101
|
Velusamy K, Periyasamy S, Kumar PS, Jayaraj T, Krishnasamy R, Sindhu J, Sneka D, Subhashini B, Vo DVN. Analysis on the removal of emerging contaminant from aqueous solution using biochar derived from soap nut seeds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117632. [PMID: 34426388 DOI: 10.1016/j.envpol.2021.117632] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
For clearing pollutants and emerging contaminants like ciprofloxacin-500mg from wastewaters generated from pharmaceutical industries, soapnut seeds biochar was synthesized and used as an adsorbent for the effective removal process. Tubular furnace operated under nitrogen gas environment was used to synthesize biochar. The batch analysis were carried out successfully to study the removal mechanism and the removal efficiency of the chosen pollutant. The soapnut seeds biochar showed excellent adsorption of ciprofloxacin at pH 6 and temperature 303 K when the dosage was 0.07 g. The Langmuir removal capacity of 33.44 mg/g was received and the Freundlich model provided the best-fits. The ciprofloxacin-500mg adsorption process correlated well with the pseudo-second-order kinetics equation, and the intraparticle diffusion mechanism mainly controlled the process. The characterization of biochar concluded that O-H groups, CO groups, COO-groups and C-F groups, and π-π interactions, pore-filling effect, and cation exchange interactions played a role in the adsorption process. Therefore, the findings of the present work revealed that soapnut seeds biochar would be an excellent low-cost adsorbent for the removal of ciprofloxacin-500mg from wastewater.
Collapse
Affiliation(s)
- Karthik Velusamy
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Thanikachalam Jayaraj
- Centre for Nanotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, India
| | | | - Jaisankar Sindhu
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Dhanabal Sneka
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Balakrishnan Subhashini
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
102
|
Gnanasekaran L, Pachaiappan R, Kumar PS, Hoang TKA, Rajendran S, Durgalakshmi D, Soto-Moscoso M, Cornejo-Ponce L, Gracia F. Visible light driven exotic p (CuO) - n (TiO 2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117304. [PMID: 34015669 DOI: 10.1016/j.envpol.2021.117304] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/20/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
The treatment of industrial waste and harmful bacteria is an important topic due to the release of toxins from the industrial pollutants that damage the water resources. These harmful sources frighten the life of every organism which was later developed as the carcinogenic and mutagenic agents. Therefore, the current study focuses on the breakdown or degradation of 4-chlorophenol and the antibacterial activity against Escherichia coli (E. coli). As a well-known catalyst, pure titanium-di-oxide (TiO2) had not shown the photocatalytic activity in the visible light region. Hence, band position of TiO2 need to be shifted to bring out the absorption in the visible light region. For this purpose, the n-type TiO2 nanocrystalline material's band gap got varied by adding different ratios of p-type CuO. The result had appeared in the formation of p (CuO) - n (TiO2) junction synthesized from sol-gel followed by chemical precipitation methods. The optical band gap value was determined by Kubelka-Munk (K-M) plot through UV-Vis diffusive reflectance spectroscopy (DRS). Further, the comprehensive mechanism and the results of photocatalytic and antibacterial activities were discussed in detail. These investigations are made for tuning the TiO2 catalyst towards improving or eliminating the existing various environmental damages.
Collapse
Affiliation(s)
- Lalitha Gnanasekaran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai, 600086, Tamilnadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - D Durgalakshmi
- Department of Medical Physics, CEG Campus, Anna University, Chennai, 600 025, India
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad Del Bío-bío, Avenida Collao 1202, Casilla 15-C, Concepción, Chile
| | - Lorena Cornejo-Ponce
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - F Gracia
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 6th Floor, Santiago, Chile
| |
Collapse
|
103
|
Saravanan A, Senthil Kumar P, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa PR, Reshma B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. CHEMOSPHERE 2021; 280:130595. [PMID: 33940449 DOI: 10.1016/j.chemosphere.2021.130595] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 05/16/2023]
Abstract
Release of pollutants due to inflating anthropogenic activities has a conspicuous effect on the environment. As water is uniquely vulnerable to pollution, water pollution control has received a considerable attention among the most critical environmental challenges. Diverse sources such as heavy metals, dyes, pathogenic and organic compounds lead to deterioration in water quality. Demand for the pollutant free water has created a greater concern in water treatment technologies. The pollutants can be mitigated through physical, chemical and biological methodologies thereby alleviating the health and environmental effects caused. Diverse technologies for wastewater treatment with an accentuation on pre-treatment of feedstock and post treatment are concisely summed up. Pollutants present in the water can be removed by processes some of which include filtration, reverse osmosis, degasification, sedimentation, flocculation, precipitation and adsorption. Membrane separation and adsorption methodologies utilized to control water pollution and are found to be more effective than conventional methods and established recovery processes. This audit relatively features different methodologies that show remarkable power of eliminating pollutants from wastewater. This review describes recent research development on wastewater treatment and its respective benefits/applications in field scale were discussed. Finally, the difficulties in the enhancement of treatment methodologies for pragmatic commercial application are recognized and the future viewpoints are introduced.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Senthil Kumar
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - B Tajsabreen
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - B Reshma
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
104
|
Swathi S, Yuvakkumar R, Kumar PS, Ravi G, Velauthapillai D. Annealing temperature effect on cobalt ferrite nanoparticles for photocatalytic degradation. CHEMOSPHERE 2021; 281:130903. [PMID: 34044303 DOI: 10.1016/j.chemosphere.2021.130903] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
In this work, cobalt ferrite nanomaterials was prepared employing simple co-precipitation technique and annealed at 300, 400 and 600 °C. XRD study revealed the formation of cubic structure of CoFe2O4 nanoparticles and confirmed by high intense peak at 2θ value of 35.3°. The creation of ferrite phase was further confirmed by the studies such as FTIR, Raman and PL spectra. FTIR spectra confirmed the occurrence of Fe-O and Co-O metal oxygen vibrations and the lattice defects and oxygen vacancies of the CoFe2O4 nanoparticles were explored by PL spectra. No other signals were detected in Raman spectra, which explored pure spinal ferrites. The energy band gap values are obtained by using Tauc plot and the obtained band gap values for all the cobalt ferrite nanoparticles were 2.84, 2.75 and 2.89 eV respectively. The morphology of synthesized cobalt ferrite nanomaterials were observed from the SEM and TEM images. The product annealed at 400 °C showed the better morphology with least amount of agglomeration in comparison to other SEM images. In addition, SAED pattern of magnetic nanoparticles confirmed the existence of polycrystalline nature of the CoFe2O4 nanoparticles. The obtained surface area of CF2 sample was 5.082 m2 g-1 and pore volume and diameter of CF2 sample was found to be 0.013 cc/g and 3.937 nm respectively. Then, the product annealed at 400 °C exhibited most excellent activity and degraded 74% of cationic dye in 80 min, and it also exhibited excellent stability even maintain in three cycles.
Collapse
Affiliation(s)
- S Swathi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|
105
|
Iazdani F, Nezamzadeh-Ejhieh A. The photocatalytic rate of ZnO supported onto natural zeolite nanoparticles in the photodegradation of an aromatic amine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53314-53327. [PMID: 34031830 DOI: 10.1007/s11356-021-14544-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Aniline and its derivate are critical environmental pollutants, and thus, the introduction of an eco-friendly catalyst for removing them is an important research future. The ZnO supported on the ball-mill prepared clinoptilolite nanoparticles (CNPs) was prepared via an ion-exchange process followed by the calcination process. The amount of loaded ZnO in the ZnO-CNP (CZ) samples varied as 0.54, 0.63, 0.72, and 0.86 meq/g as the Zn(II) concentration in the ion-exchange solution varied from 0.1 to 0.5 M. The ZnO-CNP catalyst was briefly characterized by XRD, FTIR, and DRS techniques. The pHpzc value for the various ZnO-CNPs was about 7.1 that had no change with the ZnO loading. By applying the Scherrer equation on the XRD results, a nano-dimension of about 50 nm was obtained for the catalyst. Bandgap energy of the ZnO-CNP samples was estimated by applying the Kubelka-Munk equation on the DRS reflectance spectra. The value for the CZ2 catalyst was about 3.64 eV. The supported ZnO-CNP sample was then used in the photodegradation of 2,4-dichloroaniline (DCA). Raw zeolite showed a relatively low photocatalytic activity. The degradation efficiency was followed by recording the absorbance of the DCA solution by UV-Vis spectrophotometer. The effects of the essential critical operating factors on the degradation efficiency were kinetically studied by applying the Hinshelwood equation to the results. The ZnO-CNP catalyst with 2 w% ZnO showed the best photocatalytic rate in the optimal conditions of 0.75 g/L, CDCA: 15 ppm, and the initial pH: 5.8. Finally, HPLC analysis of the blank and the photodegraded DCA solutions at 180 and 300 min confirmed 74 and 87% of DCA molecules were degraded during these times. The results confirm that supported ZnO onto clinoptilolite caused enhanced photocatalytic activity because the zeolite internal electrical field prevents the e-/h+ recombination.
Collapse
Affiliation(s)
- Fereshteh Iazdani
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| |
Collapse
|
106
|
Doan VD, Huynh BA, Pham HAL, Vasseghian Y, Le VT. Cu 2O/Fe 3O 4/MIL-101(Fe) nanocomposite as a highly efficient and recyclable visible-light-driven catalyst for degradation of ciprofloxacin. ENVIRONMENTAL RESEARCH 2021; 201:111593. [PMID: 34175287 DOI: 10.1016/j.envres.2021.111593] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, the widespread production and use of antibiotics have increased their presence in wastewater systems, posing a potential threat to the environment and human health. The development of advanced materials for treating antibiotics in wastewater has always received special attention. This study aimed to synthesize a novel Cu2O/Fe3O4/MIL-101(Fe) nanocomposite and use it to degrade ciprofloxacin (CIP) antibiotics in an aqueous solution under visible light irradiation. The optical, structural, and morphological attributes of the developed nanocomposite were analyzed by XRD, FTIR, FE-SEM, TGA, DRS, BET, VSM, and UV-Vis techniques. Optimum circumstances for CIP photocatalytic degradation were acquired in 0.5 g L-1 of catalyst dosage, pH of 7, and CIP concentration of 20 mg L-1. The degradation efficiency was achieved 99.2% after 105 min of irradiation in optimum circumstances. The chemical trapping experiments confirmed that hydroxyl and superoxide radicals significantly contributed to the CIP degradation process. The results of this study indicated that Cu2O/Fe3O4/MIL-101(Fe) nanocomposite was a highly stable photocatalyst that could effectively remove antibiotics from aqueous solutions. The CIP degradation efficiency only decreased by 6% after five cycles, indicating the excellent recyclability of Cu2O/Fe3O4/MIL-101(Fe) nanocomposites.
Collapse
Affiliation(s)
- Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, 70000, Viet Nam
| | - Bao-An Huynh
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, 70000, Viet Nam
| | - Hoang Ai Le Pham
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, 70000, Viet Nam
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University, 03 Quang Trung, Danang, 550000, Viet Nam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, 550000, Viet Nam.
| |
Collapse
|
107
|
Orooji Y, Tanhaei B, Ayati A, Tabrizi SH, Alizadeh M, Bamoharram FF, Karimi F, Salmanpour S, Rouhi J, Afshar S, Sillanpää M, Darabi R, Karimi-Maleh H. Heterogeneous UV-Switchable Au nanoparticles decorated tungstophosphoric acid/TiO 2 for efficient photocatalytic degradation process. CHEMOSPHERE 2021; 281:130795. [PMID: 34022601 DOI: 10.1016/j.chemosphere.2021.130795] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
In the present study, gold nanoparticles were locally well-decorated on the surface of TiO2 using the tungstophosphoric acid (HPW), as UV-switchable reducing intermediate linkers. The prepared Au NPs/HPW/TiO2 nanostructure was characterized using FTIR, XRD, EDS, SEM and TEM, which confirmed the successful attachment of quasi-spherical Au NPs in the range of 20-30 nm on the surface of HPW modified TiO2. Also, the FTIR results show that the Au NPs were binded to TiO2 through the terminal the oxygen atoms HPW. The photocatalytic performance of prepared nanostructures was assessed in degradation of nitrobenzene. The nitrobenzene photodegradation kinetic study revealed that it well followed the Langmuir-Hinshelwood kinetic model with the apparent rate constant of 0.001 min-1 using anatase TiO2, 0.0004 min-1 using HPW, 0.0014 using HPW/TiO2, while it was obtained 0.0065 min-1 using Au NPs@HPW/TiO2 nanostructure. It shows that the photocatalytic rate of the prepared nanocomposites increased by 6.5- and 4.6-fold compared to photoactivity of anatase TiO2 and HPW/TiO2 respectively. Also, the photocatalytic mechanism of process was proposed. Moreover, the reusability study confirmed that its photocatalytic activity still remained high after three cycles.
Collapse
Affiliation(s)
- Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran.
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| | - Soheil Hamidi Tabrizi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Safoora Afshar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia
| | - Rozhin Darabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran.
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran; School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| |
Collapse
|
108
|
Wang Y, Zhou J, Ma X, Li X, Lang X. Cooperative Photocatalysis with 4-Amino-TEMPO for Selective Aerobic Oxidation of Amines over TiO 2 Nanotubes. Chem Asian J 2021; 16:2659-2668. [PMID: 34302305 DOI: 10.1002/asia.202100682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Indexed: 12/17/2022]
Abstract
Attaching π-conjugated molecules onto TiO2 can form surface complexes that could capture visible light. However, to make these TiO2 surface complexes durable, integrating 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) or its analogues as a redox mediator with photocatalysis is the key to constructing selective chemical transformations. Herein, sodium 6,7-dihydroxynaphthalene-2-sulfonate (DHNS) was obtained by extending the π-conjugated system of catechol by adding a benzene ring and a substituent sodium sulfonate (-SO3 - Na+ ). The DHNS-TiO2 showed the best photocatalytic activity towards the blue light-induced selective aerobic oxidation of benzylamine. Compared to TEMPO, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO) could rise above 70% in conversion of benzylamine over the DHNS-TiO2 photocatalyst. Eventually, a wide range of amines could be selectively oxidized into imines with atmospheric O2 by cooperative photocatalysis of DHNS-TiO2 with 4-amino-TEMPO. Notably, superoxide (O2 •- ) is crucial in coupling the photocatalytic cycle of DHNS-TiO2 and the redox cycle of 4-amino-TEMPO. This work underscores the design of surface ligands for semiconductors and the selection of a redox mediator in visible light photocatalysis for selective chemical transformations.
Collapse
Affiliation(s)
- Yuexin Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jun Zhou
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoming Ma
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xia Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
109
|
Hojjati-Najafabadi A, Salmanpour S, Sen F, Asrami PN, Mahdavian M, Khalilzadeh MA. A Tramadol Drug Electrochemical Sensor Amplified by Biosynthesized Au Nanoparticle Using Mentha aquatic Extract and Ionic Liquid. Top Catal 2021. [DOI: 10.1007/s11244-021-01498-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
110
|
Liang Z, Meng X, Xue Y, Chen X, Zhou Y, Zhang X, Cui H, Tian J. Facile preparation of metallic 1T phase molybdenum selenide as cocatalyst coupled with graphitic carbon nitride for enhanced photocatalytic H 2 production. J Colloid Interface Sci 2021; 598:172-180. [PMID: 33901844 DOI: 10.1016/j.jcis.2021.04.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Low-cost, highly active and efficient alternative co-catalysts that can replace precious metals such as Au and Pt are urgently needed for photocatalytic hydrogen evolution reaction (HER). Herein, we show that 1T phase MoSe2 can act as the co-catalyst in the 1T-MoSe2/g-C3N4 composites and we synthesize this composite by a one-step hydrothermal method to promote photocatalytic H2 generation. Our prepared 1T-MoSe2/g-C3N4 composite exhibits highly enhanced photocatalytic H2 production compared to that of g-C3N4 nanosheets (NSs) only. The 7 wt%-1T-MoSe2/g-C3N4 composite presents a considerably improved photocatalytic HER rate (6.95 mmol·h-1·g-1), approximately 90 times greater than that of pure g-C3N4 (0.07 mmol·h-1 g-1). Moreover, under illumination at λ = 370 nm, the apparent quantum efficiency (AQE) of the 7 wt%-1T-MoSe2/g-C3N4 composite reaches 14.0%. Furthermore, the 1T-MoSe2/g-C3N4 composites still maintain outstanding photocatalytic HER stability.
Collapse
Affiliation(s)
- Zhangqian Liang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiangfa Meng
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanjun Xue
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoyue Chen
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanli Zhou
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hongzhi Cui
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
111
|
Shen XY, Hekmatifar M, Yunus Abdul Shukor M, Alizadeh A, Sun YL, Toghraie D, Sabetvand R. Molecular dynamics simulation of water-based Ferro-nanofluid flow in the microchannel and nanochannel: Effects of number of layers and material of walls. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
112
|
Sadrnia A, Orooji Y, Behmaneshfar A, Darabi R, Maghsoudlou Kamali D, Karimi-Maleh H, Opoku F, Govender PP. Developing a simple box-behnken experimental design on the removal of doxorubicin anticancer drug using Fe 3O 4/graphene nanoribbons adsorbent. ENVIRONMENTAL RESEARCH 2021; 200:111522. [PMID: 34129863 DOI: 10.1016/j.envres.2021.111522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
This paper aims to develop a Box-Behnken experimental design system to optimize the removal process of doxorubicin anticancer drugs. For this goal, Fe3O4/graphene nanoribbons was selected as adsorbent and removal of doxorubicin anticancer drug optimized using Box-Behnken experimental design with a selection of four effective factors. A three-level, four-factor Box-Behnken experimental design was used to assess the relationship between removal percentage as a dependent variable with adsorption weight (0.0015-0.01 mg), pH (3-9), temperature (15-45 °C) and time (1-15 min) as independent variables. Optimized condition by Behnken experimental design (pH = 7.36; time = 15 min; adsorbent weight = 0.01 mg and temperature = 29.26 °C) improved removal of doxorubicin anticancer drug about 99.2% in aqueous solution. The dynamic behavior, adsorption properties and mechanism of doxorubicin molecule on Fe3O4/graphene nanoribbon were investigated based on ab initio molecular dynamics (AIMD) simulations and density functional theory calculations with dispersion corrections. A closer inspection of the adsorption configurations and binding energies revealed that π-π interactions were the driving force when the doxorubicin molecule adsorbed on Fe3O4/graphene nanoribbon. The observed negative adsorption energy signifies a favourable and exothermic adsorption process of the various adsorbate-substrate systems. Besides, AIMD and phonon dispersion calculations confirm the dynamic stability of Fe3O4/graphene nanoribbon.
Collapse
Affiliation(s)
- Abdolhossein Sadrnia
- Department of Industrial Engineering, Quchan University of Technology, Quchan, Iran.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Ali Behmaneshfar
- Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Rozhin Darabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Donya Maghsoudlou Kamali
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, China; Department of Chemical Engineering and Energy, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Francis Opoku
- Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Penny Poomani Govender
- Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa
| |
Collapse
|
113
|
Chen L, Guo C, Sun Z, Xu J. Occurrence, bioaccumulation and toxicological effect of drugs of abuse in aquatic ecosystem: A review. ENVIRONMENTAL RESEARCH 2021; 200:111362. [PMID: 34048744 DOI: 10.1016/j.envres.2021.111362] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 05/23/2023]
Abstract
Drugs of abuse are a group of emerging contaminants. As the prevalence of manufacture and consumption, there is a growing global environmental burden and ecological risk from the continuous release of these contaminants into environment. The widespread occurrence of drugs of abuse in waste wasters and surface waters is due to the incomplete removal through traditional wastewater treatment plants in different regions around the world. Although their environmental concentrations are not very high, they can potentially influence the aquatic organisms and ecosystem function. This paper reviews the occurrence of drugs of abuse and their metabolites in waste waters and surface waters, their bioaccumulation in aquatic plants, fishes and benthic organisms and even top predators, and the toxicological effects such as genotoxic effect, cytotoxic effect and even behavioral effect on aquatic organisms. In summary, drugs of abuse occur widely in aquatic environment, and may exert adverse impact on aquatic organisms at molecular, cellular or individual level, and even on aquatic ecosystem. It necessitates the monitoring and risk assessment of these compounds on diverse aquatic organisms in the further study.
Collapse
Affiliation(s)
- Like Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenyu Sun
- Jiangsu Rainfine Environmental Science and Technology Co.,Ltd, Henan Branch Zhengzhou, 450000, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
114
|
A glassy carbon electrode modified based on molybdenum disulfide for determination of folic acid in the real samples. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01128-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
115
|
Rajendran S, Pachaiappan R, Hoang TKA, Karthikeyan S, Gnanasekaran L, Vadivel S, Soto-Moscoso M, Gracia-Pinilla MA. CuO-ZnO-PANI a lethal p-n-p combination in degradation of 4-chlorophenol under visible light. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125989. [PMID: 34492886 DOI: 10.1016/j.jhazmat.2021.125989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Recent interest and responsibility to retain the water resources rose among people. Scientists have been engaged to develop the mechanism that involves the freely available sunlight - a sustainable resource - to remove the pollutants from water to make it again suitable for life. Ample research was reported in the removal of dye pollutants present in water. For this they have utilized p type and n type semiconductors or combination of both (p-n type) under the excitation of a wide range of electromagnetic band energy. Most of the interest lies in emerging out of the mechanism with hybrid semiconductors to remove the previously reported flaws. Toward this regard, this manuscript aims to develop unique material using the underlying p-n-p model for harnessing visible light in catalysis. Initially, p-n structure was developed with copper oxide (p-type) and zinc oxide (n-type), then polyaniline (p-type) conjugated at different concentrations (0.5 M, 0.7 M & 1.0 M), to yield p-n-p models, using precipitation followed by sonication techniques. Detailed physicochemical investigations were conducted on the resultant p-n-p material to elucidate its characteristics. Furthermore, the mechanism was advocated for the best photocatalytic activity under visible light excitation for the degradation of 4-chlorophenol and compared with the performance of a standard p-n (CuO/ZnO) combination.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775 Arica, Chile.
| | - Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai 600086, Tamilnadu, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada
| | - Sekar Karthikeyan
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Lalitha Gnanasekaran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775 Arica, Chile
| | - S Vadivel
- Department of Chemistry, PSG College of Technology, Coimbatore 641004, India
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-bío, Avenida Collao 1202, Casilla 15-C, Concepción, Chile
| | - M A Gracia-Pinilla
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-Matemáticas, Av. Universidad, Cd. Universitaria, San Nicolás de los Garza, NL, Mexico; Universidad Autónoma de Nuevo León, Centro de Investigación en Innovación y Desarrollo en Ingeniería y Tecnología, PIIT, Apodaca, NL, Mexico
| |
Collapse
|
116
|
Selective and efficient sequestration of Cr(VI) in ground water using trimethyloctadecylammonium bromide impregnated on Artemisia monosperma plant powder. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
117
|
Moazzam P, Boroumand Y, Rabiei P, Baghbaderani SS, Mokarian P, Mohagheghian F, Mohammed LJ, Razmjou A. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. CHEMOSPHERE 2021; 277:130196. [PMID: 33784558 DOI: 10.1016/j.chemosphere.2021.130196] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The rapidly growing demand for lithium has resulted in a sharp increase in its price. This is due to the ubiquitous use of lithium-ion batteries (LIBs) in large-scale energy and transportation sectors as well as portable devices. Recycling of the LIBs for being the supply of critical metals hence becomes environmentally and economically viable. The presently used approaches for the recovery of spent LIBs like pyrometallurgical process can effectively recover nickel, cobalt, and copper, while lithium is usually lost in slag. Bioleaching process as an alternative method of extraction and recovery of valuable metals from the primary and secondary resources has been attracting a large pool of attraction. This method can provide higher recovery yield even for low concentration of metals which makes it viable among conventional methods. The bioleaching process can work with lower operating cost and consumed water and energy along with a simple condition, which produces less hazardous by-products ultimately. Here, we comprehensively review the biological and chemical mechanisms of the bioleaching process with a conclusive discussion to help how to extend the use of bioleaching for lithium extraction and recovery from the spent LIBs with a focus on recovery yields improvement. We elaborate on the three main types of the reported bioleaching with considering effective parameters including temperature, initial pH, pulp density, aeration, and medium and cell nutrients to sustain microorganism activity. Finally, practical challenges and future opportunities of lithium are discussed to inspire future research trends and pilot studies to realize the full potential of lithium recovery using sustainable bioleaching processes to extend a clean energy future.
Collapse
Affiliation(s)
- Parisa Moazzam
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parisa Rabiei
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Sorour Salehi Baghbaderani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parastou Mokarian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fereshteh Mohagheghian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Layth Jasim Mohammed
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
118
|
Chen YG, He XLS, Huang JH, Luo R, Ge HZ, Wołowicz A, Wawrzkiewicz M, Gładysz-Płaska A, Li B, Yu QX, Kołodyńska D, Lv GY, Chen SH. Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112336. [PMID: 34044310 DOI: 10.1016/j.ecoenv.2021.112336] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals are widely distributed in the environment due to the natural processes and anthropogenic human activities. Their migration into no contaminated areas contributing towards pollution of the ecosystems e.g. soils, plants, water and air. It is recognized that heavy metals due to their toxicity, long persistence in nature can accumulate in the trophic chain and cause organism dysfunction. Although the popularity of herbal medicine is rapidly increasing all over the world heavy metal toxicity has a great impact and importance on herbal plants and consequently affects the quality of herbal raw materials, herbal extracts, the safety and marketability of drugs. Effective control of heavy metal content in herbal plants using in pharmaceutical and food industries has become indispensable. Therefore, this review describes various important factors such as ecological and environmental pollution, cultivation and harvest of herbal plants and manufacturing processes which effects on the quality of herbal plants and then on Chinese herbal medicines which influence human health. This review also proposes possible management strategies to recover environmental sustainability and medication safety. About 276 published studies (1988-2021) are reviewed in this paper.
Collapse
Affiliation(s)
- Yi-Gong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Jia-Hui Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Rong Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Hong-Zhang Ge
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Anna Wołowicz
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Monika Wawrzkiewicz
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Agnieszka Gładysz-Płaska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Qiao-Xian Yu
- Zhejiang Senyu Co., Ltd, No. 8 Wanmao Road, Choujiang Street, Yiwu City, Zhejiang Province, China
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
119
|
Pourshirband N, Nezamzadeh-Ejhieh A. An efficient Z-scheme CdS/g-C3N4 nano catalyst in methyl orange photodegradation: Focus on the scavenging agent and mechanism. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116543] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
120
|
Chandarana H, Subburaj S, Kumar PS, Kumar MA. Evaluation of phase transfer kinetics and thermodynamic equilibria of Reactive Orange 16 sorption onto chemically improved Arachis hypogaea pod powder. CHEMOSPHERE 2021; 276:130136. [PMID: 33684858 DOI: 10.1016/j.chemosphere.2021.130136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Biosorbent from pods of Arachis hypogaea (AhP) were inducted with sulphuric acid treatment and then the activated materials were employed to sequester a sulphonated textile dye; Reactive Orange 16 (RO16) from water system. The characteristic features of the surface functionalized AhP (Ct-AhP) were analysed using instrumentation techniques. The biosorption influencing variables like operating pH, agitating time, initial RO16 concentration and temperature effects were investigated. One-factor optimization revealed that 0.5 g Ct-AhP was sufficient to achieve maximum removal of RO16 (20-120 mg/L) within 180 min agitation at 150 rpm. The isotherm data were applied to non-linear isotherms viz., Freundlich, Langmuir and Temkin models as well as rate limiting steps were elucidated using kinetic models. Freundlich isotherm showed good fit and pseudo-second order kinetic data explained RO16 removal by Ct-AhP followed chemisorption. The outcome of thermodynamic parametric values infer that RO16 biosorption was spontaneous, feasible and involved exothermic type of heat. Elovich and intraparticle diffusion revealed the biosorption mechanisms. The maximum RO16 biosorption (56.48 mg/g) by 0.5 g Ct-AhP were witnessed in the system containing 120 mg/L RO16 agitated at 150 rpm operating at pH 7.0, 303 K for a span of 180 min. Thus, the Ct-AhP is considered to be a promising biosorbent which can be employed in treating the textile effluents.
Collapse
Affiliation(s)
- Helly Chandarana
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Suganya Subburaj
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
121
|
Mofatehnia P, Mohammadi Ziarani G, Elhamifar D, Badiei A. A new yolk-shell hollow mesoporous nanocomposite, Fe3O4@SiO2@MCM41-IL/WO42-, as a catalyst in the synthesis of novel pyrazole coumarin compounds. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 2021; 155:110097. [DOI: 10.1016/j.jpcs.2021.110097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
122
|
Li W, Luo W, Li M, Chen L, Chen L, Guan H, Yu M. The Impact of Recent Developments in Electrochemical POC Sensor for Blood Sugar Care. Front Chem 2021; 9:723186. [PMID: 34395386 PMCID: PMC8360348 DOI: 10.3389/fchem.2021.723186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Rapid glucose testing is very important in the care of diabetes. Monitoring of blood glucose is the most critical indicator of disease control in diabetic patients. The invention and popularity of electrochemical sensors have made glucose detection fast and inexpensive. The first generation of glucose sensors had limitations in terms of sensitivity and selectivity. In order to overcome these problems, scientists have used a range of new materials to produce new glucose electrochemical sensors with higher sensitivity, selectivity and lower cost. A variety of different electrochemical sensors including enzymatic electrochemical sensors and enzyme-free electrochemical sensors have been extensively investigated. We discussed the development process of electrochemical glucose sensors in this review. We focused on describing the benefits of carbon materials in nanomaterials, specially graphene for sensors. In addition, we discussed the limitations of the sensors and challenges in future research.
Collapse
Affiliation(s)
- Wei Li
- ICU of Shenzhen People’s Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Weixiang Luo
- Nursing Department of Shenzhen People’s Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Mengyuan Li
- Hepatological Surgery Department of Shenzhen People’s Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Liyu Chen
- Endocrinology Department of Shenzhen People’s Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Liyan Chen
- Nursing Department of Shenzhen People’s Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Hua Guan
- Respiratory Department of Shenzhen People’s Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Mengjiao Yu
- Gastroenterology Department of Shenzhen People’s Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
123
|
Wang Y, Chen L, Xuan T, Wang J, Wang X. Label-free Electrochemical Impedance Spectroscopy Aptasensor for Ultrasensitive Detection of Lung Cancer Biomarker Carcinoembryonic Antigen. Front Chem 2021; 9:721008. [PMID: 34350159 PMCID: PMC8326396 DOI: 10.3389/fchem.2021.721008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/07/2021] [Indexed: 01/13/2023] Open
Abstract
In this work, an integrated electrode system consisting of a graphene working electrode, a carbon counter electrode and an Ag/AgCl reference electrode was fabricated on an FR-4 glass fiber plate by a polyethylene self-adhesive mask stencil method combined with a manual screen printing technique. The integrated graphene electrode was used as the base electrode, and AuNPs were deposited on the working electrode surface by cyclic voltammetry. Then, the carcinoembryonic antigen aptamer was immobilized using the sulfhydryl self-assembly technique. The sensor uses [Fe(CN)6]3-/4- as a redox probe for label free detection of carcinoembryonic antigen based on the impedance change caused by the difference in electron transfer rate before and after the binding of carcinoembryonic antigen aptamer and the target carcinoembryonic antigen. The results showed a good linear relationship when the CEA concentration is in the range of 0.2-15.0 ng/ml. The detection limit was calculated to be 0.085 ng/ml (S/N = 3).
Collapse
Affiliation(s)
- Yawei Wang
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, China
| | - Lei Chen
- Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Tiantian Xuan
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, China
| | - Jian Wang
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
124
|
Zhang W, Yang F, Liu B, Zhou K. Novel Diethyl Ether Gas Sensor Based on Cataluminescence on Nano-Pd/ZnNi 3Al 2O 7. ACS OMEGA 2021; 6:17576-17583. [PMID: 34278143 PMCID: PMC8280636 DOI: 10.1021/acsomega.1c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
A sensitive diethyl ether gas sensor based on cataluminescence on nano-Pd/ZnNi3Al2O7 at a temperature lower than 150 °C was reported. The composition of the sensitive material was determined by energy-dispersive spectrometry, and a particle size of less than 50 nm was shown by transmission electron microscopy. When the atomic percentage of Pd in the sensing material is 0.8-1.3%, it is beneficial to the low-temperature and high-selective cataluminescence of diethyl ether. The signal response and recovery of diethyl ether on the sensitive material can be completed quickly in 0.5 s, and the relative standard deviation of the signal within 500 h of continuous operation is not more than 2.5%. There is good linear relationship between the luminescence intensity and the concentration of diethyl ether in the range of 0.08-75 mg/m3. The detection limit (3σ) is 0.04 mg/m3. The working conditions optimized by the response surface methodology were an analytical wavelength of 548.86 nm, a reaction temperature of 109.18 °C, and a carrier gas velocity of 125.88 mL/min. The sensitivity of the method can be increased by 4.5% under the optimized working conditions. The optimization method is universal for many multi-parameter processes.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Biochemical
Engineering College, Beijing Union University, Beijing 100023, China
- Beijing
Key Laboratory of Biomass Waste Resource Utilization, Beijing 100023, China
| | - Fuxiu Yang
- Biochemical
Engineering College, Beijing Union University, Beijing 100023, China
- Beijing
Key Laboratory of Biomass Waste Resource Utilization, Beijing 100023, China
| | - Baining Liu
- Biochemical
Engineering College, Beijing Union University, Beijing 100023, China
- Beijing
Key Laboratory of Biomass Waste Resource Utilization, Beijing 100023, China
| | - Kaowen Zhou
- Biochemical
Engineering College, Beijing Union University, Beijing 100023, China
- Beijing
Key Laboratory of Biomass Waste Resource Utilization, Beijing 100023, China
| |
Collapse
|
125
|
Kikani M, Bhojani G, Amit C, Kumar Madhava A. Chemo-metrically formulated consortium with selectively screened bacterial strains for ameliorated biotransformation and detoxification of 1,4-dioxane. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125456. [PMID: 33930970 DOI: 10.1016/j.jhazmat.2021.125456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The biotransformation of 1,4-dioxane, a endrocrine disrupting chemical was achieved using different bacterial strains and their consortia. Three different bacterial isolates were screened on their ability to grow with 50 mg/L 1,4-dioxane in the basal mineral medium. Then the isolates were tested for its efficiency to biotransform 1000 mg/L 1,4-dioxane at varying period of time; 24-120 h. The isolates were distinguished by their morphological features and 16 S rRNA gene sequencing was done to evaluate the phylogenetic relationships. The isolates were identified as Bacillus marisflavi strain MGA, Aeromonas hydrophila strain AG and Shewanella putrefaciens strain AG. The degree of biotransformation was escalated by constructing a bacterial consortium using statistical tool; response-mixture matrix under the design of experiments. The fully grown bacterial strains were used as ingredients in different proportions to formulate the consortium. The biotransformation was analyzed for functional attenuation using spectroscopic techniques and reduction in 1,4-dioxane level was confirmed using mass spectrometry. The precise quantification of biotransformation using mass spectral profile revealed that the consortium removed 31%, 61% and 85% of 1000 mg/L 1,4-dioxane within 96, 120 and 144 h respectively. The activities of inducible laccase were elucidated during biotransformation of 1,4-dioxane. Bio-toxicity of treated and untreated 1,4-dioxane on brine shrimp; Artemia salina showed that the biotransformed products were less toxic. Therefore, this report would be first of its kind to report the biotransformation and detoxification of 1,4-dioxane by a statistically designed bacterial consortium.
Collapse
Affiliation(s)
- Mansi Kikani
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India
| | - Gopal Bhojani
- Applied Biotechnology and Phycology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, Uttar Pradesh, India
| | - Chanchpara Amit
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, Uttar Pradesh, India
| | - Anil Kumar Madhava
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
126
|
Qin W, Kolooshani A, Kolahdooz A, Saber-Samandari S, Khazaei S, Khandan A, Ren F, Toghraie D. Coating the magnesium implants with reinforced nanocomposite nanoparticles for use in orthopedic applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
127
|
Zhu Y, Zamani M, Xu G, Toghraie D, Hashemian M, Alizadeh A. A comprehensive experimental investigation of dynamic viscosity of MWCNT-WO3/water-ethylene glycol antifreeze hybrid nanofluid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
128
|
Investigation of Ferro-nanofluid flow within a porous ribbed microchannel heat sink using single-phase and two-phase approaches in the presence of constant magnetic field. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
129
|
Karimi-Maleh H, Mousavi SJ, Mahdavian M, Khaleghi M, Bordbar S, Yola ML, Darabi R, Liu M. Effects of silver nanoparticles added into polyurea coating on sulfate-reducing bacteria activity and electrochemical properties; an environmental nano-biotechnology investigation. ENVIRONMENTAL RESEARCH 2021; 198:111251. [PMID: 33933494 DOI: 10.1016/j.envres.2021.111251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
In the present work, Ag nanoparticles were added to polyurea coating in order to improve its antibacterial and electrochemical properties in sulfide-reducing bacteria-containing media. To this end, Ag nano-powder was mixed with two component polyuria, and then the antibacterial behavior of the nanocomposite coating was studied in sulfate-reducing bacteria (SRB)-containing medium. The results revealed the inhibitory effects of nanocomposite coating on the formation of SRB biofilms on the samples. Moreover, the SRB population decreased in contact with the Ag nanoparticles-mixed coating over 7 days. Investigation of the growth and activity of the bacteria represented the effective antibacterial properties of Ag nanoparticles in the polyurea matrix. Furthermore, EIS (electrochemical impedance spectroscopy) measurements indicated that the corrosion properties of the nanocomposite coating improved considerably over 7 days. The coating resistance increased 2 times by adding Ag nanoparticles after 1 day and 3.3 times after 7 days. In accordance with the same results, the charge transfer resistance increased 1.5 times and 1.1 times by adding Ag nanoparticles after 1 day and 7 days, respectively. The improvement in the protective properties of the nanocomposite coating are reflected in the increase in both film and charge transfer resistance.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronics Science and Technology of China (UESTC), 611731, China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran; Department of Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Seyed Jafar Mousavi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| | - Majid Mahdavian
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran.
| | - Mouj Khaleghi
- Department of biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sajjad Bordbar
- Department of Metals, Institute of Materials Science and Engineering, Graduate University of Advanced Technology, Kerman, Iran
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Rozhin Darabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran.
| | - Mei Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, Liaoning, China
| |
Collapse
|
130
|
Rathi BS, Kumar PS. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116995. [PMID: 33789220 DOI: 10.1016/j.envpol.2021.116995] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 05/25/2023]
Abstract
Emerging pollutants in the marine ecosystem, as well as their possible impact on live species, have become a rising cause of worry. A traditional wastewater treatment plants alone are not successful in eliminating such massive contaminant groups and therefore additional water treatment is required which is to be cost effective. Since standard primary and secondary treatment plants are unsuccessful at eliminating or degrading these harmful chemicals, a cost-effective tertiary treatment approach is proposed. Adsorption is a successful approach for Contaminants removal globally, because it is low installation expense, high performance and has easy operational design. Emerging pollutants have been removed from wastewaters using various adsorbents like activated carbons, improved bio chars, Nano adsorbents, hybrid adsorbents, and others. The purpose of this paper is to review the source of contaminants and the concept of adsorption when separating emerging contaminants. The present study aims to examine the adsorption mechanism as an effective approach for treating emerging contaminants. Then, the analysis of natural and man-made adsorbents for the separation of contaminants is examined along with its comparison. Also, future view on emerging contaminants and adsorbents in modern generation has been discussed.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
131
|
Nano-construction of CuO nanorods decorated with g-C3N4 nanosheets (CuO/g-C3N4-NS) as a superb colloidal nanocatalyst for liquid phase C H conversion of aldehydes to amides. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
132
|
Saravanan A, Kumar PS, Jeevanantham S, Karishma S, Yaashikaa PR. Modeling analysis on the effective elimination of toxic pollutant from aquatic environment using pyrolysis assisted palmyra palm male inflorescence. ENVIRONMENTAL RESEARCH 2021; 197:111146. [PMID: 33865816 DOI: 10.1016/j.envres.2021.111146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
In this study adsorption of Cd(II) ions using the pyrolysis assisted Palmyra palm male inflorescence (PAPMI) was systematically examined. A batch adsorption study was carried out to determine the type of interactions and removal efficiency which is based on the surface property of PAPMI. The diverse parameters which affect the adsorption performance of PAPMI for Cd(II) ion removal were optimized: biosorbent dose - 1.25 g/L, pH - 6.0, temperature - 303 K, initial cadmium ions concentration - 50 mg/L and contact time - 40 min. Pseudo-first order kinetics and Langmuir isotherm models were more suitable to describe the adsorption kinetics and isotherm, respectively. Therefore, modeling studies portrayed the present Cd(II) ions adsorption on PAPMI as monolayer adsorption occurs on the homogeneous surface and follows the physisorption mechanism. The maximum adsorption capacity of the synthesized PAPMI was examined as 233.2 mg/g from the equilibrium isotherm investigation. Based on the calculated thermodynamic parameters (ΔGo, ΔHo and ΔSo) values, the present Cd(II) ions adsorption on PAPMI was explicated as feasible, and exothermic. The outcome proposed that Palmyra palm male inflorescence can be a suitable adsorbent for expulsion of Cd(II) ions from aqueous environment. In the interim, the utilization of pyrolysis assisted is a viable and fast uptake innovation for the removal of heavy metals from water environment.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| |
Collapse
|
133
|
Zahran M, Khalifa Z, A-H Zahran M, Abdel Azzem M. Abiotic sensor for electrochemical determination of chlorpyrifos in natural water based on the inhibition of silver nanoparticles oxidation. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
134
|
Liu H, Qiu Y, Wang D. Alteration in expressions of ion channels in Caenorhabditis elegans exposed to polystyrene nanoparticles. CHEMOSPHERE 2021; 273:129686. [PMID: 33486351 DOI: 10.1016/j.chemosphere.2021.129686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Ion channels on cytoplasmic membrane function to sense various environmental stimuli. We here determined the changes of genes encoding ion channels in Caenorhabditis elegans after exposure to polystyrene nanoparticles (PS-NPs). Exposure to 1-1000 μg/L PS-NPs could increase expressions of egl-19, mec-10, trp-4, trp-2, tax-4, cca-1, unc-2, and unc-93, and decrease the expressions of cng-3, mec-6, ocr-2, deg-1, exc-4, kvs-1, and eat-2. Among these 15 ion channel genes, RNAi knockdown of cng-3 or eat-2 caused resistance to PS-NPs toxicity and RNAi knockdown of egl-19, cca-1, tax-4, or unc-93 induced susceptibility to PS-NPs toxicity, suggesting that cng-3, eat-2, egl-19, cca-1, tax-4, and unc-93 were involved in the control of PS-NPs toxicity. EGL-19 and CCA-1 functioned in intestinal cells to control PS-NPs toxicity, and CNG-3, EAT-2, EGL-19, TAX-4, and UNC-93 functioned in neuronal cells to control PS-NPs. Moreover, in intestinal cells of PS-NPs exposed worms, cca-1 RNAi knockdown decreased elt-2 expression, and egl-19 RNAi knockdown decreased daf-16 and elt-2 expressions. In neuronal cells of PS-NPs exposed worms, eat-2 RNAi knockdown increased jnk-1, mpk-1, and dbl-1 expressions, unc-93 RNAi knockdown decreased mpk-1 and daf-7 expressions, and tax-4 RNAi knockdown decreased jnk-1 and daf-7 expressions. Therefore, two molecular networks mediated by ion channels in intestinal cells and neuronal cells were dysregulated by PS-NPs exposure in C. elegans. Our data suggested that the dysregulation in expressions of these ion channels mediated a protective response to PS-NPs in the range of μg/L in worms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Yuexiu Qiu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
135
|
Application of deep eutectic solvent and SWCNT-ZrO2 nanocomposite as conductive mediators for the fabrication of simple and rapid electrochemical sensor for determination of trace anti-migration drugs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
136
|
Keerthana SP, Yuvakkumar R, Kumar PS, Ravi G, Velauthapillai D. Rare earth metal (Sm) doped zinc ferrite (ZnFe 2O 4) for improved photocatalytic elimination of toxic dye from aquatic system. ENVIRONMENTAL RESEARCH 2021; 197:111047. [PMID: 33781773 DOI: 10.1016/j.envres.2021.111047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Wastewater remediation is the serious topic that must be taken into concern which would be a most crucial problem that destroys the natural properties as well as it has some worse effect on living organisms. By doing better wastewater management, the scarcity of water for domestic purposes can be eventually managed. Dyes are main organic pollutant that must be removed from wastewater. Pristine, 1% Sm doped and 2% Sm doped ZnFe2O4 were prepared through simple co-precipitation method. The materials were further analyzed for its structure, optical properties, rotational properties and morphology studies. These analyses were investigated with respect to X-ray diffraction, UV-vis spectroscopy, photoluminescence and scanning electron microscopic studies. XRD pattern of Pristine, 1% Sm doped and 2% Sm doped ZnFe2O4 was matched with JCPDS Card #89-1012 with cubic phase. Bandgap energy of prepared samples were 1.7 eV, 1.65 eV and 1.47 eV. The prepared cationic dye was degraded with help of visible light irradiation. 2% Sm doped ZnFe2O4 nanoparticles easily removed 65% of dye within 1 h duration. 2% Sm doped ZnFe2O4 was tested for its reusability and efficiency was stable for more than three cycles. This shows the stability of the sample towards degrading the cationic dye. By the doping of Samarium, ZnFe2O4 nanoparticles enthusiastically removed cationic dye and it proves to be an efficient candidate in removing dyes and can help in wastewater treatment in upcoming era.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - P Senthil Kumar
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|
137
|
Hybrid Nanofibrous Membranes as a Promising Functional Layer for Personal Protection Equipment: Manufacturing and Antiviral/Antibacterial Assessments. Polymers (Basel) 2021; 13:polym13111776. [PMID: 34071484 PMCID: PMC8198978 DOI: 10.3390/polym13111776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/23/2022] Open
Abstract
In this research work, nanofibrous hybrids are manufactured, characterized, and assessed as active antiviral and antibacterial membranes. In more detail, both polyvinyl alcohol (PVA) and thermoplastic polyurethane (TPU) nanofibrous (NF) membranes and their composites with embedded silver nanoparticles (Ag NPs) are manufactured by an electrospinning process. Their morphological structures have been investigated by a scanning electron microscope (SEM) which revealed a homogenous distribution and almost beads-free fibers in all manufactured samples. Characterization with spectroscopic tools has been performed and proved the successful manufacturing of Ag-incorporated PVA and TPU hybrid nanofibers. The crystalline phase of the nanofibers has been determined using an X-ray diffractometer (XRD) whose patterns showed their crystalline nature at an angle value (2θ) of less than 20°. Subsequent screening of both antiviral and antibacterial potential activities of developed nanohybrid membranes has been explored against different viruses, including SARS-Cov-2 and some bacterial strains. As a novel approach, the current work highlights potential effects of several polymeric hybrids on antiviral and antibacterial activities particularly against SARS-Cov-2. Moreover, two types of polymers have been tested and compared; PVA of excellent biodegradable and hydrophilic properties, and TPU of excellent mechanical, super elasticity, hydrophobicity, and durability properties. Such extreme polymers can serve a wide range of applications such as PPE, filtration, wound healing, etc. Consequently, assessment of their antiviral/antibacterial activities, as host matrices for Ag NPs, is needed for different medical applications. Our results showed that TPU-Ag was more effective than PVA-Ag as HIV-1 antiviral nanohybrid as well as in deactivating spike proteins of SARS-Cov-2. Both TPU-Ag and PVA-Ag nanofibrous membranes were found to have superior antimicrobial performance by increasing Ag concentration from 2 to 4 wt.%. Additionally, the developed membranes showed acceptable physical and mechanical properties along with both antiviral and antibacterial activities, which can enable them to be used as a promising functional layer in Personal Protective Equipment (PPE) such as (surgical gowns, gloves, overshoes, hair caps, etc.). Therefore, the developed functional membranes can support the decrease of both coronavirus spread and bacterial contamination, particularly among healthcare professionals within their workplace settings.
Collapse
|
138
|
Feng H, Wang W, Wang W, Zhang M, Wang C, Ma C, Li W, Chen S. Charge transfer channels of silver @ cuprous oxide heterostructure core-shell nanoparticles strengthen high photocatalytic antibacterial activity. J Colloid Interface Sci 2021; 601:531-543. [PMID: 34090030 DOI: 10.1016/j.jcis.2021.05.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023]
Abstract
Marine biological fouling has always been a hot research topic. In this study, silver @ cuprous oxide (Ag@Cu2O) core-shell nanoparticles were synthesized via in-situ synthesis method and developed an outstanding antibacterial activity. The bacteriostasis efficiency of Ag@Cu2O reached to 99% and 98% against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. The minimum inhibitory concentration of Ag@Cu2O decreased from 113.6 μg/mL to 56.8 μg/mL compared with Cu2O. Ag@Cu2O had better antibacterial activity than Cu2O with lower content of Cu2O and was more environment friendly. The heterostructure formed at the interface between Ag and Cu2O promoted the separation and diffusion of photogenerated electron-hole pairs through the charge transfer channel and promoted the generation of reactive oxygen species. The outstanding antibacterial activity of Ag@Cu2O was strongly depended on the generation of the reactive oxygen species. Density functional theory and finite element method calculations demonstrated that the structure of core-shell improved photocatalytic efficiency. Additionally, synergetic effect of released Ag+ and Cu2+ also enhanced the bacteriostasis rate and the long-term antifouling performance in 60 days. Hence, the synthesized core-shell Ag@Cu2O can be applied as novel antifoulants in the marine field.
Collapse
Affiliation(s)
- Huimeng Feng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenhui Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mutian Zhang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chengwei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chengcheng Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wen Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
139
|
Li J, Zhang S, Zhang L, Zhang Y, Zhang H, Zhang C, Xuan X, Wang M, Zhang J, Yuan Y. A Novel Graphene-Based Nanomaterial Modified Electrochemical Sensor for the Detection of Cardiac Troponin I. Front Chem 2021; 9:680593. [PMID: 34055747 PMCID: PMC8162784 DOI: 10.3389/fchem.2021.680593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction has a high clinical mortality rate. The initial exclusion or diagnosis is important for the timely treatment of patients with acute myocardial infarction. As a marker, cardiac troponin I (cTnI) has a high specificity, high sensitivity to myocardial injury and a long diagnostic window. Therefore, its diagnostic value is better than previous markers of myocardial injury. In this work, we propose a novel aptamer electrochemical sensor. This sensor consists of silver nanoparticles/MoS2/reduced graphene oxide. The combination of these three materials can provide a synergistic effect for the stable immobilization of aptamer. Our proposed aptamer electrochemical sensor can detect cTnl with high sensitivity. After optimizing the parameters, the sensor can provide linear detection of cTnl in the range of 0.3 pg/ml to 0.2 ng/ml. In addition, the sensor is resistant to multiple interferents including urea, glucose, myoglobin, dopamine and hemoglobin.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Shenwei Zhang
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Hua Zhang
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Chuanxi Zhang
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Xuexi Xuan
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Mingjie Wang
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiqiang Yuan
- Department of Cardiology, Chest Hospital of Henan Provincial, Zhengzhou, China
| |
Collapse
|
140
|
Wang X, Jiang J, Ma Y, Song Y, Li T, Dong S. Tetracycline hydrochloride degradation over manganese cobaltate (MnCo 2O 4) modified ultrathin graphitic carbon nitride (g-C 3N 4) nanosheet through the highly efficient activation of peroxymonosulfate under visible light irradiation. J Colloid Interface Sci 2021; 600:449-462. [PMID: 34023706 DOI: 10.1016/j.jcis.2021.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
Peroxymonosulfate (PMS) activation by heterogeneous transition metal oxides is an effective approach for treating emerging pollutants in water. However, the low PMS activation efficiency associated with the valency conversion rate of transition metals has been a major challenge to sulfate radical-based oxidation. In this work, manganese cobaltate (MnCo2O4) nanoparticles anchored on graphitic carbon nitride (g-C3N4) flakes (MnCo2O4/g-C3N4) were successfully prepared and showed high PMS activation efficiency under visible (Vis) light. The obtained catalysts degraded 96.1% of the tetracycline hydrochloride (TCH) through the synergistic effect of PMS and photocatalysis. The reaction rate constant (0.2505 min-1) was 5.3 and 1.8 times higher in the MnCo2O4/g-C3N4/PMS/Vis system than in the pristine g-C3N4 (0.0471 min-1) and MnCo2O4 (0.1435 min-1) systems, respectively. The characterization results verified that g-C3N4, which functions as the electron donor in the photocatalytic heterojunction system, could transmit numerous photogenerated electrons to MnCo2O4, thereby increasing the cyclability of divalent-trivalent metal ions. The composites also showed good stability, cycling capability, and cation/anion tolerance. Tentative degradation mechanism and reaction pathways were proposed based on the reactive species and degradation products.
Collapse
Affiliation(s)
- Xingyue Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun 130021, Jilin, China
| | - Jingjing Jiang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun 130021, Jilin, China
| | - Yuhan Ma
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun 130021, Jilin, China
| | - Yueyu Song
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun 130021, Jilin, China
| | - Tianren Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun 130021, Jilin, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
141
|
Abhinaya M, Parthiban R, Kumar PS, Vo DVN. A review on cleaner strategies for extraction of chitosan and its application in toxic pollutant removal. ENVIRONMENTAL RESEARCH 2021; 196:110996. [PMID: 33716028 DOI: 10.1016/j.envres.2021.110996] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Existence of human beings in this world require a cleaner environment, in which, water is the main requirement for living. Owing to the considerable development in civilisation and considerable population explosion, an increase in the contamination of natural water resources by means of non-biodegradable contaminants like heavy metals is observed thereby increasing the need for treatment of water before usage. Despite the existence of specific limits for disposal of heavy metals in water resources, studies still show high contamination of heavy metals in all these water resources. This review provides a brief note on sources and toxicity of different heavy metals in various oxidation states, their effects as well as highlights the numerous available and advanced techniques for heavy metals removal. Of all techniques adsorption is found to be beneficial as it doesn't inculcate any secondary pollutants to the environment. Additionally, this article has investigated the advantages of polymer nanocomposites in adsorption and mainly focused on biopolymer chitosan owing to its abundance in natural environment. The cleaner techniques for the extraction of chitosan and its functionalisation using different types of nanofillers are comprehensively discussed in this review. This article suggests a better alternative for conventional adsorbents as well as aids in remediation of wastes.
Collapse
Affiliation(s)
- M Abhinaya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - R Parthiban
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
142
|
Saravanan A, Kumar PS, Varjani S, Jeevanantham S, Yaashikaa PR, Thamarai P, Abirami B, George CS. A review on algal-bacterial symbiotic system for effective treatment of wastewater. CHEMOSPHERE 2021; 271:129540. [PMID: 33434824 DOI: 10.1016/j.chemosphere.2021.129540] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Industrialization, urbanization and other anthropogenic activities releases different organic and inorganic toxic chemicals into the environment which prompted the water contamination in the environment. Different physical and chemical techniques have been employed to treat the contaminated wastewater, among them biological wastewater treatment using algae has been studied extensively to overwhelm the constraints related to the usually utilized wastewater treatment techniques. The presence of bacterial biota in the wastewater will form a bond with algae and act as a natural water purification system. The removal efficiency of single algae systems was very low in contrast with that of algal-bacterial systems. Heterotrophic microorganisms separate natural organic matter that is discharged by algae as dissolved organic carbon (DOC) and discharges CO2 that the algae can take up for photosynthesis. Algae bacteria associations offer an exquisite answer for tertiary and scrape medicines because of the capacity of micro-algae to exploit inorganic compounds for their development. Furthermore, for their ability to evacuate noxious contaminants, in this way, it does not prompt optional contamination. The present review contribute the outline of algae-bacteria symbiotic relationship and their applications in the wastewater treatment. The role of algae and bacteria in the wastewater treatment have been elucidated in this review. Moreover, the efforts have been imparted the importance of alage-bacteria consortium and its applications for various pollutant removal from the environment.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105 India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105 India
| | - P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - P Thamarai
- Department of Food Technology, JCT College of Engineering and Technology, Coimbatore, 641105, India
| | - B Abirami
- Center for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Cynthia Susan George
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
143
|
Tb2(WO4)3@N-GQDs-FA as an efficient nanocatalyst for the efficient synthesis of β-aminoalcohols in aqueous solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
144
|
Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115062] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
145
|
Molecular dynamics simulation of the thermal properties of the Cu-water nanofluid on a roughed Platinum surface: Simulation of phase transition in nanofluids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
146
|
Fetanat M, Keshtiara M, Low ZX, Keyikoglu R, Khataee A, Orooji Y, Chen V, Leslie G, Razmjou A. Machine Learning for Advanced Design of Nanocomposite Ultrafiltration Membranes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masoud Fetanat
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Graduate School of Biomedical Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Mohammadali Keshtiara
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ze-Xian Low
- Department of Chemical Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Ramazan Keyikoglu
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey
- Department of Environmental Engineering, Bursa Technical Unviersity, 16310 Bursa, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072 Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Gregory Leslie
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Amir Razmjou
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
147
|
Heng JZX, Tang KY, Regulacio MD, Lin M, Loh XJ, Li Z, Ye E. Solar-Powered Photodegradation of Pollutant Dyes Using Silver-Embedded Porous TiO 2 Nanofibers. NANOMATERIALS 2021; 11:nano11040856. [PMID: 33801664 PMCID: PMC8066685 DOI: 10.3390/nano11040856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Titanium dioxide (TiO2) nanomaterials have been ubiquitously investigated as a photocatalyst for organic contaminant treatment in wastewater due to their exemplary semiconductor properties. However, their huge band gap remains a barrier for visible light absorption, limiting their utility in practical applications. The incorporation of noble metals in the TiO2 scaffold would help mitigate the problem via plasmonic resonance enhancements. Silver (Ag) is the chosen noble metal as it is relatively cheap and has great plasmonic effects. In this study, the use of electrospun Ag-embedded TiO2 nanofibers as a photocatalyst is shown to be effective in decomposing rhodamine B and methyl orange dyes under a solar simulator in 3 h, which is more efficacious as opposed to pristine TiO2 nanofibers. This showcases the potential of a simple and economic wastewater treatment system for the removal of organic pollutants.
Collapse
Affiliation(s)
- Jerry Zhi Xiong Heng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
| | - Michelle D. Regulacio
- Institute of Chemistry, University of the Philippines Diliman, Quezon City 1101, Philippines;
| | - Ming Lin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
- Correspondence: (M.L.); (X.J.L.); (Z.L.); (E.Y.)
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
- Correspondence: (M.L.); (X.J.L.); (Z.L.); (E.Y.)
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
- Correspondence: (M.L.); (X.J.L.); (Z.L.); (E.Y.)
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
- Correspondence: (M.L.); (X.J.L.); (Z.L.); (E.Y.)
| |
Collapse
|
148
|
Güy N, Atacan K, Yıldırım İ, Özacar M. Insight into the efficient photocatalytic removal mechanism of organic pollutants by plasmonic Z-scheme MoS2/Ag/Ag3VO4 heterojunction under visible light. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
149
|
Analysis of entropy generation of ferrofluid flow in the microchannel with twisted porous ribs: The two-phase investigation with various porous layers. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
150
|
Yarmohammadi A, Sedeh SN, Toghraie D, Alizadeh A. The effect of magnetic field on the twisted porous ribs with various porous layers and pitches: The first and second laws of thermodynamics study with two-phase approach. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|