101
|
Seccia TM, Caroccia B, Gomez-Sanchez EP, Gomez-Sanchez CE, Rossi GP. The Biology of Normal Zona Glomerulosa and Aldosterone-Producing Adenoma: Pathological Implications. Endocr Rev 2018; 39:1029-1056. [PMID: 30007283 PMCID: PMC6236434 DOI: 10.1210/er.2018-00060] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Abstract
The identification of several germline and somatic ion channel mutations in aldosterone-producing adenomas (APAs) and detection of cell clusters that can be responsible for excess aldosterone production, as well as the isolation of autoantibodies activating the angiotensin II type 1 receptor, have rapidly advanced the understanding of the biology of primary aldosteronism (PA), particularly that of APA. Hence, the main purpose of this review is to discuss how discoveries of the last decade could affect histopathology analysis and clinical practice. The structural remodeling through development and aging of the human adrenal cortex, particularly of the zona glomerulosa, and the complex regulation of aldosterone, with emphasis on the concepts of zonation and channelopathies, will be addressed. Finally, the diagnostic workup for PA and its subtyping to optimize treatment are reviewed.
Collapse
Affiliation(s)
- Teresa M Seccia
- Department of Medicine-DIMED, University of Padua, Padua PD, Italy
| | | | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi
| | - Celso E Gomez-Sanchez
- Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi.,University of Mississippi Medical Center, Jackson, Mississippi
| | - Gian Paolo Rossi
- Department of Medicine-DIMED, University of Padua, Padua PD, Italy
| |
Collapse
|
102
|
Vaidya A, Mulatero P, Baudrand R, Adler GK. The Expanding Spectrum of Primary Aldosteronism: Implications for Diagnosis, Pathogenesis, and Treatment. Endocr Rev 2018; 39:1057-1088. [PMID: 30124805 PMCID: PMC6260247 DOI: 10.1210/er.2018-00139] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Primary aldosteronism is characterized by aldosterone secretion that is independent of renin and angiotensin II and sodium status. The deleterious effects of primary aldosteronism are mediated by excessive activation of the mineralocorticoid receptor that results in the well-known consequences of volume expansion, hypertension, hypokalemia, and metabolic alkalosis, but it also increases the risk for cardiovascular and kidney disease, as well as death. For decades, the approaches to defining, diagnosing, and treating primary aldosteronism have been relatively constant and generally focused on detecting and treating the more severe presentations of the disease. However, emerging evidence suggests that the prevalence of primary aldosteronism is much greater than previously recognized, and that milder and nonclassical forms of renin-independent aldosterone secretion that impart heightened cardiovascular risk may be common. Public health efforts to prevent aldosterone-mediated end-organ disease will require improved capabilities to diagnose all forms of primary aldosteronism while optimizing the treatment approaches such that the excess risk for cardiovascular and kidney disease is adequately mitigated. In this review, we present a physiologic approach to considering the diagnosis, pathogenesis, and treatment of primary aldosteronism. We review evidence suggesting that primary aldosteronism manifests across a wide spectrum of severity, ranging from mild to overt, that correlates with cardiovascular risk. Furthermore, we review emerging evidence from genetic studies that begin to provide a theoretical explanation for the pathogenesis of primary aldosteronism and a link to its phenotypic severity spectrum and prevalence. Finally, we review human studies that provide insights into the optimal approach toward the treatment of primary aldosteronism.
Collapse
Affiliation(s)
- Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Rene Baudrand
- Program for Adrenal Disorders and Hypertension, Department of Endocrinology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gail K Adler
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
103
|
Spät A, Szanda G. Mitochondrial cAMP and Ca 2+ metabolism in adrenocortical cells. Pflugers Arch 2018; 470:1141-1148. [PMID: 29876637 DOI: 10.1007/s00424-018-2157-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/22/2023]
Abstract
The biological effects of physiological stimuli of adrenocortical glomerulosa cells are predominantly mediated by the Ca2+ and the cAMP signal transduction pathways. The complex interplay between these signalling systems fine-tunes aldosterone secretion. In addition to the well-known cytosolic interactions, a novel intramitochondrial Ca2+-cAMP interplay has been recently recognised. The cytosolic Ca2+ signal is rapidly transferred into the mitochondrial matrix where it activates Ca2+-sensitive dehydrogenases, thus enhancing the formation of NADPH, a cofactor of steroid synthesis. Quite a few cell types, including H295R adrenocortical cells, express the soluble adenylyl cyclase within the mitochondria and the elevation of mitochondrial [Ca2+] activates the enzyme, thus resulting in the Ca2+-dependent formation of cAMP within the mitochondrial matrix. On the other hand, mitochondrial cAMP (mt-cAMP) potentiates the transfer of cytosolic Ca2+ into the mitochondrial matrix. This cAMP-mediated positive feedback control of mitochondrial Ca2+ uptake may facilitate the rapid hormonal response to emergency situations since knockdown of soluble adenylyl cyclase attenuates aldosterone production whereas overexpression of the enzyme facilitates steroidogenesis in vitro. Moreover, the mitochondrial Ca2+-mt-cAMP-Ca2+ uptake feedback loop is not a unique feature of adrenocortical cells; a similar signalling system has been described in HeLa cells as well.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University Medical School, POB 2, Budapest, 1428, Hungary.
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, POB 2, Budapest, 1428, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
104
|
Tetti M, Castellano I, Venziano F, Magnino C, Veglio F, Mulatero P, Monticone S. Role of Cryptochrome-1 and Cryptochrome-2 in Aldosterone-Producing Adenomas and Adrenocortical Cells. Int J Mol Sci 2018; 19:ijms19061675. [PMID: 29874863 PMCID: PMC6032245 DOI: 10.3390/ijms19061675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/17/2022] Open
Abstract
Mice lacking the core-clock components, cryptochrome-1 (CRY1) and cryptochrome-2 (CRY2) display a phenotype of hyperaldosteronism, due to the upregulation of type VI 3β-hydroxyl-steroid dehydrogenase (Hsd3b6), the murine counterpart to the human type I 3β-hydroxyl-steroid dehydrogenase (HSD3B1) gene. In the present study, we evaluated the role of CRY1 and CRY2 genes, and their potential interplay with HSD3B isoforms in adrenal pathophysiology in man. Forty-six sporadic aldosterone-producing adenomas (APAs) and 20 paired adrenal samples were included, with the human adrenocortical cells HAC15 used as the in vitro model. In our cohort of sporadic APAs, CRY1 expression was 1.7-fold [0.75–2.26] higher (p = 0.016), while CRY2 showed a 20% lower expression [0.80, 0.52–1.08] (p = 0.04) in APAs when compared with the corresponding adjacent adrenal cortex. Type II 3β-hydroxyl-steroid dehydrogenase (HSD3B2) was 317-fold [200–573] more expressed than HSD3B1, and is the main HSD3B isoform in APAs. Both dehydrogenases were more expressed in APAs when compared with the adjacent cortex (5.7-fold and 3.5-fold, respectively, p < 0.001 and p = 0.001) and HSD3B1 was significantly more expressed in APAs composed mainly of zona glomerulosa-like cells. Treatment with angiotensin II (AngII) resulted in a significant upregulation of CRY1 (1.7 ± 0.25-fold, p < 0.001) at 6 h, and downregulation of CRY2 at 12 h (0.6 ± 0.1-fold, p < 0.001), through activation of the AngII type 1 receptor. Independent silencing of CRY1 and CRY2 genes in HAC15 cells resulted in a mild upregulation of HSD3B2 without affecting HSD3B1 expression. In conclusion, our results support the hypothesis that CRY1 and CRY2, being AngII-regulated genes, and showing a differential expression in APAs when compared with the adjacent adrenal cortex, might be involved in adrenal cell function, and in the regulation of aldosterone production.
Collapse
Affiliation(s)
- Martina Tetti
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Isabella Castellano
- Division of Pathology, Department of Medical Sciences, University of Torino,10126 Torino, Italy.
| | - Francesca Venziano
- Division of Pathology, Department of Medical Sciences, University of Torino,10126 Torino, Italy.
| | - Corrado Magnino
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Franco Veglio
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
105
|
Szanda G, Wisniewski É, Rajki A, Spät A. Mitochondrial cAMP exerts positive feedback on mitochondrial Ca 2+ uptake via the recruitment of Epac1. J Cell Sci 2018; 131:jcs.215178. [PMID: 29661848 DOI: 10.1242/jcs.215178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/07/2018] [Indexed: 01/10/2023] Open
Abstract
We have previously demonstrated in H295R adrenocortical cells that the Ca2+-dependent production of mitochondrial cAMP (mt-cAMP) by the matrix soluble adenylyl cyclase (sAC; encoded by ADCY10) is associated with enhanced aldosterone production. Here, we examined whether mitochondrial sAC and mt-cAMP fine tune mitochondrial Ca2+ metabolism to support steroidogenesis. Reduction of mt-cAMP formation resulted in decelerated mitochondrial Ca2+ accumulation in intact cells during K+-induced Ca2+ signalling and also in permeabilized cells exposed to elevated perimitochondrial [Ca2+]. By contrast, treatment with the membrane-permeable cAMP analogue 8-Br-cAMP, inhibition of phosphodiesterase 2 and overexpression of sAC in the mitochondrial matrix all intensified Ca2+ uptake into the organelle. Identical mt-cAMP dependence of mitochondrial Ca2+ uptake was also observed in HeLa cells. Importantly, the enhancing effect of mt-cAMP on Ca2+ uptake was independent from both the mitochondrial membrane potential and Ca2+ efflux, but was reduced by Epac1 (also known as RAPGEF3) blockade both in intact and in permeabilized cells. Finally, overexpression of sAC in the mitochondrial matrix potentiated aldosterone production implying that the observed positive feedback mechanism of mt-cAMP on mitochondrial Ca2+ accumulation may have a role in the rapid initiation of steroidogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, 1482 POB 2 Budapest, Hungary .,MTA-SE Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1482 POB 2 Budapest, Hungary
| | - Éva Wisniewski
- Department of Physiology, Semmelweis University Medical School, 1482 POB 2 Budapest, Hungary
| | - Anikó Rajki
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1482 POB 2 Budapest, Hungary
| | - András Spät
- Department of Physiology, Semmelweis University Medical School, 1482 POB 2 Budapest, Hungary .,MTA-SE Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1482 POB 2 Budapest, Hungary
| |
Collapse
|
106
|
The angiotensin type 2 receptor in the human adrenocortical zona glomerulosa and in aldosterone-producing adenoma: low expression and no functional role. Clin Sci (Lond) 2018; 132:627-640. [PMID: 29436482 DOI: 10.1042/cs20171593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 11/17/2022]
Abstract
The angiotensin II (Ang II) type 2 receptor (AT2R) and the angiotensin-(1-7) (Ang-(1-7)) receptor (MasR) play a cardiovascular protective role by counter-regulating Ang II type 1 receptor (AT1R)-mediated effects, but whether this involves blunting of adrenocortical hormone secretion is unknown. We investigated the presence of AT1R, AT2R, and MasR in aldosterone-producing adenoma (APA), a condition featuring hyperaldosteronism, and in APA-adjacent tissue. The effect of Compound 21 (C21), an AT2R agonist, on CYP11B1 (cortisol synthase) and CYP11B2 (aldosterone synthase) gene expression in NCI-H295R and HAC15 cell lines, and in APA and APA-adjacent tissue, was also assessed using the AT1R antagonist irbesartan to ascertain the specificity of C21 effect. We found that the AT1R, AT2R, and MasR were expressed in APA and APA-adjacent tissue, albeit heterogeneously. The gene expression of AT1R and AT2R was lower, and that of the MasR higher in APAs than in APA-adjacent tissue. In steroid-producing NCI-H295R and HAC15 cell lines, and in APA and APA-adjacent tissue, C21 was ineffective at nanomolar concentrations, but increased CYP11B1 and CYP11B2 gene expression at micromolar concentrations through AT1R, as this effect was blunted by irbesartan. The scant expression of the AT2R, along with the lack of any effect of C21 at low concentrations on CYP11B2, do not support the contention that the protective arm of renin-angiotensin system (RAS) blunts aldosterone synthase in the normal adrenal cortex and primary aldosteronism.
Collapse
|
107
|
Monticone S, Buffolo F, Tetti M, Veglio F, Pasini B, Mulatero P. GENETICS IN ENDOCRINOLOGY: The expanding genetic horizon of primary aldosteronism. Eur J Endocrinol 2018; 178:R101-R111. [PMID: 29348113 DOI: 10.1530/eje-17-0946] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022]
Abstract
Aldosterone is the main mineralocorticoid hormone in humans and plays a key role in maintaining water and electrolyte homeostasis. Primary aldosteronism (PA), characterized by autonomous aldosterone overproduction by the adrenal glands, affects 6% of the general hypertensive population and can be either sporadic or familial. Aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia (BAH) are the two most frequent subtypes of sporadic PA and 4 forms of familial hyperaldosteronism (FH-I to FH-IV) have been identified. Over the last six years, the introduction of next-generation sequencing has significantly improved our understanding of the molecular mechanisms responsible for autonomous aldosterone overproduction in both sporadic and familial PA. Somatic mutations in four genes (KCNJ5, ATP1A1, ATP2B3 and CACNA1D), differently implicated in intracellular ion homeostasis, have been identified in nearly 60% of the sporadic APAs. Germline mutations in KCNJ5 and CACNA1H cause FH-III and FH-IV, respectively, while germline mutations in CACNA1D cause the rare PASNA syndrome, featuring primary aldosteronism seizures and neurological abnormalities. Further studies are warranted to identify the molecular mechanisms underlying BAH and FH-II, the most common forms of sporadic and familial PA whose molecular basis is yet to be uncovered.
Collapse
Affiliation(s)
- Silvia Monticone
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Fabrizio Buffolo
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Martina Tetti
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Franco Veglio
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Barbara Pasini
- Division of Medical Genetics, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
108
|
Rodríguez-Lara SQ, García-Benavides L, Miranda-Díaz AG. The Renin-Angiotensin-Aldosterone System as a Therapeutic Target in Late Injury Caused by Ischemia-Reperfusion. Int J Endocrinol 2018; 2018:3614303. [PMID: 29849615 PMCID: PMC5904808 DOI: 10.1155/2018/3614303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/09/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a well-known phenomenon that involves different pathophysiological processes. Connection in diverse systems of survival brings about cellular dysfunction or even apoptosis. One of the survival systems of the cells, to the assault caused by ischemia, is the activation of the renin-angiotensin-aldosterone system (also known as an axis), which is focused on activating diverse signaling pathways to favor adaptation to the decrease in metabolic supports caused by the hypoxia. In trying to adapt to the I/R event, great changes occur that unchain cellular dysfunction with the capacity to lead to cell death, which translates into a poor prognosis due to the progression of dysfunction of the cellular activity. The search for the understanding of the diverse therapeutic alternatives in molecular coupling could favor the prognosis and evolution of patients who are subject to the I/R process.
Collapse
Affiliation(s)
- Simón Quetzalcóatl Rodríguez-Lara
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| | - Leonel García-Benavides
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| | - Alejandra Guillermina Miranda-Díaz
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| |
Collapse
|
109
|
Affiliation(s)
- Kazutaka Nanba
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), and Department of Internal Medicine (W.E.R.), University of Michigan, Ann Arbor; and Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V.).
| | - Anand Vaidya
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), and Department of Internal Medicine (W.E.R.), University of Michigan, Ann Arbor; and Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V.)
| | - William E Rainey
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), and Department of Internal Medicine (W.E.R.), University of Michigan, Ann Arbor; and Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V.)
| |
Collapse
|
110
|
Aragao-Santiago L, Gomez-Sanchez CE, Mulatero P, Spyroglou A, Reincke M, Williams TA. Mouse Models of Primary Aldosteronism: From Physiology to Pathophysiology. Endocrinology 2017; 158:4129-4138. [PMID: 29069360 PMCID: PMC5711388 DOI: 10.1210/en.2017-00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/16/2017] [Indexed: 01/08/2023]
Abstract
Primary aldosteronism (PA) is a common form of endocrine hypertension that is characterized by the excessive production of aldosterone relative to suppressed plasma renin levels. PA is usually caused by either a unilateral aldosterone-producing adenoma or bilateral adrenal hyperplasia. Somatic mutations have been identified in several genes that encode ion pumps and channels that may explain the aldosterone excess in over half of aldosterone-producing adenomas, whereas the pathophysiology of bilateral adrenal hyperplasia is largely unknown. A number of mouse models of hyperaldosteronism have been described that recreate some features of the human disorder, although none replicate the genetic basis of human PA. Animal models that reproduce the genotype-phenotype associations of human PA are required to establish the functional mechanisms that underlie the endocrine autonomy and deregulated cell growth of the affected adrenal and for preclinical studies of novel therapeutics. Herein, we discuss the differences in adrenal physiology across species and describe the genetically modified mouse models of PA that have been developed to date.
Collapse
Affiliation(s)
- Leticia Aragao-Santiago
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Celso E Gomez-Sanchez
- Endocrinology Division, G.V. (Sonny) Montgomery Veterans Affairs Medical Center and University of Mississippi Medical Center
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy
| | - Ariadni Spyroglou
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy
| |
Collapse
|
111
|
Gomez-Sanchez CE, Lewis M, Nanba K, Rainey WE, Kuppusamy M, Gomez-Sanchez EP. Development of monoclonal antibodies against the human 3β-hydroxysteroid dehydrogenase/isomerase isozymes. Steroids 2017; 127:56-61. [PMID: 28863887 PMCID: PMC5628156 DOI: 10.1016/j.steroids.2017.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
The human 3β-hydroxysteroid dehydrogenase/isomerase (HSD3B) enzymes catalyze the conversion of 3β-hydroxy Δ5-6 steroids into 3-keto Δ4-5 steroids, which is required for the synthesis of the mature steroid hormones secreted by the adrenal and gonads. The human has 2 isozymes, the HSD3B1 that is traditionally located in placenta and extra-adrenal tissues and the HSD3B2 that is expressed in the adrenal and gonads. Mice with both cryptochrome 1 and 2 genes deletion were recently found to have salt-sensitive hypertension and hyperaldosteronism. These deletions were also associated with overexpression of the Hsd3b6 enzyme, the homolog of the human HSD3B1, in the zona glomerulosa which was believed to explain the hyperaldosteronism. A report using antibodies against human HSD3B1 suggested that it was expressed in the zona glomerulosa of normal human adrenals and in patients with idiopathic hyperaldosteronism and the HSD3B2 expressed in both the zona fasciculata and glomerulosa. We have developed specific monoclonal antibodies against the human HSD3B1 and HSD3B2 isozymes and found that the main enzyme expressed in the zona glomerulosa was the HSD3B2. Faint staining of the adrenal was also obtained using the anti-HSD3B1antibody only at high concentrations of antibody. This study fails to confirm that HSD3B1 expression in the human zona glomerulosa and double immunofluorescence clearly shows that the HSD3B2 is expressed in the zona glomerulosa and fasciculata and in the zona glomerulosa HSD3B2 is co-expressed with aldosterone synthase (CYP11B2).
Collapse
Affiliation(s)
- Celso E Gomez-Sanchez
- Endocrine and Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA; Division of Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Mark Lewis
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kazutaka Nanba
- Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - William E Rainey
- Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Maniselvan Kuppusamy
- Endocrine and Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
112
|
Prada ETA, Burrello J, Reincke M, Williams TA. Old and New Concepts in the Molecular Pathogenesis of Primary Aldosteronism. Hypertension 2017; 70:875-881. [PMID: 28974569 DOI: 10.1161/hypertensionaha.117.10111] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Elke Tatjana Aristizabal Prada
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany (E.T.A.P., M.R., T.A.W.); and Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.)
| | - Jacopo Burrello
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany (E.T.A.P., M.R., T.A.W.); and Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.)
| | - Martin Reincke
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany (E.T.A.P., M.R., T.A.W.); and Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.)
| | - Tracy Ann Williams
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany (E.T.A.P., M.R., T.A.W.); and Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.).
| |
Collapse
|
113
|
Shimada H, Kogure N, Noro E, Kudo M, Sugawara K, Sato I, Shimizu K, Kobayashi M, Suzuki D, Parvin R, Saito-Ito T, Uruno A, Saito-Hakoda A, Rainey WE, Ito S, Yokoyama A, Sugawara A. High glucose stimulates expression of aldosterone synthase ( CYP11B2) and secretion of aldosterone in human adrenal cells. FEBS Open Bio 2017; 7:1410-1421. [PMID: 28904869 PMCID: PMC5586344 DOI: 10.1002/2211-5463.12277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/11/2017] [Accepted: 07/26/2017] [Indexed: 11/09/2022] Open
Abstract
Aldosterone synthase is the key rate‐limiting enzyme in adrenal aldosterone production, and induction of its gene (CYP11B2) results in the progression of hypertension. As hypertension is a frequent complication among patients with diabetes, we set out to elucidate the link between diabetes mellitus and hypertension. We examined the effects of high glucose on CYP11B2 expression and aldosterone production using human adrenal H295R cells and a stable H295R cell line expressing a CYP11B2 5′‐flanking region/luciferase cDNA chimeric construct. d‐glucose (d‐glu), but not its enantiomer l‐glucose, dose dependently induced CYP11B2 transcription and mRNA expression. A high concentration (450 mg·dL−1) of d‐glu time dependently induced CYP11B2 transcription and mRNA expression. Moreover, high glucose stimulated secretion of aldosterone into the media. Transient transfection studies using deletion mutants/nerve growth factor‐induced clone B (NGFIB) response element 1 (NBRE‐1) point mutant of CYP11B2 5′‐flanking region revealed that the NBRE‐1 element, known to be activated by transcription factors NGFIB and NURR1, was responsible for the high glucose‐mediated effect. High glucose also induced the mRNA expression of these transcription factors, especially that of NURR1, but NURR1 knockdown using its siRNA did not affect high glucose‐induced CYP11B2 mRNA expression. Taken together, it is speculated that high glucose may induce CYP11B2 transcription via the NBRE‐1 element in its 5′‐flanking region, resulting in the increase in aldosterone production although high glucose‐induced NURR1 is not directly involved in the effect. Additionally, glucose metabolism and calcium channels were found to be involved in the high glucose effect. Our observations suggest one possible explanation for the high incidence of hypertension in patients with diabetes.
Collapse
Affiliation(s)
- Hiroki Shimada
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Naotaka Kogure
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Erika Noro
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Masataka Kudo
- Division of Nephrology, Endocrinology and Vascular Medicine Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Kaori Sugawara
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Ikuko Sato
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Kyoko Shimizu
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Makoto Kobayashi
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Dai Suzuki
- Department of Pediatrics Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Rehana Parvin
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Takako Saito-Ito
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Akira Uruno
- Department of Medical Biochemistry Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Akiko Saito-Hakoda
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - William E Rainey
- Department of Molecular and Integrative Physiology University of Michigan Medical School Ann Arbor MI USA
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| |
Collapse
|
114
|
Suzuki D, Saito-Hakoda A, Ito R, Shimizu K, Parvin R, Shimada H, Noro E, Suzuki S, Fujiwara I, Kagechika H, Rainey WE, Kure S, Ito S, Yokoyama A, Sugawara A. Suppressive effects of RXR agonist PA024 on adrenal CYP11B2 expression, aldosterone secretion and blood pressure. PLoS One 2017; 12:e0181055. [PMID: 28800627 PMCID: PMC5553648 DOI: 10.1371/journal.pone.0181055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
The effects of retinoids on adrenal aldosterone synthase gene (CYP11B2) expression and aldosterone secretion are still unknown. We therefore examined the effects of nuclear retinoid X receptor (RXR) pan-agonist PA024 on CYP11B2 expression, aldosterone secretion and blood pressure, to elucidate its potential as a novel anti-hypertensive drug. We demonstrated that PA024 significantly suppressed angiotensin II (Ang II)-induced CYP11B2 mRNA expression, promoter activity and aldosterone secretion in human adrenocortical H295R cells. Human CYP11B2 promoter functional analyses using its deletion and point mutants indicated that the suppression of CYP11B2 promoter activity by PA024 was in the region from -1521 (full length) to -106 including the NBRE-1 and the Ad5 elements, and the Ad5 element may be mainly involved in the PA024-mediated suppression. PA024 also significantly suppressed the Ang II-induced mRNA expression of transcription factors NURR1 and NGFIB that bind to and activate the Ad5 element. NURR1 overexpression demonstrated that the decrease of NURR1 expression may contribute to the PA024-mediated suppression of CYP11B2 transcription. PA024 also suppressed the Ang II-induced mRNA expression of StAR, HSD3β2 and CYP21A2, a steroidogenic enzyme group involved in aldosterone biosynthesis. Additionally, the PA024-mediated CYP11B2 transcription suppression was shown to be exerted via RXRα. Moreover, the combination of PPARγ agonist pioglitazone and PA024 caused synergistic suppressive effects on CYP11B2 mRNA expression. Finally, PA024 treatment significantly lowered both the systolic and diastolic blood pressure in Tsukuba hypertensive mice (hRN8-12 x hAG2-5). Thus, RXR pan-agonist PA024 may be a candidate anti-hypertensive drugs that acts via the suppression of aldosterone synthesis and secretion.
Collapse
Affiliation(s)
- Dai Suzuki
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiko Saito-Hakoda
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryo Ito
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kyoko Shimizu
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Rehana Parvin
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroki Shimada
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Erika Noro
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Susumu Suzuki
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ikuma Fujiwara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
115
|
Kim SM, Kang JO, Lim JE, Hwang SY, Oh B. Csk Regulates Blood Pressure by Controlling the Synthetic Pathways of Aldosterone. Circ J 2017; 82:168-175. [PMID: 28724838 DOI: 10.1253/circj.cj-17-0080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Blood pressure is regulated by a network of diverse physiological pathways. The C-terminal Src kinase (CSK) locus (15q24) is associated with blood pressure in various ethnic groups. It was recently reported thatCskinsufficiency increases blood pressure through Src. The mechanisms of hypertension inCsk+/-mice are examined further in this study.Methods and Results:To identify a causal component responsible for hypertension inCsk+/-, the heart rate was measured by electrocardiogram and plasma volume by Evans blue dilution. Plasma volume increased inCsk+/-compared with wild-types, while the heart rate did not change. Plasma sodium and aldosterone levels rose consistently inCsk+/-vs. wild-types, and spironolactone, a mineralocorticoid receptor antagonist, reduced blood pressure. The amounts of Sgk1 and Na+/K+-ATPase (NKA) increased in the kidney ofCsk+/-compared with wild-types. It was also found that Cyp11b2 (aldosterone synthase) was upregulated in the adrenal glands ofCsk+/-, and that Csk was enriched in the zona glomerulosa of adrenals, the major site of aldosterone production in the normal mouse. CONCLUSIONS The results of the present study identify a physiological pathway by which blood pressure is regulated, in which the insufficiency ofCskinduces aldosterone production with zonal specificity in the adrenal glands, increasing sodium reabsorption and plasma volume and thus resulting in hypertension.
Collapse
Affiliation(s)
- Sung-Moon Kim
- Department of Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University
| | - Sue-Yun Hwang
- Department of Chemical Engineering, College of Engineering, Hankyong National University
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University
| |
Collapse
|
116
|
Li H, Wu T, Wang S, Li X, Qiu Y, Lin C, Qiu C, Deng Z, Zhou L, Zhang X. Replication of a genome-wide association study on essential hypertension in Mongolians. Clin Exp Hypertens 2017; 40:79-89. [PMID: 28682143 DOI: 10.1080/10641963.2017.1334796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Replication of genome-wide significant association SNPs in independent populations is an essential approach for identifying gene-disease relationships. Therefore, we sought to investigate the top 21 SNPs (rs10507454, rs11897156, rs11897991, rs12325203, rs12541835, rs13395322, rs1525035, rs16936892, rs17010027, rs17045859, rs17136827, rs1866525, rs2045590, rs4547758, rs4655688, rs7107438, rs761353, rs8127139, rs9312305, rs9407874 and rs9865108) from a genome-wide association study of essential hypertension in Mongolians. This was a community-based case-control study involving 428 hypertensives and 638 normotensives from Kerqinzuoyihou Banner,Tongliao, Inner Mongolian Autonomous Region, China. Genotyping was conducted with Sequenom MassArray (®) SNP detection technology. Overall, there were no significant differences in the genotype distributions and allele frequencies between the cases and controls. There was a significant difference between the allele frequencies at locus rs17010027 in cases (high systolic blood pressure) and controls in female (p = .036). There were significant differences in the distribution of genotypes and the allele frequencies at locus rs10507454 between cases (high diastolic blood pressure) and controls (p = .019 and p = .022, respectively) especially in male (p = .009 and p = .011, respectively). rs17010027 is associated with high systolic blood pressure in female, and rs10507454 is associated with high diastolic blood pressure especially in male of this Mongolian population.
Collapse
Affiliation(s)
- Hongmei Li
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Tong Wu
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Shaoqing Wang
- b Department of Pathology , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Xueyan Li
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Yongqiang Qiu
- c School of Public Health , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Chunrong Lin
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Changchun Qiu
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Zhihui Deng
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Li Zhou
- a Research Institute of Medicine and Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| | - Xiaojie Zhang
- b Department of Pathology , Qiqihar Medical University , Qiqihar , Heilongjiang , China
| |
Collapse
|
117
|
Ito R, Sato I, Tsujita T, Yokoyama A, Sugawara A. A ubiquitin-proteasome inhibitor bortezomib suppresses the expression of CYP11B2, a key enzyme of aldosterone synthesis. Biochem Biophys Res Commun 2017; 489:21-28. [DOI: 10.1016/j.bbrc.2017.05.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022]
|
118
|
Gomez-Sanchez CE, Kuppusamy M, Gomez-Sanchez EP. Of Mice and Man and the Regulation of Aldosterone Secretion. Hypertension 2017. [PMID: 28630207 DOI: 10.1161/hypertensionaha.117.09013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Celso E Gomez-Sanchez
- From the Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center (C.E.G.-S.), Division of Endocrinology (C.E.G.-S., M.K.), and Department of Pharmacology and Toxicology (E.P.G.-S.), University of Mississippi Medical Center, Jackson.
| | - Maniselvan Kuppusamy
- From the Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center (C.E.G.-S.), Division of Endocrinology (C.E.G.-S., M.K.), and Department of Pharmacology and Toxicology (E.P.G.-S.), University of Mississippi Medical Center, Jackson
| | - Elise P Gomez-Sanchez
- From the Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center (C.E.G.-S.), Division of Endocrinology (C.E.G.-S., M.K.), and Department of Pharmacology and Toxicology (E.P.G.-S.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
119
|
Nanba K, Vaidya A, Williams GH, Zheng I, Else T, Rainey WE. Age-Related Autonomous Aldosteronism. Circulation 2017; 136:347-355. [PMID: 28566337 DOI: 10.1161/circulationaha.117.028201] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/15/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Both aging and inappropriate secretion of aldosterone increase the risk for developing cardiovascular disease; however, the influence of aging on aldosterone secretion and physiology is not well understood. METHODS The relationship between age and adrenal aldosterone synthase (CYP11B2) expression was evaluated in 127 normal adrenal glands from deceased kidney donors (age, 9 months to 68 years). Following immunohistochemistry, CYP11B2-expressing area and areas of abnormal foci of CYP11B2-expressing cells, called aldosterone-producing cell clusters, were analyzed. In a separate ancillary clinical study of 677 participants without primary aldosteronism, who were studied on both high and restricted sodium diets (age, 18-71 years), we used multivariable linear regression to assess the independent associations between age and renin-angiotensin-aldosterone system physiology. RESULTS In adrenal tissue, the total CYP11B2-expressing area was negatively correlated with age (r=-0.431, P<0.0001), whereas the total aldosterone-producing cell cluster area was positively correlated with age (r=0.390, P<0.0001). The integrated ratio of aldosterone-producing cell cluster to CYP11B2-expressing area was most strongly and positively correlated with age (r=0.587, P<0.0001). When participants in the clinical study were maintained on a high sodium balance, renin activity progressively declined with older age, whereas serum and urinary aldosterone did not significantly decline. Correspondingly, the aldosterone-to-renin ratio was positively and independently associated with older age (adjusted β=+5.54 ng/dL per ng/mL per hour per 10 years, P<0.001). In contrast, when participants were assessed under sodium-restricted conditions, physiological stimulation of aldosterone was blunted with older age (β=-4.6 ng/dL per 10 years, P<0.0001). CONCLUSIONS Aging is associated with a pattern of decreased normal zona glomerulosa CYP11B2 expression and increased aldosterone-producing cell cluster expression. This histopathologic finding parallels an age-related autonomous aldosteronism and abnormal aldosterone physiology that provides 1 potential explanation for age-related cardiovascular risk.
Collapse
Affiliation(s)
- Kazutaka Nanba
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.)
| | - Anand Vaidya
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.)
| | - Gordon H Williams
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.)
| | - Isabel Zheng
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.)
| | - Tobias Else
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.)
| | - William E Rainey
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.).
| |
Collapse
|
120
|
Li J, Zhou Q, Ma Z, Wang M, Shen WJ, Azhar S, Guo Z, Hu Z. Feedback inhibition of CREB signaling by p38 MAPK contributes to the negative regulation of steroidogenesis. Reprod Biol Endocrinol 2017; 15:19. [PMID: 28302174 PMCID: PMC5356319 DOI: 10.1186/s12958-017-0239-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/06/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Steroidogenesis is a complex, multi-steps biological process in which, cholesterol precursor is converted to steroids in a tissue specific and tropic hormone dependent manner. Given that steroidogenesis is achieved by coordinated functioning of multiple tissue specific enzymes, many steroids intermediates/metabolites are generated during this process. Both the steroid products as well as major lipoprotein cholesterol donor, high-density lipoprotein 3 (hHDL3) have the potential to negatively regulate steroidogenesis via increased oxidative stress/reactive oxygen species (ROS) generation. METHODS In the current study, we examined the effects of treatment of a mouse model of steroidogenesis, Y1-BS1 adrenocortical tumor cells with pregnenolone, 22(R)-Hydroxycholesterol [22(R)-diol] or hHDL3 on ROS production, phosphorylation status of p38 MAPK and cAMP response element-binding protein (CREB), CREB transcriptional activity and mRNA expression of StAR, CPY11A1/P450scc and antioxidant enzymes, superoxide dismutases [Cu,ZnSOD (SOD1), MnSOD (SOD2)], catalase (CAT) and glutathione peroxidase 1 (GPX1). We also detected the steroid product in p38 MAPK inhibitor treated Y1 cells by HPLC-MS / MS. RESULTS Treatment of Y1 cells with H2O2 greatly enhanced the phosphorylation of both p38 MAPK and CREB protein. Likewise, treatment of cells with pregnenolone, 22(R) diol or hHDL3 increased ROS production measured with the oxidation-sensitive fluorescent probe 2',7'-Dichlorofluorescin diacetate (DCFH-DA). Under identical experimental conditions, treatment of cells with these agents also increased the phosphorylation of p38 MAPK and CREB. This increased CREB phosphorylation however, was associated with its decreased transcriptional activity. The stimulatory effects of pregnenolone, 22(R)-diol and hHDL3 on CREB phosphorylation was abolished by a specific p38 MAPK inhibitor, SB203580. Pregnenolone, and 22(R) diol but not hHDL3 upregulated the mRNA expression of SOD1, SOD2 and GPX1, while down-regulated the mRNA levels of StAR and CYP11A1. The p38 inhibitor SB203580 could increase the steroid production in HDL3, 22(R)-diol or pregnenolone treated cells. CONCLUSION Our data demonstrate induction of a ROS/p38 MAPK -mediated feedback inhibitory pathway by oxy-cholesterol and steroid intermediates and products attenuates steroidogenesis via inhibition of CREB transcriptional activity.
Collapse
Affiliation(s)
- Jiaxin Li
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Qian Zhou
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Zhuang Ma
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Meina Wang
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Wen-Jun Shen
- 0000 0004 0419 2556grid.280747.eGeriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304 USA
- 0000000419368956grid.168010.eStanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Salman Azhar
- 0000 0004 0419 2556grid.280747.eGeriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304 USA
- 0000000419368956grid.168010.eStanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Zhigang Guo
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Zhigang Hu
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| |
Collapse
|
121
|
Uchida T, Nishimoto K, Fukumura Y, Asahina M, Goto H, Kawano Y, Shimizu F, Tsujimura A, Seki T, Mukai K, Kabe Y, Suematsu M, Gomez-Sanchez CE, Yao T, Horie S, Watada H. Disorganized Steroidogenesis in Adrenocortical Carcinoma, a Case Study. Endocr Pathol 2017; 28:27-35. [PMID: 27430645 PMCID: PMC5465226 DOI: 10.1007/s12022-016-9441-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most adrenocortical carcinomas (ACCs) produce excessive amounts of steroid hormones including aldosterone, cortisol, and steroid precursors. However, aldosterone- and cortisol-producing cells in ACCs have not yet been immunohistochemically described. We present a case of ACC causing mild primary aldosteronism and subclinical Cushing's syndrome. Removal of the tumor cured both conditions. In order to examine the expression patterns of the steroidogenic enzymes responsible for adrenocortical hormone production, 10 tumor portions were immunohistochemically analyzed for aldosterone synthase (CYP11B2), 11β-hydroxylase (CYP11B1, cortisol-synthesizing enzyme), 3β-hydroxysteroid dehydrogenase (3βHSD, upstream enzyme for both CYP11B2 and CYP11B1), and 17α-hydroxylase/C17-20 lyase (CYP17, upstream enzyme for CYP11B1, but not for CYP11B1). CYP11B2, CYP11B1, and 3βHSD were expressed sporadically, and their expression patterns varied significantly among the different tumor portions examined. The expression of these enzymes was random and not associated with each other. CYP17 was expressed throughout the tumor, even in CYP11B2-positive cells. Small tumor cell populations were aldosterone- or cortisol-producing cells, as judged by 3βHSD coinciding with either CYP11B2 or CYP11B1, respectively. These results suggest that the tumor produced limited amounts of aldosterone and cortisol due to the lack of the coordinated expression of steroidogenic enzymes, which led to mild clinical expression in this case. We delineated the expression patterns of steroidogenic enzymes in ACC. The coordinated expression of steroidogenic enzymes in normal and adenoma cells was disturbed in ACC cells, resulting in the inefficient production of steroid hormones in relation to the large tumor volume.
Collapse
Affiliation(s)
- Toyoyoshi Uchida
- Departments of Metabolism & Endocrinology, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Koshiro Nishimoto
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Hidaka, Japan.
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan.
| | - Yuki Fukumura
- Department of Human Pathology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Miki Asahina
- Department of Human Pathology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Hiromasa Goto
- Departments of Metabolism & Endocrinology, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yui Kawano
- Departments of Metabolism & Endocrinology, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Fumitaka Shimizu
- Department of Urology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Tsugio Seki
- Department of Medical Education, College of Medicine, California University of Science and Medicine, 1405 West Valley Blvd #101, Colton, CA, 92324, USA
| | - Kuniaki Mukai
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan
- Medical Education Center, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Celso E Gomez-Sanchez
- Endocrinology Section, G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Takashi Yao
- Department of Human Pathology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Hirotaka Watada
- Departments of Metabolism & Endocrinology, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
122
|
Louiset E, Duparc C, Lenglet S, Gomez-Sanchez CE, Lefebvre H. Role of cAMP/PKA pathway and T-type calcium channels in the mechanism of action of serotonin in human adrenocortical cells. Mol Cell Endocrinol 2017; 441:99-107. [PMID: 27743992 PMCID: PMC5465225 DOI: 10.1016/j.mce.2016.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/30/2016] [Accepted: 10/09/2016] [Indexed: 11/29/2022]
Abstract
In human adrenal, serotonin (5-HT), produced by mast cells located in zona glomerulosa, stimulates production of corticosteroids through a paracrine mechanism involving the 5-HT receptor type 4 (5-HT4). The aim of the present study was to investigate the transduction mechanisms associated with activation of 5-HT4 receptors in human adrenocortical cells. Our results show that 5-HT4 receptors are present in the outer adrenal cortex, both in glomerulosa and fasciculata zonae. In the zona glomerulosa. 5-HT4 receptor was detected both in immunopositive and immunonegative cells for 11β-hydroxylase, an enzyme involved in cortisol synthesis. The data demonstrate that 5-HT4 receptors are positively coupled to adenylyl cyclases and cAMP-dependent protein kinases (PKA). The activation of the cAMP-PKA pathway is associated with calcium influx through T-type calcium channels. Both the adenylyl cyclase/PKA pathway and the calcium influx are involved in 5-HT-induced cortisol secretion.
Collapse
Affiliation(s)
- Estelle Louiset
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000, Rouen, France
| | - Céline Duparc
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000, Rouen, France
| | - Sébastien Lenglet
- Unit of Toxicology, University Center of Legal Medicine, CH-1211 Geneva 4, Switzerland
| | - Celso E Gomez-Sanchez
- Endocrine Section, Department of Medicine, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hervé Lefebvre
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Rouen, Rouen, France.
| |
Collapse
|
123
|
Tamura A, Nishimoto K, Seki T, Matsuzawa Y, Saito J, Omura M, Gomez-Sanchez CE, Makita K, Matsui S, Moriya N, Inoue A, Nagata M, Sasano H, Nakamura Y, Yamazaki Y, Kabe Y, Mukai K, Kosaka T, Oya M, Suematsu S, Nishikawa T. Somatic KCNJ5 mutation occurring early in adrenal development may cause a novel form of juvenile primary aldosteronism. Mol Cell Endocrinol 2017; 441:134-139. [PMID: 27514282 PMCID: PMC5482904 DOI: 10.1016/j.mce.2016.07.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022]
Abstract
We report a case of non-familial juvenile primary aldosteronism (PA). Super-selective adrenal venous sampling identified less aldosterone production in the right inferior adrenal segment than others. Bilateral adrenalectomy sparing the segment normalized blood pressure and improved PA. Both adrenals had similar histologies, consisting of a normal adrenal cortex and aldosterone synthase-positive hyperplasia/adenoma. An aldosterone-driving KCNJ5 mutation was detected in the lesions, but not in the histologically normal cortex. After taking into account that the two adrenal glands displayed a similar histological profile, as well as the fact that hyperplastic lesions in both glands exhibited a common KCNJ5 mutation, we conclude that the specific mutation may have occurred at an adrenal precursor mesodermal cell, at an early stage of development; its daughter cells were mixed with non-mutant cells and dispersed into both adrenal glands, resulting into a form of the condition known as genetic mosaicism.
Collapse
Affiliation(s)
- Ai Tamura
- Endocrinology & Diabetes Center, Yokohama Rosai Hospital, Yokohama, 222-0036, Japan
| | - Koshiro Nishimoto
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Hidaka, 350-1241, Japan; Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Tsugio Seki
- Department of Medical Education, School of Medicine, California University of Science and Medicine, 1405 West Valley Blvd #101, Colton, CA 92324, USA
| | - Yoko Matsuzawa
- Endocrinology & Diabetes Center, Yokohama Rosai Hospital, Yokohama, 222-0036, Japan
| | - Jun Saito
- Endocrinology & Diabetes Center, Yokohama Rosai Hospital, Yokohama, 222-0036, Japan
| | - Masao Omura
- Endocrinology & Diabetes Center, Yokohama Rosai Hospital, Yokohama, 222-0036, Japan
| | - Celso E Gomez-Sanchez
- Endocrinology Section, G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kohzoh Makita
- Endocrinology & Diabetes Center, Yokohama Rosai Hospital, Yokohama, 222-0036, Japan; Department of Radiology, Nerima Hikarigaoka Hospital, Tokyo, 179-0072, Japan
| | - Seishi Matsui
- Department of Radiology, Yokohama Rosai Hospital, Yokohama, 222-0036, Japan
| | - Nobukazu Moriya
- Department of Radiology, Yokohama Rosai Hospital, Yokohama, 222-0036, Japan
| | - Atsushi Inoue
- Department of Urology, Yokohama Rosai Hospital, Yokohama, 222-0036, Japan
| | - Maki Nagata
- Department of Urology, Yokohama Rosai Hospital, Yokohama, 222-0036, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kuniaki Mukai
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Medical Education Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Sachiko Suematsu
- Endocrinology & Diabetes Center, Yokohama Rosai Hospital, Yokohama, 222-0036, Japan
| | - Tetsuo Nishikawa
- Endocrinology & Diabetes Center, Yokohama Rosai Hospital, Yokohama, 222-0036, Japan.
| |
Collapse
|
124
|
Umakoshi H, Xiaomei Y, Ichijo T, Kamemura K, Matsuda Y, Fujii Y, Kai T, Fukuoka T, Sakamoto R, Ogo A, Suzuki T, Ogasawara T, Tsuiki M, Naruse M. Reassessment of the cosyntropin stimulation test in the confirmatory diagnosis and subtype classification of primary aldosteronism. Clin Endocrinol (Oxf) 2017; 86:170-176. [PMID: 27474252 DOI: 10.1111/cen.13167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/21/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Although corticotropin is a representative secretagogue of aldosterone, the utility of the cosyntropin stimulation test (C-ST) in diagnosing primary aldosteronism (PA) has not been elucidated. Aim of the study was to evaluate the clinical utility of C-ST for confirmatory testing and subtype classification of PA. DESIGN, SETTING AND PATIENTS In this retrospective study, we identified patients with hypertension and positive case-detection results for PA who underwent C-ST and saline infusion testing (SIT) between 2006 and 2013 at eight referral centres in Japan. PA and essential hypertension (EH) were distinguished based on SIT results. PA subtype classification was determined by adrenal venous sampling (AVS). Plasma aldosterone concentration (PAC) was measured before and 30 and 60 min after intravenous cosyntropin administration. The ability of C-ST to distinguish PA from EH and to distinguish unilateral from bilateral disease was assessed by the area under the receiver operating characteristic curve. RESULTS Of 205 patients with hypertension and positive case-detection results, 139 (68%) had PA based on SIT results. Eighteen patients in whom AVS was unsuccessful were excluded from analysis. The baseline PAC before C-ST was significantly higher (P < 0·01) in patients with PA than in those with EH. However, the degree of difference in PAC between patients with PA and EH was not enhanced by the administration of cosyntropin. In addition, the administration of cosyntropin did not improve the distinction between bilateral and unilateral PA subtypes. CONCLUSIONS C-ST has no utility as a confirmatory and subtype testing of PA when the diagnosis of PA is based on the positive results in SIT.
Collapse
Affiliation(s)
- Hironobu Umakoshi
- Department of Endocrinology, Metabolism, and Hypertension, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yang Xiaomei
- Department of Endocrinology, Metabolism, and Hypertension, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Takamasa Ichijo
- Department of Diabetes and Endocrinology, Saiseikai Yokohama City Toubu Hospital, Yokohama, Japan
| | - Kohei Kamemura
- Department of Cardiology, Akashi Medical Center, Akashi, Japan
| | - Yuichi Matsuda
- Department of Cardiology, Sanda City Hospital, Sanda, Japan
| | - Yuichi Fujii
- Department of Cardiology, Hiroshima General Hospital of West Japan Railway Company, Hiroshima, Japan
| | - Tatsuya Kai
- Department of Cardiology, Saiseikai Tondabayashi Hospital, Tondabayashi, Japan
| | - Tomikazu Fukuoka
- Department of Internal Medicine, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Ryuichi Sakamoto
- Department of Metabolism and Endocrinology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Atsushi Ogo
- Department of Metabolism and Endocrinology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Tomoko Suzuki
- Department of Public Health, Kitasato University School of Medicine, Tokyo, Japan
| | - Tatsuki Ogasawara
- Department of Endocrinology, Metabolism, and Hypertension, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Mika Tsuiki
- Department of Endocrinology, Metabolism, and Hypertension, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Mitsuhide Naruse
- Department of Endocrinology, Metabolism, and Hypertension, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
125
|
Bai J, Chow BKC. Secretin is involved in sodium conservation through the renin-angiotensin-aldosterone system. FASEB J 2017; 31:1689-1697. [PMID: 28082350 DOI: 10.1096/fj.201600911r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023]
Abstract
Secretin (SCT) and its receptor (SCTR) are important in fluid regulation at multiple levels via the modulation of expression and translocation of renal aquaporin 2 and functions of central angiotensin II (ANGII). The functional interaction of SCT with peripheral ANGII, however, remains unknown. As the ANGII-aldosterone axis dominates the regulation of renal epithelial sodium channel (ENaC) function, we therefore tested whether SCT/SCTR can regulate sodium homeostasis via the renin-angiotensin-aldosterone system. SCTR-knockout (SCTR-/-) mice showed impaired aldosterone synthase (CYP11B2) expression and, consequently, aldosterone release upon intraperitoneal injection of ANGII. Endogenous ANGII production induced by dietary sodium restriction was higher in SCTR-/- than in C57BL/6N [wild-type (WT)] mice, but CYP11B2 and aldosterone synthesis were not elevated. Reduced accumulation of cholesteryl ester-the precursor of aldosterone-was observed in adrenal glands of SCTR-/- mice that were fed a low-sodium diet. Absence of SCTR resulted in elevated basal transcript levels of adrenal CYP11B2 and renal ENaCs. Although transcript and protein levels of ENaCs were similar in WT and SCTR-/- mice under sodium restriction, ENaCs in SCTR-/- mice were less sensitive to amiloride hydrochloride. In summary, the SCT/SCTR axis is involved in aldosterone precursor uptake, and the knockout of SCTR results in defective aldosterone biosynthesis/release and altered sensitivity of ENaCs to amiloride.-Bai, J., Chow, B. K. C. Secretin is involved in sodium conservation through the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Juan Bai
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Billy K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
126
|
Belin de Chantemèle EJ. Sex Differences in Leptin Control of Cardiovascular Function in Health and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:87-111. [DOI: 10.1007/978-3-319-70178-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
127
|
Bogman K, Schwab D, Delporte ML, Palermo G, Amrein K, Mohr S, De Vera Mudry MC, Brown MJ, Ferber P. Preclinical and Early Clinical Profile of a Highly Selective and Potent Oral Inhibitor of Aldosterone Synthase (CYP11B2). Hypertension 2016; 69:189-196. [PMID: 27872236 PMCID: PMC5142369 DOI: 10.1161/hypertensionaha.116.07716] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/23/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Primary hyperaldosteronism is a common cause of resistant hypertension. Aldosterone is produced in the adrenal by aldosterone synthase (AS, encoded by the gene CYP11B2). AS shares 93% homology to 11β-hydroxylase (encoded by the gene CYP11B1), responsible for cortisol production. This homology has hitherto impeded the development of a drug, which selectively suppresses aldosterone but not cortisol production, as a new treatment for primary hyperaldosteronism. We now report the development of RO6836191 as a potent (Ki 13 nmol/L) competitive inhibitor of AS, with in vitro selectivity >100-fold over 11β-hydroxylase. In cynomolgus monkeys challenged with synthetic adrenocorticotropic hormone, single doses of RO6836191 inhibited aldosterone synthesis without affecting the adrenocorticotropic hormone–induced rise in cortisol. In repeat-dose toxicity studies in monkeys, RO6836191 reproduced the adrenal changes of the AS−/− mouse: expansion of the zona glomerulosa; increased expression of AS (or disrupted green fluorescent protein gene in the AS−/− mouse); hypertrophy, proliferation, and apoptosis of zona glomerulosa cells. These changes in the monkey were partially reversible and partially preventable by electrolyte supplementation and treatment with an angiotensin-converting enzyme inhibitor. In healthy subjects, single doses of RO6836191, across a 360-fold dose range, reduced plasma and urine aldosterone levels with maximum suppression at a dose of 10 mg, but unchanged cortisol, on adrenocorticotropic hormone challenge, up to 360 mg, and increase in the precursors 11-deoxycorticosterone and 11-deoxycortisol only at or >90 mg. In conclusion, RO6836191 demonstrates that it is possible to suppress aldosterone production completely in humans without affecting cortisol production.
Collapse
Affiliation(s)
- Katrijn Bogman
- From the Clinical Pharmacology (K.B., D.S., M.-L.D.), Biostatistics (G.P.), Discovery (K.A.), Pharmaceutical Sciences (S.M., M.C.D.V.M.), and Translational Medicine, Cardiovascular Diseases (P.F.), Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland; and Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom (M.J.B).
| | - Dietmar Schwab
- From the Clinical Pharmacology (K.B., D.S., M.-L.D.), Biostatistics (G.P.), Discovery (K.A.), Pharmaceutical Sciences (S.M., M.C.D.V.M.), and Translational Medicine, Cardiovascular Diseases (P.F.), Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland; and Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom (M.J.B)
| | - Marie-Laure Delporte
- From the Clinical Pharmacology (K.B., D.S., M.-L.D.), Biostatistics (G.P.), Discovery (K.A.), Pharmaceutical Sciences (S.M., M.C.D.V.M.), and Translational Medicine, Cardiovascular Diseases (P.F.), Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland; and Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom (M.J.B)
| | - Giuseppe Palermo
- From the Clinical Pharmacology (K.B., D.S., M.-L.D.), Biostatistics (G.P.), Discovery (K.A.), Pharmaceutical Sciences (S.M., M.C.D.V.M.), and Translational Medicine, Cardiovascular Diseases (P.F.), Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland; and Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom (M.J.B)
| | - Kurt Amrein
- From the Clinical Pharmacology (K.B., D.S., M.-L.D.), Biostatistics (G.P.), Discovery (K.A.), Pharmaceutical Sciences (S.M., M.C.D.V.M.), and Translational Medicine, Cardiovascular Diseases (P.F.), Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland; and Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom (M.J.B)
| | - Susanne Mohr
- From the Clinical Pharmacology (K.B., D.S., M.-L.D.), Biostatistics (G.P.), Discovery (K.A.), Pharmaceutical Sciences (S.M., M.C.D.V.M.), and Translational Medicine, Cardiovascular Diseases (P.F.), Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland; and Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom (M.J.B)
| | - Maria Cristina De Vera Mudry
- From the Clinical Pharmacology (K.B., D.S., M.-L.D.), Biostatistics (G.P.), Discovery (K.A.), Pharmaceutical Sciences (S.M., M.C.D.V.M.), and Translational Medicine, Cardiovascular Diseases (P.F.), Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland; and Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom (M.J.B)
| | - Morris J Brown
- From the Clinical Pharmacology (K.B., D.S., M.-L.D.), Biostatistics (G.P.), Discovery (K.A.), Pharmaceutical Sciences (S.M., M.C.D.V.M.), and Translational Medicine, Cardiovascular Diseases (P.F.), Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland; and Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom (M.J.B)
| | - Philippe Ferber
- From the Clinical Pharmacology (K.B., D.S., M.-L.D.), Biostatistics (G.P.), Discovery (K.A.), Pharmaceutical Sciences (S.M., M.C.D.V.M.), and Translational Medicine, Cardiovascular Diseases (P.F.), Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland; and Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom (M.J.B)
| |
Collapse
|
128
|
Oki K, Plonczynski MW, Gomez-Sanchez EP, Gomez-Sanchez CE. YPEL4 modulates HAC15 adrenal cell proliferation and is associated with tumor diameter. Mol Cell Endocrinol 2016; 434:93-8. [PMID: 27333825 PMCID: PMC5478919 DOI: 10.1016/j.mce.2016.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/18/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Yippee-like (YPEL) proteins are thought to be related to cell proliferation because of their structure and location in the cell. The aim of this study was to clarify the effects of YPEL4 on aldosterone production and cell proliferation in the human adrenocortical cell line (HAC15) and aldosterone producing adenoma (APA). Basal aldosterone levels in HAC15 cells over-expressing YPEL4 was higher than those of control HAC15 cells. The positive effects of YPEL4 on cell proliferation were detected by XTT assay and crystal violet staining. YPEL4 levels in 39 human APA were 2.4-fold higher compared to those in 12 non-functional adrenocortical adenomas, and there was a positive relationship between YPEL4 levels and APA diameter (r = 0.316, P < 0.05). In summary, we have demonstrated that YPEL4 stimulates human adrenal cortical cell proliferation, increasing aldosterone production as a consequence. These results in human adrenocortical cells are consistent with the clinical observations with APA in humans.
Collapse
Affiliation(s)
- Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA.
| | - Maria W Plonczynski
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Elise P Gomez-Sanchez
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA; Departments of Pharmacology & Toxicology, Anatomy and Neurosciences, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Celso E Gomez-Sanchez
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA; Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
| |
Collapse
|
129
|
Stowasser M, Gordon RD. Primary Aldosteronism: Changing Definitions and New Concepts of Physiology and Pathophysiology Both Inside and Outside the Kidney. Physiol Rev 2016; 96:1327-84. [DOI: 10.1152/physrev.00026.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the 60 years that have passed since the discovery of the mineralocorticoid hormone aldosterone, much has been learned about its synthesis (both adrenal and extra-adrenal), regulation (by renin-angiotensin II, potassium, adrenocorticotrophin, and other factors), and effects (on both epithelial and nonepithelial tissues). Once thought to be rare, primary aldosteronism (PA, in which aldosterone secretion by the adrenal is excessive and autonomous of its principal regulator, angiotensin II) is now known to be the most common specifically treatable and potentially curable form of hypertension, with most patients lacking the clinical feature of hypokalemia, the presence of which was previously considered to be necessary to warrant further efforts towards confirming a diagnosis of PA. This, and the appreciation that aldosterone excess leads to adverse cardiovascular, renal, central nervous, and psychological effects, that are at least partly independent of its effects on blood pressure, have had a profound influence on raising clinical and research interest in PA. Such research on patients with PA has, in turn, furthered knowledge regarding aldosterone synthesis, regulation, and effects. This review summarizes current progress in our understanding of the physiology of aldosterone, and towards defining the causes (including genetic bases), epidemiology, outcomes, and clinical approaches to diagnostic workup (including screening, diagnostic confirmation, and subtype differentiation) and treatment of PA.
Collapse
Affiliation(s)
- Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane, Queensland, Australia
| | - Richard D. Gordon
- Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane, Queensland, Australia
| |
Collapse
|
130
|
Tsai YY, Rainey WE, Johnson MH, Bollag WB. VLDL-activated cell signaling pathways that stimulate adrenal cell aldosterone production. Mol Cell Endocrinol 2016; 433:138-46. [PMID: 27222295 PMCID: PMC4955520 DOI: 10.1016/j.mce.2016.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 01/29/2023]
Abstract
Aldosterone plays an important role in regulating ion and fluid homeostasis and thus blood pressure, and hyperaldosteronism results in hypertension. Hypertension is also observed with obesity, which is associated with additional health risks, including cardiovascular disease. Obese individuals have high serum levels of very low-density lipoprotein (VLDL), which has been shown to stimulate aldosterone production; however, the mechanisms underlying VLDL-induced aldosterone production are still unclear. Here we demonstrate in human adrenocortical carcinoma (HAC15) cells that submaximal concentrations of angiotensin II and VLDL stimulate aldosterone production in an additive fashion, suggesting the possibility of common mechanisms of action. We show using inhibitors that VLDL-induced aldosterone production is mediated by the PLC/IP3/PKC signaling pathway. Our results suggest that PKC is upstream of the extracellular signal-regulated kinase (ERK) activation previously observed with VLDL. An understanding of the mechanisms mediating VLDL-induced aldosterone production may provide insights into therapies to treat obesity-associated hypertension.
Collapse
Affiliation(s)
- Ying-Ying Tsai
- Department of Physiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States
| | - William E Rainey
- Department of Physiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States
| | - Maribeth H Johnson
- Department of Biostatistics and Epidemiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, United States; Department of Physiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States.
| |
Collapse
|
131
|
Weldon SM, Cerny MA, Gueneva-Boucheva K, Cogan D, Guo X, Moss N, Parmentier JH, Richman JR, Reinhart GA, Brown NF. Selectivity of BI 689648, a Novel, Highly Selective Aldosterone Synthase Inhibitor: Comparison with FAD286 and LCI699 in Nonhuman Primates. ACTA ACUST UNITED AC 2016; 359:142-50. [DOI: 10.1124/jpet.116.236463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
|
132
|
Altered relation of the renin-aldosterone system and vasoactive peptides in type 2 diabetes: The KORA F4 study. Atherosclerosis 2016; 252:88-96. [PMID: 27508320 DOI: 10.1016/j.atherosclerosis.2016.07.905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS The exact mechanism of premature atherosclerosis in diabetes is still unclear. Inappropriate activation of the renin-aldosterone-angiotensin system may be an important risk factor for cardiovascular disease. We investigated whether renin and aldosterone are associated with vasoactive peptides midregional-pro atrial natriuretic peptide (MR-proANP) and midregional-pro adrenomedullin (MR-proADM), or with intima media thickness (IMT) as a marker for early atherosclerotic alterations in the general community and in subjects with type 2 diabetes. METHODS In 1261 participants in the KORA F4 study, the associations of renin, aldosterone and aldosterone to renin ratio with MR-proANP, MR-proADM and IMT were assessed using linear regression models stratified for the presence of prediabetes and type 2 diabetes. RESULTS After adjustment for confounding factors, an inverse association of MR-proANP with renin (p = 0.002) and aldosterone (p = 0.021) and a direct association of MR-proADM with renin (p < 0.001) and aldosterone (p = 0.019) were seen in nondiabetic individuals. In diabetic subjects, there was no significant correlation of MR-proANP or MR-proADM with renin or aldosterone. Renin and aldosterone were not directly associated with IMT in non-diabetic subjects and the total cohort, whereas aldosterone was associated with IMT in diabetic participants (p = 0.005). CONCLUSIONS This study shows associations between renin, aldosterone and MR-proANP/MR-proADM plasma levels that are altered in type 2 diabetes. Plasma renin and aldosterone are not independent biomarkers for early atherosclerotic damages of the carotid arteries in the general community.
Collapse
|
133
|
Dinh Cat AN, Friederich-Persson M, White A, Touyz RM. Adipocytes, aldosterone and obesity-related hypertension. J Mol Endocrinol 2016; 57:F7-F21. [PMID: 27357931 DOI: 10.1530/jme-16-0025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 12/15/2022]
Abstract
Understanding the mechanisms linking obesity with hypertension is important in the current obesity epidemic as it may improve therapeutic interventions. Plasma aldosterone levels are positively correlated with body mass index and weight loss in obese patients is reported to be accompanied by decreased aldosterone levels. This suggests a relationship between adipose tissue and the production/secretion of aldosterone. Aldosterone is synthesized principally by the adrenal glands, but its production may be regulated by many factors, including factors secreted by adipocytes. In addition, studies have reported local synthesis of aldosterone in extra-adrenal tissues, including adipose tissue. Experimental studies have highlighted a role for adipocyte-secreted aldosterone in the pathogenesis of obesity-related cardiovascular complications via the mineralocorticoid receptor. This review focuses on how aldosterone secretion may be influenced by adipose tissue and the importance of these mechanisms in the context of obesity-related hypertension.
Collapse
Affiliation(s)
- Aurelie Nguyen Dinh Cat
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Malou Friederich-Persson
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Anna White
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
134
|
Hattangady NG, Karashima S, Yuan L, Ponce-Balbuena D, Jalife J, Gomez-Sanchez CE, Auchus RJ, Rainey WE, Else T. Mutated KCNJ5 activates the acute and chronic regulatory steps in aldosterone production. J Mol Endocrinol 2016; 57:1-11. [PMID: 27099398 PMCID: PMC5027885 DOI: 10.1530/jme-15-0324] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 02/04/2023]
Abstract
Somatic and germline mutations in the inward-rectifying K(+) channel (KCNJ5) are a common cause of primary aldosteronism (PA) in aldosterone-producing adenoma and familial hyperaldosteronism type III, respectively. Dysregulation of adrenal cell calcium signaling represents one mechanism for mutated KCNJ5 stimulation of aldosterone synthase (CYP11B2) expression and aldosterone production. However, the mechanisms stimulating acute and chronic production of aldosterone by mutant KCNJ5 have not been fully characterized. Herein, we defined the effects of the T158A KCNJ5 mutation (KCNJ5(T158A)) on acute and chronic regulation of aldosterone production using an adrenal cell line with a doxycycline-inducible KCNJ5(T158A) gene (HAC15-TRE-KCNJ5(T158A)). Doxycycline incubation caused a time-dependent increase in KCNJ5(T158A) and CYP11B2 mRNA and protein levels. Electrophysiological analyses confirm the loss of inward rectification and increased Na(+) permeability in KCNJ5(T158A)-expressing cells. KCNJ5(T158A) expression also led to the activation of CYP11B2 transcriptional regulators, NURR1 and ATF2. Acutely, KCNJ5(T158A) stimulated the expression of total and phosphorylated steroidogenic acute regulatory protein (StAR). KCNJ5(T158A) expression increased the synthesis of aldosterone and the hybrid steroids 18-hydroxycortisol and 18-oxocortisol, measured with liquid chromatography-tandem mass spectrometry (LC-MS/MS). All of these stimulatory effects of KCNJ5(T158A) were inhibited by the L-type Ca(2+) channel blocker, verapamil. Overall, KCNJ5(T158A)increases CYP11B2 expression and production of aldosterone, corticosterone and hybrid steroids by upregulating both acute and chronic regulatory events in aldosterone production, and verapamil blocks KCNJ5(T158A)-mediated pathways leading to aldosterone production.
Collapse
Affiliation(s)
- Namita G Hattangady
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Shigehiro Karashima
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA Department of PharmacologyUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Lucy Yuan
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | | | - José Jalife
- Center for Arrhythmia ResearchUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Celso E Gomez-Sanchez
- G. V. (Sonny) Montgomery VA Medical Center and Department of MedicineUniversity of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Richard J Auchus
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA Department of PharmacologyUniversity of Michigan, Ann Arbor, Michigan, USA
| | - William E Rainey
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA Department of Molecular and Integrative PhysiologyUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Tobias Else
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
135
|
Vinson GP. Functional Zonation of the Adult Mammalian Adrenal Cortex. Front Neurosci 2016; 10:238. [PMID: 27378832 PMCID: PMC4908136 DOI: 10.3389/fnins.2016.00238] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022] Open
Abstract
The standard model of adrenocortical zonation holds that the three main zones, glomerulosa, fasciculata, and reticularis each have a distinct function, producing mineralocorticoids (in fact just aldosterone), glucocorticoids, and androgens respectively. Moreover, each zone has its specific mechanism of regulation, though ACTH has actions throughout. Finally, the cells of the cortex originate from a stem cell population in the outer cortex or capsule, and migrate centripetally, changing their phenotype as they progress through the zones. Recent progress in understanding the development of the gland and the distribution of steroidogenic enzymes, trophic hormone receptors, and other factors suggests that this model needs refinement. Firstly, proliferation can take place throughout the gland, and although the stem cells are certainly located in the periphery, zonal replenishment can take place within zones. Perhaps more importantly, neither the distribution of enzymes nor receptors suggest that the individual zones are necessarily autonomous in their production of steroid. This is particularly true of the glomerulosa, which does not seem to have the full suite of enzymes required for aldosterone biosynthesis. Nor, in the rat anyway, does it express MC2R to account for the response of aldosterone to ACTH. It is known that in development, recruitment of stem cells is stimulated by signals from within the glomerulosa. Furthermore, throughout the cortex local regulatory factors, including cytokines, catecholamines and the tissue renin-angiotensin system, modify and refine the effects of the systemic trophic factors. In these and other ways it more and more appears that the functions of the gland should be viewed as an integrated whole, greater than the sum of its component parts.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
136
|
Bai JJ, Tan CD, Chow BKC. Secretin, at the hub of water-salt homeostasis. Am J Physiol Renal Physiol 2016; 312:F852-F860. [PMID: 27279485 DOI: 10.1152/ajprenal.00191.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/01/2016] [Indexed: 01/13/2023] Open
Abstract
Water and salt metabolism are tightly regulated processes. Maintaining this milieu intérieur within narrow limits is critical for normal physiological processes to take place. Disturbances to this balance can result in disease and even death. Some of the better-characterized regulators of water and salt homeostasis include angiotensin II, aldosterone, arginine vasopressin, and oxytocin. Although secretin (SCT) was first described >100 years ago, little is known about the role of this classic gastrointestinal hormone in the maintenance of water-salt homeostasis. In recent years, increasing body of evidence suggested that SCT and its receptor play important roles in the central nervous system and kidney to ensure that the mammalian extracellular fluid osmolarity is kept within a healthy range. In this review, we focus on recent advances in our understanding of the molecular, cellular, and network mechanisms by which SCT and its receptor mediate the control of osmotic homeostasis. Implications of hormonal cross talk and receptor-receptor interaction are highlighted.
Collapse
Affiliation(s)
- Jenny Juan Bai
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chong Da Tan
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Billy K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
137
|
Gallo-Payet N. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH. J Mol Endocrinol 2016; 56:T135-56. [PMID: 26793988 DOI: 10.1530/jme-15-0257] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 01/27/2023]
Abstract
The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and stress response and is thus the major component of the hypothalamo-pituitary-adrenal axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) and on ACTH receptor properties, the first part of the review covers the role of ACTH in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. The second part summarizes the effects of ACTH on adrenal growth, addressing its role as either a mitogenic or a differentiating factor. We then review the mechanisms involved in steroid secretion, from the classical Cyclic adenosine monophosphate second messenger system to various signaling cascades. We also consider how the interaction between the extracellular matrix and the cytoskeleton may trigger activation of signaling platforms potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we consider the extra-adrenal actions of ACTH, in particular its role in differentiation in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In each section, we endeavor to correlate basic mechanisms of ACTH function with the pathological consequences of ACTH signaling deficiency and of overproduction of ACTH.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
138
|
Sanders K, Mol JA, Kooistra HS, Slob A, Galac S. New Insights in the Functional Zonation of the Canine Adrenal Cortex. J Vet Intern Med 2016; 30:741-50. [PMID: 27108660 PMCID: PMC4913559 DOI: 10.1111/jvim.13946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/29/2016] [Accepted: 03/14/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Current understanding of adrenal steroidogenesis is that the production of aldosterone or cortisol depends on the expression of aldosterone synthase (CYP11B2) and 11β-hydroxylase cytochrome P450 (CYP11B1), respectively. However, this has never been studied in dogs, and in some species, a single CYP11B catalyzes both cortisol and aldosterone formation. Analysis of the canine genome provides data of a single CYP11B gene which is called CYP11B2, and a large sequence gap exists near the so-called CYP11B2 gene. OBJECTIVES To investigate the zonal expression of steroidogenic enzymes in the canine adrenal cortex and to determine whether dogs have 1 or multiple CYP11B genes. ANIMALS Normal adrenal glands from 10 healthy dogs. METHODS Zona fasciculata (zF) and zona glomerulosa (zG) tissue was isolated by laser microdissection. The mRNA expression of steroidogenic enzymes and their major regulators was studied with RT-qPCR. Southern blot was performed to determine whether the sequence gap contains a CYP11B gene copy. Immunohistochemistry (IHC) was performed for 17α-hydroxylase/17,20-lyase (CYP17). RESULTS Equal expression (P = .62) of the so-called CYP11B2 gene was found in the zG and zF. Southern blot revealed a single gene. CYP17 expression (P = .05) was significantly higher in the zF compared with the zG, which was confirmed with IHC. CONCLUSIONS AND CLINICAL IMPORTANCE We conclude that there is only 1 CYP11B gene in canine adrenals. The zone-specific production of aldosterone and cortisol is probably due to zone-specific CYP17 expression, which makes it an attractive target for selective inhibition of cortisol synthesis without affecting mineralocorticoid production in the zG.
Collapse
Affiliation(s)
- K Sanders
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J A Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - H S Kooistra
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - A Slob
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - S Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
139
|
Odermatt A, Strajhar P, Engeli RT. Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools. J Steroid Biochem Mol Biol 2016; 158:9-21. [PMID: 26807866 DOI: 10.1016/j.jsbmb.2016.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 02/03/2023]
Abstract
In the modern world, humans are exposed during their whole life to a large number of synthetic chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to the development and/or progression of major diseases. Every year approximately 1000 novel chemicals, used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the market, often with limited safety assessment regarding potential endocrine activities. Steroids are essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order to apply them properly, and there is a great demand for improved cell-based testing systems and protocols. This review intends to provide an overview of the available cell lines for studying effects of chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future improvements of cell-based testing systems and protocols.
Collapse
Affiliation(s)
- Alex Odermatt
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Petra Strajhar
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Roger T Engeli
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
140
|
Abstract
Phospholipases are lipid-metabolizing enzymes that hydrolyze phospholipids. In some cases, their activity results in remodeling of lipids and/or allows the synthesis of other lipids. In other cases, however, and of interest to the topic of adrenal steroidogenesis, phospholipases produce second messengers that modify the function of a cell. In this review, the enzymatic reactions, products, and effectors of three phospholipases, phospholipase C, phospholipase D, and phospholipase A2, are discussed. Although much data have been obtained concerning the role of phospholipases C and D in regulating adrenal steroid hormone production, there are still many gaps in our knowledge. Furthermore, little is known about the involvement of phospholipase A2, perhaps, in part, because this enzyme comprises a large family of related enzymes that are differentially regulated and with different functions. This review presents the evidence supporting the role of each of these phospholipases in steroidogenesis in the adrenal cortex.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical CenterOne Freedom Way, Augusta, GA, USA Department of PhysiologyMedical College of Georgia, Augusta University (formerly Georgia Regents University), Augusta, GA, USA
| |
Collapse
|
141
|
Wang X, Bai Y, Cheng G, Ihsan A, Zhu F, Wang Y, Tao Y, Chen D, Dai M, Liu Z, Yuan Z. Genomic and proteomic analysis of the inhibition of synthesis and secretion of aldosterone hormone induced by quinocetone in NCI-H295R cells. Toxicology 2016; 350-352:1-14. [PMID: 27046791 DOI: 10.1016/j.tox.2016.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
Abstract
Quinoxaline 1,4-dioxides (QdNOs) are widely used as a kind of antibacterial growth promoter in animal husbandry. The adrenal cortex was found to be one of the main toxic targets of QdNOs, accompanied by a decreased aldosterone level. However, the way in which QdNOs decrease production of the hormone aldosterone is far from clear. To illustrate the mechanism by which QdNOs damage the adrenal cortex and decrease aldosterone hormone levels, the QdNOs were screened to choose the drug with most toxic effects on aldosterone production, and then to reveal the mechanism between the gene and protein profiles in human adrenocortical cells (NCI-H295R cells). The results found that quinocetone (QCT) showed the highest adrenal toxic effect among QdNOs. After exposing H295R cells to 10 and 20μM QCT for 24h, compared with blank cells, the gene and protein expression profiles obtained were analyzed by microarray and MALDI TOF/TOF mass spectrometry, respectively. The results of microarray analysis suggested that ABCG1 and SREBF1, which were involved in the cholesterol biosynthetic and metabolic processes, and CYP17A1, NR4A2 and G6PD, which were related to aldosterone biosynthesis, were important molecular targets. It has been speculated that PKC and ERK pathways might be involved in the reduction of aldosterone production caused by QCT, through enhanced mRNA expression of CYP17A1. Additionally, JNK and p38MAPK signal transduction pathways might participate in apoptosis induced by QCT. Twenty-nine and 32 protein spots were successfully identified when cells were treated with 10 and 20μM QCT, respectively. These identified proteins mainly included material synthesis and energy metabolism-related proteins, transcription/translation processing-related proteins, signal transduction proteins, cytoskeletal proteins, molecular chaperones, proteins related to response to stress, and transport proteins. Further investigations suggested that oxidative stress caused by QCT was exacerbated through disruption of the Keap1/Nrf2/ARE anti-oxidative stress pathway. Taken together, the data demonstrated for the first time that the Keap1/Nrf2/ARE pathway plays a crucial role in adrenal toxicity, and that CYP17A1 was the key switch to reduce the aldosterone production induced by QCT. Furthermore, large numbers of genes and proteins and entry points for research in the inhibition of aldosterone synthesis induced by QCT were offered, which will provide new insight into the adrenal toxicity of QdNOs and help to provide a theoretical foundation for the formulation of safety controls for products obtained from animals and to design new QdNOs with less harmful effects.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yijie Bai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Feng Zhu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yulian Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Dongmei Chen
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Menghong Dai
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zhengli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
142
|
Nakamura Y, Kitada M, Satoh F, Maekawa T, Morimoto R, Yamazaki Y, Ise K, Gomez-Sanchez CE, Ito S, Arai Y, Dezawa M, Sasano H. Intratumoral heterogeneity of steroidogenesis in aldosterone-producing adenoma revealed by intensive double- and triple-immunostaining for CYP11B2/B1 and CYP17. Mol Cell Endocrinol 2016; 422:57-63. [PMID: 26597777 PMCID: PMC4827777 DOI: 10.1016/j.mce.2015.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Cytochrome P450 11B2 (CYP11B2) plays a pivotal role in aldosterone synthesis, while cytochrome P450 11B1 (CYP11B1) and cytochrome P450 17A1 (CYP17) are involved in cortisol synthesis in normal human adrenal glands. However, their detailed distribution in aldosterone-producing adenoma (APA) remains incompletely settled. MATERIALS AND METHODS We examined the status of CYP11B1/CYP11B2 and CYP11B2/CYP17A1 expressions in 27 APA (double staining) cases and 21 APA (triple staining) cases by using immunofluorescence staining and semi-quantitative evaluation. RESULTS Tumor cells co-expressing CYP11B1/B2 (hybrid cell type A), CYP11B2/17 (hybrid cell type B), CYP11B1/17 (hybrid cell type C), and CYP11B1/B2/17 (triple-positive cell) were identified. The area and cell number of these cells were relatively small, but the size of individual hybrid cells were different between three hybrid cell types (A/B/C) and triple-positive cells. CONCLUSION The presence of hybrid cells indicated the marked intratumoral heterogeneity of steroidogenesis in APAs, particularly in those producing glucocorticoids and mineralocorticoids.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University, Hospital, Sendai, Japan
| | - Takashi Maekawa
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University, Hospital, Sendai, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazue Ise
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Celso E Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS, USA; Endocrinology, University of Mississippi Medical Center, MS, USA
| | - Sadayoshi Ito
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Arai
- Department of Urology, Tohoku University School of Medicine, Sendai, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
143
|
Spät A, Hunyady L, Szanda G. Signaling Interactions in the Adrenal Cortex. Front Endocrinol (Lausanne) 2016; 7:17. [PMID: 26973596 PMCID: PMC4770035 DOI: 10.3389/fendo.2016.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022] Open
Abstract
The major physiological stimuli of aldosterone secretion are angiotensin II (AII) and extracellular K(+), whereas cortisol production is primarily regulated by corticotropin (ACTH) in fasciculata cells. AII triggers Ca(2+) release from internal stores that is followed by store-operated and voltage-dependent Ca(2+) entry, whereas K(+)-evoked depolarization activates voltage-dependent Ca(2+) channels. ACTH acts primarily through the formation of cAMP and subsequent protein phosphorylation by protein kinase A. Both Ca(2+) and cAMP facilitate the transfer of cholesterol to mitochondrial inner membrane. The cytosolic Ca(2+) signal is transferred into the mitochondrial matrix and enhances pyridine nucleotide reduction. Increased formation of NADH results in increased ATP production, whereas that of NADPH supports steroid production. In reality, the control of adrenocortical function is a lot more sophisticated with second messengers crosstalking and mutually modifying each other's pathways. Cytosolic Ca(2+) and cGMP are both capable of modifying cAMP metabolism, while cAMP may enhance Ca(2+) release and voltage-activated Ca(2+) channel activity. Besides, mitochondrial Ca(2+) signal brings about cAMP formation within the organelle and this further enhances aldosterone production. Maintained aldosterone and cortisol secretion are optimized by the concurrent actions of Ca(2+) and cAMP, as exemplified by the apparent synergism of Ca(2+) influx (inducing cAMP formation) and Ca(2+) release during response to AII. Thus, cross-actions of parallel signal transducing pathways are not mere intracellular curiosities but rather substantial phenomena, which fine-tune the biological response. Our review focuses on these functionally relevant interactions between the Ca(2+) and the cyclic nucleotide signal transducing pathways hitherto described in the adrenal cortex.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: András Spät,
| | - László Hunyady
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
| |
Collapse
|
144
|
El Ghorayeb N, Bourdeau I, Lacroix A. Role of ACTH and Other Hormones in the Regulation of Aldosterone Production in Primary Aldosteronism. Front Endocrinol (Lausanne) 2016; 7:72. [PMID: 27445975 PMCID: PMC4921457 DOI: 10.3389/fendo.2016.00072] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
The major physiological regulators of aldosterone production from the adrenal zona glomerulosa are potassium and angiotensin II; other acute regulators include adrenocorticotropic hormone (ACTH) and serotonin. Their interactions with G-protein coupled hormone receptors activate cAMP/PKA pathway thereby regulating intracellular calcium flux and CYP11B2 transcription, which is the specific steroidogenic enzyme of aldosterone synthesis. In primary aldosteronism (PA), the increased production of aldosterone and resultant relative hypervolemia inhibits the renin and angiotensin system; aldosterone secretion is mostly independent from the suppressed renin-angiotensin system, but is not autonomous, as it is regulated by a diversity of other ligands of various eutopic or ectopic receptors, in addition to activation of calcium flux resulting from mutations of various ion channels. Among the abnormalities in various hormone receptors, an overexpression of the melanocortin type 2 receptor (MC2R) could be responsible for aldosterone hypersecretion in aldosteronomas. An exaggerated increase in plasma aldosterone concentration (PAC) is found in patients with PA secondary either to unilateral aldosteronomas or bilateral adrenal hyperplasia (BAH) following acute ACTH administration compared to normal individuals. A diurnal increase in PAC in early morning and its suppression by dexamethasone confirms the increased role of endogenous ACTH as an important aldosterone secretagogue in PA. Screening using a combination of dexamethasone and fludrocortisone test reveals a higher prevalence of PA in hypertensive populations compared to the aldosterone to renin ratio. The variable level of MC2R overexpression in each aldosteronomas or in the adjacent zona glomerulosa hyperplasia may explain the inconsistent results of adrenal vein sampling between basal levels and post ACTH administration in the determination of source of aldosterone excess. In the rare cases of glucocorticoid remediable aldosteronism, a chimeric CYP11B2 becomes regulated by ACTH activating its chimeric CYP11B1 promoter of aldosterone synthase in bilateral adrenal fasciculate-like hyperplasia. This review will focus on the role of ACTH on excess aldosterone secretion in PA with particular focus on the aberrant expression of MC2R in comparison with other aberrant ligands and their GPCRs in this frequent pathology.
Collapse
Affiliation(s)
- Nada El Ghorayeb
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Isabelle Bourdeau
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - André Lacroix
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
- *Correspondence: André Lacroix,
| |
Collapse
|
145
|
Javkhedkar AA, Banday AA. Antioxidant resveratrol restores renal sodium transport regulation in SHR. Physiol Rep 2015; 3:3/11/e12618. [PMID: 26603454 PMCID: PMC4673646 DOI: 10.14814/phy2.12618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023] Open
Abstract
Previously we have shown that in spontaneously hypertensive rats (SHR) renal angiotensin (Ang) II receptor (AT1R) upregulation leads to overstimulation of Na/K-ATPase by Ang II. There are reports that antioxidants can reduce oxidative stress and blood pressure (BP) in SHR, however the effect of these compounds on AT1R function remains to be determined. Therefore, we hypothesized that polyphenol antioxidant resveratrol would mitigate oxidative stress, normalize renal AT1R signaling, and reduce BP in SHR. SHR and wistar-kyoto (WKY) rats were treated with resveratrol for 8 weeks. Untreated SHR exhibited oxidative stress and enhanced renal proximal tubular Ang II-induced G-protein activation and Na/K-ATPase stimulation. Treatment of SHR with resveratrol mitigated oxidative stress, reduced BP, and normalized renal AT1R signaling. In SHR, nuclear expression of transcription factor NF-κB was increased while expression of Nrf2 was reduced. SHR also exhibited a significant decrease in renal antioxidant capacity and activities of phase II antioxidant enzymes. Resveratrol treatment of SHR abolished renal NF-κB activation, restored Nrf2-phase II antioxidant signaling and Ang II-mediated Na/K-ATPase regulation. These data show that in SHR, oxidative stress via activation of NF-κB upregulates AT1R–G-protein signaling resulting in overstimulation Na/K-ATPase which contributes to hypertension. Resveratrol, via Nrf2, activates phase II antioxidant enzymes, mitigates oxidative stress, normalizes AT1R–G-protein signaling and Na/K-ATPase regulation, and decreases BP in SHR.
Collapse
Affiliation(s)
- Apurva A Javkhedkar
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas
| | - Anees A Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
146
|
Abstract
Heart disease is a leading cause of death in the United States, and hypertension is a predominant risk factor. Thus, effective blood pressure control is important to prevent adverse sequelae of hypertension, including heart failure, coronary artery disease, atrial fibrillation, and ischemic stroke. Over half of Americans have uncontrolled blood pressure, which may in part be explained by interpatient variability in drug response secondary to genetic polymorphism. As such, pharmacogenetic testing may be a supplementary tool to guide treatment. This review highlights the pharmacogenetics of antihypertensive response and response to drugs that treat adverse hypertension-related sequelae, particularly coronary artery disease and atrial fibrillation. While pharmacogenetic evidence may be more robust for the latter with respect to clinical implementation, there is increasing evidence of genetic variants that may help predict antihypertensive response. However, additional research and validation are needed before clinical implementation guidelines for antihypertensive therapy can become a reality.
Collapse
|
147
|
Bar J, Ding K, Zhao H, Han L, Laurie SA, Seymour L, Addison CL, Shepherd FA, Goss GD, Dimitroulakos J, Bradbury PA. Angiotensin-Converting Enzyme and Aldosterone Serum Levels as Prognostic and Predictive Biomarkers for Cediranib in NCIC Clinical Trials Group Study BR.24. Clin Lung Cancer 2015; 16:e189-201. [DOI: 10.1016/j.cllc.2015.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
|
148
|
|
149
|
Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, Belin de Chantemèle EJ. Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis. Circulation 2015; 132:2134-45. [PMID: 26362633 DOI: 10.1161/circulationaha.115.018226] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND In obesity, the excessive synthesis of aldosterone contributes to the development and progression of metabolic and cardiovascular dysfunctions. Obesity-induced hyperaldosteronism is independent of the known regulators of aldosterone secretion, but reliant on unidentified adipocyte-derived factors. We hypothesized that the adipokine leptin is a direct regulator of aldosterone synthase (CYP11B2) expression and aldosterone release and promotes cardiovascular dysfunction via aldosterone-dependent mechanisms. METHODS AND RESULTS Immunostaining of human adrenal cross-sections and adrenocortical cells revealed that adrenocortical cells coexpress CYP11B2 and leptin receptors. Measurements of adrenal CYP11B2 expression and plasma aldosterone levels showed that increases in endogenous (obesity) or exogenous (infusion) leptin dose-dependently raised CYP11B2 expression and aldosterone without elevating plasma angiotensin II, potassium or corticosterone. Neither angiotensin II receptors blockade nor α and β adrenergic receptors inhibition blunted leptin-induced aldosterone secretion. Identical results were obtained in cultured adrenocortical cells. Enhanced leptin signaling elevated CYP11B2 expression and plasma aldosterone, whereas deficiency in leptin or leptin receptors blunted obesity-induced increases in CYP11B2 and aldosterone, ruling out a role for obesity per se. Leptin increased intracellular calcium, elevated calmodulin and calmodulin-kinase II expression, whereas calcium chelation blunted leptin-mediated increases in CYP11B2, in adrenocortical cells. Mineralocorticoid receptor blockade blunted leptin-induced endothelial dysfunction and increases in cardiac fibrotic markers. CONCLUSIONS Leptin is a newly described regulator of aldosterone synthesis that acts directly on adrenal glomerulosa cells to increase CYP11B2 expression and enhance aldosterone production via calcium-dependent mechanisms. Furthermore, leptin-mediated aldosterone secretion contributes to cardiovascular disease by promoting endothelial dysfunction and the expression of profibrotic markers in the heart.
Collapse
Affiliation(s)
- Anne-Cécile Huby
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Galina Antonova
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Jake Groenendyk
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Celso E Gomez-Sanchez
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Wendy B Bollag
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Jessica A Filosa
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Eric J Belin de Chantemèle
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.).
| |
Collapse
|
150
|
Kienitz MC, Mergia E, Pott L. NCI-H295R cell line as in vitro model of hyperaldosteronism lacks functional KCNJ5 (GIRK4; Kir3.4) channels. Mol Cell Endocrinol 2015; 412:272-80. [PMID: 25998841 DOI: 10.1016/j.mce.2015.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022]
Abstract
As a major cause of aldosterone producing adenomas, numerous gain-of-function mutations in the KCNJ5 gene (encoding the K(+) channel subunit GIRK4) have been identified. The human adrenocortical carcinoma cell line NCI-H295R is the most frequently used cellular model for in vitro studies related to regulation of aldosterone-synthesis. Because of the undefined role of KCNJ5 (GIRK4) in regulating synthesis of aldosterone, we aimed at identifying basal and G protein-activated GIRK4 currents in this paradigmatic cell line. The GIRK-specific blocker Tertiapin-Q did not affect basal current. Neither loading of the cells with GTP-γ-S via the patch-clamp pipette nor agonist stimulation of an infected A1-adenosine receptor resulted in activation of GIRK current. In cells co-infected with KCNJ5, robust activation of basal and adenosine-activated inward-rectifying current was observed. Although GIRK4 protein can be detected in Western blots of H295R homogenates, we suggest that GIRK4 in aldosterone-producing cells does not form functional G(βγ)-activated channels.
Collapse
Affiliation(s)
| | - Evanthia Mergia
- Department of Pharmacology and Toxicology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Lutz Pott
- Institute of Physiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|