101
|
Muro-Fraguas I, Sainz-García A, Fernández Gómez P, López M, Múgica-Vidal R, Sainz-García E, Toledano P, Sáenz Y, López M, González-Raurich M, Prieto M, Alvarez-Ordóñez A, González-Marcos A, Alba-Elías F. Atmospheric pressure cold plasma anti-biofilm coatings for 3D printed food tools. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
102
|
Conformationally tuned antibacterial oligomers target the peptidoglycan of Gram-positive bacteria. J Colloid Interface Sci 2020; 580:850-862. [PMID: 32736272 DOI: 10.1016/j.jcis.2020.07.090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022]
Abstract
The recent rise of antibiotic resistance amongst Staphylococcus aureus (S. aureus) populations has made treating Staph-based infections a global medical challenge. Therapies that specifically target the peptidoglycan layer of S. aureus have emerged as new treatment avenues, towards which bacteria are less likely to develop resistance. While the majority of antibacterial polymers/oligomers have the ability to disrupt bacterial membranes, the design parameters for the enhanced disruption of peptidoglycan outer layer of Gram-positive bacteria remain unclear. Here, the design of oligomeric structures with favorable conformational characteristics for improved disruption of the peptidoglycan outer layer of Gram-positive bacteria is reported. Molecular dynamics simulations were employed to inform the structure design and composition of cationic oligomers displaying collapsed and expanded conformations. The most promising diblock and triblock cationic oligomers were synthesized by photo-induced atom transfer radical polymerization (photo ATRP). Following synthesis, the diblock and triblock oligomers displayed average antibacterial activity of ~99% and ~98% for S. aureus and methicillin-resistant S. aureus (MRSA), respectively, at the highest concentrations tested. Importantly, triblock oligomers with extended conformations showed significantly higher disruption of the peptidoglycan outer layer of S. aureus compared to diblock oligomers with more collapsed conformation, as evidenced by a number of characterization techniques including scanning electron, confocal and atomic force microscopy. This work provides new insight into the structure/property relationship of antibacterial materials and advances the design of functional materials for combating the rise of drug-resistant bacteria.
Collapse
|
103
|
Del Valle A, Torra J, Bondia P, Tone CM, Pedraz P, Vadillo-Rodriguez V, Flors C. Mechanically Induced Bacterial Death Imaged in Real Time: A Simultaneous Nanoindentation and Fluorescence Microscopy Study. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31235-31241. [PMID: 32476402 DOI: 10.1021/acsami.0c08184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mechano-bactericidal nanomaterials rely on their mechanical or physical interactions with bacteria and are promising antimicrobial strategies that overcome bacterial resistance. However, the real effect of mechanical versus chemical action on their activity is under debate. In this paper, we quantify the forces necessary to produce critical damage to the bacterial cell wall by performing simultaneous nanoindentation and fluorescence imaging of single bacterial cells. Our experimental setup allows puncturing the cell wall of an immobilized bacterium with the tip of an atomic force microscope (AFM) and following in real time the increase in the fluorescence signal from a cell membrane integrity marker. We correlate the forces exerted by the AFM tip with the fluorescence dynamics for tens of cells, and we find that forces above 20 nN are necessary to exert critical damage. Moreover, a similar experiment is performed in which bacterial viability is assessed through physiological activity, in order to gain a more complete view of the effect of mechanical forces on bacteria. Our results contribute to the quantitative understanding of the interaction between bacteria and nanomaterials.
Collapse
Affiliation(s)
- Adrián Del Valle
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Joaquim Torra
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Patricia Bondia
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Caterina M Tone
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Patricia Pedraz
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | | | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA), Madrid 28049, Spain
| |
Collapse
|
104
|
Strategies for improving antimicrobial properties of stainless steel. MATERIALS 2020; 13:ma13132944. [PMID: 32630130 PMCID: PMC7372344 DOI: 10.3390/ma13132944] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022]
Abstract
In this review, strategies for improving the antimicrobial properties of stainless steel (SS) are presented. The main focus given is to present current strategies for surface modification of SS, which alter surface characteristics in terms of surface chemistry, topography and wettability/surface charge, without influencing the bulk attributes of the material. As SS exhibits excellent mechanical properties and satisfactory biocompatibility, it is one of the most frequently used materials in medical applications. It is widely used as a material for fabricating orthopedic prosthesis, cardiovascular stents/valves and recently also for three dimensional (3D) printing of custom made implants. Despite its good mechanical properties, SS lacks desired biofunctionality, which makes it prone to bacterial adhesion and biofilm formation. Due to increased resistance of bacteria to antibiotics, it is imperative to achieve antibacterial properties of implants. Thus, many different approaches were proposed and are discussed herein. Emphasis is given on novel approaches based on treatment with highly reactive plasma, which may alter SS topography, chemistry and wettability under appropriate treatment conditions. This review aims to present and critically discuss different approaches and propose novel possibilities for surface modification of SS by using highly reactive gaseous plasma in order to obtain a desired biological response.
Collapse
|
105
|
Li L, Wang C, Nie Y, Yao B, Hu H. Nanofabrication enabled lab-on-a-chip technology for the manipulation and detection of bacteria. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
106
|
The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces. Proc Natl Acad Sci U S A 2020; 117:12598-12605. [PMID: 32457154 DOI: 10.1073/pnas.1916680117] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.
Collapse
|
107
|
Kim JH, Mun C, Ma J, Park SG, Lee S, Kim CS. Simple Fabrication of Transparent, Colorless, and Self-Disinfecting Polyethylene Terephthalate Film via Cold Plasma Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E949. [PMID: 32429311 PMCID: PMC7279332 DOI: 10.3390/nano10050949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022]
Abstract
Cross-infection following cross-contamination is a serious social issue worldwide. Pathogens are normally spread by contact with germ-contaminated surfaces. Accordingly, antibacterial surface technologies are urgently needed and have consequently been actively developed in recent years. Among these technologies, biomimetic nanopatterned surfaces that physically kill adhering bacteria have attracted attraction as an effective technological solution to replace toxic chemical disinfectants (biocides). Herein, we introduce a transparent, colorless, and self-disinfecting polyethylene terephthalate (PET) film that mimics the surface structure of the Progomphus obscurus (sanddragon) wing physically killing the attached bacteria. The PET film was partially etched via a 4-min carbon tetrafluoride (CF4) plasma treatment. Compared to a flat bare PET film, the plasma-treated film surface exhibited a uniform array structure composed of nanopillars with a 30 nm diameter, 237 nm height, and 75 nm pitch. The plasma-treated PET film showed improvements in optical properties (transmittance and B*) and antibacterial effectiveness over the bare film; the transparency and colorlessness slightly increased, and the antibacterial activity increased from 53.8 to 100% for Staphylococcus aureus, and from 0 to 100% for Escherichia coli. These results demonstrated the feasibility of the CF4 plasma-treated PET film as a potential antibacterial overcoating with good optical properties.
Collapse
Affiliation(s)
- Ji-Hyeon Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science, Changwon 51508, Korea; (J.-H.K.); (C.M.); (J.M.); (S.-G.P.); (S.L.)
| | - ChaeWon Mun
- Advanced Nano-Surface Department, Korea Institute of Materials Science, Changwon 51508, Korea; (J.-H.K.); (C.M.); (J.M.); (S.-G.P.); (S.L.)
| | - Junfei Ma
- Advanced Nano-Surface Department, Korea Institute of Materials Science, Changwon 51508, Korea; (J.-H.K.); (C.M.); (J.M.); (S.-G.P.); (S.L.)
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Sung-Gyu Park
- Advanced Nano-Surface Department, Korea Institute of Materials Science, Changwon 51508, Korea; (J.-H.K.); (C.M.); (J.M.); (S.-G.P.); (S.L.)
| | - Seunghun Lee
- Advanced Nano-Surface Department, Korea Institute of Materials Science, Changwon 51508, Korea; (J.-H.K.); (C.M.); (J.M.); (S.-G.P.); (S.L.)
| | - Chang Su Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science, Changwon 51508, Korea; (J.-H.K.); (C.M.); (J.M.); (S.-G.P.); (S.L.)
| |
Collapse
|
108
|
Gao Q, Feng T, Huang D, Liu P, Lin P, Wu Y, Ye Z, Ji J, Li P, Huang W. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomater Sci 2020; 8:278-289. [PMID: 31691698 DOI: 10.1039/c9bm01396b] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Titanium (Ti)-based implants often suffer from detrimental bacterial adhesion and inefficient healing, so it is crucial to design a dual-functional coating that prevents bacterial infection and enhances bioactivity for a successful implant. Herein, we successfully devised a cationic polypeptide (Pep)-functionalized biomimetic nanostructure coating with superior activity, which could not only kill pathogenic bacteria rapidly and inhibit biofilm formation for up to two weeks, but also promote in situ hydroxyapatite (HAp) formation. Specifically, a titania (TiO2) nanospike coating (TNC) was fabricated by alkaline hydrothermal treatment firstly, followed by immobilization of rationally synthesized Pep via robust coordinative interactions, named TNPC. This coating was able to effectively kill (>99.9%) both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria, while being non-toxic to murine MC3T3-E1 osteoblastic cells. Furthermore, the in vivo infection studies denoted that the adherent bacteria numbers on the TNPC implants were significantly reduced by 6 orders of magnitude than those on the pure Ti implants (p < 0.001). Importantly, in the presence of cationic amino groups and residual Ti-OH groups, substantial HAp deposition on the TNPC surface in Kokubo's simulated body fluid (SBF) occurred after 14 days. Altogether, our results support the clinical potential of this biomimetic dual-functional coating as a new approach with desirable antibacterial properties and HAp-forming ability in orthopedic and dental applications.
Collapse
Affiliation(s)
- Qiang Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Elbourne A, Cheeseman S, Wainer P, Kim J, Medvedev AE, Boyce KJ, McConville CF, van Embden J, Crawford RJ, Chapman J, Truong VK, Della Gaspera E. Significant Enhancement of Antimicrobial Activity in Oxygen-Deficient Zinc Oxide Nanowires. ACS APPLIED BIO MATERIALS 2020; 3:2997-3004. [DOI: 10.1021/acsabm.0c00065] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Samuel Cheeseman
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Pierce Wainer
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Jaewon Kim
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Alexander E. Medvedev
- RMIT Centre for Additive Manufacturing, School of Engineering, Melbourne, VIC 3001, Australia
| | - Kylie. J. Boyce
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | | | - Joel van Embden
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | | | - James Chapman
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | | |
Collapse
|
110
|
Wang X, Lyu C, Wu S, Ben Y, Li X, Ge Z, Zou H, Tian D, Yu Y, Ding K. Electrophoresis-Deposited Mesoporous Graphitic Carbon Nitride Surfaces with Efficient Bactericidal Properties. ACS APPLIED BIO MATERIALS 2020; 3:2255-2262. [DOI: 10.1021/acsabm.0c00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaoyuan Wang
- School of Science, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing 100044, P. R. China
| | - Chao Lyu
- School of Science, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing 100044, P. R. China
| | - Songmei Wu
- School of Science, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing 100044, P. R. China
| | - Yuchen Ben
- School of Science, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing 100044, P. R. China
| | - Xiaowei Li
- School of Science, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing 100044, P. R. China
| | - Zhiyuan Ge
- School of Science, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing 100044, P. R. China
| | - Haihan Zou
- School of Science, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing 100044, P. R. China
| | - Dongyan Tian
- School of Science, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing 100044, P. R. China
| | - Yu Yu
- School of Science, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing 100044, P. R. China
| | - Kejian Ding
- School of Science, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing 100044, P. R. China
| |
Collapse
|
111
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
112
|
Horká M, Karásek P, Šalplachta J, Růžička F, Štveráková D, Pantůček R, Roth M. Nano-etched fused-silica capillary used for on-line preconcentration and electrophoretic separation of bacteriophages from large blood sample volumes with off-line MALDI-TOF mass spectrometry identification. Mikrochim Acta 2020; 187:177. [PMID: 32076849 DOI: 10.1007/s00604-020-4154-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/05/2020] [Indexed: 01/09/2023]
Abstract
The properties of staphylococcal phages from the Siphoviridae, Podoviridae, and Myoviridae families were monitored using capillary electrophoretic methods on fused-silica capillaries with different morphology of surface roughness. Isoelectric points of the examined phages were determined by capillary isoelectric focusing in the original, smooth fused-silica capillary, and they ranged from 3.30 to 3.85. For capillary electrophoresis of phages, fused-silica capillaries with the "pock" and "cone" roughened surface types were prepared by etching a part of the capillary with supercritical water. The best resolution of the individual phages (to range from 3.2 to 4.6) was achieved with the "cone" surface-type fused-silica capillary. Direct application of phage K1/420 at the infection site, represented by human plasma or full blood spiked with Staphylococcus aureus, was on-line monitored by micellar electrokinetic chromatography. The phage particles were dynamically adhered onto the roughened surface of the capillary from 10 μL of the prepared sample at the optimized flow rate of 6.5 μL min-1. The limit of detection was determined to be 104 phage particles. The linearity of the calibration lines was characterized by the regression coefficient, R2 = 0.998. The relative standard deviation (RSD) of the peak area, calculated from ten independent measurements, was (±) 2%. After analysis, viability of the detected phages was verified by the modified "double-layer drop assay" method, and collected phage fractions were simultaneously off-line analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Graphical abstract.
Collapse
Affiliation(s)
- Marie Horká
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00, Brno, Czech Republic.
| | - Pavel Karásek
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00, Brno, Czech Republic
| | - Jiří Šalplachta
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00, Brno, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Dana Štveráková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Michal Roth
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00, Brno, Czech Republic
| |
Collapse
|
113
|
Modaresifar K, Kunkels LB, Ganjian M, Tümer N, Hagen CW, Otten LG, Hagedoorn PL, Angeloni L, Ghatkesar MK, Fratila-Apachitei LE, Zadpoor AA. Deciphering the Roles of Interspace and Controlled Disorder in the Bactericidal Properties of Nanopatterns against Staphylococcus aureus. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E347. [PMID: 32085452 PMCID: PMC7075137 DOI: 10.3390/nano10020347] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Recent progress in nano-/micro-fabrication techniques has paved the way for the emergence of synthetic bactericidal patterned surfaces that are capable of killing the bacteria via mechanical mechanisms. Different design parameters are known to affect the bactericidal activity of nanopatterns. Evaluating the effects of each parameter, isolated from the others, requires systematic studies. Here, we systematically assessed the effects of the interspacing and disordered arrangement of nanopillars on the bactericidal properties of nanopatterned surfaces. Electron beam induced deposition (EBID) was used to additively manufacture nanopatterns with precisely controlled dimensions (i.e., a height of 190 nm, a diameter of 80 nm, and interspaces of 100, 170, 300, and 500 nm) as well as disordered versions of them. The killing efficiency of the nanopatterns against Gram-positive Staphylococcus aureus bacteria increased by decreasing the interspace, achieving the highest efficiency of 62 ± 23% on the nanopatterns with 100 nm interspacing. By comparison, the disordered nanopatterns did not influence the killing efficiency significantly, as compared to their ordered correspondents. Direct penetration of nanopatterns into the bacterial cell wall was identified as the killing mechanism according to cross-sectional views, which is consistent with previous studies. The findings indicate that future studies aimed at optimizing the design of nanopatterns should focus on the interspacing as an important parameter affecting the bactericidal properties. In combination with controlled disorder, nanopatterns with contrary effects on bacterial and mammalian cells may be developed.
Collapse
Affiliation(s)
- Khashayar Modaresifar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| | - Lorenzo B. Kunkels
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| | - Mahya Ganjian
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| | - Nazli Tümer
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| | - Cornelis W. Hagen
- Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Linda G. Otten
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, 2626HZ Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, 2626HZ Delft, The Netherlands
| | - Livia Angeloni
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands;
| | - Murali K. Ghatkesar
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands;
| | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628CD Delft, The Netherlands (L.A.)
| |
Collapse
|
114
|
Mateescu M, Knopf S, Mermet F, Lavalle P, Vonna L. Role of Trapped Air in the Attachment of Staphylococcus aureus on Superhydrophobic Silicone Elastomer Surfaces Textured by a Femtosecond Laser. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1103-1112. [PMID: 31887046 DOI: 10.1021/acs.langmuir.9b03170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface texturing is an easy way to control wettability as well as bacterial adhesion. Air trapped in the surface texture of an immersed sample was often proposed as the origin of the low adhesion of bacteria to surfaces showing superhydrophobic properties. In this work, we identified two sets of femtosecond laser processing parameters that led to extreme superhydrophobic textures on a silicone elastomer but showed opposite behavior against Staphylococcus aureus (S. aureus, ATCC 25923) over a short incubation times (6 h). The main difference from most of the previous studies was that the air trapping was not evaluated from the extrapolation of the results of the classical sessile drop technique but from the drop rebound and Wilhelmy plate method. Additionally, all wetting tests were performed with bacteria culture medium and at 37 °C in the case of the Wilhelmy plate method. Following this approach, we were able to study the formation of the liquid/silicone interface and the associated air trapping for immersed samples that is, by far, most representative of the cell culture conditions than those associated with the sessile drop technique. Finally, the conversion of these superhydrophobic coatings into superhydrophilic ones revealed that air trapping is not a necessary condition to avoid Staphylococcus aureus retention on one of these two textured surfaces at short incubation times.
Collapse
Affiliation(s)
- Mihaela Mateescu
- Institut National de la Santé et de la Recherche Médicale , Unité Mixte de Recherche-S 1121 , Biomatériaux et Bioingénierie , 67000 Strasbourg , France
| | - Stephan Knopf
- Institut de Science des Matériaux de Mulhouse (IS2M) CNRS - UMR 7361, Université de Haute Alsace , 15 rue Jean Starcky BP2488 , 68057 Mulhouse , France
| | - Frédéric Mermet
- IREPA-LASER , Boulevard Gonthier d'Andernach , Parc d'Innovation , 67400 Illkirch-Graffenstaden , France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale , Unité Mixte de Recherche-S 1121 , Biomatériaux et Bioingénierie , 67000 Strasbourg , France
| | - Laurent Vonna
- Institut de Science des Matériaux de Mulhouse (IS2M) CNRS - UMR 7361, Université de Haute Alsace , 15 rue Jean Starcky BP2488 , 68057 Mulhouse , France
- Université de Strasbourg , 67081 Strasbourg , France
| |
Collapse
|
115
|
Evaluation of the Antibacterial Activity of a Geopolymer Mortar Based on Metakaolin Supplemented with TiO2 and CuO Particles Using Glass Waste as Fine Aggregate. COATINGS 2020. [DOI: 10.3390/coatings10020157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metakaolin-based geopolymer cements were produced by alkaline activation with a potassium hydroxide and potassium silicate solution. To produce the geopolymer composites, 10 wt.% titanium oxide (TiO2) and 5 wt.% copper oxide (CuO) nanoparticles were used. The geopolymer mortar was prepared using glass waste as fine aggregate. The raw materials and materials produced were characterized by X-ray diffraction, electron microscopy, and Fourier-transform infrared spectroscopy techniques. Likewise, the geopolymer samples were characterized to determine their physical properties, including their density, porosity, and absorption. The photocatalytic activity of the materials was evaluated by activating the nanoparticles in a chamber with UV–Vis light during 24 h; then, different tests were performed to determine the growth inhibition of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa bacteria in nutrient agar for times of up to 24 h. The study results showed that a geopolymer mortar containing glass waste as fine aggregate (GP-G) exhibited a water absorption 56.73% lower than that of the reference geopolymer paste without glass (GP). Likewise, glass particles allowed the material to have a smoother and more homogeneous surface. The pore volume and density of the GP-G were 37.97% lower and 40.36% higher, respectively, than those of the GP. The study with bacteria showed that, after 24 h in the culture media, the GP-G mortars exhibited a high inhibition capacity for the growth of P. aeruginosa from solutions of 10−4 mL and in solutions of 10−6 mL for E. coli and S. aureus. These results indicate the possibility of generating antibacterial surfaces by applying geopolymer composite.
Collapse
|
116
|
Villani M, Consonni R, Canetti M, Bertoglio F, Iervese S, Bruni G, Visai L, Iannace S, Bertini F. Polyurethane-Based Composites: Effects of Antibacterial Fillers on the Physical-Mechanical Behavior of Thermoplastic Polyurethanes. Polymers (Basel) 2020; 12:polym12020362. [PMID: 32041343 PMCID: PMC7077423 DOI: 10.3390/polym12020362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
The challenge to manufacture medical devices with specific antibacterial functions, and the growing demand for systems able to limit bacterial resistance growth, necessitates the development of new technologies which can be easily produced at an industrial level. The object of this work was the study and the development of silver, titanium dioxide, and chitosan composites for the realization and/or implementation of biomedical devices. Thermoplastic elastomeric polyurethane was selected and used as matrix for the various antibacterial functions introduced during the processing phase (melt compounding). This strategy was employed to directly incorporate antimicrobial agents into the main constituent material of the devices themselves. With the exception of the composite filled with titanium dioxide, all of the other tested composites were shown to possess satisfactory mechanical properties. The best antibacterial effects were obtained with all the composites against Staphylococcus aureus: viability was efficiently inhibited by the prepared materials in four different bacterial culture concentrations.
Collapse
Affiliation(s)
- Maurizio Villani
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, Via A. Corti 12, 20133 Milano, Italy; (R.C.); (M.C.)
- Correspondence: (M.V.); (F.B.)
| | - Roberto Consonni
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, Via A. Corti 12, 20133 Milano, Italy; (R.C.); (M.C.)
| | - Maurizio Canetti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, Via A. Corti 12, 20133 Milano, Italy; (R.C.); (M.C.)
| | - Federico Bertoglio
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; (F.B.); (S.I.); (L.V.)
- School for Advanced Studies IUSS, Palazzo del Broletto Piazza della Vittoria, 15, 27100 Pavia, Italy
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A Società Benefit, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy
| | - Stefano Iervese
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; (F.B.); (S.I.); (L.V.)
| | - Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section, University of Pavia, viale Taramelli 16, 27100 Pavia, Italy;
| | - Livia Visai
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; (F.B.); (S.I.); (L.V.)
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A Società Benefit, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy
| | - Salvatore Iannace
- Istituto per i Polimeri, Compositi e Biomateriali—CNR, Piazzale Enrico Fermi 1, 80055 Portici (NA), Italy;
| | - Fabio Bertini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, Via A. Corti 12, 20133 Milano, Italy; (R.C.); (M.C.)
- Correspondence: (M.V.); (F.B.)
| |
Collapse
|
117
|
Abstract
Titanium dioxide is well known for its photocatalytic properties and low toxicity, meanwhile, silicone dioxide exhibits hydrophobic and hydrophilic properties and thermal stability. The union of these two materials offers a composite material with a wide range of applications that relate directly to the combined properties. The SiO2-TiO2 composite has been synthesized through physical methods and chemical methods and, with adequate conditions, morphology, crystallinity, boundaries between SiO2-TiO2, among other properties, can be controlled. Thus, the applications of this composite are wide for surface applications, being primarily used as powder or coating. However, the available research information on this kind of composite material is still novel, therefore research in this field is still needed in order to clarify all the physical and chemical properties of the material. This review aims to encompass the available methods of synthesis of SiO2-TiO2 composite with modifiers or dopants, the application and known chemical and physical properties in surfaces such as glass, mortar and textile, including aspects for the development of this material.
Collapse
|
118
|
Elbourne A, Cheeseman S, Atkin P, Truong NP, Syed N, Zavabeti A, Mohiuddin M, Esrafilzadeh D, Cozzolino D, McConville CF, Dickey MD, Crawford RJ, Kalantar-Zadeh K, Chapman J, Daeneke T, Truong VK. Antibacterial Liquid Metals: Biofilm Treatment via Magnetic Activation. ACS NANO 2020; 14:802-817. [PMID: 31922722 DOI: 10.1021/acsnano.9b07861] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance has made the treatment of biofilm-related infections challenging. As such, the quest for next-generation antimicrobial technologies must focus on targeted therapies to which pathogenic bacteria cannot develop resistance. Stimuli-responsive therapies represent an alternative technological focus due to their capability of delivering targeted treatment. This study provides a proof-of-concept investigation into the use of magneto-responsive gallium-based liquid metal (LM) droplets as antibacterial materials, which can physically damage, disintegrate, and kill pathogens within a mature biofilm. Once exposed to a low-intensity rotating magnetic field, the LM droplets become physically actuated and transform their shape, developing sharp edges. When placed in contact with a bacterial biofilm, the movement of the particles resulting from the magnetic field, coupled with the presence of nanosharp edges, physically ruptures the bacterial cells and the dense biofilm matrix is broken down. The antibacterial efficacy of the magnetically activated LM particles was assessed against both Gram-positive and Gram-negative bacterial biofilms. After 90 min over 99% of both bacterial species became nonviable, and the destruction of the biofilms was observed. These results will impact the design of next-generation, LM-based biofilm treatments.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
- Nanobiotechnology Laboratory , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Samuel Cheeseman
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
- Nanobiotechnology Laboratory , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Paul Atkin
- School of Engineering, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
- CSIRO Australia , Private Bag 33, Clayton South MDC , Clayton , Victoria 3169 , Australia
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 399 Royal Parade , Parkville , Victoria 3152 , Australia
| | - Nitu Syed
- School of Engineering, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Ali Zavabeti
- School of Engineering, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Md Mohiuddin
- School of Engineering, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Dorna Esrafilzadeh
- School of Engineering, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
- Graduate School of Biomedical Engineering , University of New South Wales (UNSW) , Kensington , NSW 2052 , Australia
| | - Daniel Cozzolino
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Chris F McConville
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
- Nanobiotechnology Laboratory , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering , University of New South Wales (UNSW) , Kensington , NSW 2052 , Australia
| | - James Chapman
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
- Nanobiotechnology Laboratory , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Torben Daeneke
- School of Engineering, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3001 , Australia
- Nanobiotechnology Laboratory , RMIT University , Melbourne , Victoria 3001 , Australia
| |
Collapse
|
119
|
Pellegrino L, Khodaparast S, Cabral JT. Orthogonal wave superposition of wrinkled, plasma-oxidised, polydimethylsiloxane surfaces. SOFT MATTER 2020; 16:595-603. [PMID: 31776531 DOI: 10.1039/c9sm02124h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a versatile approach to generate 2D dual-frequency patterns on soft substrates by superposition of 1D single-frequency wrinkles. Wave superposition is achieved by applying sequential orthogonal strains to elastomeric coupons, as opposed to the application of a (simultaneous) biaxial strain field. First, a 1D wrinkling pattern is induced by the well-known mechanical instability of a bilayer formed by oxygen plasma-oxidation of a (pre-strained) polydimethylsiloxane elastomer. The wrinkled surface formed upon strain release is then replicated to obtain a stress-free substrate, and stretched in the direction perpendicular to the first generation. Subsequent plasma exposure and mechanical relaxation (with independent process parameters) yield a prescribed second-generation wrinkling, whose profile and dependence on the first generation we examine in detail. By independently varying plasma oxidation and strain parameters in both directions, we demonstrate the formation of a wide array of topographies, including arrays of symmetric 2D checkerboard patterns with exceptional area coverage with respect to those formed by simultaneous 2D wrinkling. While the resulting topographies cannot be explained in terms of a simple orthogonal wave superposition, we show that, by accounting for the orthogonal prestrain experienced by the first wrinkling generation, the resulting 2D patterns can be readily calculated from 1D wrinkling behaviour.
Collapse
Affiliation(s)
- Luca Pellegrino
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | | | | |
Collapse
|
120
|
Facile Route of Fabricating Long-Term Microbicidal Silver Nanoparticle Clusters against Shiga Toxin-Producing Escherichia coli O157:H7 and Candida auris. COATINGS 2020. [DOI: 10.3390/coatings10010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial contamination remains a significant issue for many industrial, commercial, and medical applications. For instance, microbial surface contamination is detrimental to numerous aspects of food production, infection transfer, and even marine applications. As such, intense scientific interest has focused on improving the antimicrobial properties of surface coatings via both chemical and physical routes. However, there is a lack of synthetic coatings that possess long-term microbiocidal performance. In this study, silver nanoparticle cluster coatings were developed on copper surfaces via an ion-exchange and reduction reaction, followed by a silanization step. The durability of the microbiocidal activity for these develped surfaces was tested against pathogenic bacterial and fungal species, specifically Escherichia coli O157:H7 and Candida auris, over periods of 1- and 7-days. It was observed that more than 90% of E. coli and C. auris were found to be non-viable following the extended exposure times. This facile material fabrication presents as a new surface design for the production of durable microbicidal coatings which can be applied to numerous applications.
Collapse
|
121
|
Yi G, Teong SP, Liu S, Chng S, Yang YY, Zhang Y. Iron-based nano-structured surfaces with antimicrobial properties. J Mater Chem B 2020; 8:10146-10153. [DOI: 10.1039/d0tb01941k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bactericidal nanopillar array surfaces of FeOOH and Fe2O3 have been prepared as a cicada wing mimic. An even simpler structure-based antimicrobial surface was also made by coating with sea urchin-like FeOOH and Fe2O3 particles with a binder.
Collapse
Affiliation(s)
- Guangshun Yi
- Institute of Bioengineering and Nanotechnology
- 31 Biopolis Way
- The Nanos
- Singapore 138669
- Singapore
| | - Siew Ping Teong
- Institute of Bioengineering and Nanotechnology
- 31 Biopolis Way
- The Nanos
- Singapore 138669
- Singapore
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology
- 31 Biopolis Way
- The Nanos
- Singapore 138669
- Singapore
| | - Shuyun Chng
- Singapore Institute of Manufacturing Technology
- 2 Fusionopolis Way
- #08-04, Innovis
- Singapore 138634
- Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology
- 31 Biopolis Way
- The Nanos
- Singapore 138669
- Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Nanotechnology
- 31 Biopolis Way
- The Nanos
- Singapore 138669
- Singapore
| |
Collapse
|
122
|
Chee E, Brown AC. Biomimetic antimicrobial material strategies for combating antibiotic resistant bacteria. Biomater Sci 2020; 8:1089-1100. [DOI: 10.1039/c9bm01393h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Antibiotic drugs have revolutionized the field of medicine for almost 90 years. However, continued use has led to the rise of antibiotic resistant bacteria. To combat these bacteria, biomimetic material strategies have been investigated.
Collapse
Affiliation(s)
- Eunice Chee
- Joint Department of Biomedical Engineering
- North Carolina State University and University of North Carolina – Chapel Hill
- Raleigh
- USA
- Comparative Medicine Institute
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering
- North Carolina State University and University of North Carolina – Chapel Hill
- Raleigh
- USA
- Comparative Medicine Institute
| |
Collapse
|
123
|
Selim MS, El-Safty SA, Shenashen MA, Higazy SA, Elmarakbi A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J Mater Chem B 2020; 8:3701-3732. [DOI: 10.1039/c9tb02119a] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the environmental and economic casualties of biofouling on maritime navigation, modern studies have been devoted toward formulating advanced nanoscale composites in the controlled development of effective marine antifouling self-cleaning surfaces.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Shimaa A. Higazy
- Petroleum Application Department
- Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | - Ahmed Elmarakbi
- Department of Mechanical & Construction Engineering
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne
- UK
| |
Collapse
|
124
|
Abstract
Meta-biomaterials are designer biomaterials with unusual and even unprecedented properties that primarily originate from their geometrical designs at different (usually smaller) length scales.
Collapse
Affiliation(s)
- Amir A. Zadpoor
- Additive Manufacturing Laboratory
- Department of Biomechanical Engineering
- Delft University of Technology (TU Delft)
- Delft 2628 CD
- The Netherlands
| |
Collapse
|
125
|
Coenye T, Kjellerup B, Stoodley P, Bjarnsholt T. The future of biofilm research - Report on the '2019 Biofilm Bash'. Biofilm 2019; 2:100012. [PMID: 33447799 PMCID: PMC7798458 DOI: 10.1016/j.bioflm.2019.100012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
In May 2019, 29 scientists with expertise in various subdisciplines of biofilm research got together in Leavenworth (WA, USA) at an event designated as the ‘2019 Biofilm Bash’. The goal of this informal two-day meeting was first to identify gaps in our knowledge, and then to come up with ways how the biofilm community can fill these gaps. The meeting was organized around six questions that covered the most important items brought forward by the organizers and participants. The outcome of these discussions is summarized in the present paper. We are aware that these views represent a small subset of our field, and that inevitably we will have inadvertently overlooked important developing research areas and ideas. We are nevertheless hopeful that this report will stimulate discussions and help create new ways of how we can advance our field.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.,ESCMID Study Group on Biofilms, Basel, Switzerland
| | - Birthe Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA.,National Biofilms Innovation Centre (NBIC), UK.,National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton, UK
| | - Thomas Bjarnsholt
- ESCMID Study Group on Biofilms, Basel, Switzerland.,Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
126
|
Schröder ML, Angrisani N, Fadeeva E, Hegermann J, Reifenrath J. Laser-structured spike surface shows great bone integrative properties despite infection in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110573. [PMID: 32228937 DOI: 10.1016/j.msec.2019.110573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
Implant associated infections can result in devastating consequences for patients. One major cause is the formation of bacterial biofilms, which result in increased resistance against antimicrobial therapeutics. A reduction of implant associated infections can be achieved by functionalization of implant surfaces. The generation of three dimensional surface structures by femtosecond laser ablation is one method to fabricate bacterial repellent large scaled surfaces without altering the material chemical composition. The challenge is to reduce bacterial growth while improving cellular ongrowth. For this purpose, spike structures were created as small as possible by used fabrication method on cubic Ti90/Al6/V4-rods and their effectiveness against bacterial colonization was compared to unstructured Ti90/Al6/V4-rods. Rods were implanted in the rat tibia and infected intraoperatively with 103 CFU of Staphylococcus aureus. Besides clinical behaviour and lameness, the vital bacterial biomass, morphological appearance and the volume of eukaryotic cells were determined on the implant surface after 21 days. Bone alterations were examined by radiological and histological techniques. Unexpectedly, the laser-structured implants did not show a lower bacterial load on the implant surface and less severe infection related bone and tissue alterations compared to the group without structuring. Simultaneously, a better bony integration and a higher cellular colonization with eukaryotic cells was detected on the laser-structured implants. These findings don't support the previous in vitro results. Nevertheless, the strong integration into the bone is a powerful argument for further surface modifications focussing on the improvement of the antibacterial effect. Additionally, our results underline the need for in vivo testing of new materials prior to clinical use.
Collapse
Affiliation(s)
- M-L Schröder
- Hannover Medical School, Clinic for Orthopedic Surgery, Anna-von-Borries Str. 1-9, 30625 Hannover, Germany; University of Veterinary Medicine Hannover, Foundation, Small Animal Clinic, Bünteweg 9, 30559 Hannover, Germany
| | - N Angrisani
- Hannover Medical School, Clinic for Orthopedic Surgery, Anna-von-Borries Str. 1-9, 30625 Hannover, Germany
| | - E Fadeeva
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - J Hegermann
- Hannover Medical School, Institute of Functional an Applied Anatomy, Research Core Unit Electron Microscopy, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - J Reifenrath
- Hannover Medical School, Clinic for Orthopedic Surgery, Anna-von-Borries Str. 1-9, 30625 Hannover, Germany.
| |
Collapse
|
127
|
Ye J, Deng J, Chen Y, Yang T, Zhu Y, Wu C, Wu T, Jia J, Cheng X, Wang X. Cicada and catkin inspired dual biomimetic antibacterial structure for the surface modification of implant material. Biomater Sci 2019; 7:2826-2832. [PMID: 31065627 DOI: 10.1039/c9bm00082h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Implant infections frequently occur in various kinds of surgery. Apart from antibiotics, the surface modification of implant material is a promising avenue to resolve this global problem. An ideal implant interface is expected to possess good biocompatibility, as well as broad-spectrum and long-term bacterial inhibition capabilities. Here, a delicate cicada and catkin inspired dual biomimetic structure was proposed, for the first time, to improve the antibacterial properties of implant material. By using poly(ether-ether-ketone) (PEEK) as a model implant, the relative in vitro and in vivo evaluations demonstrated that this dual biomimetic structure could simultaneously provide less bacterial adhesion, wider antimicrobial range and longer antibacterial durability. Meanwhile, the modified implant also retained ideal biocompatibility. Most importantly, the relative dual biomimetic structure engineering process could be accomplished through a simple, economic and fast hydrothermal chemical reaction, which might have an impact on the development of future biomedical materials.
Collapse
Affiliation(s)
- Jing Ye
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, NanChang, 330006, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Bao Q, Xie L, Ohashi H, Hosomi M, Terada A. Inhibition of Agrobacterium tumefaciens biofilm formation by acylase I-immobilized polymer surface grafting of a zwitterionic group-containing polymer brush. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
129
|
Rajapaksha P, Cheeseman S, Hombsch S, Murdoch BJ, Gangadoo S, Blanch EW, Truong Y, Cozzolino D, McConville CF, Crawford RJ, Truong VK, Elbourne A, Chapman J. Antibacterial Properties of Graphene Oxide–Copper Oxide Nanoparticle Nanocomposites. ACS APPLIED BIO MATERIALS 2019; 2:5687-5696. [DOI: 10.1021/acsabm.9b00754] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Piumie Rajapaksha
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Samuel Cheeseman
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Stuart Hombsch
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | | | - Sheeana Gangadoo
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Ewan W. Blanch
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Yen Truong
- Commonwealth Scientific and Industrial Research Organization (CSIRO) − Manufacturing, Clayton, VIC 3168, Australia
| | - Daniel Cozzolino
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Chris F. McConville
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Russell J. Crawford
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Vi Khanh Truong
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Aaron Elbourne
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - James Chapman
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
130
|
Abuayyash A, Ziegler N, Meyer H, Meischein M, Sengstock C, Moellenhoff J, Rurainsky C, Heggen M, Garzón-Manjón A, Scheu C, Tschulik K, Ludwig A, Köller M. Enhanced antibacterial performance of ultrathin silver/platinum nanopatches by a sacrificial anode mechanism. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102126. [PMID: 31734515 DOI: 10.1016/j.nano.2019.102126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 11/15/2022]
Abstract
The development of antibacterial implant surfaces is a challenging task in biomaterial research. We fabricated a highly antibacterial bimetallic platinum (Pt)/silver(Ag) nanopatch surface by short time sputtering of Pt and Ag on titanium. The sputter process led to a patch-like distribution with crystalline areas in the nanometer-size range (1.3-3.9 nm thickness, 3-60 nm extension). Structural analyses of Pt/Ag samples showed Ag- and Pt-rich areas containing nanoparticle-like Pt deposits of 1-2 nm. The adhesion and proliferation properties of S. aureus on the nanopatch samples were analyzed. Consecutively sputtered Ag/Pt nanopatches (Pt followed by Ag) induced enhanced antimicrobial activity compared to co-sputtered Pt/Ag samples or pure Ag patches of similar Ag amounts. The underlying sacrificial anode mechanism was proved by linear sweep voltammetry. The advantages of this nanopatch coating are the enhanced antimicrobial activity despite a reduced total amount of Ag/Pt and a self-limited effect due the rapid Ag dissolution.
Collapse
Affiliation(s)
- Adham Abuayyash
- BG University Hospital Bergmannsheil, Surgical Research, Bochum, Germany
| | - Nadine Ziegler
- Ruhr University Bochum, Institute for Materials, Faculty of Mechanical Engineering, Bochum, Germany
| | - Hajo Meyer
- Ruhr University Bochum, Institute for Materials, Faculty of Mechanical Engineering, Bochum, Germany
| | - Michael Meischein
- Ruhr University Bochum, Institute for Materials, Faculty of Mechanical Engineering, Bochum, Germany
| | | | - Julian Moellenhoff
- BG University Hospital Bergmannsheil, Surgical Research, Bochum, Germany
| | - Christian Rurainsky
- Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Analytical Chemistry II, Bochum, Germany
| | - Marc Heggen
- Forschungszentrum Jülich, Ernst Ruska-Center for Microscopy and Spectroscopy with Electrons, Jülich, Germany
| | | | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Kristina Tschulik
- Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Analytical Chemistry II, Bochum, Germany
| | - Alfred Ludwig
- Ruhr University Bochum, Institute for Materials, Faculty of Mechanical Engineering, Bochum, Germany
| | - Manfred Köller
- BG University Hospital Bergmannsheil, Surgical Research, Bochum, Germany.
| |
Collapse
|
131
|
Liu T, Cui Q, Wu Q, Li X, Song K, Ge D, Guan S. Mechanism Study of Bacteria Killed on Nanostructures. J Phys Chem B 2019; 123:8686-8696. [DOI: 10.1021/acs.jpcb.9b07732] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tianqing Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Qianqian Cui
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Qiqi Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Xiangqin Li
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Kedong Song
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Dan Ge
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Shui Guan
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| |
Collapse
|
132
|
Bacterial Adhesion on Femtosecond Laser-Modified Polyethylene. MATERIALS 2019; 12:ma12193107. [PMID: 31554197 PMCID: PMC6804235 DOI: 10.3390/ma12193107] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced.
Collapse
|
133
|
Nguyen DHK, Loebbe C, Linklater DP, Xu X, Vrancken N, Katkus T, Juodkazis S, Maclaughlin S, Baulin V, Crawford RJ, Ivanova EP. The idiosyncratic self-cleaning cycle of bacteria on regularly arrayed mechano-bactericidal nanostructures. NANOSCALE 2019; 11:16455-16462. [PMID: 31451827 DOI: 10.1039/c9nr05923g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanostructured mechano-bactericidal surfaces represent a promising technology to prevent the incidence of microbial contamination on a variety of surfaces and to avoid bacterial infection, particularly with antibiotic resistant strains. In this work, a regular array of silicon nanopillars of 380 nm height and 35 nm diameter was used to study the release of bacterial cell debris off the surface, following inactivation of the cell due to nanostructure-induced rupture. It was confirmed that substantial bactericidal activity was achieved against Gram-negative Pseudomonas aeruginosa (85% non-viable cells) and only modest antibacterial activity towards Staphylococcus aureus (8% non-viable cells), as estimated by measuring the proportions of viable and non-viable cells via fluorescence imaging. In situ time-lapse AFM scans of the bacteria-nanopillar interface confirmed the removal rate of the dead P. aeruginosa cells from the surface to be approximately 19 minutes per cell, and approximately 11 minutes per cell for dead S. aureus cells. These results highlight that the killing and dead cell detachment cycle for bacteria on these substrata are dependant on the bacterial species and the surface architecture studied and will vary when these two parameters are altered. The outcomes of this work will enhance the current understanding of antibacterial nanostructures, and impact upon the development and implementation of next-generation implants and medical devices.
Collapse
Affiliation(s)
- Duy H K Nguyen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | | | - Denver P Linklater
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia. and Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - XiuMei Xu
- IMEC, Kapeldreef 75, Leuven 3001, Belgium
| | - Nandi Vrancken
- IMEC, Kapeldreef 75, Leuven 3001, Belgium and Research Group Electrochemical and Surface Engineering (SURF), Dept. of Materials & Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Belgium
| | - Tomas Katkus
- Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Saulius Juodkazis
- Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | - Vladimir Baulin
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Tarragona, Spain
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
134
|
Mehrjou B, Mo S, Dehghan-Baniani D, Wang G, Qasim AM, Chu PK. Antibacterial and Cytocompatible Nanoengineered Silk-Based Materials for Orthopedic Implants and Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31605-31614. [PMID: 31385497 DOI: 10.1021/acsami.9b09066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many postsurgical complications stem from bacteria colony formation on the surface of implants, but the usage of antibiotic agents may cause antimicrobial resistance. Therefore, there is a strong demand for biocompatible materials with an intrinsic antibacterial resistance not requiring extraneous chemical agents. In this study, homogeneous nanocones were fabricated by oxygen plasma etching on the surface of natural, biocompatible Bombyx mori silk films. The new hydroxyl bonds formed on the surface of the nanopatterned film by plasma etching increased the surface energy by around 176%. This hydrophilic nanostructure reduced the bacterial attachment by more than 90% for both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and at the same time improved the proliferation of osteoblast cells by 30%. The nanoengineered substrate and pristine silk were cultured for 6 h with three different bacteria concentrations of 107, 105, and 103 CFU mL-1 and the cell proliferation on the nanopatterned samples was significantly higher due to limited bacteria attachment and prevention of biofilm formation. The concept and materials described here reveal a promising alternative to produce biomaterials with an inherent biocompatibility and bacterial resistance simultaneously to mitigate postsurgical infections and minimize the use of antibiotics.
Collapse
Affiliation(s)
- Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Shi Mo
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Dorsa Dehghan-Baniani
- Division of Biomedical Engineering, Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Sai Kung , Hong Kong
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Abdul Mateen Qasim
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| |
Collapse
|
135
|
Xie Y, Li J, Bu D, Xie X, He X, Wang L, Zhou Z. Nepenthes-inspired multifunctional nanoblades with mechanical bactericidal, self-cleaning and insect anti-adhesive characteristics. RSC Adv 2019; 9:27904-27910. [PMID: 35530501 PMCID: PMC9071107 DOI: 10.1039/c9ra05198h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/24/2019] [Indexed: 01/22/2023] Open
Abstract
In order to reduce the widespread threat of bacterial pathogen diseases, mechanical bactericidal surfaces have been widely reported. However, few of these nanostructured surfaces were investigated from a sustainable perspective. In this study, we have prepared, inspired by the slippery zone of Nepenthes, a multifunctional nanostructured surface with mechanical bactericidal, self-cleaning and insect anti-adhesive characteristics. First, a nanoblade-like surface made of Zn-Al layered double hydroxides was prepared for achieving faster bactericidal rate and wider bactericidal spectrum (2.10 × 104 CFU cm-2 min-1 against Escherichia coli and 1.78 × 103 CFU cm-2 min-1 against Staphylococcus aureus). Then the self-cleaning and insect anti-adhesive properties were tested on the fluorosilane-modified nanoblades, leaving little cell debris remaining on the surface even after 4 continuous bactericidal experiments, and showing a slippery surface for ants to slide down in 3 s. This study not only discovers a new nature-inspired mechanical bactericidal nanotopography, but also provides a facile approach to incorporate multiple functions into the nanostructured surface for practical antibacterial applications.
Collapse
Affiliation(s)
- Yuan Xie
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University Chengdu 610031 China
| | - Jinyang Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University Chengdu 610031 China
| | - Daqin Bu
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University Chengdu 610031 China
| | - Xuedong Xie
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University Chengdu 610031 China
| | - Xiaolong He
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
| | - Li Wang
- Qian Xuesen Laboratory of Space Technology Beijing 100094 China
| | - Zuowan Zhou
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University Chengdu 610031 China
| |
Collapse
|
136
|
Scrimieri L, Serra A, Manno D, Alifano P, Tredici SM, Calcagnile M, Calcagnile L. TiO
2
films by sol‐gel spin‐coating deposition with microbial antiadhesion properties. SURF INTERFACE ANAL 2019. [DOI: 10.1002/sia.6703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Luigi Scrimieri
- CEnter of Applied Physics, DAting and Diagnostics (CEDAD) Department of Mathemathics and Physics “Ennio De Giorgi”, University of Salento, Lecce, Italy
- Department of Engineering for InnovationUniversity of Salento Lecce Italy
| | - Antonio Serra
- CEnter of Applied Physics, DAting and Diagnostics (CEDAD) Department of Mathemathics and Physics “Ennio De Giorgi”, University of Salento, Lecce, Italy
| | - Daniela Manno
- CEnter of Applied Physics, DAting and Diagnostics (CEDAD) Department of Mathemathics and Physics “Ennio De Giorgi”, University of Salento, Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and TecnologiesUniversity of Salento Lecce Italy
| | | | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and TecnologiesUniversity of Salento Lecce Italy
| | - Lucio Calcagnile
- CEnter of Applied Physics, DAting and Diagnostics (CEDAD) Department of Mathemathics and Physics “Ennio De Giorgi”, University of Salento, Lecce, Italy
| |
Collapse
|
137
|
Altuntas S, Dhaliwal HK, Bassous NJ, Radwan AE, Alpaslan P, Webster T, Buyukserin F, Amiji M. Nanopillared Chitosan/Gelatin Films: A Biomimetic Approach for Improved Osteogenesis. ACS Biomater Sci Eng 2019; 5:4311-4322. [PMID: 33417787 DOI: 10.1021/acsbiomaterials.9b00426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomimicry strategies, inspired from natural organization of living organisms, are being widely used in the design of nanobiomaterials. Particularly, nonlithographic techniques have shown immense potential in the facile fabrication of nanostructured surfaces at large-scale production. Orthopedic biomaterials or coatings possessing extracellular matrix-like nanoscale features induce desirable interactions between the bone tissue and implant surface, also known as osseointegration. In this study, nanopillared chitosan/gelatin (C/G) films were fabricated using nanoporous anodic alumina molds, and their antibacterial properties as well as osteogenesis potential were analyzed by comparing to the flat C/G films and tissue culture polystyrene as controls. In vitro analysis of the expression of RUNX2, osteopontion, and osteocalcin genes for mesenchymal stem cells as well as osteoblast-like Saos-2 cells was found to be increased for the cells grown on nano C/G films, indicating early-stage osteogenic differentiation. Moreover, the mineralization tests (quantitative calcium analysis and alizarin red staining) showed that nanotopography significantly enhanced the mineralization capacity of both cell lines. This work may provide a new perspective of biomimetic surface topography fabrication for orthopedic implant coatings with superior osteogenic differentiation capacity and fast bone regeneration potential.
Collapse
Affiliation(s)
- Sevde Altuntas
- Department of Biomedical Engineering, TOBB University of Economics and Technology, 43 Sogutozu Street, 06560 Ankara, Turkey.,Brigham and Women's Hospital, Renal Division, 4 Blackfan Circle Street, 02115 Boston, Massachusetts, United States
| | | | | | - Ahmed E Radwan
- Brigham and Women's Hospital, Department of Radiology, Harvard Medical School, 72 Francis Street, 02115 Boston, Massachusetts, United States.,Chemistry and Physics Department, Simmons University, 300 The Fenway, 02115 Boston, Massachusetts, United States
| | - Pinar Alpaslan
- Department of Biomedical Engineering, TOBB University of Economics and Technology, 43 Sogutozu Street, 06560 Ankara, Turkey
| | | | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology, 43 Sogutozu Street, 06560 Ankara, Turkey
| | | |
Collapse
|
138
|
Ponomarev VA, Sheveyko AN, Permyakova ES, Lee J, Voevodin AA, Berman D, Manakhov AM, Michlíček M, Slukin PV, Firstova VV, Ignatov SG, Chepkasov IV, Popov ZI, Shtansky DV. TiCaPCON-Supported Pt- and Fe-Based Nanoparticles and Related Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28699-28719. [PMID: 31339695 DOI: 10.1021/acsami.9b09649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A rapid increase in the number of antibiotic-resistant bacteria urgently requires the development of new more effective yet safe materials to fight infection. Herein, we uncovered the contribution of different metal nanoparticles (NPs) (Pt, Fe, and their combination) homogeneously distributed over the surface of nanostructured TiCaPCON films in the total antibacterial activity toward eight types of clinically isolated bacterial strains (Escherichia coli K261, Klebsiella pneumoniae B1079k/17-3, Acinetobacter baumannii B1280A/17, Staphylococcus aureus no. 839, Staphylococcus epidermidis i5189-1, Enterococcus faecium Ya-235: VanA, E. faecium I-237: VanA, and E. coli U20) taking into account various factors that can affect bacterial mechanisms: surface chemistry and phase composition, wettability, ion release, generation of reactive oxygen species (ROS), potential difference and polarity change between NPs and the surrounding matrix, formation of microgalvanic couples on the sample surfaces, and contribution of a passive oxide layer, formed on the surface of films, to general kinetics of the NP dissolution. The results indicated that metal ion implantation and subsequent annealing significantly changed the chemistry of the TiCaPCON film surface. This, in turn, greatly affected the shedding of ions, ROS formation, potential difference between film components, and antibacterial activity. The presence of NPs was critical for ROS generation under UV or daylight irradiation. By eliminating the potential contribution of ions and ROS, we have shown that bacteria can be killed using direct microgalvanic interactions. The possibility of charge redistribution at the interfaces between Pt NPs and TiO2 (anatase and rutile), TiC, TiN, and TiCN components was demonstrated using density functional theory calculations. The TiCaPCON-supported Pt and Fe NPs were not toxic for lymphocytes and had no effect on the ability of lymphocytes to activate in response to a mitogen. This study provides new insights into understanding and designing of antibacterial yet biologically safe surfaces.
Collapse
Affiliation(s)
- Viktor A Ponomarev
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
| | - Aleksander N Sheveyko
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
| | - Elizaveta S Permyakova
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
| | - Jihyung Lee
- Department of Materials Science and Engineering , University of North Texas , Denton , Texas 76203 , United States
| | - Andrey A Voevodin
- Department of Materials Science and Engineering , University of North Texas , Denton , Texas 76203 , United States
| | - Diana Berman
- Department of Materials Science and Engineering , University of North Texas , Denton , Texas 76203 , United States
| | - Anton M Manakhov
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
| | - Miroslav Michlíček
- Plasma Technologies, CEITEC - Central European Institute of Technology , Masaryk University , Kotlářská 2 , Brno 61137 , Czech Republic
- Department of Physical Electronics, Faculty of Science , Masaryk University , Kotlářská 2 , Brno 61137 , Czech Republic
| | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology , Obolensk , Moscow Region 142279 , Russia
| | - Viktoriya V Firstova
- State Research Center for Applied Microbiology and Biotechnology , Obolensk , Moscow Region 142279 , Russia
| | - Sergey G Ignatov
- State Research Center for Applied Microbiology and Biotechnology , Obolensk , Moscow Region 142279 , Russia
| | - Ilya V Chepkasov
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
- Katanov Khakas State University , Abakan 655017 , Russia
| | - Zakhar I Popov
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
- Emanuel Institute of Biochemical Physics RAS , Moscow 199339 , Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
| |
Collapse
|
139
|
Abstract
The prevention of infectious diseases is a global challenge where multidrug-resistant bacteria or "superbugs" pose a serious threat to worldwide public health. Microtopographic surfaces have attracted much attention as they represent a biomimetic and nontoxic surface antibacterial strategy to replace biocides. The antimicrobial effect of such natural and biomimetic surface nanostructures involves a physical approach which eradicates bacteria via the structural features of the surfaces without any release of biocides or chemicals. These recent developments present a significant proof-of-concept and a powerful tool in which cellular adhesion and death caused by a physical approach, can be controlled by the micro/nanotopology of such surfaces. This represents an innovative direction of development of clean, effective and nonresistant antimicrobial surfaces. The minireview will cover novel approaches for the construction of nanostructures on surfaces in order to create antimicrobial surface in an environmentally friendly, nontoxic manner.
Collapse
Affiliation(s)
- Guangshun Yi
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| | - Siti Nurhanna Riduan
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| | - Yuan Yuan
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| | - Yugen Zhang
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| |
Collapse
|
140
|
Ghasemlou M, Daver F, Ivanova EP, Rhim JW, Adhikari B. Switchable Dual-Function and Bioresponsive Materials to Control Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22897-22914. [PMID: 31180196 DOI: 10.1021/acsami.9b05901] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The colonization of undesired bacteria on the surface of devices used in biomedical and clinical applications has become a persistent problem. Different types of single-function (cell resistance or bactericidal) bioresponsive materials have been developed to cope with this problem. Even though these materials meet the basic requirements of many biomedical and clinical applications, dual-function (cell resistance and biocidal) bioresponsive materials with superior design and function could be better suited for these applications. The past few years have witnessed the emergence of a new class of dual-function materials that can reversibly switch between cell-resistance and biocidal functions in response to external stimuli. These materials are finding increased applications in biomedical devices, tissue engineering, and drug-delivery systems. This review highlights the recent advances in design, structure, and fabrication of dual-function bioresponsive materials and discusses translational challenges and future prospects for research involving these materials.
Collapse
Affiliation(s)
| | | | - Elena P Ivanova
- School of Science , RMIT University , Melbourne VIC 3000 , Australia
| | - Jong-Whan Rhim
- Center for Humanities and Sciences, Department of Food and Nutrition, Bionanocomposite Research Center , Kyung Hee University , 26 Kyungheedae-ro, Dongdaemun-gu , Seoul 02447 , Republic of Korea
| | | |
Collapse
|
141
|
Carve M, Scardino A, Shimeta J. Effects of surface texture and interrelated properties on marine biofouling: a systematic review. BIOFOULING 2019; 35:597-617. [PMID: 31298039 DOI: 10.1080/08927014.2019.1636036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 05/22/2023]
Abstract
This systematic review examines effects of surface texture on marine biofouling and characterizes key research methodologies. Seventy-five published articles met selection criteria for qualitative analysis; experimental data from 36 underwent quantitative meta-analysis. Most studies investigated fouling mechanisms and antifouling performance only in laboratory assays with one to several test species. Textures were almost exclusively a single layer of regularly arranged geometric features rather than complex hierarchical or irregular designs. Textures in general had no effect or an inconclusive effect on fouling in 46% of cases. However, effective textures more often decreased (35%) rather than increased (19%) fouling. Complex designs were more effective against fouling (51%) than were regular geometric features (32%). Ratios of feature height, width, or pitch to organism body length were significant influences. The authors recommend further research on promising complex and hierarchical texture designs with more test species, as well as field studies to ground-truth laboratory results.
Collapse
Affiliation(s)
- Megan Carve
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Andrew Scardino
- Maritime Division, Defence Science and Technology, Fishermans Bend, Victoria, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
142
|
Antibacterial Properties of Zn Doped Hydrophobic SiO2 Coatings Produced by Sol-Gel Method. COATINGS 2019. [DOI: 10.3390/coatings9060362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacteria existing on the surfaces of various materials can be both a source of infection and an obstacle to the proper functioning of structures. Increased resistance to colonization by microorganisms can be obtained by applying antibacterial coatings. This paper describes the influence of surface wettability and amount of antibacterial additive (Zn) on bacteria settlement on modified SiO2-based coatings. The coatings were made by sol-gel method. The sols were prepared on the basis of tetraethoxysilane (TEOS), modified with methyltrimethoxysilane (MTMS), hexamethyldisilazane (HMDS) and the addition of zinc nitrate or zinc acetate. Roughness and surface wettability tests, as well as study of the chemical structure of the coatings were carried out. The antibacterial properties of the coatings were checked by examining their susceptibility to colonization by Escherichia coli. It was found that the addition of zinc compound reduced the susceptibility to colonization by E. coli, while in the studied range, roughness and hydrophobicity did not affect the level of bacteria adhesion to the coatings.
Collapse
|
143
|
Panter JR, Gizaw Y, Kusumaatmaja H. Multifaceted design optimization for superomniphobic surfaces. SCIENCE ADVANCES 2019; 5:eaav7328. [PMID: 31501770 PMCID: PMC6719413 DOI: 10.1126/sciadv.aav7328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/14/2019] [Indexed: 05/31/2023]
Abstract
Superomniphobic textures are at the frontier of surface design for vast arrays of applications. Despite recent substantial advances in fabrication methods for reentrant and doubly reentrant microstructures, design optimization remains a major challenge. We overcome this in two stages. First, we develop readily generalizable computational methods to systematically survey three key wetting properties: contact angle hysteresis, critical pressure, and minimum energy wetting barrier. For each, we uncover multiple competing mechanisms, leading to the development of quantitative models and correction of inaccurate assumptions in prevailing models. Second, we combine these analyses simultaneously, demonstrating the power of this strategy by optimizing structures that are designed to overcome challenges in two emerging applications: membrane distillation and digital microfluidics. As the wetting properties are antagonistically coupled, this multifaceted approach is essential for optimal design. When large surveys are impractical, we show that genetic algorithms enable efficient optimization, offering speedups of up to 10,000 times.
Collapse
Affiliation(s)
- J R Panter
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Y Gizaw
- Procter and Gamble Co., Winton Hill Business Center, 6210 Center Hill Avenue, Cincinnati, OH, USA
| | - H Kusumaatmaja
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
144
|
Hasan J, Roy A, Chatterjee K, Yarlagadda PKDV. Mimicking Insect Wings: The Roadmap to Bioinspiration. ACS Biomater Sci Eng 2019; 5:3139-3160. [DOI: 10.1021/acsbiomaterials.9b00217] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jafar Hasan
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| | - Anindo Roy
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Prasad K. D. V. Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| |
Collapse
|
145
|
Fraggelakis F, Giannuzzi G, Gaudiuso C, Manek-Hönninger I, Mincuzzi G, Ancona A, Kling R. Double- and Multi-Femtosecond Pulses Produced by Birefringent Crystals for the Generation of 2D Laser-Induced Structures on a Stainless Steel Surface. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1257. [PMID: 30999570 PMCID: PMC6514971 DOI: 10.3390/ma12081257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 11/16/2022]
Abstract
Laser-induced textures have been proven to be excellent solutions for modifying wetting, friction, biocompatibility, and optical properties of solids. The possibility to generate 2D-submicron morphologies by laser processing has been demonstrated recently. Employing double-pulse irradiation, it is possible to control the induced structures and to fabricate novel and more complex 2D-textures. Nevertheless, double-pulse irradiation often implies the use of sophisticated setups for modifying the pulse polarization and temporal profile. Here, we show the generation of homogeneous 2D-LIPSS (laser-induced periodic surface structures) over large areas utilizing a simple array of birefringent crystals. Linearly and circularly polarized pulses were applied, and the optimum process window was defined for both. The results are compared to previous studies, which include a delay line, and the reproducibility between the two techniques is validated. As a result of a systematic study of the process parameters, the obtained morphology was found to depend both on the interplay between fluence and inter-pulse delay, as well as on the number of incident pulses. The obtained structures were characterized via SEM (scanning electron microscopy) and atomic force microscopy. We believe that our results represent a novel approach to surface structuring, primed for introduction in an industrial environment.
Collapse
Affiliation(s)
- Fotis Fraggelakis
- ALPhANOV, Technological Centre for Optics and Lasers, Optic Institute of Aquitaine, rue F. Mitterrand, 33400 Talence, France.
- CELIA, University of Bordeaux-CNRS-CEA UMR5107, 33405 Talence, France.
| | - Giuseppe Giannuzzi
- Istituto di Fotonica e Nanotecnologie (INF)-CNR U.O.S. Bari, via Amendola 173, I-70126 Bari, Italy.
- Dipartimento Interuniversitario di Fisica, Università degli Studi di Bari, via Amendola 173, I-70126 Bari, Italy.
| | - Caterina Gaudiuso
- Istituto di Fotonica e Nanotecnologie (INF)-CNR U.O.S. Bari, via Amendola 173, I-70126 Bari, Italy.
- Dipartimento Interuniversitario di Fisica, Università degli Studi di Bari, via Amendola 173, I-70126 Bari, Italy.
| | | | - Girolamo Mincuzzi
- ALPhANOV, Technological Centre for Optics and Lasers, Optic Institute of Aquitaine, rue F. Mitterrand, 33400 Talence, France.
| | - Antonio Ancona
- Istituto di Fotonica e Nanotecnologie (INF)-CNR U.O.S. Bari, via Amendola 173, I-70126 Bari, Italy.
| | - Rainer Kling
- ALPhANOV, Technological Centre for Optics and Lasers, Optic Institute of Aquitaine, rue F. Mitterrand, 33400 Talence, France.
| |
Collapse
|
146
|
Kurzbaum E, Iliasafov L, Kolik L, Starosvetsky J, Bilanovic D, Butnariu M, Armon R. From the Titanic and other shipwrecks to biofilm prevention: The interesting role of polyphenol-protein complexes in biofilm inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1098-1105. [PMID: 30677974 DOI: 10.1016/j.scitotenv.2018.12.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 05/08/2023]
Abstract
Bacteria attach themselves either reversibly or irreversibly onto practically any surface in aqueous and other environments in order to reproduce, while generating extracellular polymeric substances (EPS) as a supportive structure for biofilm formation. Surfaces with a potential to prevent cellular attachment and aggregation (biofilm) would be extremely useful in environmental, biotechnological, medical and industrial applications. The scientific community is currently focusing on the design of micro- and nano-scale textured surfaces with antibacterial and/or antifouling properties (e.g., filtration membranes). Several serum and tissue proteins promote bacterial adhesion (for example, albumin, fibronectin and fibrinogen), whereas polyphenols form complexes with proteins which change their structural, functional and nutritional properties. For example, tannic acid, a compound composed of polygalloyl glucoses or polygalloyl quinic acid esters and several galloyl moieties, inhibits the growth of many bacterial strains. The present review is based on different nautical archaeology research data, and asks a simple but as yet unanswered question: What is the chemistry that prevents leather biodegradation by environmental bacteria and/or formation of biofilms? Future research should answer these questions, which are highly important for biofilm prevention.
Collapse
Affiliation(s)
- Eyal Kurzbaum
- Shamir Research Institute, University of Haifa, P.O. Box 97, Qatzrin 12900, Israel; Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Haifa 3498838, Israel.
| | - Luba Iliasafov
- Faculty of Civil & Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Luba Kolik
- Faculty of Civil & Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Jeana Starosvetsky
- Faculty of Civil & Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Dragoljub Bilanovic
- Environmental, Economics, Earth, and Space Studies, Bemidji State University, Bemidji, MN 56601, USA.
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania, Timisoara 300645, Romania
| | - Robert Armon
- Faculty of Civil & Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
147
|
Elbourne A, Chapman J, Gelmi A, Cozzolino D, Crawford RJ, Truong VK. Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces. J Colloid Interface Sci 2019; 546:192-210. [PMID: 30921674 DOI: 10.1016/j.jcis.2019.03.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
The attachment of single-celled organisms, namely bacteria and fungi, to abiotic surfaces is of great interest to both the scientific and medical communities. This is because the interaction of such cells has important implications in a range of areas, including biofilm formation, biofouling, antimicrobial surface technologies, and bio-nanotechnologies, as well as infection development, control, and mitigation. While central to many biological phenomena, the factors which govern microbial surface attachment are still not fully understood. This lack of understanding is a direct consequence of the complex nature of cell-surface interactions, which can involve both specific and non-specific interactions. For applications involving micro- and nano-structured surfaces, developing an understanding of such phenomenon is further complicated by the diverse nature of surface architectures, surface chemistry, variation in cellular physiology, and the intended technological output. These factors are extremely important to understand in the emerging field of antibacterial nanostructured surfaces. The aim of this perspective is to re-frame the discussion surrounding the mechanism of nanostructured-microbial surface interactions. Broadly, the article reviews our current understanding of these phenomena, while highlighting the knowledge gaps surrounding the adhesive forces which govern bacterial-nanostructure interactions and the role of cell membrane rigidity in modulating surface activity. The roles of surface charge, cell rigidity, and cell-surface adhesion force in bacterial-surface adsorption are discussed in detail. Presently, most studies have overlooked these areas, which has left many questions unanswered. Further, this perspective article highlights the numerous experimental issues and misinterpretations which surround current studies of antibacterial nanostructured surfaces.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia.
| | - James Chapman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Amy Gelmi
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Daniel Cozzolino
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
148
|
Elbourne A, Dupont MF, Collett S, Truong VK, Xu X, Vrancken N, Baulin V, Ivanova EP, Crawford RJ. Imaging the air-water interface: Characterising biomimetic and natural hydrophobic surfaces using in situ atomic force microscopy. J Colloid Interface Sci 2019; 536:363-371. [DOI: 10.1016/j.jcis.2018.10.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022]
|
149
|
Elbourne A, Coyle VE, Truong VK, Sabri YM, Kandjani AE, Bhargava SK, Ivanova EP, Crawford RJ. Multi-directional electrodeposited gold nanospikes for antibacterial surface applications. NANOSCALE ADVANCES 2019; 1:203-212. [PMID: 36132449 PMCID: PMC9473181 DOI: 10.1039/c8na00124c] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 05/14/2023]
Abstract
The incorporation of high-aspect-ratio nanostructures across surfaces has been widely reported to impart antibacterial characteristics to a substratum. This occurs because the presence of such nanostructures can induce the mechanical rupture of attaching bacteria, causing cell death. As such, the development of high-efficacy antibacterial nano-architectures fabricated on a variety of biologically relevant materials is critical to the wider acceptance of this technology. In this study, we report the antibacterial behavior of a series of substrata containing multi-directional electrodeposited gold (Au) nanospikes, as both a function of deposition time and precursor concentration. Firstly, the bactericidal efficacy of substrata containing Au nanospikes was assessed as a function of deposition time to elucidate the nanopattern that exhibited the greatest degree of biocidal activity. Here, it was established that multi-directional nanospikes with an average height of ∼302 nm ± 57 nm (formed after a deposition time of 540 s) exhibited the greatest level of biocidal activity, with ∼88% ± 8% of the bacterial cells being inactivated. The deposition time was then kept constant, while the concentration of the HAuCl4 and Pb(CH3COO)2 precursor materials (used for the formation of the Au nanospikes) was varied, resulting in differing nanospike architectures. Altering the Pb(CH3COO)2 precursor concentration produced multi-directional nanostructures with a wider distribution of heights, which increased the average antibacterial efficacy against both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Importantly, the in situ electrochemical fabrication method used in this work is robust and straightforward, and is able to produce highly reproducible antibacterial surfaces. The results of this research will assist in the wider utilization of mechano-responsive nano-architectures for antimicrobial surface technologies.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Victoria E Coyle
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Vi Khanh Truong
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology Haw-thorn VIC 3122 Australia
- ARC Research Hub for Australian Steel Manufacturing Wollongong New South Wales Australia
| | - Ylias M Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Ahmad E Kandjani
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| |
Collapse
|
150
|
Ziegler N, Sengstock C, Mai V, Schildhauer TA, Köller M, Ludwig A. Glancing-Angle Deposition of Nanostructures on an Implant Material Surface. NANOMATERIALS 2019; 9:nano9010060. [PMID: 30621132 PMCID: PMC6358796 DOI: 10.3390/nano9010060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 01/09/2023]
Abstract
Cell-compatible and antibacterial surfaces are needed for implants, which frequently have complex and rough surfaces. Bio-inspired columnar nanostructures can be grown on flat substrates; however, the application of these nanostructures on clinically relevant, complex, and rough surfaces was pending. Therefore, a titanium plasma spray (TPS) implant surface was coated with titanium nano-spikes via glancing angle magnetron sputter deposition (GLAD) at room temperature. Using GLAD, it was possible to cover the three-dimensional, highly structured macroscopic surface (including cavities, niches, clefts, and curved areas) of the TPS homogeneously with nano-spikes (TPS+), creating a cell-compatible and antibacterial surface. The adherence and spreading of mesenchymal stem cells (MSC) were similar for TPS and TPS+ surfaces. However, MSC adherent to TPS+ expressed less and shorter pseudopodia. The induced osteogenic response of MSC was significantly increased in cells cultivated on TPS+ compared with TPS. In addition, Gram-negative bacteria (E. coli) adherent to the nano-spikes were partly destructed by a physico-mechanical mechanism; however, Gram-positive bacteria (S. aureus) were not significantly damaged.
Collapse
Affiliation(s)
- Nadine Ziegler
- Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Christina Sengstock
- Surgical Research, BG University Hospital Bergmannsheil, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Viola Mai
- Mathys Ltd. Bettlach, Robert Mathys Straße 5, CH-2544 Bettlach, Switzerland.
| | - Thomas A Schildhauer
- Surgical Research, BG University Hospital Bergmannsheil, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Manfred Köller
- Surgical Research, BG University Hospital Bergmannsheil, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Alfred Ludwig
- Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|