101
|
Abstract
Vitamin D is a member of the superfamily of nuclear steroid transcription regulators and as such, exerts transcriptional control over a large number of genes. Several other steroids, such as thyroid hormones, vitamin A, androgens and the glucocorticoids, are known as 'neurosteroids' and their role in brain development and function is well defined. It has only been in the last decade or so that vitamin D has been thought to function as a neurosteroid. In this review we have collated a diverse array of data describing the presence of vitamin D metabolites and the receptor in the brain, the evidence that vitamin D may be an important modulator of brain development, and the potential role of vitamin D in neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lauren R Harms
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4072, Australia.
| | | | | | | |
Collapse
|
102
|
McGrath JJ, Burne TH, Féron F, Mackay-Sim A, Eyles DW. Developmental vitamin D deficiency and risk of schizophrenia: a 10-year update. Schizophr Bull 2010; 36:1073-8. [PMID: 20833696 PMCID: PMC2963051 DOI: 10.1093/schbul/sbq101] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is an urgent need to generate and test candidate risk factors that may explain gradients in the incidence of schizophrenia. Based on clues from epidemiology, we proposed that developmental vitamin D deficiency may contribute to the risk of developing schizophrenia. This hypothesis may explain diverse epidemiological findings including season of birth, the latitude gradients in incidence and prevalence, the increased risk in dark-skinned migrants to certain countries, and the urban-rural gradient. Animal experiments demonstrate that transient prenatal hypovitaminosis D is associated with persisting changes in brain structure and function, including convergent evidence of altered dopaminergic function. A recent case-control study based on neonatal blood samples identified a significant association between neonatal vitamin D status and risk of schizophrenia. This article provides a concise summary of the epidemiological and animal experimental research that has explored this hypothesis.
Collapse
Affiliation(s)
- John J. McGrath
- Queensland Center for Mental Health Research, The Park Center for Mental Health, Wacol, Queensland 4076, Australia,Queensland Brain Institute, University of Queensland, St Lucia, Queensland 4076 Australia,Department of Psychiatry, University of Queensland, St Lucia, Queensland 4076 Australia,To whom correspondence should be addressed; tel: +61-7-3346-6372, fax: +61-7-3271-8698, e-mail:
| | - Thomas H. Burne
- Queensland Center for Mental Health Research, The Park Center for Mental Health, Wacol, Queensland 4076, Australia,Queensland Brain Institute, University of Queensland, St Lucia, Queensland 4076 Australia
| | - François Féron
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (CNRS UMR 6184), Université de la Méditerranée (Aix-Marseille II), Faculté de Médecine Nord, Institut Fédératif de Recherche Jean Roche (IFR11), Marseille, France
| | - Allan Mackay-Sim
- National Center for Adult Stem Cell Research, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland 4111, Australia
| | - Darryl W. Eyles
- Queensland Center for Mental Health Research, The Park Center for Mental Health, Wacol, Queensland 4076, Australia,Queensland Brain Institute, University of Queensland, St Lucia, Queensland 4076 Australia
| |
Collapse
|
103
|
Wilson C, Terry AV. Neurodevelopmental animal models of schizophrenia: role in novel drug discovery and development. ACTA ACUST UNITED AC 2010; 4:124-37. [PMID: 20643635 DOI: 10.3371/csrp.4.2.4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Schizophrenia is a devastating mental illness that is associated with a lifetime of disability. For patients to successfully function in society, the amelioration of disease symptoms is imperative. The recently published results of two large antipsychotic clinical trials (e.g., CATIE, CUtLASS) clearly exemplified the limitations of currently available treatment options for schizophrenia, and further highlighted the critical need for novel drug discovery and development in this field. One of the biggest challenges in schizophrenia-related drug discovery is to find an appropriate animal model of the illness so that novel hypotheses can be tested at the basic science level. A number of pharmacological, genetic, and neurodevelopmental models have been introduced; however, none of these models has been rigorously evaluated for translational relevance or to satisfy requirements of "face," "construct" and "predictive" validity. Given the apparent polygenic nature of schizophrenia and the limited translational significance of pharmacological models, neurodevelopmental models may offer the best chance of success. The purpose of this review is to provide a general overview of the various neurodevelopmental models of schizophrenia that have been introduced to date, and to summarize their behavioral and neurochemical phenotypes that may be useful from a drug discovery and development standpoint. While it may be that, in the final analysis, no single animal model will satisfy all the requirements necessary for drug discovery purposes, several of the models may be useful for modeling various phenomenological and pathophysiological components of schizophrenia that could be targeted independently with separate molecules or multi-target drugs.
Collapse
Affiliation(s)
- Christina Wilson
- Department of Pharmacology and Toxicology, School of Graduate Studies, Medical College of Georgia, Augusta, GA 30912-2300, USA
| | | |
Collapse
|
104
|
Habek M, Hojsak I, Brinar VV. Nutrition in multiple sclerosis. Clin Neurol Neurosurg 2010; 112:616-20. [DOI: 10.1016/j.clineuro.2010.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/28/2010] [Accepted: 03/29/2010] [Indexed: 12/22/2022]
|
105
|
Neurosteroid vitamin D system as a nontraditional drug target in neuropsychopharmacology. Behav Pharmacol 2010; 21:420-6. [DOI: 10.1097/fbp.0b013e32833c850f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Fernandes de Abreu DA, Ibrahim EC, Boucraut J, Khrestchatisky M, Féron F. Severity of experimental autoimmune encephalomyelitis is unexpectedly reduced in mice born to vitamin D-deficient mothers. J Steroid Biochem Mol Biol 2010; 121:250-3. [PMID: 20214984 DOI: 10.1016/j.jsbmb.2010.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/02/2010] [Accepted: 03/01/2010] [Indexed: 11/23/2022]
Abstract
Accumulating data indicate that vitamin D, a sun-induced hormone, plays a key role in multiple sclerosis (MS) etiology. Notably, it has been shown that there is a remarkable season of birth effect in MS. We surmised that gestational vitamin D deficiency is a risk factor for MS. To test this hypothesis, a vitamin D deficiency was induced in C57BL/6 female mice 6 weeks prior to conception and prolonged until offspring birth. Contrary to our prediction, we show here that adult offspring exposed to developmental vitamin D deficiency (DVD) developed a striking milder and delayed experimental autoimmune encephalomyelitis (EAE), when compared to control offspring. Using reverse transcription and quantitative real-time PCR, we measured the expression level of 22 candidate transcripts in the spleen, the cerebrum and the spinal cord, at Day0 and Day30 post-immunization. We report here that, at Day30 post-immunization, TNF, osteopontin, H2-Eb were over-expressed and IFN was under-expressed in the spinal cord of control mice and not in DVD mice. Another discrepancy between nervous and immune systems was observed: expression of IL4 was dysregulated exclusively in the spleen. Reduced symptom severity in DVD mice can partially be explained by a nervous system-restricted over-expression of vitamin D receptor (VDR), two heat shock proteins (HSP90, HSPa8) and FK506 binding protein 1a (FKBP1a), at Day0. Our clinical test and molecular findings converge to indicate that maternal hypovitaminosis D imprints the foetus and alters the susceptibility of the offspring to EAE. We propose a new hypothesis to explain our unexpected observations.
Collapse
|
107
|
Handunnetthi L, Ramagopalan SV, Ebers GC. Multiple sclerosis, vitamin D, and HLA-DRB1*15. Neurology 2010; 74:1905-10. [PMID: 20530326 DOI: 10.1212/wnl.0b013e3181e24124] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) has a remarkable geographic distribution inversely paralleling that of regional ultraviolet radiation, supporting the hypothesis that vitamin D plays a central role in the disease etiology. The major histocompatibility complex exerts the largest genetic contribution to MS susceptibility, but much risk remains unexplained and direct gene-environment interaction is a strong candidate for this additional risk. Such interactions may hold the key for disease prevention. RECENT DEVELOPMENTS Several recent studies strengthen the candidacy of vitamin D as a key player in the causal cascade to MS. This includes a newly identified gene-environment interaction between vitamin D and the main MS-linked HLA-DRB1*1501 allele and evidence showing that vitamin D levels are significantly lower in patients with MS as compared to controls. Also, a recent study in twins with MS supports the notion that vitamin D levels are under regulation by genetic variation in the 1alpha-hydroxylase and vitamin D receptor genes, perhaps pointing to their importance in the disease pathogenesis. CONCLUSIONS These findings have important practical implications for studies of disease mechanisms and prevention. Missing genetic risk may partly be explained by gene-environment interactions. More practically important is that these observations highlight a pressing need to determine if vitamin D supplementation can reduce the risk of multiple sclerosis (MS). However, the timing of action and the tissues in which this interaction takes place are not clear and future studies in prospective cohorts and animal models will be essential for deciphering the role of vitamin D in MS.
Collapse
Affiliation(s)
- Lahiru Handunnetthi
- Wellcome Trust Centre for Human Genetics and the Department of Clinical Neurology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
108
|
Staples J, Ponsonby AL, Lim L. Low maternal exposure to ultraviolet radiation in pregnancy, month of birth, and risk of multiple sclerosis in offspring: longitudinal analysis. BMJ 2010; 340:c1640. [PMID: 21030361 PMCID: PMC2862149 DOI: 10.1136/bmj.c1640] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To investigate the distribution of month of birth in people with multiple sclerosis in Australia. To use the large regional and seasonal variation in ambient ultraviolet radiation in Australia to explore the association between exposure to ultraviolet radiation during pregnancy and subsequent risk of multiple sclerosis in offspring. DESIGN Data were gathered on birth month and year (1920-1950), sex, and state of birth for all patients surveyed in 1981 in Queensland, Western Australia, New South Wales (including Australian Capital Territory), South Australia, and Hobart (Tasmania). Population denominators were derived from the 1981 census and supplementary birth registration data. A variable for exposure to ambient ultraviolet radiation "at birth" was generated from monthly averages of daily total ambient ultraviolet radiation for each region. Negative binomial regression models were used to investigate exposure to ambient ultraviolet radiation at birth and at various intervals before birth. SETTING Patient data from multiple sclerosis prevalence surveys carried out in 1981; 1981 Australian census (giving the total number of people born in Australia and still alive and living in Australia in 1981 by year of birth 1920-50); supplementary Australian birth registration data covering the same birth years by month and state. PARTICIPANTS 1524 patients with multiple sclerosis born in Australia 1920-50 from total population of 2 468 779. MAIN OUTCOME MEASURE Cumulative incidence rate of multiple sclerosis. RESULTS There was a pattern of risk of multiple sclerosis with month of birth (adjusted incidence rate ratio 1.32, 95% confidence interval 1.10 to 1.58, P<0.01, for those born in November-December compared with those born in May-June). This pattern mirrored that previously reported in the northern hemisphere. Region of birth was related to risk. After adjustment for region of birth and other factors, there was an inverse association between ambient ultraviolet radiation in the first trimester and risk of multiple sclerosis (with ≥25 erythemal (skin reddening) dose units as reference (that is, adjusted incidence rate ratio=1.00), the rates were 1.54 (1.10 to 2.16) for 20-<25 units; 1.58 (1.12 to 2.22) for 15-<20 units; 1.65 (1.17 to 2.33) for 10-<15 units; 1.65 (1.18 to 2.29) for 5-<10 units; and 1.67 (1.18 to 2.37) for <5 units). After adjustment for this exposure during early pregnancy, there was no residual association between month of birth and multiple sclerosis. CONCLUSION Region of birth and low maternal exposure to ultraviolet radiation in the first trimester are independently associated with subsequent risk of multiple sclerosis in offspring in Australia.
Collapse
Affiliation(s)
- Judith Staples
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
109
|
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010; 90:285-326. [DOI: 10.1016/j.pneurobio.2009.10.018] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/17/2022]
|
110
|
Fernandes de Abreu DA, Nivet E, Baril N, Khrestchatisky M, Roman F, Féron F. Developmental vitamin D deficiency alters learning in C57Bl/6J mice. Behav Brain Res 2010; 208:603-8. [PMID: 20079764 DOI: 10.1016/j.bbr.2010.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have highlighted a season of birth effect in multiple sclerosis and schizophrenia. As a result, low prenatal vitamin D has been proposed as a candidate risk factor for these brain diseases, with cognitive impairments. In order to further investigate the long-term consequences of a transient gestational hypovitaminosis D, we used a mouse developmental vitamin D (DVD) deficiency model. Female C57Bl/6J mice were fed a vitamin D-free diet for 6 weeks prior to conception and during gestation. At birth, dams and their offspring were fed a normal vitamin D-containing diet. The adult offspring underwent a learning test based on olfactory cues, at 30 weeks and 60 weeks of age. In addition, using magnetic resonance imaging (MRI), volumes of cerebrum, hippocampus and lateral ventricles were measured at 30 weeks and 70 weeks of age. We found that DVD-deficient mice, when compared to control animals at Week 30, displayed impaired learning and smaller lateral ventricles. At Weeks 60-70, both groups deteriorated when compared to young mice and no significant difference was observed between groups. This study confirms that transient prenatal vitamin D deficiency alters brain development and functioning and induces cognitive impairments in the young adult offspring.
Collapse
|
111
|
Abstract
The neurodevelopmental hypothesis of schizophrenia asserts that the underlying pathology of schizophrenia has its roots in brain development and that these brain abnormalities do not manifest themselves until adolescence or early adulthood. Animal models based on developmental manipulations have provided insight into the vulnerability of the developing fetus and the importance of the early environment for normal maturation. These models have provided a wide range of validated approaches to answer questions regarding environmental influences on both neural and behavioral development. In an effort to better understand the developmental hypothesis of schizophrenia, animal models have been developed, which seek to model the etiology and/or the pathophysiology of schizophrenia or specific behaviors associated with the disease. Developmental models specific to schizophrenia have focused on epidemiological risk factors (e.g., prenatal viral insult, birth complications) or more heuristic models aimed at understanding the developmental neuropathology of the disease (e.g., ventral hippocampal lesions). The combined approach of behavioral and neuroanatomical evaluation of these models strengthens their utility in improving our understanding of the pathophysiology of schizophrenia and developing new treatment strategies.
Collapse
Affiliation(s)
- Susan B Powell
- University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0804, USA.
| |
Collapse
|
112
|
Vitamin D, a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology 2009; 34 Suppl 1:S265-77. [PMID: 19545951 DOI: 10.1016/j.psyneuen.2009.05.023] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/20/2009] [Accepted: 05/20/2009] [Indexed: 01/26/2023]
Abstract
It has been known for more than 20 years that vitamin D exerts marked effects on immune and neural cells. These non-classical actions of vitamin D have recently gained a renewed attention since it has been shown that diminished levels of vitamin D induce immune-mediated symptoms in animal models of autoimmune diseases and is a risk factor for various brain diseases. For example, it has been demonstrated that vitamin D (i) modulates the production of several neurotrophins, (ii) up-regulates Interleukin-4 and (iii) inhibits the differentiation and survival of dendritic cells, resulting in impaired allo-reactive T cell activation. Not surprisingly, vitamin D has been found to be a strong candidate risk-modifying factor for Multiple Sclerosis (MS), the most prevalent neurological and inflammatory disease in the young adult population. Vitamin D is a seco-steroid hormone, produced photochemically in the animal epidermis. The action of ultraviolet light (UVB) on 7-dehydrocholesterol results in the production of pre-vitamin D which, after thermo-conversion and two separate hydroxylations, gives rise to the active 1,25-dihydroxyvitamin D. Vitamin D acts through two types of receptors: (i) the vitamin D receptor (VDR), a member of the steroid/thyroid hormone superfamily of transcription factors, and (ii) the MARRS (membrane associated, rapid response steroid binding) receptor, also known as Erp57/Grp58. In this article, we review some of the mechanisms that may underlie the role of vitamin D in various brain diseases. We then assess how vitamin D imbalance may lay the foundation for a range of adult disorders, including brain pathologies (Parkinson's disease, epilepsy, depression) and immune-mediated disorders (rheumatoid arthritis, type I diabetes mellitus, systemic lupus erythematosus or inflammatory bowel diseases). Multidisciplinary scientific collaborations are now required to fully appreciate the complex role of vitamin D in mammal metabolism.
Collapse
|
113
|
Grecksch G, Rüthrich H, Höllt V, Becker A. Transient prenatal vitamin D deficiency is associated with changes of synaptic plasticity in the dentate gyrus in adult rats. Psychoneuroendocrinology 2009; 34 Suppl 1:S258-64. [PMID: 19647946 DOI: 10.1016/j.psyneuen.2009.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/24/2009] [Accepted: 07/07/2009] [Indexed: 11/26/2022]
Abstract
Transient prenatal vitamin D deficiency is considered a neurodevelopmental animal model in schizophrenia research. Vitamin D deficiency in female rats causes morphological, cellular and molecular changes in the brain and alters behaviour and nerve growth factors expression in their offspring. Prenatal depleted animals showed a significant impairment of latent inhibition, a feature often associated with schizophrenia and of hole board habituation. Interestingly, memory consolidation of brightness discrimination was improved. Possible functional effects of altered brain development that results from prenatal vitamin D deficiency were characterized by investigation of potentiation phenomena in the hippocampus in freely moving rats. Transient prenatal vitamin D deficiency induced an enhancement of long-term potentiation (LTP) using either weak tetanic or strong tetanic stimulation, whereas the response to test stimuli was not changed. The classic neuroleptic drug haloperidol (Hal) and the atypical neuroleptic risperidone (Ris) in doses, which normalized behavioural disturbances in prenatal vitamin D-deficient animals without any side effects on the normal behaviour decreased the enhanced LTP in the experimental group to control level. Interestingly, the effect of the substances was different in experimental and control rats. The LTP was enhanced in control animals by the low doses of the drugs effective in our behavioural experiments. It can be suggested, that changes in brain development induced by prenatal vitamin D deficiency lead to specific functional alterations in hippocampal synaptic plasticity. LTP is considered a cellular correlate of learning and memory. The better retention performance in brightness discrimination seems in accordance with enhanced potentiation level.
Collapse
Affiliation(s)
- Gisela Grecksch
- Otto-von-Guericke University Magdeburg, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|
114
|
Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinology 2009; 34 Suppl 1:S247-57. [PMID: 19500914 DOI: 10.1016/j.psyneuen.2009.04.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/07/2009] [Accepted: 04/26/2009] [Indexed: 01/24/2023]
Abstract
There is now clear evidence that vitamin D is involved in brain development. Our group is interested in environmental factors that shape brain development and how this may be relevant to neuropsychiatric diseases including schizophrenia. The origins of schizophrenia are considered developmental. We hypothesised that developmental vitamin D (DVD) deficiency may be the plausible neurobiological explanation for several important epidemiological correlates of schizophrenia namely: (1) the excess winter/spring birth rate, (2) increased incidence of the disease in 2nd generation Afro-Caribbean migrants and (3) increased urban birth rate. Moreover we have published two pieces of direct epidemiological support for this hypothesis in patients. In order to establish the "Biological Plausibility" of this hypothesis we have developed an animal model to study the effect of DVD deficiency on brain development. We do this by removing vitamin D from the diet of female rats prior to breeding. At birth we return all dams to a vitamin D containing diet. Using this procedure we impose a transient, gestational vitamin D deficiency, while maintaining normal calcium levels throughout. The brains of offspring from DVD-deficient dams are characterised by (1) a mild distortion in brain shape, (2) increased lateral ventricle volumes, (3) reduced differentiation and (4) diminished expression of neurotrophic factors. As adults, the alterations in ventricular volume persist and alterations in brain gene and protein expression emerge. Adult DVD-deficient rats also display behavioural sensitivity to agents that induce psychosis (the NMDA antagonist MK-801) and have impairments in attentional processing. In this review we summarise the literature addressing the function of vitamin D on neuronal and non-neuronal cells as well as in vivo results from DVD-deficient animals. Our conclusions from these data are that vitamin D is a plausible biological risk factor for neuropsychiatric disorders and that vitamin D acts as a neurosteroid with direct effects on brain development.
Collapse
|
115
|
Fernandes de Abreu DA, Babron MC, Babron MCI, Rebeix I, Rebeix C, Fontenille C, Fontenille J, Yaouanq J, Yaouanq D, Brassat D, Brassat B, Fontaine B, Fontaine F, Clerget-Darpoux F, Jehan F, Feron F. Season of birth and not vitamin D receptor promoter polymorphisms is a risk factor for multiple sclerosis. Mult Scler 2009; 15:1146-52. [PMID: 19965563 DOI: 10.1177/1352458509106780] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both genetic and environmental factors contribute to multiple sclerosis, the most common neurodegenerative disorder with onset in young adults. The objective of the current study is, based on the hypothesis that environmentally predisposed individuals are at risk for multiple sclerosis, to investigate whether they also carry genetic variants within the vitamin D machinery. Using medical files and DNA samples from 583 trios (a patient and both parents) of the French Multiple Sclerosis Genetics Group as well as data from the French Statistics Bureau, we aimed to assess whether: (1) a seasonality of birth was observed in French multiple sclerosis patients; (2) three single nucleotide polymorphisms within the promoter region of the vitamin D receptor were associated with multiple sclerosis susceptibility; and (3) the combination of a high risk month of birth and vitamin D receptor polymorphisms were correlated to multiple sclerosis incidence. We observed a significantly reduced number of individuals born in November who were later diagnosed as multiple sclerosis patients. However, we found no association between the three studied vitamin D receptor polymorphisms and multiple sclerosis. In conclusion, our data suggest that high levels of vitamin D during the third trimester of pregnancy could be a protective factor for multiple sclerosis.
Collapse
Affiliation(s)
- D A Fernandes de Abreu
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), CNRS UMR 6184, IFR Jean Roche, Faculté de Médecine Nord, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Barrey E, Mucher E, Jeansoule N, Larcher T, Guigand L, Herszberg B, Chaffaux S, Guérin G, Mata X, Benech P, Canale M, Alibert O, Maltere P, Gidrol X. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions. BMC Vet Res 2009; 5:29. [PMID: 19664222 PMCID: PMC2741442 DOI: 10.1186/1746-6148-5-29] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 08/07/2009] [Indexed: 12/03/2022] Open
Abstract
Background Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM). It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Results Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA) and 5 heterozygous (GA) PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses. Gene expression analysis revealed 129 genes significantly modulated (p < 0.05). The following genes were up-regulated over 2 fold: IL18, CTSS, LUM, CD44, FN1, GST01. The most down-regulated genes were the following: mitochondrial tRNA, SLC2A2, PRKCα, VEGFα. Data mining analysis showed that protein synthesis, apoptosis, cellular movement, growth and proliferation were the main cellular functions significantly associated with the modulated genes (p < 0.05). Several up-regulated genes, especially IL18, revealed a severe muscular inflammation in PSSM muscles. The up-regulation of glycogen synthase kinase-3 (GSK3β) under its active form could be responsible for glycogen synthase (GYS1) inhibition and hypoxia-inducible factor (HIF1α) destabilization. Conclusion The main disorders observed in PSSM muscles could be related to mitochondrial dysfunctions, glycogenesis inhibition and the chronic hypoxia of the PSSM muscles.
Collapse
Affiliation(s)
- Eric Barrey
- Unité de Biologie Intégrative des Adaptations à l'Exercice -INSERM 902, Genopole Evry, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Grant WB, Soles CM. Epidemiologic evidence supporting the role of maternal vitamin D deficiency as a risk factor for the development of infantile autism. DERMATO-ENDOCRINOLOGY 2009; 1:223-8. [PMID: 20592795 PMCID: PMC2835879 DOI: 10.4161/derm.1.4.9500] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 02/04/2023]
Abstract
This study examines whether maternal vitamin D deficiency is a risk factor for infantile autism disease (IAD). We used epidemiologic data seasonal variation of birth rates and prevalence of IAD for cohorts born before 1985. For seven studies reporting spring-to-summer excess birth rates for IAD, the season progressed from broad near 30 degrees N latitude, spring/summer in midlatitudes, to winter at the highest latitude. Also, using data from 10 studies, we found a strong effective latitudinal (related to wintertime solar ultraviolet B radiation) increase in IAD prevalence. These findings are consistent with maternal vitamin D deficiency's being a risk factor for IAD, possibly by affecting fetal brain development as well as possibly by affecting maternal immune system status during pregnancy. Further investigation of this hypothesis is warranted.
Collapse
|
118
|
Harvey L, Burne T, Cui X, Mackay-Sim A, Eyles D, McGrath J. Vitamin D and the Brain: A Neuropsychiatric Perspective. Clin Rev Bone Miner Metab 2009. [DOI: 10.1007/s12018-009-9031-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
119
|
Abstract
Observational studies document a positive relationship between vitamin D from the environment (sunlight or diet), circulating vitamin D status, and improved symptoms or prevention of multiple sclerosis (MS). Experimental animal models of MS reproduce the beneficial effects of vitamin D and 1,25(OH)(2)D(3). The geographical distribution of MS can be explained by both the hygiene hypothesis and the vitamin D hypothesis. It therefore seems more likely that both hypotheses may be correct and that there are interactions between multiple environmental factors like vitamin D and the rate of infection that might explain the etiology of MS. The effects of vitamin D on the immune system and in the CNS have begun to be described and there is some information on the mechanisms underlying the effects of vitamin D in MS. A need exists for better understanding of the interactions of the environmental factors on MS, communication with the physicians treating MS patients as to the benefits of vitamin D, and clinical interventions with both vitamin D and analogs of 1,25(OH)(2)D(3).
Collapse
Affiliation(s)
- Margherita T Cantorna
- The Center for Immunology and Infectious Disease, Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
120
|
Abstract
Gestational vitamin D deficiency causes permanent changes in the developing rat brain. Not only does it alter brain gene and protein expression, deficiency disrupts the balance between neuronal stem cell proliferation and programmed cell death in the offspring. These data are particularly relevant in light of new work showing a high prevalence of vitamin D deficiency in humans.
Collapse
Affiliation(s)
- Cathy W Levenson
- Program in Neuroscience and Department of Nutrition, Food and Exercise Sciences at Florida State University, Tallahassee, Florida 32306-4340, USA.
| | | |
Collapse
|
121
|
Chabas JF, Alluin O, Rao G, Garcia S, Lavaut MN, Risso JJ, Legre R, Magalon G, Khrestchatisky M, Marqueste T, Decherchi P, Feron F. Vitamin D2 potentiates axon regeneration. J Neurotrauma 2009; 25:1247-56. [PMID: 18986226 DOI: 10.1089/neu.2008.0593] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To date, the use of autograft tissue remains the "gold standard" technique for repairing transected peripheral nerves. However, the recovery is suboptimal, and neuroactive molecules are required. In the current study, we focused our attention on vitamin D, an FDA-approved molecule whose neuroprotective and neurotrophic actions are increasingly recognized. We assessed the therapeutic potential of ergocalciferol--the plant-derived form of vitamin D, named vitamin D2--in a rat model of peripheral nerve injury and repair. The left peroneal nerve was cut out on a length of 10 mm and immediately autografted in an inverted position. After surgery, animals were treated with ergocalciferol (100 IU/kg/day) and compared to untreated animals. Functional recovery of hindlimb was measured weekly, during 10 weeks post-surgery, using a walking track apparatus and a numerical camcorder. At the end of this period, motor and sensitive responses of the regenerated axons were calculated and histological analysis was performed. We observed that vitamin D2 significantly (i) increased axogenesis and axon diameter; (ii) improved the responses of sensory neurons to metabolites such as KCl and lactic acid; and (iii) induced a fast-to-slow fiber type transition of the Tibialis anterior muscle. In addition, functional recovery was not impaired by vitamin D supplementation. Altogether, these data indicate that vitamin D potentiates axon regeneration. Pharmacological studies with various concentrations of the two forms of vitamin D (ergocalciferol vs. cholecalciferol) are now required before recommending this molecule as a potential supplemental therapeutic approach following nerve injury.
Collapse
Affiliation(s)
- Jean-François Chabas
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, CNRS UMR 6184, Université de la Méditerranée, Service de Chirurgie de la Main, Hopitaux de Marseille, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14-3-3 protein members, implicating these chaperone proteins and the neurotransmitter pathways they support as possible drug targets. Brains from persons with major depressive disorder reveal decreased expression for genes in glutamate transport and metabolism, neurotrophic signaling (eg, FGF, BDNF and VGF), and MAP kinase pathways. Increases in these pathways in the brains of animals exposed to electroconvulsive shock and antidepressant treatments identify neurotrophic and angiogenic growth factors and second messenger stimulation as therapeutic approaches for the treatment of depression.
Collapse
|
123
|
Lucas RM, Ponsonby AL, Pasco JA, Morley R. Future health implications of prenatal and early-life vitamin D status. Nutr Rev 2008; 66:710-20. [DOI: 10.1111/j.1753-4887.2008.00126.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
124
|
Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 2008; 29:726-76. [PMID: 18694980 PMCID: PMC2583388 DOI: 10.1210/er.2008-0004] [Citation(s) in RCA: 1158] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 07/08/2008] [Indexed: 02/06/2023]
Abstract
The vitamin D endocrine system is essential for calcium and bone homeostasis. The precise mode of action and the full spectrum of activities of the vitamin D hormone, 1,25-dihydroxyvitamin D [1,25-(OH)(2)D], can now be better evaluated by critical analysis of mice with engineered deletion of the vitamin D receptor (VDR). Absence of a functional VDR or the key activating enzyme, 25-OHD-1alpha-hydroxylase (CYP27B1), in mice creates a bone and growth plate phenotype that mimics humans with the same congenital disease or severe vitamin D deficiency. The intestine is the key target for the VDR because high calcium intake, or selective VDR rescue in the intestine, restores a normal bone and growth plate phenotype. The VDR is nearly ubiquitously expressed, and almost all cells respond to 1,25-(OH)(2)D exposure; about 3% of the mouse or human genome is regulated, directly and/or indirectly, by the vitamin D endocrine system, suggesting a more widespread function. VDR-deficient mice, but not vitamin D- or 1alpha-hydroxylase-deficient mice, and man develop total alopecia, indicating that the function of the VDR and its ligand is not fully overlapping. The immune system of VDR- or vitamin D-deficient mice is grossly normal but shows increased sensitivity to autoimmune diseases such as inflammatory bowel disease or type 1 diabetes after exposure to predisposing factors. VDR-deficient mice do not have a spontaneous increase in cancer but are more prone to oncogene- or chemocarcinogen-induced tumors. They also develop high renin hypertension, cardiac hypertrophy, and increased thrombogenicity. Vitamin D deficiency in humans is associated with increased prevalence of diseases, as predicted by the VDR null phenotype. Prospective vitamin D supplementation studies with multiple noncalcemic endpoints are needed to define the benefits of an optimal vitamin D status.
Collapse
Affiliation(s)
- Roger Bouillon
- Katholieke Universiteit Leuven, Laboratory of Experimental Medicine and Endocrinology, Herestraat 49, O&N 1 bus 902, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Schizophrenia is a disease syndrome with major public health implications. The primary advance in pharmacotherapeutics was in 1952 with the introduction of antipsychotic medications (ie, chlorpromazine, dopamine D2 antagonism). Barriers to progress have been substantial, but many will be subject to rapid change based on current knowledge. There are attractive psychopathology indications for drug discovery (eg, impaired cognition and negative symptoms), and drugs with efficacy in these domains may have application across a number of disease classes. These pathologies are observed prior to psychosis raising the possibility of very early intervention and secondary prevention. Success in drug discovery for cognition and negative symptom pathologies may bring forth issues in ethics as the potential for enhancing normal function is explored.
Collapse
|
126
|
Orton SM, Morris AP, Herrera BM, Ramagopalan SV, Lincoln MR, Chao MJ, Vieth R, Sadovnick AD, Ebers GC. Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis. Am J Clin Nutr 2008; 88:441-7. [PMID: 18689381 PMCID: PMC2740974 DOI: 10.1093/ajcn/88.2.441] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/09/2008] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) risk is determined by both genes and environment. One of the most striking features of MS is its geographic distribution, particularly the pattern of high MS frequency in areas with low sunlight exposure, the main inducer of vitamin D synthesis. Recent epidemiologic, experimental, and clinical evidence support an effect for low environmental supplies of vitamin D in mediating an increased susceptibility to MS. OBJECTIVES We 1) examined the association of serum 25-hydroxy-vitaminD [25(OH)D] concentrations and MS status and 2) assessed the genetic contribution to serum 25(OH)D concentrations and tested for its association with genetic variants in 2 candidate genes [vitamin D receptor and 1-alpha-hydroxylase (CYP27B1)]. DESIGN We used a twin study approach, comprising adult pairs identified from the longitudinal population-based Canadian Collaborative Project on Genetic Susceptibility to MS. Monozygotic (MZ; n = 40) and dizygotic (DZ; n = 59) pairs, both concordant and discordant for MS, were studied. End-of-winter serum 25(OH)D concentrations were measured by radioimmunoassay, and genotypes were assessed by single nucleotide polymorphism (SNP) assay. RESULTS Serum concentrations of 25(OH)D were highly correlated in MS-concordant pairs (r = 0.83, P < 0.001), but they were not significantly associated with having the disease (P = 0.4) when analyzed by logistic regression. Intraclass correlation for 25(OH)D concentration was significantly greater in MZ pairs (MZ, r: 0.71 > DZ r: 0.32, P = 0.006). Significant associations of 2 CYP27B1 SNP variants and 25(OH)D concentrations were observed. CONCLUSION The findings indicate important genetic influences on regulation of seasonal circulating 25(OH)D concentrations in MS twins.
Collapse
Affiliation(s)
- Sarah-Michelle Orton
- Wellcome Trust Centre for Human Genetics and Department of Clinical Neurology, University of Oxford; Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
McGrath J, Iwazaki T, Eyles D, Burne T, Cui X, Ko P, Matsumoto I. Protein expression in the nucleus accumbens of rats exposed to developmental vitamin D deficiency. PLoS One 2008; 3:e2383. [PMID: 18545652 PMCID: PMC2396486 DOI: 10.1371/journal.pone.0002383] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 04/28/2008] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Developmental vitamin D (DVD) deficiency is a candidate risk factor for schizophrenia. Animal models have confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study we examined protein expression in this region in adult rats exposed to DVD deficiency METHODS Female Sprague Dawley rats were maintained on a vitamin D deficient diet for 6 weeks, mated and allowed to give birth, after which a diet containing vitamin D was reintroduced. Male adult offspring (n = 8) were compared to control male (n = 8). 2-D gel electrophoresis-based proteomics and mass spectroscopy were used to investigate differential protein expression. RESULTS There were 35 spots, mapped to 33 unique proteins, which were significantly different between the two groups. Of these, 22 were down-regulated and 13 up-regulated. The fold changes were uniformly small, with the largest FC being -1.67. Within the significantly different spots, three calcium binding proteins (calbindin1, calbindin2 and hippocalcin) were altered. Other proteins associated with DVD deficiency related to mitochondrial function, and the dynamin-like proteins. CONCLUSIONS Developmental vitamin D deficiency was associated with subtle changes in protein expression in the nucleus accumbens. Disruptions in pathways related to calcium-binding proteins and mitochondrial function may underlie some of the behavioural features associated with animal models of developmental vitamin D deficiency.
Collapse
Affiliation(s)
- John McGrath
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Australia.
| | | | | | | | | | | | | |
Collapse
|
128
|
McCann JC, Ames BN. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB J 2007; 22:982-1001. [PMID: 18056830 DOI: 10.1096/fj.07-9326rev] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitamin D insufficiency is common in the United States; the elderly and African-Americans are at particularly high risk of deficiency. This review, written for a broad scientific readership, presents a critical overview of scientific evidence relevant to a possible causal relationship between vitamin D deficiency and adverse cognitive or behavioral effects. Topics discussed are 1) biological functions of vitamin D relevant to cognition and behavior; 2) studies in humans and rodents that directly examine effects of vitamin D inadequacy on cognition or behavior; and 3) immunomodulatory activity of vitamin D relative to the proinflammatory cytokine theory of cognitive/behavioral dysfunction. We conclude there is ample biological evidence to suggest an important role for vitamin D in brain development and function. However, direct effects of vitamin D inadequacy on cognition/behavior in human or rodent systems appear to be subtle, and in our opinion, the current experimental evidence base does not yet fully satisfy causal criteria. Possible explanations for the apparent inconsistency between results of biological and cognitive/behavioral experiments, as well as suggested areas for further research are discussed. Despite residual uncertainty, recommendations for vitamin D supplementation of at-risk groups, including nursing infants, the elderly, and African-Americans appear warranted to ensure adequacy.
Collapse
Affiliation(s)
- Joyce C McCann
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| | | |
Collapse
|
129
|
|