients have HFrEF and the other 50% have HFpEF/HFmrEF, mainly based on studies in hospitalized patients. The ESC Long-Term Registry, in the outpatient setting, reports that 60% have HFrEF, 24% have HFmrEF, and 16% have HFpEF. To some extent, more than 50% of HF patients are female. HFpEF is closely associated with co-morbidities, age, and gender. Epidemiological evidence suggests that HFpEF is highly represented in older obese women and proposed as 'obese female HFpEF phenotype'. While HFrEF phenotype is more a male phenotype. In addition, metabolic abnormalities and hemodynamic perturbations in obese HFpEF patients appear to have a greater impact in women then in men (Sorimachi et al., European J of Heart Fail, 2022, 22). To date, numerous clinical trials of HFpEF treatments have produced disappointing results. This outcome suggests that a "one size fits all" approach to HFpEF may be inappropriate and supports the use of tailored, personalized therapeutic strategies with specific treatments for distinct HFpEF phenotypes. The most important mediators of diastolic stiffness are the cardiomyocytes, endothelial cells, and extracellular matrix (ECM). The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of HFpEF pathologies. These signalling networks contribute to the development of the diseases. Inhibition and/or attenuation of these signalling networks also delays the onset of disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress and emphasize the nature of the contribution of most important cells to the development of HFpEF via increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
115
|
Yoshida Y, Shimizu I, Minamino T. Capillaries as a Therapeutic Target for Heart Failure. J Atheroscler Thromb 2022; 29:971-988. [PMID: 35370224 PMCID: PMC9252615 DOI: 10.5551/jat.rv17064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Prognosis of heart failure remains poor, and it is urgent to find new therapies for this critical condition. Oxygen and metabolites are delivered through capillaries; therefore, they have critical roles in the maintenance of cardiac function. With aging or age-related disorders, capillary density is reduced in the heart, and the mechanisms involved in these processes were reported to suppress capillarization in this organ. Studies with rodents showed capillary rarefaction has causal roles for promoting pathologies in failing hearts. Drugs used as first-line therapies for heart failure were also shown to enhance the capillary network in the heart. Recently, the approach with senolysis is attracting enthusiasm in aging research. Genetic or pharmacological approaches concluded that the specific depletion of senescent cells, senolysis, led to reverse aging phenotype. Reagents mediating senolysis are described to be senolytics, and these compounds were shown to ameliorate cardiac dysfunction together with enhancement of capillarization in heart failure models. Studies indicate maintenance of the capillary network as critical for inhibition of pathologies in heart failure.
Collapse
Affiliation(s)
- Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMEDCREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
116
|
Zhang M, Shu H, Chen C, He Z, Zhou Z, Wang DW. Epoxyeicosatrienoic acid: A potential therapeutic target of heart failure with preserved ejection fraction. Biomed Pharmacother 2022; 153:113326. [PMID: 35759865 DOI: 10.1016/j.biopha.2022.113326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) reduces the quality of life, costs substantial medical resources, and has a high mortality. However, we lack an effective therapy for HFpEF due to our limited knowledge of its mechanism. Therefore, it is crucial to explore novel therapeutics, such as those with endogenous protective roles, and seek new targeted therapies. Epoxyeicosatrienoic acids (EETs) are endogenous bioactive metabolites of arachidonic acids produced by cytochrome P450 (CYP) epoxygenases. EETs can function as endogenous cardioprotective factors with potent inhibitory roles in inflammation, endothelial dysfunction, cardiac remodeling, and fibrosis, which are the fundamental mechanisms of HFpEF. This suggests that EETs have the potential function to protect against HFpEF. Therefore, we present an overview of the ever-expanding world of EETs and how they might help alleviate the pathophysiology underlying HFpEF to provide new insights for research in this field.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
117
|
Stadiotti I, Santoro R, Scopece A, Pirola S, Guarino A, Polvani G, Maione AS, Ascione F, Li Q, Delia D, Foiani M, Pompilio G, Sommariva E. Pressure Overload Activates DNA-Damage Response in Cardiac Stromal Cells: A Novel Mechanism Behind Heart Failure With Preserved Ejection Fraction? Front Cardiovasc Med 2022; 9:878268. [PMID: 35811699 PMCID: PMC9259931 DOI: 10.3389/fcvm.2022.878268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome characterized by impaired left ventricular (LV) diastolic function, with normal LV ejection fraction. Aortic valve stenosis can cause an HFpEF-like syndrome by inducing sustained pressure overload (PO) and cardiac remodeling, as cardiomyocyte (CM) hypertrophy and fibrotic matrix deposition. Recently, in vivo studies linked PO maladaptive myocardial changes and DNA damage response (DDR) activation: DDR-persistent activation contributes to mouse CM hypertrophy and inflammation, promoting tissue remodeling, and HF. Despite the wide acknowledgment of the pivotal role of the stromal compartment in the fibrotic response to PO, the possible effects of DDR-persistent activation in cardiac stromal cell (C-MSC) are still unknown. Finally, this novel mechanism was not verified in human samples. This study aims to unravel the effects of PO-induced DDR on human C-MSC phenotypes. Human LV septum samples collected from severe aortic stenosis with HFpEF-like syndrome patients undergoing aortic valve surgery and healthy controls (HCs) were used both for histological tissue analyses and C-MSC isolation. PO-induced mechanical stimuli were simulated in vitro by cyclic unidirectional stretch. Interestingly, HFpEF tissue samples revealed DNA damage both in CM and C-MSC. DDR-activation markers γH2AX, pCHK1, and pCHK2 were expressed at higher levels in HFpEF total tissue than in HC. Primary C-MSC isolated from HFpEF and HC subjects and expanded in vitro confirmed the increased γH2AX and phosphorylated checkpoint protein expression, suggesting a persistent DDR response, in parallel with a higher expression of pro-fibrotic and pro-inflammatory factors respect to HC cells, hinting to a DDR-driven remodeling of HFpEF C-MSC. Pressure overload was simulated in vitro, and persistent activation of the CHK1 axis was induced in response to in vitro mechanical stretching, which also increased C-MSC secreted pro-inflammatory and pro-fibrotic molecules. Finally, fibrosis markers were reverted by the treatment with a CHK1/ATR pathway inhibitor, confirming a cause-effect relationship. In conclusion we demonstrated that, in severe aortic stenosis with HFpEF-like syndrome patients, PO induces DDR-persistent activation not only in CM but also in C-MSC. In C-MSC, DDR activation leads to inflammation and fibrosis, which can be prevented by specific DDR targeting.
Collapse
Affiliation(s)
- Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Rosaria Santoro
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
- *Correspondence: Rosaria Santoro
| | - Alessandro Scopece
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Sergio Pirola
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Anna Guarino
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Gianluca Polvani
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Flora Ascione
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Qingsen Li
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Domenico Delia
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Marco Foiani
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| |
Collapse
|
118
|
Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F. Heart Failure With Preserved Ejection Fraction: Heterogeneous Syndrome, Diverse Preclinical Models. Circ Res 2022; 130:1906-1925. [PMID: 35679364 PMCID: PMC10035274 DOI: 10.1161/circresaha.122.320257] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents one of the greatest challenges facing cardiovascular medicine today. Despite being the most common form of heart failure worldwide, there has been limited success in developing therapeutics for this syndrome. This is largely due to our incomplete understanding of the biology driving its systemic pathophysiology and the heterogeneity of clinical phenotypes, which are increasingly being recognized as distinct HFpEF phenogroups. Development of efficacious therapeutics fundamentally relies on robust preclinical models that not only faithfully recapitulate key features of the clinical syndrome but also enable rigorous investigation of putative mechanisms of disease in the context of clinically relevant phenotypes. In this review, we propose a preclinical research strategy that is conceptually grounded in model diversification and aims to better align with our evolving understanding of the heterogeneity of clinical HFpEF. Although heterogeneity is often viewed as a major obstacle in preclinical HFpEF research, we challenge this notion and argue that embracing it may be the key to demystifying its pathobiology. Here, we first provide an overarching guideline for developing HFpEF models through a stepwise approach of comprehensive cardiac and extra-cardiac phenotyping. We then present an overview of currently available models, focused on the 3 leading phenogroups, which are primarily based on aging, cardiometabolic stress, and chronic hypertension. We discuss how well these models reflect their clinically relevant phenogroup and highlight some of the more recent mechanistic insights they are providing into the complex pathophysiology underlying HFpEF.
Collapse
Affiliation(s)
- Jason Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology) (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Abhilasha Singh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| |
Collapse
|
119
|
Abelanet A, Camoin M, Rubin S, Bougaran P, Delobel V, Pernot M, Forfar I, Guilbeau-Frugier C, Galès C, Bats ML, Renault MA, Dufourcq P, Couffinhal T, Duplàa C. Increased Capillary Permeability in Heart Induces Diastolic Dysfunction Independently of Inflammation, Fibrosis, or Cardiomyocyte Dysfunction. Arterioscler Thromb Vasc Biol 2022; 42:745-763. [PMID: 35510550 DOI: 10.1161/atvbaha.121.317319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND While endothelial dysfunction is suggested to contribute to heart failure with preserved ejection fraction pathophysiology, understanding the importance of the endothelium alone, in the pathogenesis of diastolic abnormalities has not yet been fully elucidated. Here, we investigated the consequences of specific endothelial dysfunction on cardiac function, independently of any comorbidity or risk factor (diabetes or obesity) and their potential effect on cardiomyocyte. METHODS The ubiquitine ligase Pdzrn3, expressed in endothelial cells (ECs), was shown to destabilize tight junction. A genetic mouse model in which Pdzrn3 is overexpressed in EC (iEC-Pdzrn3) in adults was developed. RESULTS EC-specific Pdzrn3 expression increased cardiac leakage of IgG and fibrinogen blood-born molecules. The induced edema demonstrated features of diastolic dysfunction, with increased end-diastolic pressure, alteration of dP/dt min, increased natriuretic peptides, in addition to limited exercise capacity, without major signs of cardiac fibrosis and inflammation. Electron microscopic images showed edema with disrupted EC-cardiomyocyte interactions. RNA sequencing analysis of gene expression in cardiac EC demonstrated a decrease in genes coding for endothelial extracellular matrix proteins, which could be related to the fragile blood vessel phenotype. Irregularly shaped capillaries with hemorrhages were found in heart sections of iEC-Pdzrn3 mice. We also found that a high-fat diet was not sufficient to provoke diastolic dysfunction; high-fat diet aggravated cardiac inflammation, associated with an altered cardiac metabolic signature in EC-Pdzrn3 mice, reminiscent of heart failure with preserved ejection fraction features. CONCLUSIONS An increase of endothelial permeability is responsible for mediating diastolic dysfunction pathophysiology and for aggravating detrimental effects of a high-fat diet on cardiac inflammation and metabolism.
Collapse
Affiliation(s)
- Alice Abelanet
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Marion Camoin
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Sebastien Rubin
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Pauline Bougaran
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Valentin Delobel
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Mathieu Pernot
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Isabelle Forfar
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Céline Guilbeau-Frugier
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, France (C.G.-F., C.G.)
| | - Céline Galès
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, France (C.G.-F., C.G.)
| | - Marie Lise Bats
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Marie-Ange Renault
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Pascale Dufourcq
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Cécile Duplàa
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| |
Collapse
|
120
|
The Endothelial Dysfunction Could Be a Cause of Heart Failure with Preserved Ejection Fraction Development in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7377877. [PMID: 35633883 PMCID: PMC9132705 DOI: 10.1155/2022/7377877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
50% of patients with heart failure have a preserved ejection fraction (HFpEF). Numerous studies have investigated the pathophysiological mechanisms of HFpEF and have shown that endothelial dysfunction plays an important role in HFpEF. Yet no studies answered whether endothelial dysfunction could be the cause or is the consequence of HFpEF. Recently, we have shown that the endothelial overexpression of human β3-adrenoreceptor (Tgβ3) in rats leads to the slow development of diastolic dysfunction over ageing. The aim of the study is to decipher the involvement of endothelial dysfunction in the HFpEF development. For that, we investigated endothelial and cardiac function in 15-, 30-, and 45-week-old wild-type (WT) and Tgβ3 rats. The aortic expression of •NO synthase (NOS) isoforms was evaluated by Western blot. Finally, electron paramagnetic resonance measurements were performed on aortas to evaluate •NO and O2•- production. Vascular reactivity was altered as early as 15 weeks of age in response to isoproterenol in Tgβ3 aortas and mesenteric arteries. NOS1 (neuronal NOS) expression was higher in the Tgβ3 aorta at 30 and 45 weeks of age (30 weeks: WT:
; Tgβ3:
; 45 weeks: WT:
; Tgβ3:
;
). Interestingly, the endothelial NOS (NOS3) monomer form is increased in Tgβ3 rats at 45 weeks of age (ratio NOS3 dimer/NOS3 monomer; WT:
; Tgβ3:
;
). Aortic •NO production was increased by NOS2 (inducible NOS) at 15 weeks of age in Tgβ3 rats (+52% vs. WT). Aortic O2•- production was increased in Tgβ3 rats at 30 and 45 weeks of age (+75% and+76%, respectively, vs. WT,
). We have shown that endothelial dysfunction and oxidative stress are present as early as 15 weeks of age and therefore conclude that endothelial dysfunction could be a cause of HFpEF development.
Collapse
|
121
|
Marra AM, Bencivenga L, D'Assante R, Rengo G, Cittadini A. Heart failure with preserved ejection fraction: Squaring the circle between comorbidities and cardiovascular abnormalities. Eur J Intern Med 2022; 99:1-6. [PMID: 35033395 DOI: 10.1016/j.ejim.2022.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Heart Failure with preserved Ejection Fraction (HFpEF) is nowadays considered a major healthcare issue. According to forecasts two third of all Heart Failure patients will belong to this phenotype by year 2050, overwhelming those affected by Heart Failure with reduced Ejection Fraction (HFrEF). Both epidemiological and mechanistic studies support the concept that HFpEF represents true HF although aggravated by a collection of comorbidities. There is urgent need of improving its phenotyping due to the high degree of disease heterogeneity within HFpEF that lead to the failure of randomized clinical trials in demonstrating a remarkable impact of drugs in improving its morbidity and mortality.
Collapse
Affiliation(s)
- Alberto Maria Marra
- Department of Translational Medical Sciences, University of Naples "Federico II", Napoli, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Federico II University, Naples, Italy; Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Leonardo Bencivenga
- Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, France; Department of Advanced Biomedical Sciences, University of Naples "Federico II", Napoli, Italy
| | - Roberta D'Assante
- Department of Translational Medical Sciences, University of Naples "Federico II", Napoli, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples "Federico II", Napoli, Italy; Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, University of Naples "Federico II", Napoli, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Federico II University, Naples, Italy.
| |
Collapse
|
122
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
123
|
Krivoshapova KE, Vegner EA, Barbarash OL. [Frailty syndrome as an independent predictor of adverse prognosis in patients with chronic heart failure]. KARDIOLOGIIA 2022; 62:89-96. [PMID: 35414366 DOI: 10.18087/cardio.2022.3.n1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/29/2020] [Indexed: 06/14/2023]
Abstract
This review presents results of clinical studies of senile asthenia ("fragility") syndrome and chronic heart failure (CHF). Recent reports of the "fragility" prevalence in patients with CHF are described. The review presents specific features of pathophysiological pathways underlying the development of both senile asthenia syndrome and CHF; the role of "fragility" in the progression and complications of CHF is addressed. Senile asthenia syndrome associated with CHF is regarded as an independent predictor of unfavorable prognosis and high mortality in this patient category. The authors concluded that methods for "fragility" evaluation in CHF patients followed by risk stratification and selection of individual management tactics should be implemented in clinical practice.
Collapse
Affiliation(s)
- K E Krivoshapova
- Research Institute for Complex Issues of Cardiovascular Diseases
| | | | - Olga L Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical
| |
Collapse
|
124
|
Salvatore T, Galiero R, Caturano A, Rinaldi L, Di Martino A, Albanese G, Di Salvo J, Epifani R, Marfella R, Docimo G, Lettieri M, Sardu C, Sasso FC. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int J Mol Sci 2022; 23:3651. [PMID: 35409011 PMCID: PMC8998569 DOI: 10.3390/ijms23073651] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
- Mediterrannea Cardiocentro, 80122 Napoli, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Miriam Lettieri
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3.31 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
125
|
Dyck JRB, Sossalla S, Hamdani N, Coronel R, Weber NC, Light PE, Zuurbier CJ. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J Mol Cell Cardiol 2022; 167:17-31. [PMID: 35331696 DOI: 10.1016/j.yjmcc.2022.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute a promising drug treatment for heart failure patients with either preserved or reduced ejection fraction. Whereas SGLT2i were originally developed to target SGLT2 in the kidney to facilitate glucosuria in diabetic patients, it is becoming increasingly clear that these drugs also have important effects outside of the kidney. In this review we summarize the literature on cardiac effects of SGLT2i, focussing on pro-inflammatory and oxidative stress processes, ion transport mechanisms controlling sodium and calcium homeostasis and metabolic/mitochondrial pathways. These mechanisms are particularly important as disturbances in these pathways result in endothelial dysfunction, diastolic dysfunction, cardiac stiffness, and cardiac arrhythmias that together contribute to heart failure. We review the findings that support the concept that SGLT2i directly and beneficially interfere with inflammation, oxidative stress, ionic homeostasis, and metabolism within the cardiac cell. However, given the very low levels of SGLT2 in cardiac cells, the evidence suggests that SGLT2-independent effects of this class of drugs likely occurs via off-target effects in the myocardium. Thus, while there is still much to be understood about the various factors which determine how SGLT2i affect cardiac cells, much of the research clearly demonstrates that direct cardiac effects of these SGLT2i exist, albeit mediated via SGLT2-independent pathways, and these pathways may play a role in explaining the beneficial effects of SGLT2 inhibitors in heart failure.
Collapse
Affiliation(s)
- Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany; Klinik für Kardiologie und Pneumologie, Georg-August-Universität Goettingen, DZHK (German Centre for Cardiovascular Research), Robert-Koch Str. 40, D-37075 Goettingen, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital Ruhr University Bochum, Bochum, Germany
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands
| | - Nina C Weber
- Department of Anesthesiology - L.E.I.C.A, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands
| | - Peter E Light
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Coert J Zuurbier
- Department of Anesthesiology - L.E.I.C.A, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands.
| |
Collapse
|
126
|
Xie L, Xiao Y, Tai S, Yang H, Zhou S, Zhou Z. Emerging Roles of Sodium Glucose Cotransporter 2 (SGLT-2) Inhibitors in Diabetic Cardiovascular Diseases: Focusing on Immunity, Inflammation and Metabolism. Front Pharmacol 2022; 13:836849. [PMID: 35295328 PMCID: PMC8920092 DOI: 10.3389/fphar.2022.836849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most fast evolving global issues characterized by hyperglycemia. Patients with diabetes are considered to face with higher risks of adverse cardiovascular events. Those are the main cause of mortality and disability in diabetes patients. There are novel antidiabetic agents that selectively suppress sodium-glucose cotransporter-2 (SGLT-2). They work by reducing proximal tubule glucose reabsorption. Although increasing evidence has shown that SGLT-2 inhibitors can contribute to a series of cardiovascular benefits in diabetic patients, including a reduced incidence of major adverse cardiovascular events and protection of extracardiac organs, the potential mechanisms of SGLT2 inhibitors’ cardiovascular protective effects are still not fully elucidated. Given the important role of inflammation and metabolism in diabetic cardiovascular diseases, this review is intended to rationally compile the multifactorial mechanisms of SGLT-2 inhibitors from the point of immunity, inflammation and metabolism, depicting the fundamental cellular and molecular processing of SGLT-2 inhibitors exerting regulating immunity, inflammation and metabolism. Finally, future directions and perspectives to prevent or delay cardiovascular complications in DM by SGLT-2 inhibitors are presented.
Collapse
Affiliation(s)
- Lingxiang Xie
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shi Tai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huijie Yang
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
127
|
Abstract
Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.
Collapse
|
128
|
Dhore-Patil A, Thannoun T, Samson R, Le Jemtel TH. Diabetes Mellitus and Heart Failure With Preserved Ejection Fraction: Role of Obesity. Front Physiol 2022; 12:785879. [PMID: 35242044 PMCID: PMC8886215 DOI: 10.3389/fphys.2021.785879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure with preserved ejection fraction is a growing epidemic and accounts for half of all patients with heart failure. Increasing prevalence, morbidity, and clinical inertia have spurred a rethinking of the pathophysiology of heart failure with preserved ejection fraction. Unlike heart failure with reduced ejection fraction, heart failure with preserved ejection fraction has distinct clinical phenotypes. The obese-diabetic phenotype is the most often encountered phenotype in clinical practice and shares the greatest burden of morbidity and mortality. Left ventricular remodeling plays a major role in its pathophysiology. Understanding the interplay of obesity, diabetes mellitus, and inflammation in the pathophysiology of left ventricular remodeling may help in the discovery of new therapeutic targets to improve clinical outcomes in heart failure with preserved ejection fraction. Anti-diabetic agents like glucagon-like-peptide 1 analogs and sodium-glucose co-transporter 2 are promising therapeutic modalities for the obese-diabetic phenotype of heart failure with preserved ejection fraction and aggressive weight loss via lifestyle or bariatric surgery is still key to reverse adverse left ventricular remodeling. This review focuses on the obese-diabetic phenotype of heart failure with preserved ejection fraction highlighting the interaction between obesity, diabetes, and coronary microvascular dysfunction in the development and progression of left ventricular remodeling. Recent therapeutic advances are reviewed.
Collapse
Affiliation(s)
- Aneesh Dhore-Patil
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Tariq Thannoun
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Rohan Samson
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Thierry H Le Jemtel
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| |
Collapse
|
129
|
Schiattarella GG, Alcaide P, Condorelli G, Gillette TG, Heymans S, Jones EAV, Kallikourdis M, Lichtman A, Marelli-Berg F, Shah S, Thorp EB, Hill JA. Immunometabolic Mechanisms of Heart Failure with Preserved Ejection Fraction. NATURE CARDIOVASCULAR RESEARCH 2022; 1:211-222. [PMID: 35755006 PMCID: PMC9229992 DOI: 10.1038/s44161-022-00032-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasing in prevalence worldwide, already accounting for at least half of all heart failure (HF). As most patients with HFpEF are obese with metabolic syndrome, metabolic stress has been implicated in syndrome pathogenesis. Recently, compelling evidence for bidirectional crosstalk between metabolic stress and chronic inflammation has emerged, and alterations in systemic and cardiac immune responses are held to participate in HFpEF pathophysiology. Indeed, based on both preclinical and clinical evidence, comorbidity-driven systemic inflammation, coupled with metabolic stress, have been implicated together in HFpEF pathogenesis. As metabolic alterations impact immune function(s) in HFpEF, major changes in immune cell metabolism are also recognized in HFpEF and in HFpEF-predisposing conditions. Both arms of immunity - innate and adaptive - are implicated in the cardiomyocyte response in HFpEF. Indeed, we submit that crosstalk among adipose tissue, the immune system, and the heart represents a critical component of HFpEF pathobiology. Here, we review recent evidence in support of immunometabolic mechanisms as drivers of HFpEF pathogenesis, discuss pivotal biological mechanisms underlying the syndrome, and highlight questions requiring additional inquiry.
Collapse
Affiliation(s)
- Gabriele G. Schiattarella
- Center for Cardiovascular Research (CCR), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.,Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Gianluigi Condorelli
- Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Italy,Cardio Center, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Thomas G. Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands,Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Elizabeth A. V. Jones
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands,Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marinos Kallikourdis
- Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Italy,Adaptive Immunity Lab, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Andrew Lichtman
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sanjiv Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Edward B. Thorp
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
130
|
Potere N, Del Buono MG, Vecchié A, Porreca E, Abbate A, Dentali F, Bonaventura A. Diabetes mellitus and heart failure: an update on pathophysiology and therapy. Minerva Cardiol Angiol 2022; 70:344-356. [PMID: 35212512 DOI: 10.23736/s2724-5683.22.05967-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetes mellitus (DM) is frequent among heart failure (HF) patients with a further projected increase in prevalence in next years. DM promotes the development of both HF with reduced (HFrEF) and preserved ejection fraction (HFpEF) through different mechanisms. As the general prevalence of both DM and HF is growing worldwide, it is important to define the pathophysiologic mechanisms driving the development of HF in DM patients. These include changes in the cardiac metabolism, mitochondrial dysfunction, impairment in insulin signaling, maladaptive inflammation, coronary microvascular dysfunction, endoplasmic reticulum stress, autophagy suppression, and structural changes, among the main ones. In recent years, novel glucose-lowering treatments, especially sodium-glucose cotransporter 2 inhibitors (SGLT-2is), have shown a strikingly positive impact on the natural history of HF. This has led to a progressive change in choosing SGLT-2is in DM patients at high risk for CV disease, supported by recent guidelines. The knowledge about novel pathophysiological mechanisms linking DM and HF may open the way to the development of new targeted therapies in the future. In this review, we will summarize general aspects dealing with incidence, prevalence, and pathophysiology of DM in HF patients. As well, we discuss the therapeutic targets to reduce the disease burden and the current evidence of glucose-lowering drugs in patients with DM and HF.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences and Department of Innovative Technologies in Medicine and Dentistry, G. D'Annunzio University, Chieti, Italy
| | - Marco G Del Buono
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Alessandra Vecchié
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Ettore Porreca
- Department of Medicine and Ageing Sciences and Department of Innovative Technologies in Medicine and Dentistry, G. D'Annunzio University, Chieti, Italy
| | - Antonio Abbate
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Francesco Dentali
- Department of Medicine and Surgery, Insubria University, Varese, Italy
| | - Aldo Bonaventura
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy -
| |
Collapse
|
131
|
Weerts J, Mourmans SGJ, Barandiarán Aizpurua A, Schroen BLM, Knackstedt C, Eringa E, Houben AJHM, van Empel VPM. The Role of Systemic Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction. Biomolecules 2022; 12:biom12020278. [PMID: 35204779 PMCID: PMC8961612 DOI: 10.3390/biom12020278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a condition with increasing incidence, leading to a health care problem of epidemic proportions for which no curative treatments exist. Consequently, an urge exists to better understand the pathophysiology of HFpEF. Accumulating evidence suggests a key pathophysiological role for coronary microvascular dysfunction (MVD), with an underlying mechanism of low-grade pro-inflammatory state caused by systemic comorbidities. The systemic entity of comorbidities and inflammation in HFpEF imply that patients develop HFpEF due to systemic mechanisms causing coronary MVD, or systemic MVD. The absence or presence of peripheral MVD in HFpEF would reflect HFpEF being predominantly a cardiac or a systemic disease. Here, we will review the current state of the art of cardiac and systemic microvascular dysfunction in HFpEF (Graphical Abstract), resulting in future perspectives on new diagnostic modalities and therapeutic strategies.
Collapse
Affiliation(s)
- Jerremy Weerts
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
- Correspondence: ; Tel.: +31-43-387-7097
| | - Sanne G. J. Mourmans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Arantxa Barandiarán Aizpurua
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Blanche L. M. Schroen
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Christian Knackstedt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Etto Eringa
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Alfons J. H. M. Houben
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Vanessa P. M. van Empel
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| |
Collapse
|
132
|
Deo SV, Reddy YN, Zakeri R, Karnib M, Selvaganesan P, Elgudin Y, Kilic A, Rubelowsky J, Altarabsheh SE, Osman MN, Josephson RA, Mohan SKM, Cmolik B, Simon DI, Rajagopalan S, Cleland JG, Sahadevan J, Sundaram V. Revascularization in Ischemic Heart Failure with Preserved Ejection Fraction: A Nationwide Cohort Study. Eur J Heart Fail 2022; 24:1427-1438. [PMID: 35119162 DOI: 10.1002/ejhf.2446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Salil V Deo
- Louis Stokes Veteran Affairs Medical Center, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - Mohamad Karnib
- Louis Stokes Veteran Affairs Medical Center, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Padmini Selvaganesan
- Louis Stokes Veteran Affairs Medical Center, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yakov Elgudin
- Louis Stokes Veteran Affairs Medical Center, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ahmet Kilic
- Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Mohammed N Osman
- Louis Stokes Veteran Affairs Medical Center, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Richard A Josephson
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
| | | | - Brian Cmolik
- Louis Stokes Veteran Affairs Medical Center, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel I Simon
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Sanjay Rajagopalan
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - John Gf Cleland
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Jayakumar Sahadevan
- Louis Stokes Veteran Affairs Medical Center, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Varun Sundaram
- Louis Stokes Veteran Affairs Medical Center, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
133
|
Bairey Merz CN, Marbán E. Stem Cell Therapy Targets: Repêchage! Circ Res 2022; 130:339-342. [PMID: 35113658 PMCID: PMC8855782 DOI: 10.1161/circresaha.121.320663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Smidt Heart Institute (C.N.B.M.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Eduardo Marbán
- Smidt Heart Institute (E.M.), Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
134
|
Stavrakis S, Elkholey K, Morris L, Niewiadomska M, Asad ZUA, Humphrey MB. Neuromodulation of Inflammation to Treat Heart Failure With Preserved Ejection Fraction: A Pilot Randomized Clinical Trial. J Am Heart Assoc 2022; 11:e023582. [PMID: 35023349 PMCID: PMC9238491 DOI: 10.1161/jaha.121.023582] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background A systemic proinflammatory state plays a central role in the development of heart failure with preserved ejection fraction. Low‐level transcutaneous vagus nerve stimulation suppresses inflammation in humans. We conducted a sham‐controlled, double‐blind, randomized clinical trial to examine the effect of chronic low‐level transcutaneous vagus nerve stimulation on cardiac function, exercise capacity, and inflammation in patients with heart failure with preserved ejection fraction. Methods and Results Patients with heart failure with preserved ejection fraction and at least 2 additional comorbidities (obesity, diabetes, hypertension, or age ≥65 years) were randomized to either active (tragus) or sham (earlobe) low‐level transcutaneous vagus nerve stimulation (20 Hz, 1 mA below discomfort threshold), for 1 hour daily for 3 months. Echocardiography, 6‐minute walk test, quality of life, and serum cytokines were assessed at baseline and 3 months. Fifty‐two patients (mean age 70.4±9.2 years; 70% female) were included (active, n=26; sham, n=26). Baseline characteristics were balanced between the 2 arms. Adherence to the protocol of daily stimulation was >90% in both arms (P>0.05). While the early mitral inflow Doppler velocity to the early diastolic mitral annulus velocity ratio did not differ between groups, global longitudinal strain and tumor necrosis factor‐α levels at 3 months were significantly improved in the active compared with the sham arm (−18.6%±2.5% versus −16.0%±2.4%, P=0.002; 8.9±2.8 pg/mL versus 11.3±2.9 pg/mL, P=0.007, respectively). The reduction in tumor necrosis factor‐α levels correlated with global longitudinal strain improvement (r=−0.73, P=0.001). Quality of life was better in the active arm. No device‐related side effects were observed. Conclusions Neuromodulation with low‐level transcutaneous vagus nerve stimulation over 3 months resulted in a significant improvement in global longitudinal strain, inflammatory cytokines, and quality of life in patients with heart failure with preserved ejection fraction. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03327649.
Collapse
Affiliation(s)
| | - Khaled Elkholey
- University of Oklahoma Health Science Center Oklahoma City OK
| | - Lynsie Morris
- University of Oklahoma Health Science Center Oklahoma City OK
| | | | | | | |
Collapse
|
135
|
Huang Z, Mei X, Jiang Y, Chen T, Zhou Y. Gut Microbiota in Heart Failure Patients With Preserved Ejection Fraction (GUMPTION Study). Front Cardiovasc Med 2022; 8:803744. [PMID: 35071367 PMCID: PMC8770938 DOI: 10.3389/fcvm.2021.803744] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction: Heart failure with preserved ejection fraction (HFpEF) is associated with disrupted intestinal epithelial function, resulting from intestinal congestion. Intestinal congestion changes the morphology and permeability of the intestinal wall, and it becomes easy for the gut microbiota to change and transfer. Intervention on gut microbiota may become a new target for HFpEF treatment. However, the characteristics of gut microbiota in patients with HFpEF remain unknown. This preliminary report aims to detect the structure of gut microbiota in HFpEF patients so as to explore their characteristic changes, thereby providing a theoretical basis for future research. Methods: This research recruited 30 patients diagnosed with HFpEF and 30 healthy individuals. Stool specimens of research subjects were collected separately, and the microarray analyses of gut microbiota were conducted by Illumina high-throughput DNA sequencing. The differences in gut microbiota composition, alpha diversity, and beta diversity between the two groups were finally obtained. Results: The composition of gut microbiota was significantly different between the two groups. At the phylum classification level, the abundance of Synergistetes tended to be higher in the HFpEF group (P = 0.012). At genus classification level, the abundance of Butyricicoccus (P < 0.001), Sutterella (P = 0.004), Lachnospira (P = 0.003), and Ruminiclostridium (P = 0.009) in the HFpEF group were lower, while the abundance of Enterococcus (P < 0.001) and Lactobacillus (P = 0.005) were higher. According to the Chao index of alpha diversity analysis, HFpEF patients showed a nominally significant lower species richness when compared with controls (P = 0.046). However, there was no statistical difference in the Shannon index (P = 0.159) and Simpson index (P = 0.495), indicating that there was no difference in species diversity between the two groups. Beta diversity analysis revealed a highly significant separation of HFpEF patients and controls. Conclusions: An imbalance in the gut microbiota of HFpEF patients was observed. Patients with HFpEF have an increased abundance of microbiota associated with inflammation and a decreased abundance of microbiota associated with anti-inflammatory effects in the gut environment. In line with that, the species richness of gut microbiota in HFpEF patients tended to be lower.
Collapse
Affiliation(s)
| | | | - Yufeng Jiang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | | | - Yafeng Zhou
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
136
|
Shi ZH, Han XY, Yao MD, Liu C, Jiang Q, Yan B. Differential MicroRNA Expression Pattern in Endothelial Progenitor Cells During Diabetic Retinopathy. Front Cell Dev Biol 2022; 9:773050. [PMID: 34977023 PMCID: PMC8717624 DOI: 10.3389/fcell.2021.773050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are involved in the pathogenesis of microvascular dysfunction in diabetic retinopathy (DR). MicroRNAs (miRNAs) serve as crucial regulators in many biological process and human diseases. Herein, to investigate the expression profile and possible role of miRNAs in EPCs, small RNA sequencing was conducted to identify EPC dysfunction-related miRNAs in DR. A total of 72 miRNAs were differentially expressed in EPCs following high glucose stress. Based on Gene Ontology (GO) analysis, the target genes of differentially expressed miRNAs were targeted to “protein binding,” “cell differentiation,” and “cytoskeleton.” Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that cGMP-PKG signaling pathway was tightly associated with miRNA-mediated EPC function. Furthermore, miR-375–3p was verified to be up-regulated in the clinical samples of DR patients. Inhibition of miR-375–3p protected against hyperglycemic stress- or hypoxic stress-induced EPC injury, which increased the viability, proliferation, migration, and tube formation ability of EPCs and retarded the development of apoptosis. Collectively, this study provides a novel insight into the pathogenesis of EPC dysfunction in DR. miR-375–3p is a potential target for the diagnosis or treatment of DR.
Collapse
Affiliation(s)
- Ze-Hui Shi
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yan Han
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mu-Di Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.,The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.,The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.,The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
137
|
Liu X, Liu L, Zhao J, Wang H, Li Y. Mechanotransduction regulates inflammation responses of epicardial adipocytes in cardiovascular diseases. Front Endocrinol (Lausanne) 2022; 13:1080383. [PMID: 36589802 PMCID: PMC9800500 DOI: 10.3389/fendo.2022.1080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue is a crucial regulator in maintaining cardiovascular homeostasis by secreting various bioactive products to mediate the physiological function of the cardiovascular system. Accumulating evidence shows that adipose tissue disorders contribute to several kinds of cardiovascular disease (CVD). Furthermore, the adipose tissue would present various biological effects depending on its tissue localization and metabolic statuses, deciding the individual cardiometabolic risk. Crosstalk between adipose and myocardial tissue is involved in the pathophysiological process of arrhythmogenic right ventricular cardiomyopathy (ARVC), cardiac fibrosis, heart failure, and myocardial infarction/atherosclerosis. The abnormal distribution of adipose tissue in the heart might yield direct and/or indirect effects on cardiac function. Moreover, mechanical transduction is critical for adipocytes in differentiation, proliferation, functional maturity, and homeostasis maintenance. Therefore, understanding the features of mechanotransduction pathways in the cellular ontogeny of adipose tissue is vital for underlining the development of adipocytes involved in cardiovascular disorders, which would preliminarily contribute positive implications on a novel therapeutic invention for cardiovascular diseases. In this review, we aim to clarify the role of mechanical stress in cardiac adipocyte homeostasis and its interplay with maintaining cardiac function.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junfei Zhao
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- *Correspondence: Yifei Li, ; Junfei Zhao, ; Hua Wang,
| | - Hua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yifei Li, ; Junfei Zhao, ; Hua Wang,
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yifei Li, ; Junfei Zhao, ; Hua Wang,
| |
Collapse
|
138
|
Kazakov YM, Chekalina NI, Plaksa VM. INFLUENCE OF POSTMENOPAUSE ON THE FORMATION OF CHRONIC HEART FAILURE IN WOMEN WITH ARTERIAL HYPERTENSION. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-45-50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
139
|
Heusch G. Coronary blood flow in heart failure: cause, consequence and bystander. Basic Res Cardiol 2022; 117:1. [PMID: 35024969 PMCID: PMC8758654 DOI: 10.1007/s00395-022-00909-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/31/2023]
Abstract
Heart failure is a clinical syndrome where cardiac output is not sufficient to sustain adequate perfusion and normal bodily functions, initially during exercise and in more severe forms also at rest. The two most frequent forms are heart failure of ischemic origin and of non-ischemic origin. In heart failure of ischemic origin, reduced coronary blood flow is causal to cardiac contractile dysfunction, and this is true for stunned and hibernating myocardium, coronary microembolization, myocardial infarction and post-infarct remodeling, possibly also for the takotsubo syndrome. The most frequent form of non-ischemic heart failure is dilated cardiomyopathy, caused by genetic mutations, myocarditis, toxic agents or sustained tachyarrhythmias, where alterations in coronary blood flow result from and contribute to cardiac contractile dysfunction. Hypertrophic cardiomyopathy is caused by genetic mutations but can also result from increased pressure and volume overload (hypertension, valve disease). Heart failure with preserved ejection fraction is characterized by pronounced coronary microvascular dysfunction, the causal contribution of which is however not clear. The present review characterizes the alterations of coronary blood flow which are causes or consequences of heart failure in its different manifestations. Apart from any potentially accompanying coronary atherosclerosis, all heart failure entities share common features of impaired coronary blood flow, but to a different extent: enhanced extravascular compression, impaired nitric oxide-mediated, endothelium-dependent vasodilation and enhanced vasoconstriction to mediators of neurohumoral activation. Impaired coronary blood flow contributes to the progression of heart failure and is thus a valid target for established and novel treatment regimens.
Collapse
Affiliation(s)
- Gerd Heusch
- grid.5718.b0000 0001 2187 5445Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
140
|
Bilak JM, Alam U, Miller CA, McCann GP, Arnold JR, Kanagala P. Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction: Pathophysiology, Assessment, Prevalence and Prognosis. Card Fail Rev 2022; 8:e24. [PMID: 35846985 PMCID: PMC9274364 DOI: 10.15420/cfr.2022.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) currently accounts for approximately half of all new heart failure cases in the community. HFpEF is closely associated with chronic lifestyle-related diseases, such as obesity and type 2 diabetes, and clinical outcomes are worse in those with than without comorbidities. HFpEF is pathophysiologically distinct from heart failure with reduced ejection fraction, which may explain, in part, the disparity of treatment options available between the two heart failure phenotypes. The mechanisms underlying HFpEF are complex, with coronary microvascular dysfunction (MVD) being proposed as a potential key driver in its pathophysiology. In this review, the authors highlight the evidence implicating MVD in HFpEF pathophysiology, the diagnostic approaches for identifying MVD (both invasive and non-invasive) and the prevalence and prognostic significance of MVD.
Collapse
Affiliation(s)
- Joanna M Bilak
- Department of Cardiovascular Sciences, University of Leicester and the Leicester NIHR Biomedical Research Centre, Glenfield HospitalLeicester, UK
| | - Uazman Alam
- Liverpool University Hospitals NHS Foundation TrustLiverpool, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of ManchesterManchester, UK
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of LiverpoolLiverpool, UK
| | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science CentreManchester, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester and the Leicester NIHR Biomedical Research Centre, Glenfield HospitalLeicester, UK
| | - Jayanth R Arnold
- Department of Cardiovascular Sciences, University of Leicester and the Leicester NIHR Biomedical Research Centre, Glenfield HospitalLeicester, UK
| | - Prathap Kanagala
- Liverpool University Hospitals NHS Foundation TrustLiverpool, UK
- Liverpool Centre for Cardiovascular Sciences, Faculty of Health and Life SciencesLiverpool, UK
| |
Collapse
|
141
|
Safonova J, Kozhevnikova M, Danilogorskaya Y, Zheleznykh E, Zektser V, Ilgisonis I, Popova L, Khabarova N, Privalova E, Belenkov Y. Angiotensin-Converting Enzyme Inhibitor Therapy Effects in Patients With Heart Failure With Preserved and Mid-Range Ejection Fraction. Cardiol Res 2022; 12:363-368. [PMID: 34970367 PMCID: PMC8683104 DOI: 10.14740/cr1322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/11/2022] Open
Abstract
Background There is hypothesis that endothelial function enhancement is strongly associated with better outcome and functional class improvement in heart failure with preserved ejection fraction (HFpEF) and heart failure with mid-range ejection fraction (HFmrEF) patients. Perindopril is the only angiotensin-converting enzyme inhibitor (ACEI) drug with proven positive effect on the endothelium in coronary artery disease (CAD) patients. In patients with HFpEF and HFmrEF, its impact is still unknown. The aim of this study was to assess perindopril’s influence on endothelial dysfunction markers in these groups of patients. Methods We included 60 patients with HFpEF and HFmrEF. At the baseline, endothelial dysfunction biomarkers were measured by IFA and echocardiographic parameters (left atrial volume index (LAVI), ejection fraction (EF), left ventricular mass index (LVMI), left ventricular end-diastolic diameter (LVEDD), and left ventricular end-diastolic volume (LVEDV)) were studied. In patients with no history of previous ACEI or angiotensin II receptor blockers (ARBs) therapy, perindopril was prescribed for 12 months. If patient was treated with ARB or ACEI drug other than perindopril before the study, after 48-h withdrawal period, previous drug was replaced by perindopril. Results After 12-month therapy with perindopril, E-selectin decreased from 57.25 to 46.05 ng/mL and from 56.55 to 47.6 ng/mL in HFpEF and HFmrEF patients, respectively (P < 0.05). Significant reductions from 0.99 to 0.76 pg/mL (P < 0.05) and from 1.08 to 0.97 pg/mL (P < 0.05) in endothelin-1 level were shown in patients with HFpEF and HFmrEF. Conclusion The 12-month therapy with perindopril leads to LAVI reduction in HFmrEF patients and potential endothelial dysfunction markers decrease in HFpEF and HFmrEF patients.
Collapse
Affiliation(s)
- Julia Safonova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - Elena Zheleznykh
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vita Zektser
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Irina Ilgisonis
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lyudmila Popova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Elena Privalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yuri Belenkov
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
142
|
Fopiano KA, Jalnapurkar S, Davila AC, Arora V, Bagi Z. Coronary Microvascular Dysfunction and Heart Failure with Preserved Ejection Fraction - implications for Chronic Inflammatory Mechanisms. Curr Cardiol Rev 2022; 18:e310821195986. [PMID: 34488616 PMCID: PMC9413735 DOI: 10.2174/1573403x17666210831144651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Coronary Microvascular Dysfunction (CMD) is now considered one of the key underlying pathologies responsible for the development of both acute and chronic cardiac complications. It has been long recognized that CMD contributes to coronary no-reflow, which occurs as an acute complication during percutaneous coronary interventions. More recently, CMD was proposed to play a mechanistic role in the development of left ventricle diastolic dysfunction in heart failure with preserved ejection fraction (HFpEF). Emerging evidence indicates that a chronic low-grade pro-inflammatory activation predisposes patients to both acute and chronic cardiovascular complications raising the possibility that pro-inflammatory mediators serve as a mechanistic link in HFpEF. Few recent studies have evaluated the role of the hyaluronan-CD44 axis in inflammation-related cardiovascular pathologies, thus warranting further investigations. This review article summarizes current evidence for the role of CMD in the development of HFpEF, focusing on molecular mediators of chronic proinflammatory as well as oxidative stress mechanisms and possible therapeutic approaches to consider for treatment and prevention.
Collapse
Affiliation(s)
- Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sawan Jalnapurkar
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University Augusta, GA 30912, USA
| | - Alec C Davila
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vishal Arora
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
143
|
Keeley EC, Handberg EM, Wei J, Merz CNB, Pepine CJ. Coronary microvascular dysfunction as a chronic inflammatory state: Is there a role for omega-3 fatty acid treatment? AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 13:100098. [PMID: 38560085 PMCID: PMC10978178 DOI: 10.1016/j.ahjo.2022.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 04/04/2024]
Abstract
Coronary microvascular dysfunction is a ubiquitous pathologic process that is operational in ischemia with no obstructive coronary artery disease and other cardiovascular disorders including heart failure with preserved ejection fraction. It may, in fact, be a manifestation of a multi-systemic condition of small vessel dysfunction that also affects the brain and kidneys. While the pathophysiology driving coronary microvascular dysfunction is multifactorial, chronic inflammation plays an important role. Resolution of inflammation is an active process mediated, in part, by a family of locally active mediators biosynthesized from omega-3 fatty acids, collectively referred to as specialized pro-resolving mediators. Omega-3 fatty acid treatment modulates inflammation and is associated with improved cardiovascular outcomes and attenuation of plaque progression on cardiovascular imaging. Whether omega-3 fatty acid treatment attenuates coronary microvascular dysfunction is unknown.
Collapse
Affiliation(s)
- Ellen C. Keeley
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Eileen M. Handberg
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Janet Wei
- Barbra Streisand Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - C. Noel Bairey Merz
- Barbra Streisand Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Carl J. Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
144
|
Sanhueza-Olivares F, Troncoso MF, Pino-de la Fuente F, Martinez-Bilbao J, Riquelme JA, Norambuena-Soto I, Villa M, Lavandero S, Castro PF, Chiong M. A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Front Endocrinol (Lausanne) 2022; 13:1057349. [PMID: 36465616 PMCID: PMC9713703 DOI: 10.3389/fendo.2022.1057349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.
Collapse
Affiliation(s)
- Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisco Pino-de la Fuente
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Monica Villa
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- *Correspondence: Mario Chiong,
| |
Collapse
|
145
|
Ariyaratnam JP, Elliott AD, Mishima RS, Gallagher C, Lau DH, Sanders P. Heart failure with preserved ejection fraction: An alternative paradigm to explain the clinical implications of atrial fibrillation. Heart Rhythm O2 2021; 2:771-783. [PMID: 34988529 PMCID: PMC8710629 DOI: 10.1016/j.hroo.2021.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Atrial fibrillation (AF) is associated with exercise intolerance, stroke, and all-cause mortality. However, whether this can be solely attributable to the arrhythmia itself or alternative mechanisms remains controversial. Heart failure with preserved ejection (HFpEF) commonly coexists with AF and may contribute to the poor outcomes associated with AF. Indeed, several invasive hemodynamic studies have confirmed that patients with AF are at increased risk of underlying HFpEF and that the presence of HFpEF may have important prognostic implications in these patients. Mechanistically, AF and HFpEF are closely linked. Both conditions are driven by the presence of common cardiovascular risk factors and are associated with left atrial (LA) myopathy, characterized by mechanical and electrical dysfunction. Progressive worsening of this left atrial (LA) myopathy is associated with both increased AF burden and worsening HFpEF. In addition, there is growing evidence to suggest that worsening LA myopathy is associated with poorer outcomes in both conditions and that reversal of the LA myopathy could improve outcomes. In this review article, we will present the epidemiologic and mechanistic evidence underlying the common coexistence of AF and HFpEF, discuss the importance of a progressive LA myopathy in the pathogenesis of both conditions, and review the evidence from important invasive hemodynamic studies. Finally, we will review the prognostic implications of HFpEF in patients with AF and discuss the relative merits of AF burden reduction vs HFpEF reduction in improving outcomes of patients with AF and HFpEF.
Collapse
Affiliation(s)
- Jonathan P Ariyaratnam
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Adrian D Elliott
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Ricardo S Mishima
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Celine Gallagher
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
146
|
Hassoun R, Budde H, Zhazykbayeva S, Herwig M, Sieme M, Delalat S, Mostafi N, Gömöri K, Tangos M, Jarkas M, Pabel S, Bruckmüller S, Skrygan M, Lódi M, Jaquet K, Sequeira V, Gambichler T, Remedios CD, Kovács Á, Mannherz HG, Mügge A, Sossalla S, Hamdani N. Stress activated signalling impaired protein quality control pathways in human hypertrophic cardiomyopathy. Int J Cardiol 2021; 344:160-169. [PMID: 34517018 DOI: 10.1016/j.ijcard.2021.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 01/09/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a complex myocardial disorder with no well-established disease-modifying therapy so far. Our study aimed to investigate how autophagy, oxidative stress, inflammation, stress signalling pathways, and apoptosis are hallmark of HCM and their contribution to the cardiac dysfunction. Demembranated cardiomyocytes from patients with HCM display increased titin-based stiffness (Fpassive), which was corrected upon antioxidant treatment. Titin as a main determinant of Fpassive was S-glutathionylated and highly ubiquitinated in HCM patients. This was associated with a shift in the balance of reduced and oxidized forms of glutathione (GSH and GSSG, respectively). Both heat shock proteins (HSP27 and α-ß crystalline) were upregulated and S-glutathionylated in HCM. Administration of HSPs in vitro significantly reduced HCM cardiomyocyte stiffness. High levels of the phosphorylated monomeric superoxide anion-generating endothelial nitric oxide synthase (eNOS), decreased nitric oxide (NO) bioavailability, decreased soluble guanylyl cyclase (sGC) activity, and high levels of 3-nitrotyrosine were observed in HCM. Many regulators of signal transduction pathways that are involved in autophagy, apoptosis, cardiac contractility, and growth including the mitogen-activated protein kinase (MAPK), protein kinase B (AKT), glycogen synthase kinase 3ß (GSK-3ß), mammalian target of rapamycin (mTOR), forkhead box O transcription factor (FOXO), c-Jun N-terminal protein kinase (JNK), and extracellular-signal-regulated kinase (ERK1/2) were modified in HCM. The apoptotic factors cathepsin, procaspase 3, procaspase 9 and caspase 12, but not caspase 9, were elevated in HCM hearts and associated with increased proinflammatory cytokines (Interleukin 6 (IL-6), interleukin 18 (IL-18), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), the Toll-like receptors 2 (TLR2) and the Toll-like receptors 4 (TLR4)) and oxidative stress (3-nitrotyrosine and hydrogen peroxide (H2O2)). Here we reveal stress signalling and impaired PQS as potential mechanisms underlying the HCM phenotype. Our data suggest that reducing oxidative stress can be a viable therapeutic approach to attenuating the severity of cardiac dysfunction in heart failure and potentially in HCM and prevent its progression.
Collapse
Affiliation(s)
- Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Saltanat Zhazykbayeva
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Melissa Herwig
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Marcel Sieme
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Simin Delalat
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Nusratul Mostafi
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Kamilla Gömöri
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Melina Tangos
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Muhammad Jarkas
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany.
| | - Stefanie Bruckmüller
- Department of Dermatology, Skin Cancer Center, Ruhr University Bochum, Bochum, Germany.
| | - Marina Skrygan
- Department of Dermatology, Skin Cancer Center, Ruhr University Bochum, Bochum, Germany.
| | - Mária Lódi
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Medical Faculty, Bochum, Germany.
| | - Kornelia Jaquet
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany.
| | - Thilo Gambichler
- Department of Dermatology, Skin Cancer Center, Ruhr University Bochum, Bochum, Germany.
| | - Cris Dos Remedios
- Molecular Biophysics, Victor Chang Cardiac Research Institute, Faculty of Medicine and Health, Darlinghurst, Australia.
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Hans Georg Mannherz
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Anatomy and Molecular Embryology, Ruhr University, Bochum, Germany.
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany; Clinic for Cardiology & Pneumology, Georg-August University Goettingen, and DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany.
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
147
|
Cohen AJ, Teramoto K, Claggett B, Buckley L, Solomon S, Ballantyne C, Selvin E, Shah AM. Mid- to Late-Life Inflammation and Risk of Cardiac Dysfunction, HFpEF and HFrEF in Late Life. J Card Fail 2021; 27:1382-1392. [PMID: 34314823 PMCID: PMC8823406 DOI: 10.1016/j.cardfail.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Epidemiologic data supporting the association of accumulated inflammation from mid- to late life with late-life risk of cardiac dysfunction and heart failure (HF) is limited. METHODS AND RESULTS Among 4011 participants in the Atherosclerosis Risk in Communities study who were free of prevalent cardiovascular disease at study Visit 5, accumulated inflammation was defined as time-averaged high-sensitivity c-reactive protein (hsCRP) over 3 visits spanning 1990 to 2013. Associations with left ventricular (LV) function at Visit 5 and with incident adjudicated HF post Visit 5 were assessed using linear and Cox regression, adjusting for demographics and comorbidities. Higher accumulated hsCRP was associated with greater LV mass index, lower e', higher E/e', and higher adjusting for demographics (all P ≤0.01), but only with higher pulmonary artery systolic pressure after adjustment for comorbidities (P = 0.024). At 5.3 ± 1.2 year follow-up, higher accumulated hsCRP was associated with greater risk of incident HF (HR 1.31 [95% CI 1.18-1.47], P < 0.001), HFrEF (1.26 [1.05-1.52], P = 0.01), and HFpEF (1.30 [1.11-1.53], P = 0.001) in demographic-adjusted models, but not after adjustment for comorbidities (all P > 0.10). Only Visit 5 hsCRP remained associated with incident HF (1.12 [1.02-1.24], P = 0.02) after full adjustment. CONCLUSIONS Greater accumulated inflammation is associated with worse LV function and heightened HF risk in late-life. These relationships are attenuated after adjusting for HF risk factors.
Collapse
Affiliation(s)
- Aaron J Cohen
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | - Kanako Teramoto
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Cardiology, St. Marianna University School of Medicine Hospital, Kanagawa, Japan
| | - Brian Claggett
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Leo Buckley
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Scott Solomon
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amil M Shah
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
148
|
Xu L, Balzarolo M, Robinson EL, Lorenz V, Verde GD, Joray L, Mochizuki M, Kaufmann BA, Valstar G, de Jager SCA, den Ruijter HM, Heymans S, Pfister O, Kuster GM. NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction. Cardiovasc Res 2021; 118:2973-2984. [PMID: 34849611 DOI: 10.1093/cvr/cvab349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/19/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Microvascular inflammation plays an important role in the pathogenesis of diastolic dysfunction (DD) and metabolic heart disease. NOX1 is expressed in vascular and immune cells and has been implicated in the vascular pathology of metabolic disease. However, its contribution to metabolic heart disease is less understood. METHODS AND RESULTS NOX1-deficient mice (KO) and male wild-type (WT) littermates were fed a high-fat high-sucrose diet (HFHS) and injected streptozotocin (75 mg/kg i.p.) or control diet (CTD) and sodium citrate. Despite similar weight gain and increase in fasting blood glucose and insulin, only WT-HFHS but not KO-HFHS mice developed concentric cardiac hypertrophy and elevated left ventricular filling pressure. This was associated with increased endothelial adhesion molecule expression, accumulation of Mac-2-, IL-1β- and NLRP3-positive cells and nitrosative stress in WT-HFHS but not KO-HFHS hearts. Nox1 mRNA was solidly expressed in CD45+ immune cells isolated from healthy mouse hearts, but was negligible in cardiac CD31+ endothelial cells. However, in vitro, Nox1 expression increased in response to LPS in endothelial cells and contributed to LPS-induced upregulation of Icam-1. Nox1 was also upregulated in mouse bone marrow-derived macrophages in response to LPS. In peripheral monocytes from age- and sex-matched symptomatic patients with and without DD, NOX1 was significantly higher in patients with DD compared to those without DD. CONCLUSIONS NOX1 mediates endothelial activation and contributes to myocardial inflammation and remodeling in metabolic disease in mice. Given its high expression in monocytes of humans with DD, NOX1 may represent a potential target to mitigate heart disease associated with DD. TRANSLATIONAL PERSPECTIVE In their multifactorial pathogenesis, diastolic dysfunction (DD) and heart failure with preserved ejection fraction (HFpEF) still remain poorly understood. They frequently occur in patients with obesity and metabolic syndrome. Microvascular inflammation and dysfunction have recently been recognized as major driving forces. We show that genetic deletion of Nox1 prevents cardiac inflammation, remodeling and dysfunction in metabolic disease in mice and find NOX1 upregulated in peripheral monocytes of patients with DD. These findings add to our understanding how obesity, inflammation and heart disease are linked, which is a prerequisite to find therapeutic strategies beyond the control of co-morbidities in HFpEF.
Collapse
Affiliation(s)
- Lifen Xu
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Melania Balzarolo
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Emma L Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Vera Lorenz
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Giacomo Della Verde
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lydia Joray
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Michika Mochizuki
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Beat A Kaufmann
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Gideon Valstar
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Saskia C A de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stephane Heymans
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Belgium, Leuven.,Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, Maastricht, 6229 ER The Netherlands.,ICIN-Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, Utrecht, 3511 EP The Netherlands
| | - Otmar Pfister
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Cardiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
149
|
Impact of diabetes on cardiopulmonary function: the added value of a combined cardiopulmonary and echocardiography stress test. Heart Fail Rev 2021; 28:645-655. [PMID: 34820732 DOI: 10.1007/s10741-021-10194-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) represents a major health issue worldwide, as patients with T2DM show an excess risk of death for cardiovascular causes, twice as high as the general population. Among the many complications of T2DM, heart failure (HF) deserves special consideration as one of the leading causes of morbidity and reduced life expectancy. T2DM has been associated with different phenotypes of HF, including HF with reduced and preserved ejection fraction. Cardiopulmonary exercise testing (CPET) can evaluate the metabolic and ventilatory alterations related to myocardial dysfunction and/or peripheral impairment, representing a unique tool for the clinician to study the whole HF spectrum. While CPET allows for a thorough evaluation of functional capacity, it cannot directly differentiate central and peripheral determinants of effort intolerance. Combining CPET with imaging techniques could provide even higher accuracy and further insights into the progression of the disease since signs of left ventricular systolic and diastolic dysfunction can be detected during exercise, even in asymptomatic diabetic individuals. This review aims to dissect the alterations in cardiopulmonary function characterising patients with T2DM and HF to improve patient risk stratification.
Collapse
|
150
|
Pabel S, Hamdani N, Singh J, Sossalla S. Potential Mechanisms of SGLT2 Inhibitors for the Treatment of Heart Failure With Preserved Ejection Fraction. Front Physiol 2021; 12:752370. [PMID: 34803735 PMCID: PMC8602188 DOI: 10.3389/fphys.2021.752370] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an unsolved and growing concern in cardiovascular medicine. While no treatment options that improve prognosis in HFpEF patients has been established so far, SGLT2 inhibitors (SGLT2i) are currently being investigated for the treatment of HFpEF patients. SGLT2i have already been shown to mitigate comorbidities associated with HFpEF such as type 2 diabetes and chronic renal disease, however, more recently there has been evidence that they may also directly improve diastolic function. In this article, we discuss some potential beneficial mechanisms of SGLT2i in the pathophysiology of HFpEF with focus on contractile function.
Collapse
Affiliation(s)
- Steffen Pabel
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Institut für Forschung und Lehre (IFL), Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jagdeep Singh
- The Heart Centre, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Samuel Sossalla
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|