101
|
Covey DP, Bunner KD, Schuweiler DR, Cheer JF, Garris PA. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids. Eur J Neurosci 2016; 43:1661-73. [PMID: 27038339 PMCID: PMC5819353 DOI: 10.1111/ejn.13248] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/29/2016] [Indexed: 02/04/2023]
Abstract
The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement.
Collapse
Affiliation(s)
- Dan P. Covey
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kendra D. Bunner
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Douglas R. Schuweiler
- School of Biological Sciences, Illinois State University, 210 Julian Hall, Normal, IL 61790-4120, USA
| | - Joseph F. Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul A. Garris
- School of Biological Sciences, Illinois State University, 210 Julian Hall, Normal, IL 61790-4120, USA
| |
Collapse
|
102
|
Sex-related differences in striatal dopaminergic system after traumatic brain injury. Brain Res Bull 2016; 124:214-21. [PMID: 27210290 DOI: 10.1016/j.brainresbull.2016.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 11/23/2022]
Abstract
Several studies have demonstrated alterations in the dopamine (DA) system after traumatic brain injury (TBI). Additionally, the existence of significant sex-related differences in the dopaminergic system has long been recognized. Accordingly, the purpose of the present study was to investigate whether TBI would differentially alter, in female and male mice, the expression and the function of the striatal vesicular monoamine transporter-2 (VMAT-2), an important DA transporter. After controlled cortical impact (CCI) injury, female mice showed significantly lower striatal DA concentrations and K(+)-evoked DA output. By contrast, no significant sex-related differences were observed in the mRNA and protein levels of striatal dopamine transporter (DAT) and VMAT-2 and the methamphetamine (MA)-evoked DA output. These results demonstrated clear sex-related differences in striatal VMAT-2 function in response to TBI and suggested that female mice may be more sensitive to the TBI-induced inhibition of the VMAT-2 function, as indicated by the greater degree of deficits observed when the VMAT-2 DA-storage function was inhibited by TBI. Moreover, the TBI-induced suppression of locomotion was more pronounced than female mice. Such findings highlight the need for sex-specific considerations when examining differences among brain injury conditions.
Collapse
|
103
|
Leary JB, Bondi CO, LaPorte MJ, Carlson LJ, Radabaugh HL, Cheng JP, Kline AE. The Therapeutic Efficacy of Environmental Enrichment and Methylphenidate Alone and in Combination after Controlled Cortical Impact Injury. J Neurotrauma 2016; 34:444-450. [PMID: 26972895 DOI: 10.1089/neu.2016.4438] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Environmental enrichment (EE) and methylphenidate (MPH) independently confer significant benefit to behavioral recovery after controlled cortical impact (CCI) injury. Given that combinational therapies may be more clinically translatable than monotherapies, the aim of the current study was to test the hypothesis that a combined treatment regimen of EE and MPH would provide greater therapeutic efficacy than either one alone. Anesthetized adult male rats received either a CCI of moderate severity or sham injury and were then randomly assigned to EE or standard (STD) housing where they received either intraperitoneal (ip) MPH (5 mg/kg) or vehicle (VEH; 1.0 mL/kg; ip) beginning 24 h after injury and once daily for 19 days. Motor and cognitive assessments were conducted on post-injury days 1-5 and 14-19, respectively. No differences were observed in sham controls regardless of treatments, and thus their data were pooled. The traumatic brain injury (TBI)+EE+VEH and TBI+EE+MPH groups exhibited enhanced beam balance and beam walk performance relative to the TBI+STD+VEH group (p < 0.05), but did not differ from one another (p > 0.05). No effect of MPH treatment alone was observed in either motor task. In contrast, MPH improved spatial learning and memory when presented alone and also when combined with EE relative to VEH-treated STD controls (p < 0.05). In addition, both EE groups performed significantly better than the TBI+STD+MPH group (p < 0.05), but did not differ from one another (p > 0.05). These data replicate previous findings that both EE and MPH confer cognitive benefits after TBI and extend the findings by revealing that combining EE and MPH does not produce effects greater than either treatment alone, which does not support the hypothesis. The lack of an additive effect may be because of the robustness of the EE.
Collapse
Affiliation(s)
- Jacob B Leary
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Corina O Bondi
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Neurobiology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Megan J LaPorte
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Lauren J Carlson
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Hannah L Radabaugh
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jeffrey P Cheng
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Anthony E Kline
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Psychology, University of Pittsburgh , Pittsburgh, Pennsylvania.,6 Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.,7 Center for the Neural Basis of Cognition, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
104
|
Kline AE, Leary JB, Radabaugh HL, Cheng JP, Bondi CO. Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: Is more better? Prog Neurobiol 2016; 142:45-67. [PMID: 27166858 DOI: 10.1016/j.pneurobio.2016.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care crisis that affects two million individuals in the United Sates alone and over ten million worldwide each year. While numerous monotherapies have been evaluated and shown to be beneficial at the bench, similar results have not translated to the clinic. One reason for the lack of successful translation may be due to the fact that TBI is a heterogeneous disease that affects multiple mechanisms, thus requiring a therapeutic approach that can act on complementary, rather than single, targets. Hence, the use of combination therapies (i.e., polytherapy) has emerged as a viable approach. Stringent criteria, such as verification of each individual treatment plus the combination, a focus on behavioral outcome, and post-injury vs. pre-injury treatments, were employed to determine which studies were appropriate for review. The selection process resulted in 37 papers that fit the specifications. The review, which is the first to comprehensively assess the effects of combination therapies on behavioral outcomes after TBI, encompasses five broad categories (inflammation, oxidative stress, neurotransmitter dysregulation, neurotrophins, and stem cells, with and without rehabilitative therapies). Overall, the findings suggest that combination therapies can be more beneficial than monotherapies as indicated by 46% of the studies exhibiting an additive or synergistic positive effect versus on 19% reporting a negative interaction. These encouraging findings serve as an impetus for continued combination studies after TBI and ultimately for the development of successful clinically relevant therapies.
Collapse
Affiliation(s)
- Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Jacob B Leary
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
105
|
Myrga JM, Juengst SB, Failla MD, Conley YP, Arenth PM, Grace AA, Wagner AK. COMT and ANKK1 Genetics Interact With Depression to Influence Behavior Following Severe TBI: An Initial Assessment. Neurorehabil Neural Repair 2016; 30:920-930. [PMID: 27154305 DOI: 10.1177/1545968316648409] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Genetic variations in the dopamine (DA) system are associated with cortical-striatal behavior in multiple populations. This study assessed associations of functional polymorphisms in the ankyrin repeat and kinase domain (ANKK1; Taq1a) and catechol-O-methyltransferase (COMT; Val158Met) genes with behavioral dysfunction following traumatic brain injury (TBI). PARTICIPANTS This was a prospective study of 90 survivors of severe TBI recruited from a level 1 trauma center. MAIN MEASURES The Frontal Systems Behavior Scale, a self- or family report questionnaire evaluating behavior associated with frontal lobe dysfunction, was completed 6 and 12 months postinjury. Depression was measured concurrently with the Patient Health Questionnaire-9. Study participants were genotyped for Val158Met and Taq1a polymorphisms. RESULTS No statistically significant behavioral differences were observed by Taq1a or Val158Met genotype alone. At 12 months, among those with depression, Met homozygotes (Val158Met) self-reported worse behavior than Val carriers (P = .015), and A2 homozygotes (Taq1a) self-reported worse behavior than A1 carriers (P = .028) in bivariable analysis. Multivariable models suggest an interaction between depression and genetic variation with behavior at 12 months post-TBI, and descriptive analysis suggests that carriage of both risk alleles may contribute to worse behavioral performance than carriage of either risk allele alone. CONCLUSION In the context of depression, Val158Met and Taq1a polymorphisms are individually associated with behavioral dysfunction 12 months following severe TBI, with preliminary evidence suggesting cumulative, or perhaps epistatic, effects of COMT and ANKK1 on behavioral dysfunction.
Collapse
Affiliation(s)
- John M Myrga
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Shannon B Juengst
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | | | - Yvette P Conley
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Patricia M Arenth
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Anthony A Grace
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA Department of Neuroscience, University of Pittsburgh, Pittsburgh PA Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
106
|
Pevzner A, Izadi A, Lee DJ, Shahlaie K, Gurkoff GG. Making Waves in the Brain: What Are Oscillations, and Why Modulating Them Makes Sense for Brain Injury. Front Syst Neurosci 2016; 10:30. [PMID: 27092062 PMCID: PMC4823270 DOI: 10.3389/fnsys.2016.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/22/2016] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) can result in persistent cognitive, behavioral and emotional deficits. However, the vast majority of patients are not chronically hospitalized; rather they have to manage their disabilities once they are discharged to home. Promoting recovery to pre-injury level is important from a patient care as well as a societal perspective. Electrical neuromodulation is one approach that has shown promise in alleviating symptoms associated with neurological disorders such as in Parkinson’s disease (PD) and epilepsy. Consistent with this perspective, both animal and clinical studies have revealed that TBI alters physiological oscillatory rhythms. More recently several studies demonstrated that low frequency stimulation improves cognitive outcome in models of TBI. Specifically, stimulation of the septohippocampal circuit in the theta frequency entrained oscillations and improved spatial learning following TBI. In order to evaluate the potential of electrical deep brain stimulation for clinical translation we review the basic neurophysiology of oscillations, their role in cognition and how they are changed post-TBI. Furthermore, we highlight several factors for future pre-clinical and clinical studies to consider, with the hope that it will promote a hypothesis driven approach to subsequent experimental designs and ultimately successful translation to improve outcome in patients with TBI.
Collapse
Affiliation(s)
- Aleksandr Pevzner
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Ali Izadi
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Darrin J Lee
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California-DavisSacramento, CA, USA; Center for Neuroscience, University of California-DavisSacramento, CA, USA
| |
Collapse
|
107
|
Weil ZM, Corrigan JD, Karelina K. Alcohol abuse after traumatic brain injury: Experimental and clinical evidence. Neurosci Biobehav Rev 2016; 62:89-99. [DOI: 10.1016/j.neubiorev.2016.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/16/2015] [Accepted: 01/21/2016] [Indexed: 01/06/2023]
|
108
|
Harun R, Hare KM, Brough EM, Munoz MJ, Grassi CM, Torres GE, Grace AA, Wagner AK. Fast-scan cyclic voltammetry demonstrates that L-DOPA produces dose-dependent, regionally selective bimodal effects on striatal dopamine kinetics in vivo. J Neurochem 2016; 136:1270-1283. [PMID: 26611352 PMCID: PMC4884169 DOI: 10.1111/jnc.13444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a debilitating condition that is caused by a relatively specific degeneration of dopaminergic (DAergic) neurons of the substantia nigra pars compacta. L-DOPA was introduced as a viable treatment option for PD over 40 years ago and still remains the most common and effective therapy for PD. Though the effects of L-DOPA to augment striatal DA production are well known, little is actually known about how L-DOPA alters the kinetics of DA neurotransmission that contribute to its beneficial and adverse effects. In this study, we examined the effects of L-DOPA administration (50 mg/kg carbidopa + 0, 100, and 250 mg/kg L-DOPA) on regional electrically stimulated DA response kinetics using fast-scan cyclic voltammetry in anesthetized rats. We demonstrate that L-DOPA enhances DA release in both the dorsal striatum (D-STR) and nucleus accumbens (NAc), but surprisingly causes a delayed inhibition of release in the D-STR. In both regions, L-DOPA progressively attenuated reuptake kinetics, predominantly through a decrease in Vmax . These findings have important implications on understanding the pharmacodynamics of L-DOPA, which may be informative for understanding its therapeutic effects and also common side effects like L-DOPA-induced dyskinesias (LID). L-DOPA is commonly used to treat Parkinsonian symptoms, but little is known about how it affects presynaptic DA neurotransmission. Using in vivo fast-scan cyclic voltammetry, we show L-DOPA inhibits DA reuptake in a region-specific and dose-dependent manner, and L-DOPA has paradoxical effects on release. These findings may be important when considering mechanisms for L-DOPA's therapeutic benefits and adverse side-effects.
Collapse
Affiliation(s)
- Rashed Harun
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
| | - Kristin M Hare
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth M Brough
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
| | - Miranda J Munoz
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biological Sciences, Carnegie Mellon University, Mellon College of Science, Pittsburgh, Pennsylvania, USA
| | - Christine M Grassi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gonzalo E Torres
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Departments of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
109
|
Kline AE, Bondi CO. Brain injury and recovery. Brain Res 2016; 1640:1-4. [PMID: 26923162 DOI: 10.1016/j.brainres.2016.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Anthony E Kline
- Department of Physical Medicine & Rehabilitation, 3471 Fifth Avenue, Suite 201, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Pittsburgh, PA 15213, USA; Critical Care Medicine, Pittsburgh, PA 15213, USA; Psychology, Pittsburgh, PA 15213, USA; Center for Neuroscience, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, 3471 Fifth Avenue, Suite 201, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Pittsburgh, PA 15213, USA; Neurobiology, Pittsburgh, PA 15213, USA.
| |
Collapse
|
110
|
Presence of a dedicated trauma center physiatrist improves functional outcomes following traumatic brain injury. J Trauma Acute Care Surg 2016; 80:70-5. [DOI: 10.1097/ta.0000000000000890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
111
|
Osier ND, Dixon CE. Catecholaminergic based therapies for functional recovery after TBI. Brain Res 2015; 1640:15-35. [PMID: 26711850 DOI: 10.1016/j.brainres.2015.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/15/2022]
Abstract
Among the many pathophysiologic consequences of traumatic brain injury are changes in catecholamines, including dopamine, epinephrine, and norepinephrine. In the context of TBI, dopamine is the one most extensively studied, though some research exploring epinephrine and norepinephrine have also been published. The purpose of this review is to summarize the evidence surrounding use of drugs that target the catecholaminergic system on pathophysiological and functional outcomes of TBI using published evidence from pre-clinical and clinical brain injury studies. Evidence of the effects of specific drugs that target catecholamines as agonists or antagonists will be discussed. Taken together, available evidence suggests that therapies targeting the catecholaminergic system may attenuate functional deficits after TBI. Notably, it is fairly common for TBI patients to be treated with catecholamine agonists for either physiological symptoms of TBI (e.g. altered cerebral perfusion pressures) or a co-occuring condition (e.g. shock), or cognitive symptoms (e.g. attentional and arousal deficits). Previous clinical trials are limited by methodological limitations, failure to replicate findings, challenges translating therapies to clinical practice, the complexity or lack of specificity of catecholamine receptors, as well as potentially counfounding effects of personal and genetic factors. Overall, there is a need for additional research evidence, along with a need for systematic dissemination of important study details and results as outlined in the common data elements published by the National Institute of Neurological Diseases and Stroke. Ultimately, a better understanding of catecholamines in the context of TBI may lead to therapeutic advancements. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Nicole D Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Nursing, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; V.A. Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
112
|
The effectiveness of dopamine agonists for treatment of neuropsychiatric symptoms post brain injury and stroke. Acta Neuropsychiatr 2015; 27:317-26. [PMID: 25850757 DOI: 10.1017/neu.2015.17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Traumatic brain injury and stroke are among the leading causes of neurological disability worldwide. Although dopaminergic agents have long been associated with improvement of neuropsychiatric outcomes, to date much of the evidence to date has been in case reports and case series or open label trials. METHODS We undertook a systematic review of double-blinded randomised controlled trials (RCT) to determine the effect of dopaminergic agents on pre-defined outcomes of (a) apathy; (b) psychomotor retardation; (c) behavioural management and (d) cognitive function. Databases searched were: Medline, EMBASE, and PsychInfo for human studies. The Cochrane Clinical Trials Database and the TRIP Medical database were also searched. All identified studies, were further hand-searched. RESULTS We identified six studies providing data on 227 participants, 150 of whom received dopaminergic therapy. Trials were compromised by cross-over design, inadequate wash out period, small numbers and heterogeneous outcome measures. However one good quality RCT demonstrates the efficacy of amantadine in behavioural management. One further RCT shows methylphenidate-levodopa is efficacious for mood post-stroke. One study shows rotigotine to improve hemi-inattention caused by prefrontal damage. CONCLUSION Our systematic review demonstrates an evolving evidence base to suggest some benefits in agitation and aggression, mood and attentional deficits. However, there are key limitations of the studies undertaken to date involving small numbers of participants, heterogeneous outcome measures, and variable study designs. There is a need for on-going large prospective double-blind RCTs in these medications using standardised criteria and outcomes to fully understand their effectiveness in this patient group.
Collapse
|
113
|
Kotchoubey B, Pavlov YG, Kleber B. Music in Research and Rehabilitation of Disorders of Consciousness: Psychological and Neurophysiological Foundations. Front Psychol 2015; 6:1763. [PMID: 26640445 PMCID: PMC4661237 DOI: 10.3389/fpsyg.2015.01763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/03/2015] [Indexed: 01/18/2023] Open
Abstract
According to a prevailing view, the visual system works by dissecting stimuli into primitives, whereas the auditory system processes simple and complex stimuli with their corresponding features in parallel. This makes musical stimulation particularly suitable for patients with disorders of consciousness (DoC), because the processing pathways related to complex stimulus features can be preserved even when those related to simple features are no longer available. An additional factor speaking in favor of musical stimulation in DoC is the low efficiency of visual stimulation due to prevalent maladies of vision or gaze fixation in DoC patients. Hearing disorders, in contrast, are much less frequent in DoC, which allows us to use auditory stimulation at various levels of complexity. The current paper overviews empirical data concerning the four main domains of brain functioning in DoC patients that musical stimulation can address: perception (e.g., pitch, timbre, and harmony), cognition (e.g., musical syntax and meaning), emotions, and motor functions. Music can approach basic levels of patients' self-consciousness, which may even exist when all higher-level cognitions are lost, whereas music induced emotions and rhythmic stimulation can affect the dopaminergic reward-system and activity in the motor system respectively, thus serving as a starting point for rehabilitation.
Collapse
Affiliation(s)
- Boris Kotchoubey
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Yuri G. Pavlov
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Psychology, Ural Federal University, Yekaterinburg, Russia
| | - Boris Kleber
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
114
|
5-hydroxytryptamine1A (5-HT1A) receptor agonists: A decade of empirical evidence supports their use as an efficacious therapeutic strategy for brain trauma. Brain Res 2015; 1640:5-14. [PMID: 26612522 DOI: 10.1016/j.brainres.2015.11.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI) is a significant and enduring health care issue with limited treatment options. While several pre-clinical therapeutic approaches have led to enhanced motor and/or cognitive performance, the benefits of these treatments have not translated to the clinic. One plausible explanation is that the therapies may not have been rigorously evaluated, thus rendering the bench-to-bedside leap premature and subsequently unsuccessful. An approach that has undergone considerable empirical research after TBI is pharmacological targeting of 5-HT1A receptors with agonists such as repinotan HCl, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), and buspirone. The goal of this review is to integrate and interpret the findings from a series of studies that evaluated the efficacy of 5-HT1A receptor agonists on functional, histological, and molecular outcome after acquired brain injury. The overwhelming consensus of this exhaustive review is that a decade of empirical evidence supports their use as an efficacious therapeutic strategy for brain trauma. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
115
|
Winkler EA, Yue JK, McAllister TW, Temkin NR, Oh SS, Burchard EG, Hu D, Ferguson AR, Lingsma HF, Burke JF, Sorani MD, Rosand J, Yuh EL, Barber J, Tarapore PE, Gardner RC, Sharma S, Satris GG, Eng C, Puccio AM, Wang KKW, Mukherjee P, Valadka AB, Okonkwo DO, Diaz-Arrastia R, Manley GT. COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury. Neurogenetics 2015; 17:31-41. [PMID: 26576546 DOI: 10.1007/s10048-015-0467-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022]
Abstract
Mild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits following moderate and/or severe head trauma. However, this has been disputed, and its role in mTBI has not been studied. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val (158) Met polymorphism influences outcome on a cognitive battery 6 months following mTBI--Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), Trail Making Test (TMT) Trail B minus Trail A time, and California Verbal Learning Test, Second Edition Trial 1-5 Standard Score (CVLT-II). All patients had an emergency department Glasgow Coma Scale (GCS) of 13-15, no acute intracranial pathology on head CT, and no polytrauma as defined by an Abbreviated Injury Scale (AIS) score of ≥3 in any extracranial region. Results in 100 subjects aged 40.9 (SD 15.2) years (COMT Met (158) /Met (158) 29 %, Met (158) /Val (158) 47 %, Val (158) /Val (158) 24 %) show that the COMT Met (158) allele (mean 101.6 ± SE 2.1) associates with higher nonverbal processing speed on the WAIS-PSI when compared to Val (158) /Val (158) homozygotes (93.8 ± SE 3.0) after controlling for demographics and injury severity (mean increase 7.9 points, 95 % CI [1.4 to 14.3], p = 0.017). The COMT Val (158) Met polymorphism did not associate with mental flexibility on the TMT or with verbal learning on the CVLT-II. Hence, COMT Val (158) Met may preferentially modulate nonverbal cognition following uncomplicated mTBI.Registry: ClinicalTrials.gov Identifier NCT01565551.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nancy R Temkin
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, USA
| | - Sam S Oh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Esteban G Burchard
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Hester F Lingsma
- Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John F Burke
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Marco D Sorani
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Jonathan Rosand
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Esther L Yuh
- Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.,Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jason Barber
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, USA
| | - Phiroz E Tarapore
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Raquel C Gardner
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Neurology, San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| | - Sourabh Sharma
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Gabriela G Satris
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Celeste Eng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kevin K W Wang
- Center for Neuroproteomics and Biomarkers Research, Departments of Psychiatry and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Pratik Mukherjee
- Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.,Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | | | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA. .,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.
| | | |
Collapse
|
116
|
Bondi CO, Semple BD, Noble-Haeusslein LJ, Osier ND, Carlson SW, Dixon CE, Giza CC, Kline AE. Found in translation: Understanding the biology and behavior of experimental traumatic brain injury. Neurosci Biobehav Rev 2015; 58:123-46. [PMID: 25496906 PMCID: PMC4465064 DOI: 10.1016/j.neubiorev.2014.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/26/2014] [Accepted: 12/02/2014] [Indexed: 12/14/2022]
Abstract
The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled "Traumatic brain injury: laboratory and clinical perspectives," presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein, we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided.
Collapse
Affiliation(s)
- Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bridgette D Semple
- Neurological Surgery and the Graduate Program in Physical Medicine & Rehabilitation Science, University of California, San Francisco, San Francisco, CA, United States; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia
| | - Linda J Noble-Haeusslein
- Neurological Surgery and the Graduate Program in Physical Medicine & Rehabilitation Science, University of California, San Francisco, San Francisco, CA, United States
| | - Nicole D Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shaun W Carlson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Christopher C Giza
- Pediatric Neurology and Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States; UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
117
|
Leopold A, Lourie A, Petras H, Elias E. The use of assistive technology for cognition to support the performance of daily activities for individuals with cognitive disabilities due to traumatic brain injury: The current state of the research. NeuroRehabilitation 2015; 37:359-78. [DOI: 10.3233/nre-151267] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anne Leopold
- JBS International, Inc., North Bethesda, MD, USA
| | - Anna Lourie
- JBS International, Inc., North Bethesda, MD, USA
| | - Hanno Petras
- American Institutes for Research, Washington, DC, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen Elias
- JBS International, Inc., North Bethesda, MD, USA
- College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, USA
| |
Collapse
|
118
|
Weil ZM, Karelina K, Gaier KR, Corrigan TED, Corrigan JD. Juvenile Traumatic Brain Injury Increases Alcohol Consumption and Reward in Female Mice. J Neurotrauma 2015; 33:895-903. [PMID: 26153729 DOI: 10.1089/neu.2015.3953] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is closely and bi-directionally linked with alcohol use, as by some estimates intoxication is the direct or indirect cause of one-third to one-half of all TBI cases. Alcohol use following injury can reduce the efficacy of rehabilitation and increase the chances for additional injury. Finally, TBI itself may be a risk factor for the development of alcohol use disorders. Children who suffer TBIs have poorer life outcomes and more risk of substance abuse. We used a standardized closed-head injury to model mild traumatic brain injuries. We found that mice injured as juveniles but not during adulthood exhibited much greater alcohol self-administration in adulthood. Further, this phenomenon was limited to female mice. Using behavioral testing, including conditioned place preference assays, we showed that early injuries increase the rewarding properties of alcohol. Environmental enrichment administered after injury reduced axonal degeneration and prevented the increase in drinking behavior. Additionally, brain-derived neurotrophic factor gene expression, which was reduced by TBI, was normalized by environmental enrichment. Together, these results suggest a novel model of alterations in reward circuitry following trauma during development.
Collapse
Affiliation(s)
- Zachary M Weil
- 1 Department of Neuroscience and Group in Behavioral Neuroendocrinology, the Ohio State University Wexner Medical Center , Columbus, Ohio
| | - Kate Karelina
- 1 Department of Neuroscience and Group in Behavioral Neuroendocrinology, the Ohio State University Wexner Medical Center , Columbus, Ohio
| | - Kristopher R Gaier
- 1 Department of Neuroscience and Group in Behavioral Neuroendocrinology, the Ohio State University Wexner Medical Center , Columbus, Ohio
| | - Timothy E D Corrigan
- 1 Department of Neuroscience and Group in Behavioral Neuroendocrinology, the Ohio State University Wexner Medical Center , Columbus, Ohio
| | - John D Corrigan
- 2 Department of Physical Medicine and Rehabilitation, the Ohio State University Wexner Medical Center , Columbus, Ohio
| |
Collapse
|
119
|
Herrold AA, Sander AM, Wilson KV, Scimeca LM, Cobia DJ, Breiter HC. Dual Diagnosis of Traumatic Brain Injury and Alcohol Use Disorder: Characterizing Clinical and Neurobiological Underpinnings. CURRENT ADDICTION REPORTS 2015. [DOI: 10.1007/s40429-015-0078-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
120
|
Chen YH, Huang EYK, Kuo TT, Ma HI, Hoffer BJ, Tsui PF, Tsai JJ, Chou YC, Chiang YH. Dopamine Release Impairment in Striatum after Different Levels of Cerebral Cortical Fluid Percussion Injury. Cell Transplant 2015; 24:2113-28. [DOI: 10.3727/096368914x683584] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To investigate the role of dopamine release in cognitive impairment and motor learning deficits after brain injury, different levels of traumatic brain injury (TBI) were made in rats by using fluid percussion at two different atmospheres (2 Psi and 6 Psi). Tonic and phasic bursting dopamine release and behavior tests followed at several time points. We used in vitro fast-scan cyclic voltammetry to survey dopamine release in the striatum and analyzed the rats’ behavior using novel object recognition (NOR) and rotarod tests. Both tonic and bursting dopamine release were greatly depressed in the severely (6 Psi) injured group, which persisted up to 8 weeks later. However, in the 2 Psi-injured group, the suppression of bursting dopamine release occurred at 1~2 weeks after injury, but there were no significant differences after 4 weeks. Tonic dopamine release was also diminished significantly at 1~2 weeks after the injury; partial recovery could then be seen 4 weeks after injury. A significant deficiency in the fixed speed rotarod test and NOR test were noted in both 2 Psi and 6 Psi groups initially; however, the changes recovered in the 2 Psi group 2 weeks after injury while persisting in the 6 Psi group. In conclusion, striatal evoked dopamine release was affected by fluid percussion injury, with behavioral deficits showing differences as a function of injury severity. The severe fluid percussion injury (6 Psi) group showed more dopamine release defects, as well as cognitive and motor deficiencies. Recovery of dopamine release and improvement in behavioral impairment were better in the mild TBI group.
Collapse
Affiliation(s)
- Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Tung-Tai Kuo
- Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei, Taiwan, R.O.C
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pi-Fen Tsui
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Jing-Jr Tsai
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yung-Hsiao Chiang
- Graduate Program on Neuroregeneration, Taipei Medical University, Taipei, Taiwan, R.O.C
| |
Collapse
|
121
|
Shin SS, Dixon CE. Targeting α7 nicotinic acetylcholine receptors: a future potential for neuroprotection from traumatic brain injury. Neural Regen Res 2015; 10:1552-4. [PMID: 26692836 PMCID: PMC4660732 DOI: 10.4103/1673-5374.165309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/13/2022] Open
Affiliation(s)
- Samuel S. Shin
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
122
|
Yousefzadeh-Chabok S, Ramezani S, Reihanian Z, Safaei M, Alijani B, Amini N. The role of early posttraumatic neuropsychological outcomes in the appearance of latter psychiatric disorders in adults with brain trauma. Asian J Neurosurg 2015; 10:173-80. [PMID: 26396603 PMCID: PMC4553728 DOI: 10.4103/1793-5482.161165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The objective was to determine the predictors of posttraumatic psychiatric disorders (PTPD) during the first 6 months following traumatic brain injury (TBI) focusing on neuroimaging, clinical and neuropsychological appraisements during acute and discharge phase of TBI. MATERIALS AND METHODS We designed a prospective, longitudinal study in which 150 eligible TBI patients were entered. Postresuscitation brain injury severity and discharged functional outcome were evaluated by standard clinical scales. First neuroimaging was done at a maximum of 24 h after head trauma. Early posttraumatic (PT) neuropsychological outcomes were assessed using Persian neuropsychological tasks at discharge. The standardized psychiatric assessments were carefully implemented 6 months postinjury. A total of 133 patients returned for follow-up assessment at 6 months. They were divided into two groups according to the presence of PTPD. RESULTS Apparently, aggression was the most prevalent type of PTPD (31.48%). There was no significant difference between groups regarding functional outcome at discharge. Diffuse axonal injury (12.96%) and hemorrhages (40.74%) within the cortex (42.59%) and sub-cortex (33.33) significantly occurred more prevalent in PTPD group than non-PTPD ones. Primary postresuscitation TBI severity, early PT lingual deficit and subcortical lesion on first scan were able to predict PTPD at 6 months follow-up. CONCLUSION Almost certainly, the expansive dissociation risk of cortical and subcortical pathways related to linguistic deficits due to severe intracranial lesions over a period of time can augment possibility of subsequent conscious cognitive-emotional processing deficit, which probably contributes to latter PTPD. Hence, early combined therapeutic supplies including neuroprotective pharmacotherapy and neurofeedback for neural function reorganization can dampen the lesion expansion and latter PTPD.
Collapse
Affiliation(s)
- Shahrokh Yousefzadeh-Chabok
- Department of Neurosurgery, Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Sara Ramezani
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zoheir Reihanian
- Department of Neurosurgery, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Mohammad Safaei
- Department of Neurosurgery, Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Babak Alijani
- Department of Neurosurgery, Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Naser Amini
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
123
|
Lazarus RC, Buonora JE, Flora MN, Freedy JG, Holstein GR, Martinelli GP, Jacobowitz DM, Mueller GP. Protein Citrullination: A Proposed Mechanism for Pathology in Traumatic Brain Injury. Front Neurol 2015; 6:204. [PMID: 26441823 PMCID: PMC4585288 DOI: 10.3389/fneur.2015.00204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/07/2015] [Indexed: 11/23/2022] Open
Abstract
Protein citrullination is a calcium-driven post-translational modification proposed to play a causative role in the neurodegenerative disorders of Alzheimer’s disease, multiple sclerosis (MS), and prion disease. Citrullination can result in the formation of antigenic epitopes that underlie pathogenic autoimmune responses. This phenomenon, which is best understood in rheumatoid arthritis, may play a role in the chronic dysfunction following traumatic brain injury (TBI). Despite substantial evidence of aberrations in calcium signaling following TBI, there is little understanding of how TBI alters citrullination in the brain. The present investigation addressed this gap by examining the effects of TBI on the distribution of protein citrullination and on the specific cell types involved. Immunofluorescence revealed that controlled cortical impact in rats profoundly up-regulated protein citrullination in the cerebral cortex, external capsule, and hippocampus. This response was exclusively seen in astrocytes; no such effects were observed on the status of protein citrullination in neurons, oligodendrocytes or microglia. Further, proteomic analyses demonstrated that the effects of TBI on citrullination were confined to a relatively small subset of neural proteins. Proteins most notably affected were those also reported to be citrullinated in other disorders, including prion disease and MS. In vivo findings were extended in an in vitro model of simulated TBI employing normal human astrocytes. Pharmacologically induced calcium excitotoxicity was shown to activate the citrullination and breakdown of glial fibrillary acidic protein, producing a novel candidate TBI biomarker and potential target for autoimmune recognition. In summary, these findings demonstrate that the effects of TBI on protein citrullination are selective with respect to brain region, cell type, and proteins modified, and may contribute to a role for autoimmune dysfunction in chronic pathology following TBI.
Collapse
Affiliation(s)
- Rachel C Lazarus
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - John E Buonora
- US Army Graduate Program in Anesthesia Nursing , Fort Sam Houston, TX , USA
| | - Michael N Flora
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - James G Freedy
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - David M Jacobowitz
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Gregory P Mueller
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
124
|
Aleksandrova EV, Zaytsev OS, Potapov AA. [Clinical syndromes of neurotransmitter system dysfunction in severe brain injury]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:40-46. [PMID: 26356514 DOI: 10.17116/jnevro20151157140-46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To explore neurotransmitter system dysfunctions involved in maintaining of consciousness and motor functions in patients with severe traumatic brain injury (TBI) and to assess their severity and predictive value. MATERIAL AND METHODS Authors examined 100 patients (34 women and 66 men), aged 32.0 ± 13.0 years, with severe TBI. Eighty-eight patients (31 women and 57 men) were studied in the acute stage (1-15 days, mean 5.8 ± 3.7 days) and 70 patients (24 women and 46 men) in the subacute stage (18-70 days, mean 30.4 ± 12.7 days). Inclusion criteria were: severe TBI with depression of consciousness (≤ 7 scores on the Glasgow Coma Scale), admission to the hospital in acute and subacute stages. Outcome of TBI was evaluated using the Glasgow Outcome Scale. RESULTS AND CONCLUSION The following clinical syndromes of neurotransmitter system dysfunction were singled out: excess or insufficiency of glutamate, cholinergic deficit, excess or insufficiency of dopamine. Their transformation during disease was identified. Predictive value of neurotransmitter dysfunctions for TBI is emphasized.
Collapse
Affiliation(s)
- E V Aleksandrova
- Burdenko Research Institute of Neurosurgery, Russian Academy Sciences, Moscow
| | - O S Zaytsev
- Burdenko Research Institute of Neurosurgery, Russian Academy Sciences, Moscow
| | - A A Potapov
- Burdenko Research Institute of Neurosurgery, Russian Academy Sciences, Moscow
| |
Collapse
|
125
|
Chelyapina MV, Sharova EV, Zaitsev OS. [Clinical/encephalographic syndrome of dopamine deficiency in patients with depressed consciousness after severe brain injury]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:9-15. [PMID: 26288281 DOI: 10.17116/jnevro2015115419-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine electroencephalographic signs of dopamine deficiency syndrome during the recovery after severe brain injury (SBI). MATERIAL AND METHODS We studied 35 patients with SBI (23 men and 12 women, mean age 29 ± 13 years). RESULTS AND CONCLUSION We identified a set of neurological symptoms (increased muscular tone of extrapyramidal type, rest tremor, autonomic disorders, which were most characteristic of the autonomic state, and some forms of mutism associated, according to current conceptions, with the dopaminergic system deficiency syndrome. This clinical picture was accompanied by stable EEG changes: an increase in the severity of beta activity of 13-14 Hz, enhanced in the frontal and anterior temporal areas, synchronized with equivalent dipole source localization in subcortical and frontal/basal areas. Dopamine deficiency regression syndrome was accompanied by an increase in beta EEG activity (from 13 to 16 Hz), but with the persistent abnormal enhancement of coherent hemispheric relations, especially in the occipital-temporal areas.
Collapse
Affiliation(s)
- M V Chelyapina
- Institute of Hegher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow
| | - E V Sharova
- Institute of Hegher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow
| | - O S Zaitsev
- Burdenko Research Institute of Neurosurgery, Moscow
| |
Collapse
|
126
|
Chang CZ, Wu SC, Kwan AL, Lin CL. Magnesium Lithospermate B Implicates 3'-5'-Cyclic Adenosine Monophosphate/Protein Kinase A Pathway and N-Methyl-d-Aspartate Receptors in an Experimental Traumatic Brain Injury. World Neurosurg 2015; 84:954-63. [PMID: 26093361 DOI: 10.1016/j.wneu.2015.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Decreased 3'-5'-cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and increased N-methyl-d-aspartate (NMDA) related apoptosis were observed in traumatic brain injury (TBI). It is of interest to examine the effect of magnesium lithospermate B (MLB) on cAMP/PKA pathway and NMDAR in TBI. METHODS A rodent weight-drop TBI model was used. Administration of MLB was initiated 1 week before (precondition) and 24 hours later (reversal). Cortical homogenates were harvested to measure cAMP (enzyme-linked immunosorbent assay), soluble guanylyl cyclases, PKA and NMDA receptor-2β (Western blot). In addition, cAMP kinase antagonist and H-89 dihydrochloride hydrate were used to test MLB's effect on the cytoplasm cAMP/PKA pathway after TBI. RESULTS Morphologically, vacuolated neuron and activated microglia were observed in the TBI groups but absent in the MLB preconditioning and healthy controls. Induced cAMP, soluble guanylyl cyclase α1, and PKA were observed in the MLB groups, when compared with the TBI group (P < 0.01) Administration of H-89 dihydrochloride hydrate reversed the effect of MLB on cortical PKA and NMDA-2β expression after TBI. CONCLUSIONS This study showed that MLB exerted an antioxidant effect on the enhancement of cytoplasm cAMP and PKA. This compound also decreased NMDA-2β levels, which may correspond to its neuroprotective effects. This finding lends credence to the presumption that MLB modulates the NMDA-2β neurotoxicity through a cAMP-dependent mechanism in the pathogenesis of TBI.
Collapse
Affiliation(s)
- Chih-Zen Chang
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Municipal Ta Tung Hospital, Kaohsiung, Taiwan.
| | - Shu-Chuan Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
127
|
Vas A, Chapman S, Aslan S, Spence J, Keebler M, Rodriguez-Larrain G, Rodgers B, Jantz T, Martinez D, Rakic J, Krawczyk D. Reasoning training in veteran and civilian traumatic brain injury with persistent mild impairment. Neuropsychol Rehabil 2015; 26:502-31. [PMID: 26018041 DOI: 10.1080/09602011.2015.1044013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Traumatic brain injury (TBI) is a chronic health condition. The prevalence of TBI, combined with limited advances in protocols to mitigate persistent TBI-related impairments in higher order cognition, present a significant challenge. In this randomised study (n = 60), we compared the benefits of Strategic Memory Advanced Reasoning Training (SMART, n = 31), a strategy-based programme shown to improve cognitive control, versus an active learning programme called Brain Health Workshop (BHW, n = 29) in individuals with TBI with persistent mild functional deficits. Outcomes were measured on cognitive, psychological health, functional, and imaging measures. Repeated measures analyses of immediate post-training and 3-month post-training demonstrated gains on the cognitive control domain of gist reasoning (ability to abstract big ideas/goals from complex information/tasks) in the SMART group as compared to BHW. Gains following the SMART programme were also evident on improved executive function, memory, and daily function as well as reduced symptoms associated with depression and stress. The SMART group showed an increase in bilateral precuneus cerebral blood flow (CBF). Improvements in gist reasoning in the SMART group were also associated with an increase in CBF in the left inferior frontal region, the left insula and the bilateral anterior cingulate cortex. These results add to prior findings that the SMART programme provides an efficient set of strategies that have the potential to improve cognitive control performance and associated executive functions and daily function, to enhance psychological health, and facilitate positive neural plasticity in adults with persistent mild impairment after TBI.
Collapse
Affiliation(s)
- Asha Vas
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Sandra Chapman
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Sina Aslan
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA.,b Advance MRI, LLC, Frisco , Texas , TX , USA
| | - Jeffrey Spence
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Molly Keebler
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | | | - Barry Rodgers
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Tiffani Jantz
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - David Martinez
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Jelena Rakic
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Daniel Krawczyk
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| |
Collapse
|
128
|
Abstract
Amantadine hydrochloride is one of the most commonly used drugs in the pharmacotherapeutic treatment of disorders of consciousness (DOCs) following traumatic brain injury (TBI). Indeed, its actions as a pro-dopaminergic drug and as an N-methyl-D-aspartate antagonist makes amantadine an interesting candidate to improve consciousness and responsiveness in individuals with DOC, including vegetative state and minimally conscious state. Giacino et al (N Engl J Med. 2012;366(9):819-826) recently reported that amantadine was able to accelerate the functional recovery course of subjects after TBI with DOC, during a 4-week treatment period. Some patients with DOC following severe TBI have been reported to have parkinsonian symptoms. Severe TBI and posttraumatic parkinsonism may share a common midbrain network dysfunction. In fact, both vegetative state and minimally conscious state following severe TBI can include features of akinetic mutism and parkinsonism. Responsiveness to pro-dopaminergic agents in some patients and to deep brain stimulation in others, might depend, respectively, on the integrity, or lack thereof, of the dopaminergic postsynaptic receptors. We are of the strong opinion that more attention should be given to parkinsonian findings in persons with DOC after severe TBI and would advocate for multicenter, randomized, controlled trials to assess risk factors for parkinsonism following severe TBI.
Collapse
|
129
|
Zheng P, He B, Guo Y, Zeng J, Tong W. Decreased apparent diffusion coefficient in the pituitary and correlation with hypopituitarism in patients with traumatic brain injury. J Neurosurg 2015; 123:75-80. [PMID: 25679273 DOI: 10.3171/2014.12.jns132308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The relationship between microstructural abnormality in patients with traumatic brain injury (TBI) and hormone-secreting status remains unknown. In this study, the authors aimed to identify the role of the apparent diffusion coefficient (ADC) using a diffusion-weighted imaging (DWI) technique and to evaluate the association of such changes with hypopituitarism in patients with TBI. METHODS Diffusion-weighted images were obtained in 164 consecutive patients with TBI within 2 weeks after injury to generate the pituitary ADC as a measure of microstructural change. Patients with TBI were further grouped into those with and those without hypopituitarism based on the secretion status of pituitary hormones at 6 months postinjury. Thirty healthy individuals were enrolled in the study and underwent MRI examinations for comparison. Mean ADC values were compared between this control group, the patients with TBI and hypopituitarism, and the patients with TBI without hypopituitarism; correlational studies were also performed. Neurological outcome was assessed with the Glasgow Outcome Scale (GOS) for all TBI patients 6 months postinjury. RESULTS In the TBI group, 84 patients had hypopituitarism and 80 had normal pituitary function. The pituitary ADC in TBI patients was significantly less than that in controls (1.83 ± 0.16 vs 4.13 ± 0.33, p < 0.01). Furthermore, the mean ADC was much lower in TBI patients with hypopituitarism than in those without pituitary dysfunction (1.32 ± 0.09 vs 2.28 ± 0.17, p < 0.05). There was also a significant difference in ADC values between patients with hyperprolactinemia and those with normal prolactin levels (p < 0.05). Additionally, the receiver operating characteristic curve analysis showed that the pituitary ADC could predict hypopituitarism with a sensitivity of 90.0% and a specificity of 90.1% at the level of 1.720 (ADC value). Finally, the ADC value was positively correlated with neurological outcome at 6 months following TBI (r = 0.602, p < 0.05). CONCLUSIONS Use of DWI demonstrated that the pituitary ADC is correlated with hormone-secreting status in TBI patients. The authors suggest that pituitary ADC may be a useful biomarker to predict pituitary function in patients with TBI.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Neurosurgery, Pudong New Area People's Hospital, Shanghai, China
| | - Bin He
- Department of Neurosurgery, Pudong New Area People's Hospital, Shanghai, China
| | - Yijun Guo
- Department of Neurosurgery, Pudong New Area People's Hospital, Shanghai, China
| | - Jingsong Zeng
- Department of Neurosurgery, Pudong New Area People's Hospital, Shanghai, China
| | - Wusong Tong
- Department of Neurosurgery, Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
130
|
Yue JK, Pronger AM, Ferguson AR, Temkin NR, Sharma S, Rosand J, Sorani MD, McAllister TW, Barber J, Winkler EA, Burchard EG, Hu D, Lingsma HF, Cooper SR, Puccio AM, Okonkwo DO, Diaz-Arrastia R, Manley GT. Association of a common genetic variant within ANKK1 with six-month cognitive performance after traumatic brain injury. Neurogenetics 2015; 16:169-80. [PMID: 25633559 DOI: 10.1007/s10048-015-0437-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/02/2015] [Indexed: 01/18/2023]
Abstract
Genetic association analyses suggest that certain common single nucleotide polymorphisms (SNPs) may adversely impact recovery from traumatic brain injury (TBI). Delineating their causal relationship may aid in development of novel interventions and in identifying patients likely to respond to targeted therapies. We examined the influence of the (C/T) SNP rs1800497 of ANKK1 on post-TBI outcome using data from two prospective multicenter studies: the Citicoline Brain Injury Treatment (COBRIT) trial and Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot). We included patients with ANKK1 genotyping results and cognitive outcomes at six months post-TBI (n = 492: COBRIT n = 272, TRACK-TBI Pilot n = 220). Using the California Verbal Learning Test Second Edition (CVLT-II) Trial 1-5 Standard Score, we found a dose-dependent effect for the T allele, with T/T homozygotes scoring lowest on the CVLT-II Trial 1-5 Standard Score (T/T 45.1, C/T 51.1, C/C 52.1, ANOVA, p = 0.008). Post hoc testing with multiple comparison-correction indicated that T/T patients performed significantly worse than C/T and C/C patients. Similar effects were observed in a test of non-verbal processing (Wechsler Adult Intelligence Scale, Processing Speed Index). Our findings extend those of previous studies reporting a negative relationship of the ANKK1 T allele with cognitive performance after TBI. In this study, we demonstrate the value of pooling shared clinical, biomarker, and outcome variables from two large datasets applying the NIH TBI Common Data Elements. The results have implications for future multicenter investigations to further elucidate the role of ANKK1 in post-TBI outcome.
Collapse
Affiliation(s)
- John K Yue
- Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Tomaszczyk JC, Green NL, Frasca D, Colella B, Turner GR, Christensen BK, Green REA. Negative neuroplasticity in chronic traumatic brain injury and implications for neurorehabilitation. Neuropsychol Rev 2014; 24:409-27. [PMID: 25421811 PMCID: PMC4250564 DOI: 10.1007/s11065-014-9273-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Based on growing findings of brain volume loss and deleterious white matter alterations during the chronic stages of injury, researchers posit that moderate-severe traumatic brain injury (TBI) may act to “age” the brain by reducing reserve capacity and inducing neurodegeneration. Evidence that these changes correlate with poorer cognitive and functional outcomes corroborates this progressive characterization of chronic TBI. Borrowing from a framework developed to explain cognitive aging (Mahncke et al., Progress in Brain Research, 157, 81–109, 2006a; Mahncke et al., Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12523–12528, 2006b), we suggest here that environmental factors (specifically environmental impoverishment and cognitive disuse) contribute to a downward spiral of negative neuroplastic change that may modulate the brain changes described above. In this context, we review new literature supporting the original aging framework, and its extrapolation to chronic TBI. We conclude that negative neuroplasticity may be one of the mechanisms underlying cognitive and neural decline in chronic TBI, but that there are a number of points of intervention that would permit mitigation of this decline and better long-term clinical outcomes.
Collapse
Affiliation(s)
- Jennifer C Tomaszczyk
- Research Department, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
132
|
Kobori N, Moore AN, Dash PK. Altered regulation of protein kinase a activity in the medial prefrontal cortex of normal and brain-injured animals actively engaged in a working memory task. J Neurotrauma 2014; 32:139-48. [PMID: 25027811 DOI: 10.1089/neu.2014.3487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) signaling is required for short- and long-term memory. In contrast, enhanced PKA activity has been shown to impair working memory, a prefrontal cortex (PFC)-dependent, transient form of memory critical for cognition and goal-directed behaviors. Working memory can be impaired after traumatic brain injury (TBI) in the absence of overt damage to the PFC. The cellular and molecular mechanisms that contribute to this deficit are largely unknown. In the present study, we examined whether altered PKA signaling in the PFC as a result of TBI is a contributing mechanism. We measured PKA activity in medial PFC (mPFC) tissue homogenates prepared from sham and 14-day postinjury rats. PKA activity was measured both when animals were inactive and when actively engaged in a spatial working memory task. Our results demonstrate, for the first time, that PKA activity in the mPFC is actively suppressed in uninjured animals performing a working memory task. By comparison, both basal and working memory-related PKA activity was elevated in TBI animals. Inhibition of PKA activity by intra-mPFC administration of Rp-cAMPS into TBI animals had no influence on working memory performance 30 min postinfusion, but significantly improved working memory when tested 24 h later. This improvement was associated with reduced glutamic acid decarboxylase 67 messenger RNA levels. Taken together, these results suggest that TBI-associated working memory dysfunction may result, in part, from enhanced PKA activity, possibly leading to altered expression of plasticity-related genes in the mPFC.
Collapse
Affiliation(s)
- Nobuhide Kobori
- 1 Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston , Houston, Texas
| | | | | |
Collapse
|
133
|
Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx CE, Grimes CJB, Loh LTCY, Adam LTCGE, Oskvig D, Curley KC, Salzer W. Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma 2014; 31:135-58. [PMID: 23968241 DOI: 10.1089/neu.2013.3019] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite substantial investments by government, philanthropic, and commercial sources over the past several decades, traumatic brain injury (TBI) remains an unmet medical need and a major source of disability and mortality in both developed and developing societies. The U.S. Department of Defense neurotrauma research portfolio contains more than 500 research projects funded at more than $700 million and is aimed at developing interventions that mitigate the effects of trauma to the nervous system and lead to improved quality of life outcomes. A key area of this portfolio focuses on the need for effective pharmacological approaches for treating patients with TBI and its associated symptoms. The Neurotrauma Pharmacology Workgroup was established by the U.S. Army Medical Research and Materiel Command (USAMRMC) with the overarching goal of providing a strategic research plan for developing pharmacological treatments that improve clinical outcomes after TBI. To inform this plan, the Workgroup (a) assessed the current state of the science and ongoing research and (b) identified research gaps to inform future development of research priorities for the neurotrauma research portfolio. The Workgroup identified the six most critical research priority areas in the field of pharmacological treatment for persons with TBI. The priority areas represent parallel efforts needed to advance clinical care; each requires independent effort and sufficient investment. These priority areas will help the USAMRMC and other funding agencies strategically guide their research portfolios to ensure the development of effective pharmacological approaches for treating patients with TBI.
Collapse
Affiliation(s)
- Ramon Diaz-Arrastia
- 1 Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Monaco CM, Gebhardt KM, Chlebowski SM, Shaw KE, Cheng JP, Henchir JJ, Zupa MF, Kline AE. A combined therapeutic regimen of buspirone and environmental enrichment is more efficacious than either alone in enhancing spatial learning in brain-injured pediatric rats. J Neurotrauma 2014; 31:1934-41. [PMID: 25050595 DOI: 10.1089/neu.2014.3541] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Buspirone, a 5-HT1A receptor agonist, and environmental enrichment (EE) enhance cognition and reduce histopathology after traumatic brain injury (TBI) in adult rats, but have not been fully evaluated after pediatric TBI, which is the leading cause of death in children. Hence, the aims of this study were to assess the efficacy of buspirone alone (Experiment 1) and in combination with EE (Experiment 2) in TBI postnatal day-17 male rats. The hypothesis was that both therapies would confer cognitive and histological benefits when provided singly, but their combination would be more efficacious. Anesthetized rats received a cortical impact or sham injury and then were randomly assigned to receive intraperitoneal injections of buspirone (0.08 mg/kg, 0.1 mg/kg, and 0.3 mg/kg) or saline vehicle (1.0 mL/kg) 24 h after surgery and once daily for 16 days (Experiment 1). Spatial learning and memory were assessed using the Morris water maze (MWM) on post-operative days 11-16, and cortical lesion volume was quantified on day 17. Sham controls for each condition were significantly better than all TBI groups. In the TBI groups, buspirone (0.1 mg/kg) enhanced MWM performance versus vehicle and buspirone (0.08 mg/kg and 0.3 mg/kg) (p<0.05) and reduced lesion volume relative to vehicle (p=0.038). In Experiment 2, buspirone (0.1 mg/kg) or vehicle was combined with EE after TBI, and the data were compared to the standard (STD)-housed groups from Experiment 1. EE lead to a significant enhancement of spatial learning and a reduction in lesion size versus STD. Moreover, the combined treatment group (buspirone+EE) performed markedly better than the buspirone+STD and vehicle+EE groups, which suggests an additive effect and supports the hypothesis. The data replicate previous studies assessing these therapies in adult rats. These novel findings may have important rehabilitation-relevant implications for clinical pediatric TBI.
Collapse
Affiliation(s)
- Christina M Monaco
- 1 Physical Medicine & Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Scher AI, Ross GW, Sigurdsson S, Garcia M, Gudmundsson LS, Sveinbjörnsdóttir S, Wagner AK, Gudnason V, Launer LJ. Midlife migraine and late-life parkinsonism: AGES-Reykjavik study. Neurology 2014; 83:1246-52. [PMID: 25230997 DOI: 10.1212/wnl.0000000000000840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE In the present study, we tested the hypothesis that having migraine in middle age is related to late-life parkinsonism and a related disorder, restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED). METHODS The AGES-Reykjavik cohort (born 1907-1935) has been followed since 1967. Headaches were classified based on symptoms assessed in middle age. From 2002 to 2006, 5,764 participants were reexamined to assess symptoms of parkinsonism, diagnosis of Parkinson disease (PD), family history of PD, and RLS/WED. RESULTS Subjects with midlife migraine, particularly migraine with aura (MA), were in later life more likely than others to report parkinsonian symptoms (odds ratio [OR]MA = 3.6 [95% CI 2.7-4.8]) and diagnosed PD (ORMA = 2.5 [95% CI 1.2-5.2]). Women with MA were more likely than others to have a parent (ORMA = 2.26 [95% CI 1.3-4.0]) or sibling (ORMA = 1.78 [95% CI 1.1-2.9]) with PD. Late-life RLS/WED was increased for headache generally. Associations were independent of cardiovascular disease and MRI-evident presumed ischemic lesions. CONCLUSIONS These findings suggest there may be a common vulnerability to, or consequences of, migraine and multiple indicators of parkinsonism. Additional genetic and longitudinal observational studies are needed to identify candidate pathways that may account for the comorbid constellation of symptoms.
Collapse
Affiliation(s)
- Ann I Scher
- From the Department of Preventive Medicine and Biometrics (A.I.S.), Uniformed Services University, Bethesda; National Institute on Aging (A.I.S., M.G., L.J.L.), Laboratory of Epidemiology and Population Sciences, Bethesda, MD; Veterans Affairs Pacific Islands Health Care System (G.W.R.), Honolulu; Pacific Health Research & Education Institute (G.W.R.), Honolulu, HI; Icelandic Heart Association (S. Sigurdsson, V.G.), Kopavogur; School of Health Sciences (L.S.G.) and Faculty of Medicine (V.G.), University of Iceland, Reykjavik; Department of Neurology (S. Sveinbjörnsdóttir), Broomfield Hospital, UK; and Department of Physical Medicine and Rehabilitation (A.K.W.), University of Pittsburgh, PA.
| | - G Webster Ross
- From the Department of Preventive Medicine and Biometrics (A.I.S.), Uniformed Services University, Bethesda; National Institute on Aging (A.I.S., M.G., L.J.L.), Laboratory of Epidemiology and Population Sciences, Bethesda, MD; Veterans Affairs Pacific Islands Health Care System (G.W.R.), Honolulu; Pacific Health Research & Education Institute (G.W.R.), Honolulu, HI; Icelandic Heart Association (S. Sigurdsson, V.G.), Kopavogur; School of Health Sciences (L.S.G.) and Faculty of Medicine (V.G.), University of Iceland, Reykjavik; Department of Neurology (S. Sveinbjörnsdóttir), Broomfield Hospital, UK; and Department of Physical Medicine and Rehabilitation (A.K.W.), University of Pittsburgh, PA
| | - Sigurdur Sigurdsson
- From the Department of Preventive Medicine and Biometrics (A.I.S.), Uniformed Services University, Bethesda; National Institute on Aging (A.I.S., M.G., L.J.L.), Laboratory of Epidemiology and Population Sciences, Bethesda, MD; Veterans Affairs Pacific Islands Health Care System (G.W.R.), Honolulu; Pacific Health Research & Education Institute (G.W.R.), Honolulu, HI; Icelandic Heart Association (S. Sigurdsson, V.G.), Kopavogur; School of Health Sciences (L.S.G.) and Faculty of Medicine (V.G.), University of Iceland, Reykjavik; Department of Neurology (S. Sveinbjörnsdóttir), Broomfield Hospital, UK; and Department of Physical Medicine and Rehabilitation (A.K.W.), University of Pittsburgh, PA
| | - Melissa Garcia
- From the Department of Preventive Medicine and Biometrics (A.I.S.), Uniformed Services University, Bethesda; National Institute on Aging (A.I.S., M.G., L.J.L.), Laboratory of Epidemiology and Population Sciences, Bethesda, MD; Veterans Affairs Pacific Islands Health Care System (G.W.R.), Honolulu; Pacific Health Research & Education Institute (G.W.R.), Honolulu, HI; Icelandic Heart Association (S. Sigurdsson, V.G.), Kopavogur; School of Health Sciences (L.S.G.) and Faculty of Medicine (V.G.), University of Iceland, Reykjavik; Department of Neurology (S. Sveinbjörnsdóttir), Broomfield Hospital, UK; and Department of Physical Medicine and Rehabilitation (A.K.W.), University of Pittsburgh, PA
| | - Larus S Gudmundsson
- From the Department of Preventive Medicine and Biometrics (A.I.S.), Uniformed Services University, Bethesda; National Institute on Aging (A.I.S., M.G., L.J.L.), Laboratory of Epidemiology and Population Sciences, Bethesda, MD; Veterans Affairs Pacific Islands Health Care System (G.W.R.), Honolulu; Pacific Health Research & Education Institute (G.W.R.), Honolulu, HI; Icelandic Heart Association (S. Sigurdsson, V.G.), Kopavogur; School of Health Sciences (L.S.G.) and Faculty of Medicine (V.G.), University of Iceland, Reykjavik; Department of Neurology (S. Sveinbjörnsdóttir), Broomfield Hospital, UK; and Department of Physical Medicine and Rehabilitation (A.K.W.), University of Pittsburgh, PA
| | - Sigurlaug Sveinbjörnsdóttir
- From the Department of Preventive Medicine and Biometrics (A.I.S.), Uniformed Services University, Bethesda; National Institute on Aging (A.I.S., M.G., L.J.L.), Laboratory of Epidemiology and Population Sciences, Bethesda, MD; Veterans Affairs Pacific Islands Health Care System (G.W.R.), Honolulu; Pacific Health Research & Education Institute (G.W.R.), Honolulu, HI; Icelandic Heart Association (S. Sigurdsson, V.G.), Kopavogur; School of Health Sciences (L.S.G.) and Faculty of Medicine (V.G.), University of Iceland, Reykjavik; Department of Neurology (S. Sveinbjörnsdóttir), Broomfield Hospital, UK; and Department of Physical Medicine and Rehabilitation (A.K.W.), University of Pittsburgh, PA
| | - Amy K Wagner
- From the Department of Preventive Medicine and Biometrics (A.I.S.), Uniformed Services University, Bethesda; National Institute on Aging (A.I.S., M.G., L.J.L.), Laboratory of Epidemiology and Population Sciences, Bethesda, MD; Veterans Affairs Pacific Islands Health Care System (G.W.R.), Honolulu; Pacific Health Research & Education Institute (G.W.R.), Honolulu, HI; Icelandic Heart Association (S. Sigurdsson, V.G.), Kopavogur; School of Health Sciences (L.S.G.) and Faculty of Medicine (V.G.), University of Iceland, Reykjavik; Department of Neurology (S. Sveinbjörnsdóttir), Broomfield Hospital, UK; and Department of Physical Medicine and Rehabilitation (A.K.W.), University of Pittsburgh, PA
| | - Vilmundur Gudnason
- From the Department of Preventive Medicine and Biometrics (A.I.S.), Uniformed Services University, Bethesda; National Institute on Aging (A.I.S., M.G., L.J.L.), Laboratory of Epidemiology and Population Sciences, Bethesda, MD; Veterans Affairs Pacific Islands Health Care System (G.W.R.), Honolulu; Pacific Health Research & Education Institute (G.W.R.), Honolulu, HI; Icelandic Heart Association (S. Sigurdsson, V.G.), Kopavogur; School of Health Sciences (L.S.G.) and Faculty of Medicine (V.G.), University of Iceland, Reykjavik; Department of Neurology (S. Sveinbjörnsdóttir), Broomfield Hospital, UK; and Department of Physical Medicine and Rehabilitation (A.K.W.), University of Pittsburgh, PA
| | - Lenore J Launer
- From the Department of Preventive Medicine and Biometrics (A.I.S.), Uniformed Services University, Bethesda; National Institute on Aging (A.I.S., M.G., L.J.L.), Laboratory of Epidemiology and Population Sciences, Bethesda, MD; Veterans Affairs Pacific Islands Health Care System (G.W.R.), Honolulu; Pacific Health Research & Education Institute (G.W.R.), Honolulu, HI; Icelandic Heart Association (S. Sigurdsson, V.G.), Kopavogur; School of Health Sciences (L.S.G.) and Faculty of Medicine (V.G.), University of Iceland, Reykjavik; Department of Neurology (S. Sveinbjörnsdóttir), Broomfield Hospital, UK; and Department of Physical Medicine and Rehabilitation (A.K.W.), University of Pittsburgh, PA
| |
Collapse
|
136
|
Liu S, Shen G, Deng S, Wang X, Wu Q, Guo A. Hyperbaric oxygen therapy improves cognitive functioning after brain injury. Neural Regen Res 2014; 8:3334-43. [PMID: 25206655 PMCID: PMC4145948 DOI: 10.3969/j.issn.1673-5374.2013.35.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/02/2013] [Indexed: 01/09/2023] Open
Abstract
Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats’ spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was significantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly improves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is mediated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.
Collapse
Affiliation(s)
- Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Guangyu Shen
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shukun Deng
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiubin Wang
- Department of Imaging, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Qinfeng Wu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Aisong Guo
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
137
|
MicroRNA profiling reveals unique miRNA signatures in IGF-1 treated embryonic striatal stem cell fate decisions in striatal neurogenesis in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:503162. [PMID: 25254208 PMCID: PMC4165568 DOI: 10.1155/2014/503162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 01/20/2023]
Abstract
The striatum is considered to be the central processing unit of the basal ganglia in locomotor activity and cognitive function of the brain. IGF-1 could act as a control switch for the long-term proliferation and survival of EGF+bFGF-responsive cultured embryonic striatal stem cell (ESSC), while LIF imposes a negative impact on cell proliferation. The IGF-1-treated ESSCs also showed elevated hTERT expression with demonstration of self-renewal and trilineage commitment (astrocytes, oligodendrocytes, and neurons). In order to decipher the underlying regulatory microRNA (miRNA)s in IGF-1/LIF-treated ESSC-derived neurogenesis, we performed in-depth miRNA profiling at 12 days in vitro and analyzed the candidates using the Partek Genome Suite software. The annotated miRNA fingerprints delineated the differential expressions of miR-143, miR-433, and miR-503 specific to IGF-1 treatment. Similarly, the LIF-treated ESSCs demonstrated specific expression of miR-326, miR-181, and miR-22, as they were nonsignificant in IGF-treated ESSCs. To elucidate the possible downstream pathways, we performed in silico mapping of the said miRNAs into ingenuity pathway analysis. Our findings revealed the important mRNA targets of the miRNAs and suggested specific interactomes. The above studies introduced a new genre of miRNAs for ESSC-based neuroregenerative therapeutic applications.
Collapse
|
138
|
Zhu X, Park J, Golinski J, Qiu J, Khuman J, Lee CCH, Lo EH, Degterev A, Whalen MJ. Role of Akt and mammalian target of rapamycin in functional outcome after concussive brain injury in mice. J Cereb Blood Flow Metab 2014; 34:1531-9. [PMID: 24938400 PMCID: PMC4158669 DOI: 10.1038/jcbfm.2014.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 11/09/2022]
Abstract
Akt (protein kinase B) and mammalian target of rapamycin (mTOR) have been implicated in the pathogenesis of cell death and cognitive outcome after cerebral contusion in mice; however, a role for Akt/mTOR in concussive brain injury has not been well characterized. In a mouse closed head injury (CHI) concussion traumatic brain injury (TBI) model, phosphorylation of Akt (p-Akt), mTOR (p-mTOR), and S6RP (p-S6RP) was increased by 24 hours in cortical and hippocampal brain homogenates (P<0.05 versus sham for each), and p-S6RP was robustly induced in IBA-1+ microglia and glial fibrillary acidic protein-positive (GFAP+) astrocytes. Pretreatment with inhibitors of Akt or mTOR individually by the intracerebroventricular route reduced phosphorylation of their respective direct substrates FOXO1 (P<0.05) or S6RP (P<0.05) after CHI, confirming the activity of inhibitors. Rapamycin pretreatment significantly worsened hidden platform (P<0.01) and probe trial (P<0.05) performance in CHI mice. Intracerebroventricular administration of necrostatin-1 (Nec-1) before CHI increased hippocampal Akt and S6RP phosphorylation and improved place learning (probe trials, P<0.001 versus vehicle), whereas co-administration of rapamycin or Akt inhibitor with Nec-1 eliminated improved probe trial performance. These data suggest a beneficial role for Akt/mTOR signaling after concussion TBI independent of cell death that may contribute to improved outcome by Nec-1.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [3] Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Juyeon Park
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Julianne Golinski
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jianhua Qiu
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jugta Khuman
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Christopher C H Lee
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eng H Lo
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University, Boston, Massachusetts, USA
| | - Michael J Whalen
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
139
|
Edut S, Rubovitch V, Rehavi M, Schreiber S, Pick CG. A study on the mechanism by which MDMA protects against dopaminergic dysfunction after minimal traumatic brain injury (mTBI) in mice. J Mol Neurosci 2014; 54:684-97. [PMID: 25124230 DOI: 10.1007/s12031-014-0399-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
Driving under methylenedioxymethamphetamine (MDMA) influence increases the risk of being involved in a car accident, which in turn can lead to traumatic brain injury. The behavioral deficits after traumatic brain injury (TBI) are closely connected to dopamine pathway dysregulation. We have previously demonstrated in mice that low MDMA doses prior to mTBI can lead to better performances in cognitive tests. The purpose of this study was to assess in mice the changes in the dopamine system that occurs after both MDMA and minimal traumatic brain injury (mTBI). Experimental mTBI was induced using a concussive head trauma device. One hour before injury, animals were subjected to MDMA. Administration of MDMA before injury normalized the alterations in tyrosine hydroxylase (TH) levels that were observed in mTBI mice. This normalization was also able to lower the elevated dopamine receptor type 2 (D2) levels observed after mTBI. Brain-derived neurotrophic factor (BDNF) levels did not change following injury alone, but in mice subjected to MDMA and mTBI, significant elevations were observed. In the behavioral tests, haloperidol reversed the neuroprotection seen when MDMA was administered prior to injury. Altered catecholamine synthesis and high D2 receptor levels contribute to cognitive dysfunction, and strategies to normalize TH signaling and D2 levels may provide relief for the deficits observed after injury. Pretreatment with MDMA kept TH and D2 receptor at normal levels, allowing regular dopamine system activity. While the beneficial effect we observe was due to a dangerous recreational drug, understanding the alterations in dopamine and the mechanism of dysfunction at a cellular level can lead to legal therapies and potential candidates for clinical use.
Collapse
Affiliation(s)
- S Edut
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel,
| | | | | | | | | |
Collapse
|
140
|
Robinson JD, Howard CD, Pastuzyn ED, Byers DL, Keefe KA, Garris PA. Methamphetamine-induced neurotoxicity disrupts pharmacologically evoked dopamine transients in the dorsomedial and dorsolateral striatum. Neurotox Res 2014; 26:152-67. [PMID: 24562969 PMCID: PMC4071119 DOI: 10.1007/s12640-014-9459-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 01/10/2014] [Accepted: 02/04/2014] [Indexed: 11/30/2022]
Abstract
Phasic dopamine (DA) signaling, during which burst firing by DA neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here, we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by means of autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity.
Collapse
Affiliation(s)
- John D. Robinson
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | | | - Elissa D. Pastuzyn
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Diane L. Byers
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Kristen A. Keefe
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Paul A. Garris
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| |
Collapse
|
141
|
The influence of genetic variants on striatal dopamine transporter and D2 receptor binding after TBI. J Cereb Blood Flow Metab 2014; 34:1328-39. [PMID: 24849661 PMCID: PMC4126093 DOI: 10.1038/jcbfm.2014.87] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/12/2014] [Accepted: 04/21/2014] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) neurotransmission influences cognition and recovery after traumatic brain injury (TBI). We explored whether functional genetic variants affecting the DA transporter (DAT) and D2 receptor (DRD2) impacted in vivo dopaminergic binding with positron emission tomography (PET) using [(11)C]βCFT and [(11)C]raclopride. We examined subjects with moderate/severe TBI (N=12) ∼1 year post injury and similarly matched healthy controls (N=13). The variable number of tandem repeat polymorphism within the DAT gene and the TaqI restriction fragment length polymorphism near the DRD2 gene were assessed. TBI subjects had age-adjusted DAT-binding reductions in the caudate, putamen, and ventral striatum, and modestly increased D2 binding in ventral striatum versus controls. Despite small sample sizes, multivariate analysis showed lower caudate and putamen DAT binding among DAT 9-allele carriers and DRD2 A2/A2 homozygotes with TBI versus controls with the same genotype. Among TBI subjects, 9-allele carriers had lower caudate and putamen binding than 10/10 homozygotes. This PET study suggests a hypodopaminergic environment and altered DRD2 autoreceptor DAT interactions that may influence DA transmission after TBI. Future work will relate these findings to cognitive performance; future studies are required to determine how DRD2/DAT1 genotype and DA-ligand binding are associated with neurostimulant response and TBI recovery.
Collapse
|
142
|
Huang EYK, Tsai TH, Kuo TT, Tsai JJ, Tsui PF, Chou YC, Ma HI, Chiang YH, Chen YH. Remote effects on the striatal dopamine system after fluid percussion injury. Behav Brain Res 2014; 267:156-72. [DOI: 10.1016/j.bbr.2014.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 01/25/2023]
|
143
|
Qi L, Cui X, Dong W, Barrera R, Coppa GF, Wang P, Wu R. Ghrelin Protects Rats Against Traumatic Brain Injury and Hemorrhagic Shock Through Upregulation of UCP2. Ann Surg 2014; 260:169-78. [DOI: 10.1097/sla.0000000000000328] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
144
|
Bondi CO, Klitsch KC, Leary JB, Kline AE. Environmental enrichment as a viable neurorehabilitation strategy for experimental traumatic brain injury. J Neurotrauma 2014; 31:873-88. [PMID: 24555571 DOI: 10.1089/neu.2014.3328] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Environmental enrichment (EE) emerged as a robust independent variable capable of influencing behavioral outcome in experimental studies after the fortuitous observation by renowned neuropsychologist Donald O. Hebb that rats raised as pets in his home performed markedly better on problem-solving tasks than those kept in the laboratory. In the subsequent years, numerous studies ensued demonstrating that EE was also capable of inducing neuroplasticity in normal (i.e., noninjured) rats. These behavioral and neural alterations provided the impetus for investigating EE as a potential therapy for traumatic brain injury (TBI), which, over the past two decades, has resulted in several reports. Hence, the aim of this review is to integrate the findings and present the current state of EE as a viable neurorehabilitation strategy for TBI. Using the specific key term searches "traumatic brain injury" and "environmental enrichment" or "enriched environment," 30 and 30 experimental TBI articles were identified by PubMed and Scopus, respectively. Of these, 27 articles were common to both search engines. An additional article was found on PubMed using the key terms "enriched environment" and "fluid percussion." A review of the bibliographies in the 34 articles did not yield additional citations. The overwhelming consensus of the 34 publications is that EE benefits behavioral and histological outcome after brain injury produced by various models. Further, the enhancements are observed in male and female as well as adult and pediatric rats and mice. Taken together, these cumulative findings provide strong support for EE as a generalized and robust preclinical model of neurorehabilitation. However, to further enhance the model and to more accurately mimic the clinic, future studies should continue to evaluate EE during more rehabilitation-relevant conditions, such as delayed and shorter time periods, as well as in combination with other therapeutic approaches, as we have been doing for the past few years.
Collapse
Affiliation(s)
- Corina O Bondi
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
145
|
Covey DP, Roitman MF, Garris PA. Illicit dopamine transients: reconciling actions of abused drugs. Trends Neurosci 2014; 37:200-10. [PMID: 24656971 DOI: 10.1016/j.tins.2014.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 01/03/2023]
Abstract
Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome.
Collapse
Affiliation(s)
- Dan P Covey
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607-7137, USA
| | - Paul A Garris
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA.
| |
Collapse
|
146
|
Abstract
Diffuse axonal injury after traumatic brain injury (TBI) produces neurological impairment by disconnecting brain networks. This structural damage can be mapped using diffusion MRI, and its functional effects can be investigated in large-scale intrinsic connectivity networks (ICNs). Here, we review evidence that TBI substantially disrupts ICN function, and that this disruption predicts cognitive impairment. We focus on two ICNs--the salience network and the default mode network. The activity of these ICNs is normally tightly coupled, which is important for attentional control. Damage to the structural connectivity of these networks produces predictable abnormalities of network function and cognitive control. For example, the brain normally shows a 'small-world architecture' that is optimized for information processing, but TBI shifts network function away from this organization. The effects of TBI on network function are likely to be complex, and we discuss how advanced approaches to modelling brain dynamics can provide insights into the network dysfunction. We highlight how structural network damage caused by axonal injury might interact with neuroinflammation and neurodegeneration in the pathogenesis of Alzheimer disease and chronic traumatic encephalopathy, which are late complications of TBI. Finally, we discuss how network-level diagnostics could inform diagnosis, prognosis and treatment development following TBI.
Collapse
|
147
|
Huang EYK, Tsui PF, Kuo TT, Tsai JJ, Chou YC, Ma HI, Chiang YH, Chen YH. Amantadine ameliorates dopamine-releasing deficits and behavioral deficits in rats after fluid percussion injury. PLoS One 2014; 9:e86354. [PMID: 24497943 PMCID: PMC3907421 DOI: 10.1371/journal.pone.0086354] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/08/2013] [Indexed: 12/22/2022] Open
Abstract
Aims To investigate the role of dopamine in cognitive and motor learning skill deficits after a traumatic brain injury (TBI), we investigated dopamine release and behavioral changes at a series of time points after fluid percussion injury, and explored the potential of amantadine hydrochloride as a chronic treatment to provide behavioral recovery. Materials and Methods In this study, we sequentially investigated dopamine release at the striatum and behavioral changes at 1, 2, 4, 6, and 8 weeks after fluid percussion injury. Rats subjected to 6-Pa cerebral cortical fluid percussion injury were treated by using subcutaneous infusion pumps filled with either saline (sham group) or amantadine hydrochloride, with a releasing rate of 3.6mg/kg/hour for 8 weeks. The dopamine-releasing conditions and metabolism were analyzed sequentially by fast scan cyclic voltammetry (FSCV) and high-pressure liquid chromatography (HPLC). Novel object recognition (NOR) and fixed-speed rotarod (FSRR) behavioral tests were used to determine treatment effects on cognitive and motor deficits after injury. Results Sequential dopamine-release deficits were revealed in 6-Pa-fluid-percussion cerebral cortical injured animals. The reuptake rate (tau value) of dopamine in injured animals was prolonged, but the tau value became close to the value for the control group after amantadine therapy. Cognitive and motor learning impairments were shown evidenced by the NOR and FSRR behavioral tests after injury. Chronic amantadine therapy reversed dopamine-release deficits, and behavioral impairment after fluid percussion injuries were ameliorated in the rats treated by using amantadine-pumping infusion. Conclusion Chronic treatment with amantadine hydrochloride can ameliorate dopamine-release deficits as well as cognitive and motor deficits caused by cerebral fluid-percussion injury.
Collapse
Affiliation(s)
| | - Pi-Fen Tsui
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Tung-Tai Kuo
- Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Jing-Jr. Tsai
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, the PhD Program for Neural Regenerative Medicine, Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
148
|
Newberg AB, Serruya M, Gepty A, Intenzo C, Lewis T, Amen D, Russell DS, Wintering N. Clinical comparison of 99mTc exametazime and 123I Ioflupane SPECT in patients with chronic mild traumatic brain injury. PLoS One 2014; 9:e87009. [PMID: 24475210 PMCID: PMC3901727 DOI: 10.1371/journal.pone.0087009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/17/2013] [Indexed: 11/24/2022] Open
Abstract
Background This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Methods and Findings Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both 99mTc exametazime to measure cerebral blood flow (CBF) and 123I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. Conclusions Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.
Collapse
Affiliation(s)
- Andrew B. Newberg
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Mijail Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Andrew Gepty
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Charles Intenzo
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Todd Lewis
- Magee Rehabilitation Hospital, Philadelphia, Pennsylvania, United States of America
| | - Daniel Amen
- Amen Clinics, Inc., Newport Beach, California, United States of America
| | - David S. Russell
- Institute for Neurodegenerative Disorders, New Haven, Connecticut, United States of America
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Nancy Wintering
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
149
|
Hyperphosphorylated Tau is Implicated in Acquired Epilepsy and Neuropsychiatric Comorbidities. Mol Neurobiol 2013; 49:1532-9. [DOI: 10.1007/s12035-013-8601-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023]
|
150
|
Muthuraju S, Taha S, Pati S, Rafique M, Jaafar H, Abdullah JM. Normabaric Hyperoxia Treatment Improved Locomotor Activity of C57BL/6J Mice through Enhancing Dopamine Genes Following Fluid-Percussion Injury in Striatum. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2013; 9:194-204. [PMID: 24711754 PMCID: PMC3884788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/20/2013] [Indexed: 06/03/2023]
Abstract
Closed traumatic brain injury (CTBI) leads to increase mortality rates in developing countries. However, a sustainable therapeutic approach has not been established yet. Therefore, the present study was designed to evaluate the impact of normabaric hyperoxia treatment (NBOT) on striatum associated Locomotor Activity (LA) in IntelliCage after Fluid-Percussion Injury (FPI). Animals were divided in four groups: Group I control (n=24), Group II sham (n=24), Group III FPI (n=24) and Group IV FPI with NBOT (n=24). Animals were habituated in IntelliCage for 4 days following transponder implanted in mice neck region on day 5. Then the LA of all groups was assessed 6hr daily for 5 days before inducing FPI. On day 6, cannula was implanted on the striatum, on day 7 FPI was performed in Group III (kept in normal environment) and IV (immediately exposed to NBOT for 3 hr). LA (in terms of number of visits in all four corners) was assessed 6 hr at days 1, 7, 14, 21 and 28 following FPI. After the animals were sacrificed to study the neuronal damage, dopamine receptors and transporters expression in striatum. The results suggested that the LA of FPI impaired mice as compared to the control and sham showed less number of visits in all four corners in IntelliCage. Morphological results revealed that FPI induced neuronal damage as compared to sham and control. Dopamine receptors and transporters were down regulated in the FPI group as compared to the control. Immediate exposure to NBOT improved LA in terms of increased number of visits in all four corners, reduced number of cell death and improved receptor expression as compared to FPI. In conclusion, NBOT exposure could improve the LA of mice following FPI through prevention of neuronal damage, improved dopamine receptors and transporters.
Collapse
Affiliation(s)
- Sangu Muthuraju
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Syed Taha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Soumya Pati
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Mohamed Rafique
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|