101
|
Matsuda K, Yuzaki M. Cbln1 and the δ2 glutamate receptor--an orphan ligand and an orphan receptor find their partners. THE CEREBELLUM 2012; 11:78-84. [PMID: 20535596 DOI: 10.1007/s12311-010-0186-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cerebellin was originally discovered as a Purkinje cell-specific peptide more than two decades ago. Later, its precursor protein precerebellin (Cbln1) was found to be produced in cerebellar granule cells. It has become increasingly clear that although the cerebellin peptide may have certain functions, Cbln1 is an actual signaling molecule that belongs to the C1q family. However, the precise function of Cbln1 has been unresolved. Cbln1 is released from granule cells, and disruption of the cbln1 gene in mice causes a severe reduction in the number of synapses between Purkinje cells and parallel fibers (PFs; axons of granule cells) and results in cerebellar ataxia. The glutamate receptor δ2 (GluD2) is highly expressed on Purkinje cells' dendritic spines which make synapses with PFs. Although GluD2 was identified as a member of the ionotropic glutamate receptors more than 15 years ago, it has been referred to as an orphan receptor because its endogenous ligands are unclear. Interestingly, GluD2-null mice phenocopy cbln1-null mice precisely. Cbln1 and GluD2 have therefore been thought to participate in a common signaling pathway that is required for the formation of PF synapses. We recently established a direct ligand-receptor relationship between Cbln1 and GluD2. The Cbln1-GluD2 complex is located at the cleft of PF-Purkinje cell synapses and bidirectionally regulates both presynaptic and postsynaptic differentiation.
Collapse
Affiliation(s)
- Keiko Matsuda
- Department of Neurophysiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | |
Collapse
|
102
|
Alleviation of neuropathic pain hypersensitivity by inhibiting neuronal pentraxin 1 in the rostral ventromedial medulla. J Neurosci 2012; 32:12431-6. [PMID: 22956834 DOI: 10.1523/jneurosci.2730-12.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral nerve injury causes spontaneous and long-lasting pain, hyperalgesia, and allodynia. Excitatory amino acid receptor-dependent increases in descending facilitatory drive from the brainstem rostral ventromedial medulla (RVM) contribute to injury-evoked hypersensitivity. Although increased excitability likely reflects changes in synaptic efficacy, the cellular mechanisms underlying injury-induced synaptic plasticity are poorly understood. Neuronal pentraxin 1 (NP1), a protein with exclusive CNS expression, is implicated in synaptogenesis and AMPA receptor recruitment to immature synapses. Its role in the adult brain and in descending pain facilitation is unknown. Here, we use the spared nerve injury (SNI) model in rodents to examine this issue. We show that SNI increases RVM NP1 expression and constitutive deletion or silencing NP1 in the RVM, before or after SNI, attenuates allodynia and hyperalgesia in rats. Selective rescue of RVM NP1 expression restores behavioral hypersensitivity of knock-out mice, demonstrating a key role of RVM NP1 in the pathogenesis of neuropathic pain.
Collapse
|
103
|
Kang MG, Nuriya M, Guo Y, Martindale KD, Lee DZ, Huganir RL. Proteomic analysis of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor complexes. J Biol Chem 2012; 287:28632-45. [PMID: 22753414 PMCID: PMC3436506 DOI: 10.1074/jbc.m111.336644] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/15/2012] [Indexed: 11/06/2022] Open
Abstract
The AMPA receptor (AMPA-R) is a major excitatory neurotransmitter receptor in the brain. Identifying and characterizing the neuronal proteins interacting with AMPA-Rs have provided important information about the molecular mechanisms underlying synaptic transmission and plasticity. In this study, to identify more AMPA-R interactors in vivo, we performed proteomic analyses of AMPA-R complexes from the brain. AMPA-R complexes were isolated from the brain through various combinations of biochemical techniques for solubilization, enrichment, and immunoprecipitation. Mass spectrometry analyses of these isolated complexes identified several novel components of the AMPA-R complexes as well as some previously identified components. The identification of these novel components helps to further define the complex mechanisms involved in the regulation of AMPA receptor function and synaptic plasticity.
Collapse
Affiliation(s)
- Myoung-Goo Kang
- From the Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
- Howard Hughes Medical Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Mutsuo Nuriya
- Howard Hughes Medical Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- the Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan, and
| | - Yurong Guo
- Susan Taylor Laboratory, University of California San Diego, La Jolla, California 92093
| | - Kevin D. Martindale
- From the Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Daniel Z. Lee
- From the Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Richard L. Huganir
- Howard Hughes Medical Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
104
|
Rushton E, Rohrbough J, Deutsch K, Broadie K. Structure-function analysis of endogenous lectin mind-the-gap in synaptogenesis. Dev Neurobiol 2012; 72:1161-79. [PMID: 22234957 DOI: 10.1002/dneu.22006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/20/2011] [Accepted: 12/29/2011] [Indexed: 01/07/2023]
Abstract
Mind-the-Gap (MTG) is required for neuronal induction of Drosophila neuromuscular junction (NMJ) postsynaptic domains, including glutamate receptor (GluR) localization. We have previously hypothesized that MTG is secreted from the presynaptic terminal to reside in the synaptic cleft, where it binds glycans to organize the heavily glycosylated, extracellular synaptomatrix required for transsynaptic signaling between neuron and muscle. In this study, we test this hypothesis with MTG structure-function analyses of predicted signal peptide (SP) and carbohydrate-binding domain (CBD), by introducing deletion and point-mutant transgenic constructs into mtg null mutants. We show that the SP is required for MTG secretion and localization to synapses in vivo. We further show that the CBD is required to restrict MTG diffusion in the extracellular synaptomatrix and for postembryonic viability. However, CBD mutation results in elevation of postsynaptic GluR localization during synaptogenesis, not the mtg null mutant phenotype of reduced GluRs as predicted by our hypothesis, suggesting that proper synaptic localization of MTG limits GluR recruitment. In further testing CBD requirements, we show that MTG binds N-acetylglucosamine (GlcNAc) in a Ca(2+)-dependent manner, and thereby binds HRP-epitope glycans, but that these carbohydrate interactions do not require the CBD. We conclude that the MTG lectin has both positive and negative binding interactions with glycans in the extracellular synaptic domain, which both facilitate and limit GluR localization during NMJ embryonic synaptogenesis.
Collapse
Affiliation(s)
- Emma Rushton
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
105
|
Frischknecht R, Gundelfinger ED. The brain's extracellular matrix and its role in synaptic plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:153-71. [PMID: 22351055 DOI: 10.1007/978-3-7091-0932-8_7] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The extracellular matrix (ECM) of the brain has important roles in regulating synaptic function and plasticity. A juvenile ECM supports the wiring of neuronal networks, synaptogenesis, and synaptic maturation. The closure of critical periods for experience-dependent shaping of neuronal circuits coincides with the implementation of a mature form of ECM that is characterized by highly elaborate hyaluronan-based structures, the perineuronal nets (PNN), and PNN-like perisynaptic ECM specializations. In this chapter, we will focus on some recently reported aspects of ECM functions in brain plasticity. These include (a) the discovery that the ECM can act as a passive diffusion barrier for cell surface molecules including neurotransmitter receptors and in this way compartmentalize cell surfaces, (b) the specific functions of ECM components in actively regulating synaptic plasticity and homeostasis, and (c) the shaping processes of the ECM by extracellular proteases and in turn the activation particular signaling pathways.
Collapse
Affiliation(s)
- Renato Frischknecht
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | |
Collapse
|
106
|
Differences in AMPA and kainate receptor interactomes facilitate identification of AMPA receptor auxiliary subunit GSG1L. Cell Rep 2012; 1:590-8. [PMID: 22813734 DOI: 10.1016/j.celrep.2012.05.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/02/2012] [Accepted: 05/07/2012] [Indexed: 12/20/2022] Open
Abstract
AMPA receptor (AMPA-R) complexes consist of channel-forming subunits, GluA1-4, and auxiliary proteins, including TARPs, CNIHs, synDIG1, and CKAMP44, which can modulate AMPA-R function in specific ways. The combinatorial effects of four GluA subunits binding to various auxiliary subunits amplify the functional diversity of AMPA-Rs. The significance and magnitude of molecular diversity, however, remain elusive. To gain insight into the molecular complexity of AMPA and kainate receptors, we compared the proteins that copurify with each receptor type in the rat brain. This interactome study identified the majority of known interacting proteins and, more importantly, provides candidates for additional studies. We validate the claudin homolog GSG1L as a newly identified binding protein and unique modulator of AMPA-R gating, as determined by detailed molecular, cellular, electrophysiological, and biochemical experiments. GSG1L extends the functional variety of AMPA-R complexes, and further investigation of other candidates may reveal additional complexity of ionotropic glutamate receptor function.
Collapse
|
107
|
Kim YJ, Bao H, Bonanno L, Zhang B, Serpe M. Drosophila Neto is essential for clustering glutamate receptors at the neuromuscular junction. Genes Dev 2012; 26:974-87. [PMID: 22499592 DOI: 10.1101/gad.185165.111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neurotransmitter receptor recruitment at postsynaptic specializations is key in synaptogenesis, since this step confers functionality to the nascent synapse. The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse, similar in composition and function to mammalian central synapses. Various mechanisms regulating the extent of postsynaptic ionotropic glutamate receptor (iGluR) clustering have been described, but none are known to be essential for the initial localization and clustering of iGluRs at postsynaptic densities (PSDs). We identified and characterized the Drosophila neto (neuropilin and tolloid-like) as an essential gene required for clustering of iGluRs at the NMJ. Neto colocalizes with the iGluRs at the PSDs in puncta juxtaposing the active zones. neto loss-of-function phenotypes parallel the loss-of-function defects described for iGluRs. The defects in neto mutants are effectively rescued by muscle-specific expression of neto transgenes. Neto clustering at the Drosophila NMJ coincides with and is dependent on iGluRs. Our studies reveal that Drosophila Neto is a novel, essential component of the iGluR complexes and is required for iGluR clustering, organization of PSDs, and synapse functionality.
Collapse
Affiliation(s)
- Young-Jun Kim
- Program in Cellular Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
108
|
Zheng Z, Sabirzhanov B, Keifer J. Two-stage AMPA receptor trafficking in classical conditioning and selective role for glutamate receptor subunit 4 (tGluA4) flop splice variant. J Neurophysiol 2012; 108:101-11. [PMID: 22490558 DOI: 10.1152/jn.01097.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we proposed a two-stage model for an in vitro neural correlate of eyeblink classical conditioning involving the initial synaptic incorporation of glutamate receptor A1 (GluA1)-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid type receptors (AMPARs) followed by delivery of GluA4-containing AMPARs that support acquisition of conditioned responses. To test specific elements of our model for conditioning, selective knockdown of GluA4 AMPAR subunits was used using small-interfering RNAs (siRNAs). Recently, we sequenced and characterized the GluA4 subunit and its splice variants from pond turtles, Trachemys scripta elegans (tGluA4). Analysis of the relative abundance of mRNA expression by real-time RT-PCR showed that the flip/flop variants of tGluA4, tGluA4c, and a novel truncated variant tGluA4trc1 are major isoforms in the turtle brain. Here, transfection of in vitro brain stem preparations with anti-tGluA4 siRNA suppressed conditioning, tGluA4 mRNA and protein expression, and synaptic delivery of tGluA4-containing AMPARs but not tGluA1 subunits. Significantly, transfection of abducens motor neurons by nerve injections of tGluA4 flop rescue plasmid prior to anti-tGluA4 siRNA application restored conditioning and synaptic incorporation of tGluA4-containing AMPARs. In contrast, treatment with rescue plasmids for tGluA4 flip or tGluA4trc1 failed to rescue conditioning. Finally, treatment with a siRNA directed against GluA1 subunits inhibited conditioning and synaptic delivery of tGluA1-containing AMPARs and importantly, those containing tGluA4. These data strongly support our two-stage model of conditioning and our hypothesis that synaptic incorporation of tGluA4-containing AMPARs underlies the acquisition of in vitro classical conditioning. Furthermore, they suggest that tGluA4 flop may have a critical role in conditioning mechanisms compared with the other tGluA4 splice variants.
Collapse
Affiliation(s)
- Zhaoqing Zheng
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, SD 57069, USA
| | | | | |
Collapse
|
109
|
Ringman JM, Schulman H, Becker C, Jones T, Bai Y, Immermann F, Cole G, Sokolow S, Gylys K, Geschwind DH, Cummings JL, Wan HI. Proteomic changes in cerebrospinal fluid of presymptomatic and affected persons carrying familial Alzheimer disease mutations. ACTA ACUST UNITED AC 2012; 69:96-104. [PMID: 22232349 DOI: 10.1001/archneurol.2011.642] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To identify cerebrospinal fluid (CSF) protein changes in persons who will develop familial Alzheimer disease (FAD) due to PSEN1 and APP mutations, using unbiased proteomics. DESIGN We compared proteomic profiles of CSF from individuals with FAD who were mutation carriers (MCs) and related noncarriers (NCs). Abundant proteins were depleted and samples were analyzed using liquid chromatography-electrospray ionization-mass spectrometry on a high-resolution time-of-flight instrument. Tryptic peptides were identified by tandem mass spectrometry. Proteins differing in concentration between the MCs and NCs were identified. SETTING A tertiary dementia referral center and a proteomic biomarker discovery laboratory. PARTICIPANTS Fourteen FAD MCs (mean age, 34.2 years; 10 are asymptomatic, 12 have presenilin-1 [PSEN1 ] gene mutations, and 2 have amyloid precursor protein [APP ] gene mutations) and 5 related NCs (mean age, 37.6 years). RESULTS Fifty-six proteins were identified, represented by multiple tryptic peptides showing significant differences between MCs and NCs (46 upregulated and 10 downregulated); 40 of these proteins differed when the analysis was restricted to asymptomatic individuals. Fourteen proteins have been reported in prior proteomic studies in late-onset AD, including amyloid precursor protein, transferrin, α(1)β-glycoprotein, complement components, afamin precursor, spondin 1, plasminogen, hemopexin, and neuronal pentraxin receptor. Many other proteins were unique to our study, including calsyntenin 3, AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) 4 glutamate receptor, CD99 antigen, di- N-acetyl-chitobiase, and secreted phosphoprotein 1. CONCLUSIONS We found much overlap in CSF protein changes between individuals with presymptomatic and symptomatic FAD and those with late-onset AD. Our results are consistent with inflammation and synaptic loss early in FAD and suggest new presymptomatic biomarkers of potential usefulness in drug development.
Collapse
Affiliation(s)
- John M Ringman
- Mary S. Easton Center for Alzheimer's Disease Research, 10911 Weyburn Ave, Ste 200, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Synaptic Plasticity Regulated by Protein–Protein Interactions and Posttranslational Modifications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:1-43. [DOI: 10.1016/b978-0-12-394308-8.00001-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
111
|
Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr Opin Neurobiol 2011; 22:453-60. [PMID: 22051694 DOI: 10.1016/j.conb.2011.10.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/09/2011] [Accepted: 10/10/2011] [Indexed: 11/20/2022]
Abstract
Excitatory synaptic transmission is largely mediated by AMPA receptors (AMPARs) present at the postsynaptic density. Recent studies in single molecule tracking of AMPAR has revealed that extrasynaptic AMPARs are highly mobile and thus might serve as a readily available pool for their synaptic recruitment during synaptic plasticity events such as long-term potentiation (LTP). Because this hypothesis relies on the cell's ability to increase the number of diffusional traps or 'slots' at synapses during LTP, we will review a number of protein-protein interactions that might impact AMPARs lateral diffusion and thus potentially serve as slots. Recent studies have identified the interaction between the AMPAR-Stargazin complex and PSD-95 as the minimal components of the diffusional trapping slot. We will overview the molecular basis of this critical interaction, its activity-dependent regulation and its potential contribution to LTP.
Collapse
|
112
|
Abstract
Dendritic spines are dynamic structures that accommodate the majority of excitatory synapses in the brain and are influenced by extracellular signals from presynaptic neurons, glial cells, and the extracellular matrix (ECM). The ECM surrounds dendritic spines and extends into the synaptic cleft, maintaining synapse integrity as well as mediating trans-synaptic communications between neurons. Several scaffolding proteins and glycans that compose the ECM form a lattice-like network, which serves as an attractive ground for various secreted glycoproteins, lectins, growth factors, and enzymes. ECM components can control dendritic spines through the interactions with their specific receptors or by influencing the functions of other synaptic proteins. In this review, we focus on ECM components and their receptors that regulate dendritic spine development and plasticity in the normal and diseased brain.
Collapse
Affiliation(s)
- Lorraine E. Dansie
- Division of Biomedical Sciences, Biochemistry and Molecular Biology Program, University of California Riverside, Riverside, California 92521
| | - Iryna M. Ethell
- Division of Biomedical Sciences, Biochemistry and Molecular Biology Program, University of California Riverside, Riverside, California 92521
| |
Collapse
|
113
|
Abstract
The AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) subfamily of iGluRs (ionotropic glutamate receptors) is essential for fast excitatory neurotransmission in the central nervous system. The malfunction of AMPARs (AMPA receptors) has been implicated in many neurological diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The active channels of AMPARs and other iGluR subfamilies are tetramers formed exclusively by assembly of subunits within the same subfamily. It has been proposed that the assembly process is controlled mainly by the extracellular ATD (N-terminal domain) of iGluR. In addition, ATD has also been implicated in synaptogenesis, iGluR trafficking and trans-synaptic signalling, through unknown mechanisms. We report in the present study a 2.5 Å (1 Å=0.1 nm) resolution crystal structure of the ATD of GluA1. Comparative analyses of the structure of GluA1-ATD and other subunits sheds light on our understanding of how ATD drives subfamily-specific assembly of AMPARs. In addition, analysis of the crystal lattice of GluA1-ATD suggests a novel mechanism by which the ATD might participate in inter-tetramer AMPAR clustering, as well as in trans-synaptic protein-protein interactions.
Collapse
|
114
|
Wahlin KJ, Hackler L, Adler R, Zack DJ. Alternative splicing of neuroligin and its protein distribution in the outer plexiform layer of the chicken retina. J Comp Neurol 2011; 518:4938-62. [PMID: 21031560 DOI: 10.1002/cne.22499] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although synaptogenesis within the retina is obviously essential for vision, mechanisms responsible for the initiation and maintenance of retinal synapses are poorly understood. In addition to its scientific interest, understanding retinal synapse formation is becoming clinically relevant with ongoing efforts to develop transplantation-based approaches for the treatment of retinal degenerative disease. To extend our understanding, we have focused on the chick model system and have studied the neuroligin family of neuronal adhesion factors that has been shown to participate in synapse assembly in the brain. We identified chicken orthologs of neuroligins 1, -3, and -4, but could find no evidence of neuroligin 2. We investigated temporal and spatial patterns of mRNA and protein expression during development using standard polymerase chain reaction (RT-PCR), quantitative PCR (QPCR), laser-capture microdissection (LCM), and confocal microscopy. At the mRNA level, neuroligins were detected at the earliest period tested, embryonic day (ED)5, which precedes the period of inner retina synaptogenesis. Significant alternative splicing was observed through development. While neuroligin gene products were generally detected in the inner retina, low levels of neuroligin 1 mRNA were also detected in the photoreceptor layer. Neuroligin 3 and -4 transcripts, on the other hand, were only detected in the inner retina. At retinal synapses neuroligin 1 protein was detected in the inner plexiform layer, but its highest levels were detected in the outer plexiform layer on the tips of horizontal cell dendrites. This work lays the groundwork for future studies on the functional roles of the neuroligins within the retina.
Collapse
Affiliation(s)
- Karl J Wahlin
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | |
Collapse
|
115
|
Nishimune H. Transsynaptic channelosomes: non-conducting roles of ion channels in synapse formation. Channels (Austin) 2011; 5:432-9. [PMID: 21654201 PMCID: PMC3265764 DOI: 10.4161/chan.5.5.16472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022] Open
Abstract
Recent findings demonstrate that synaptic channels are directly involved in the formation and maintenance of synapses by interacting with synapse organizers. The synaptic channels on the pre- and postsynaptic membranes possess non-conducting roles in addition to their functional roles as ion-conducting channels required for synaptic transmission. For example, presynaptic voltage-dependent calcium channels link the target-derived synapse organizer laminin β2 to cytomatrix of the active zone and function as scaffolding proteins to organize the presynaptic active zones. Furthermore, postsynaptic δ2-type glutamate receptors organize the synapses by forming transsynaptic protein complexes with presynaptic neurexins through synapse organizer cerebellin 1 precursor proteins. Interestingly, the synaptic clustering of AMPA receptors is regulated by neuronal activity-regulated pentraxins, while postsynaptic differentiation is induced by the interaction of postsynaptic calcium channels and thrombospondins. This review will focus on the non-conducting functions of ion-channels that contribute to the synapse formation in concert with synapse organizers and active-zone-specific proteins.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical School, Kansas City, KS, USA.
| |
Collapse
|
116
|
Kumar J, Schuck P, Mayer ML. Structure and assembly mechanism for heteromeric kainate receptors. Neuron 2011; 71:319-31. [PMID: 21791290 PMCID: PMC3145919 DOI: 10.1016/j.neuron.2011.05.038] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2011] [Indexed: 01/07/2023]
Abstract
Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which function only in combination with GluR5-7. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K(d) 11 nM, 32,000-fold lower than the K(d) for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors.
Collapse
MESH Headings
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Animals
- Cell Line, Transformed
- Chromatography, Gel/methods
- Crystallography/methods
- Crystallography, X-Ray
- Excitatory Amino Acid Agonists/pharmacology
- Glutamic Acid/pharmacology
- Humans
- Membrane Potentials/drug effects
- Membrane Potentials/genetics
- Mice
- Models, Molecular
- Mutagenesis/genetics
- Oocytes
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Pyrimidines/pharmacology
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Kainic Acid/chemistry
- Receptors, Kainic Acid/classification
- Receptors, Kainic Acid/genetics
- Receptors, Kainic Acid/physiology
- Transfection
- Xenopus
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Janesh Kumar
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, NICHD, NIH, DHHS, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
117
|
McMahon SA, Díaz E. Mechanisms of excitatory synapse maturation by trans-synaptic organizing complexes. Curr Opin Neurobiol 2011; 21:221-7. [PMID: 21242087 PMCID: PMC3085653 DOI: 10.1016/j.conb.2010.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 12/28/2010] [Accepted: 12/28/2010] [Indexed: 01/25/2023]
Abstract
Synapses are specialized cell-cell adhesion contacts that mediate communication within neural networks. During development, excitatory synapses are generated by step-wise recruitment of presynaptic and postsynaptic proteins to sites of contact. Several classes of synaptic organizing complexes have been identified that function during the initial stages of synapse formation. However, mechanisms underlying the later stages of synapse development are less well understood. In recent years, molecules have been discovered that appear to play a role in synapse maturation. In this review, we highlight recent findings that have provided key insights for understanding postsynaptic maturation of developing excitatory synapses with a focus on recruitment of AMPA receptors to developing synapses.
Collapse
Affiliation(s)
- Samuel A. McMahon
- Department of Pharmacology, UC Davis School of Medicine, Davis, CA 95616
| | - Elva Díaz
- Department of Pharmacology, UC Davis School of Medicine, Davis, CA 95616
| |
Collapse
|
118
|
Yuzaki M. Cbln1 and its family proteins in synapse formation and maintenance. Curr Opin Neurobiol 2011; 21:215-20. [DOI: 10.1016/j.conb.2011.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 01/29/2011] [Accepted: 01/31/2011] [Indexed: 01/27/2023]
|
119
|
Acute knockdown of AMPA receptors reveals a trans-synaptic signal for presynaptic maturation. EMBO J 2011; 30:1577-92. [PMID: 21378752 DOI: 10.1038/emboj.2011.59] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 02/04/2011] [Indexed: 11/08/2022] Open
Abstract
Newly formed glutamatergic synapses often lack postsynaptic AMPA-type glutamate receptors (AMPARs). Aside from 'unsilencing' the postsynaptic site, however, the significance of postsynaptic AMPAR insertion during synapse maturation remains unclear. To investigate the role of AMPAR in synapse maturation, we used RNA interference (RNAi) to knockdown AMPARs in cultured hippocampal neurons. Surprisingly, loss of postsynaptic AMPARs increased the occurrence of presynaptically inactive synapses without changing the release probability of the remaining active synapses. Additionally, heterologous synapses formed between axons and AMPAR-expressing HEK cells develop significantly fewer inactive presynaptic terminals. The extracellular domain of the AMPAR subunit GluA2 was sufficient to reproduce this effect at heterologous synapses. Indeed, the retrograde signalling by AMPARs is independent of their channel function as RNAi-resistant AMPARs restore synaptic transmission in neurons lacking AMPARs despite chronic receptor antagonist treatment. Our findings suggest that postsynaptic AMPARs perform an organizational function at synapses that exceeds their standard role as ionotropic receptors by conveying a retrograde trans-synaptic signal that increases the transmission efficacy at a synapse.
Collapse
|
120
|
Dityatev A, Seidenbecher CI, Schachner M. Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 2011; 33:503-12. [PMID: 20832873 DOI: 10.1016/j.tins.2010.08.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/13/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
The extracellular matrix (ECM) of the central nervous system is well recognized as a migration and diffusion barrier that allows for the trapping and presentation of growth factors to their receptors at the cell surface. Recent data highlight the importance of ECM molecules as synaptic and perisynaptic scaffolds that direct the clustering of neurotransmitter receptors in the postsynaptic compartment and that present barriers to reduce the lateral diffusion of membrane proteins away from synapses. The ECM also contributes to the migration and differentiation of stem cells in the neurogenic niche and organizes the polarized localization of ion channels and transporters at contacts between astrocytic processes and blood vessels. Thus, the ECM contributes to functional compartmentalization in the brain.
Collapse
Affiliation(s)
- Alexander Dityatev
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, via Morego 30, Genova, Italy.
| | | | | |
Collapse
|
121
|
Abstract
The assembly of specific synaptic connections during development of the nervous system represents a remarkable example of cellular recognition and differentiation. Neurons employ several different cellular signaling strategies to solve this puzzle, which successively limit unwanted interactions and reduce the number of direct recognition events that are required to result in a specific connectivity pattern. Specificity mechanisms include the action of contact-mediated and long-range signals that support or inhibit synapse formation, which can take place directly between synaptic partners or with transient partners and transient cell populations. The molecular signals that drive the synaptic differentiation process at individual synapses in the central nervous system are similarly diverse and act through multiple, parallel differentiation pathways. This molecular complexity balances the need for central circuits to be assembled with high accuracy during development while retaining plasticity for local and dynamic regulation.
Collapse
Affiliation(s)
- Kang Shen
- Howard Hughes Medical Institute, Department of Biology and Pathology, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
122
|
A single immunoglobulin-domain protein required for clustering acetylcholine receptors in C. elegans. EMBO J 2011; 30:706-18. [PMID: 21252855 DOI: 10.1038/emboj.2010.355] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 12/16/2010] [Indexed: 11/08/2022] Open
Abstract
At Caenorhabditis elegans neuromuscular junctions (NMJs), synaptic clustering of the levamisole-sensitive acetylcholine receptors (L-AChRs) relies on an extracellular scaffold assembled in the synaptic cleft. It involves the secreted protein LEV-9 and the ectodomain of the transmembrane protein LEV-10, which are both expressed by muscle cells. L-AChRs, LEV-9 and LEV-10 are part of a physical complex, which localizes at NMJs, yet none of its components localizes independently at synapses. In a screen for mutants partially resistant to the cholinergic agonist levamisole, we identified oig-4, which encodes a small protein containing a single immunoglobulin domain. The OIG-4 protein is secreted by muscle cells and physically interacts with the L-AChR/LEV-9/LEV-10 complex. Removal of OIG-4 destabilizes the complex and causes a loss of L-AChR clusters at the synapse. Interestingly, OIG-4 partially localizes at NMJs independently of LEV-9 and LEV-10, thus providing a potential link between the L-AChR-associated scaffold and local synaptic cues. These results add a novel paradigm for the immunoglobulin super-family as OIG-4 is a secreted protein required for clustering ionotropic receptors independently of synapse formation.
Collapse
|
123
|
Barros CS, Franco SJ, Müller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol 2011; 3:a005108. [PMID: 21123393 DOI: 10.1101/cshperspect.a005108] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extracellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of synapses in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Claudia S Barros
- The Scripps Research Institute, Department of Cell Biology, Dorris Neuroscience Center, La Jolla, California 92037, USA
| | | | | |
Collapse
|
124
|
Nakagawa T. The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors. Mol Neurobiol 2010; 42:161-84. [PMID: 21080238 PMCID: PMC2992128 DOI: 10.1007/s12035-010-8149-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/02/2010] [Indexed: 12/25/2022]
Abstract
The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Terunaga Nakagawa
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
125
|
Appelbaum L, Wang G, Yokogawa T, Skariah GM, Smith SJ, Mourrain P, Mignot E. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 2010; 68:87-98. [PMID: 20920793 DOI: 10.1016/j.neuron.2010.09.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2010] [Indexed: 12/12/2022]
Abstract
Neurons exhibit rhythmic activity that ultimately affects behavior such as sleep. In living zebrafish larvae, we used time-lapse two-photon imaging of the presynaptic marker synaptophysin in hypocretin/orexin (HCRT) neurons to determine the dynamics of synaptic modifications during the day and night. We observed circadian rhythmicity in synapse number in HCRT axons. This rhythm is regulated primarily by the circadian clock but is also affected by sleep deprivation. Furthermore, NPTX2, a protein implicated in AMPA receptor clustering, modulates circadian synaptic changes. In zebrafish, nptx2b is a rhythmic gene that is mostly expressed in hypothalamic and pineal gland cells. Arrhythmic transgenic nptx2b overexpression (hcrt:NPTX2b) increases synapse number and abolishes rhythmicity in HCRT axons. Finally, hcrt:NPTX2b fish are resistant to the sleep-promoting effects of melatonin. This behavioral effect is consistent with NPTX2b-mediated increased activity of HCRT circuitry. These data provide real-time in vivo evidence of circadian and homeostatic regulation of structural synaptic plasticity.
Collapse
Affiliation(s)
- Lior Appelbaum
- Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
126
|
Siddiqui TJ, Craig AM. Synaptic organizing complexes. Curr Opin Neurobiol 2010; 21:132-43. [PMID: 20832286 DOI: 10.1016/j.conb.2010.08.016] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/09/2010] [Accepted: 08/14/2010] [Indexed: 01/01/2023]
Abstract
A number of synaptogenic factors induce presynaptic or postsynaptic differentiation when presented to axons or dendrites. Many such factors participate in bidirectional trans-synaptic adhesion complexes. Axonal neurexins interacting in an isoform-specific code with multiple dendritic partners (neuroligins, LRRTMs, or Cbln-GluRδ), and axonal protein tyrosine phosphatase receptors interacting with dendritic NGL-3, nucleate local networks of high-affinity protein-protein interactions leading to aligned presynaptic and postsynaptic differentiation. Additional secreted target-derived factors such as fibroblast growth factors and glial-derived factors such as thrombospondin bind specific axonal or dendritic receptors stimulating signal transduction mechanisms to promote selective aspects of synapse development. Together with classical adhesion molecules and controlled by transcriptional cascades, these synaptogenic adhesion complexes and secreted factors organize the molecular composition and thus functional properties of central synapses.
Collapse
Affiliation(s)
- Tabrez J Siddiqui
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada V6T 2B5
| | | |
Collapse
|
127
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2612] [Impact Index Per Article: 186.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
For neurons to communicate, signals must cross the cell-to-cell distance at their points of contact. At the predominant cell-cell contact in the central nervous system, the chemical synapse, the synaptic cleft spans roughly 20 nanometers. To signal across this distance, the presynaptic neuron secretes a diffusible neurotransmitter, which is detected by receptors on the postsynaptic neuron. Although this signaling mechanism has become common knowledge, it remains unclear how synapses are maintained when they are not in immediate use. New evidence reveals how Nature solved this problem at a particular type of synapse in the cerebellum: Three old acquaintances bridge the cleft. The ionotropic glutamate receptor GluD2 constitutes the postsynaptic anchor that indirectly interacts with the presynaptic anchor neurexin through a presynaptically secreted soluble factor, a member of the C1q protein family named Cbln1. This trio collaborates to align pre- and postsynaptic sides.
Collapse
Affiliation(s)
- Sabine M Schmid
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
129
|
Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat Neurosci 2010; 13:1090-7. [PMID: 20729843 PMCID: PMC2949072 DOI: 10.1038/nn.2621] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 07/22/2010] [Indexed: 01/22/2023]
Abstract
Homeostatic synaptic scaling alters the strength of synapses to compensate for prolonged changes in network activity, and involves both excitatory and inhibitory neurons. The immediate-early gene termed Narp (Neuronal activity-regulated pentraxin) encodes a secreted synaptic protein that can bind and cluster AMPA receptors (AMPARs). Here, we report that Narp prominently accumulates at excitatory synapses on Parvalbumin-expressing interneurons (PV-INs). Increasing network activity results in a homeostatic increase of excitatory synaptic strength onto PV-INs that increases inhibitory drive, and this response is absent in neurons cultured from Narp knock-out (Narp−/−) mice. Activity-dependent changes in the strength of excitatory inputs on PV-INs in acute hippocampal slices are also dependent on Narp, and Narp−/− mice display increased sensitivity to kindling-induced seizures. We propose that Narp recruits AMPARs at excitatory synapses onto PV-INs to rebalance network excitation/inhibition dynamics following episodes of increased circuit activity.
Collapse
|
130
|
Hansen KB, Furukawa H, Traynelis SF. Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol Pharmacol 2010; 78:535-49. [PMID: 20660085 DOI: 10.1124/mol.110.067157] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The extracellular amino-terminal domains (ATDs) of the ionotropic glutamate receptor subunits form a semiautonomous component of all glutamate receptors that resides distal to the membrane and controls a surprisingly diverse set of receptor functions. These functions include subunit assembly, receptor trafficking, channel gating, agonist potency, and allosteric modulation. The many divergent features of the different ionotropic glutamate receptor classes and different subunits within a class may stem from differential regulation by the amino-terminal domains. The emerging knowledge of the structure and function of the amino-terminal domains reviewed here may enable targeting of this region for the therapeutic modulation of glutamatergic signaling. Toward this end, NMDA receptor antagonists that interact with the GluN2B ATD show promise in animal models of ischemia, neuropathic pain, and Parkinson's disease.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA
| | | | | |
Collapse
|
131
|
|
132
|
Yuzaki M. Synapse formation and maintenance by C1q family proteins: a new class of secreted synapse organizers. Eur J Neurosci 2010; 32:191-7. [PMID: 20646056 DOI: 10.1111/j.1460-9568.2010.07346.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several C1q family members, especially the Cbln and C1q-like subfamilies, are highly and predominantly expressed in the central nervous system. Cbln1, a member of the Cbln subfamily, plays two unique roles at parallel fiber (PF)-Purkinje cell synapses in the cerebellum: the formation and stabilization of synaptic contact, and the control of functional synaptic plasticity by regulating the postsynaptic endocytotic pathway. The delta2 glutamate receptor (GluD2), which is predominantly expressed in Purkinje cells, plays similar critical roles in the cerebellum. In addition, viral expression of GluD2 or the application of recombinant Cbln1 induces PF-Purkinje cell synaptogenesis in vitro and in vivo. Antigen-unmasking methods were necessary to reveal the immunoreactivities for endogenous Cbln1 and GluD2 at the synaptic junction of PF synapses. We propose that Cbln1 and GluD2 are located at the synaptic cleft, where various proteins undergo intricate molecular interactions with each other, and serve as a bidirectional synaptic organizer.
Collapse
Affiliation(s)
- Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
133
|
Abstract
A critical step in synaptic development is the differentiation of presynaptic and postsynaptic compartments. This complex process is regulated by a variety of secreted factors that serve as synaptic organizers. Specifically, fibroblast growth factors, Wnts, neurotrophic factors and various other intercellular signaling molecules are proposed to regulate presynaptic and/or postsynaptic differentiation. Many of these factors appear to function at both the neuromuscular junction and in the central nervous system, although the specific function of the molecules differs between the two. Here we review secreted molecules that organize the synaptic compartments and discuss how these molecules shape synaptic development, focusing on mammalian in vivo systems. Their critical role in shaping a functional neural circuit is underscored by their possible link to a wide range of neurological and psychiatric disorders both in animal models and by mutations identified in human patients.
Collapse
Affiliation(s)
- Erin M Johnson-Venkatesh
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
134
|
Abstract
Neuronal pentraxins (NPs) are hypothesized to play important roles in the recruitment of AMPA receptors (AMPARs) to immature synapses, yet a physiological role for NPs at nascent synapses in vivo has remained elusive. Here we report that the loss of NP1 and NP2 (NP1/2) leads to a dramatic and specific reduction in AMPAR-mediated transmission at developing visual system synapses. In thalamic slices taken from early postnatal mice (<P10) NP1/2 knock-out (KO) neurons displayed severely reduced AMPAR-mediated retinogeniculate transmission. The reduced currents reflected an increased number of silent synapses with no change in quantal amplitude or presynaptic release. These are the first data to demonstrate that NP1/2 are required in vivo for the normal development of AMPAR-mediated transmission. In addition, they suggest a novel role for NP1/2 in silent synapse conversion during a discrete developmental period when visual circuit connections are undergoing eye-specific refinement. After this period, retinogeniculate transmission not only recovered in the knock-outs but became excessive. The enhanced currents were attributable, at least in part, to a deficit in the characteristic elimination of functional inputs that occurs in the developing dLGN. These data indicate that the loss of NP1/2 disrupts several aspects of retinogeniculate development including the initial establishment of AMPAR transmission and the subsequent elimination of inappropriate circuit connections.
Collapse
|
135
|
Tyburczy ME, Kotulska K, Pokarowski P, Mieczkowski J, Kucharska J, Grajkowska W, Roszkowski M, Jozwiak S, Kaminska B. Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1878-90. [PMID: 20133820 DOI: 10.2353/ajpath.2010.090950] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Subependymal giant cell astrocytomas (SEGAs) are rare brain tumors associated with tuberous sclerosis complex (TSC), a disease caused by mutations in TSC1 or TSC2, resulting in enhancement of mammalian target of rapamycin (mTOR) activity, dysregulation of cell growth, and tumorigenesis. Signaling via mTOR plays a role in multifaceted genomic responses, but its effectors in the brain are largely unknown. Therefore, gene expression profiling on four SEGAs was performed with Affymetrix Human Genome arrays. Of the genes differentially expressed in TSC, 11 were validated by real-time PCR on independent tumor samples and 3 SEGA-derived cultures. Expression of several proteins was confirmed by immunohistochemistry. The differentially-regulated proteins were mainly involved in tumorigenesis and nervous system development. ANXA1, GPNMB, LTF, RND3, S100A11, SFRP4, and NPTX1 genes were likely to be mTOR effector genes in SEGA, as their expression was modulated by an mTOR inhibitor, rapamycin, in SEGA-derived cells. Inhibition of mTOR signaling affected size of cultured SEGA cells but had no influence on their proliferation, morphology, or migration, whereas inhibition of both mTOR and extracellular signal-regulated kinase signaling pathways led to significant alterations of these processes. For the first time, we identified genes related to the occurrence of SEGA and regulated by mTOR and demonstrated an effective modulation of SEGA growth by pharmacological inhibition of both mTOR and extracellular signal-regulated kinase signaling pathways, which could represent a novel therapeutic approach.
Collapse
|
136
|
Loebrich S, Nedivi E. The function of activity-regulated genes in the nervous system. Physiol Rev 2009; 89:1079-103. [PMID: 19789377 DOI: 10.1152/physrev.00013.2009] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mammalian brain is plastic in the sense that it shows a remarkable capacity for change throughout life. The contribution of neuronal activity to brain plasticity was first recognized in relation to critical periods of development, when manipulating the sensory environment was found to profoundly affect neuronal morphology and receptive field properties. Since then, a growing body of evidence has established that brain plasticity extends beyond development and is an inherent feature of adult brain function, spanning multiple domains, from learning and memory to adaptability of primary sensory maps. Here we discuss evolution of the current view that plasticity of the adult brain derives from dynamic tuning of transcriptional control mechanisms at the neuronal level, in response to external and internal stimuli. We then review the identification of "plasticity genes" regulated by changes in the levels of electrical activity, and how elucidating their cellular functions has revealed the intimate role transcriptional regulation plays in fundamental aspects of synaptic transmission and circuit plasticity that occur in the brain on an every day basis.
Collapse
Affiliation(s)
- Sven Loebrich
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
137
|
Clayton A, Siebold C, Gilbert RJ, Sutton GC, Harlos K, McIlhinney RAJ, Jones EY, Aricescu AR. Crystal Structure of the GluR2 Amino-Terminal Domain Provides Insights into the Architecture and Assembly of Ionotropic Glutamate Receptors. J Mol Biol 2009; 392:1125-32. [DOI: 10.1016/j.jmb.2009.07.082] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 11/28/2022]
|
138
|
The N-terminal domain of GluD2 (GluRdelta2) recruits presynaptic terminals and regulates synaptogenesis in the cerebellum in vivo. J Neurosci 2009; 29:5738-48. [PMID: 19420242 DOI: 10.1523/jneurosci.6013-08.2009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The delta2 glutamate receptor (GluRdelta2; GluD2), which is predominantly expressed on postsynaptic sites at parallel fiber (PF)-Purkinje cell synapses in the cerebellum, plays two crucial roles in the cerebellum: the formation of PF synapses and the regulation of long-term depression (LTD), a form of synaptic plasticity underlying motor learning. Although the induction of LTD and motor learning absolutely require signaling via the cytoplasmic C-terminal domain of GluD2, the mechanisms by which GluD2 regulates PF synaptogenesis have remained unclear. Here, we examined the role of the extracellular N-terminal domain (NTD) of GluD2 on PF synaptogenesis by injecting Sindbis virus carrying wild-type (GluD2(wt)) or mutant GluD2 into the subarachnoid supracerebellar space of GluD2-null mice. Remarkably, the expression of GluD2(wt), but not of a mutant GluD2 lacking the NTD (GluD2(DeltaNTD)), rapidly induced PF synapse formation and rescued gross motor dyscoordination in adult GluD2-null mice just 1 d after injection. In addition, although the kainate receptor GluR6 (GluK2) did not induce PF synaptogenesis, a chimeric GluK2 that contained the NTD of GluD2 (GluD2(NTD)-GluK2) did. Similarly, GluD2(wt) and GluD2(NTD)-GluK2, but not GluD2(DeltaNTD), induced synaptogenesis in heterologous cells in vitro. In contrast, LTD was restored in GluD2-null Purkinje cells expressing a mutant GluD2 lacking the NTD. These results indicate that the NTD of GluD2 is necessary and sufficient for the function of GluD2 in the regulation of PF-Purkinje cell synaptogenesis. Furthermore, our results suggest that GluD2 differently regulates PF synaptogenesis and cerebellar LTD through the extracellular NTD and the cytoplasmic C-terminal end, respectively.
Collapse
|
139
|
Crystal structure and association behaviour of the GluR2 amino-terminal domain. EMBO J 2009; 28:1812-23. [PMID: 19461580 DOI: 10.1038/emboj.2009.140] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/27/2009] [Indexed: 11/09/2022] Open
Abstract
Fast excitatory neurotransmission is mediated largely by ionotropic glutamate receptors (iGluRs), tetrameric, ligand-gated ion channel proteins comprised of three subfamilies, AMPA, kainate and NMDA receptors, with each subfamily sharing a common, modular-domain architecture. For all receptor subfamilies, active channels are exclusively formed by assemblages of subunits within the same subfamily, a molecular process principally encoded by the amino-terminal domain (ATD). However, the molecular basis by which the ATD guides subfamily-specific receptor assembly is not known. Here we show that AMPA receptor GluR1- and GluR2-ATDs form tightly associated dimers and, by the analysis of crystal structures of the GluR2-ATD, propose mechanisms by which the ATD guides subfamily-specific receptor assembly.
Collapse
|
140
|
Newpher TM, Ehlers MD. Spine microdomains for postsynaptic signaling and plasticity. Trends Cell Biol 2009; 19:218-27. [PMID: 19328694 DOI: 10.1016/j.tcb.2009.02.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/14/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Changes in the molecular composition and signaling properties of excitatory glutamatergic synapses onto dendritic spines mediate learning-related plasticity in the mammalian brain. This molecular adaptation serves as the most celebrated cell biological model for learning and memory. Within their micron-sized dimensions, dendritic spines restrict the diffusion of signaling molecules and spatially confine the activation of signal transduction pathways. Much of this local regulation occurs by spatial compartmentalization of glutamate receptors. Here, we review recently identified cell biological mechanisms regulating glutamate receptor mobility within individual dendritic spines. We discuss the emerging functions of glutamate receptors residing within sub-spine microdomains and propose a model for distinct signaling platforms with specialized functions in synaptic plasticity.
Collapse
Affiliation(s)
- Thomas M Newpher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
141
|
Yin GN, Lee HW, Cho JY, Suk K. Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Res 2009; 1265:158-70. [PMID: 19368810 DOI: 10.1016/j.brainres.2009.01.058] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by progressive loss of cognitive function, dementia, and problems with movements. In order to find new protein biomarkers of high specificity from cerebrospinal fluid (CSF) of AD and PD patients, one-dimensional gel electrophoresis (1-DE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) as well as 2-DE analysis were performed. In 1-DE and LC-MS/MS 371 proteins were identified, among which levels of proteins such as isoform 1 of contactin-1, contactin-2, carnosine dipeptidase 1 (CNDP1), 120 kDa isoform precursor of neural cell adhesion molecule 1 (NCAM-120), alpha-dystroglycan, secreted protein acidic and rich in cysteine-like protein 1 precursor (SPARCL1), isoform 2 of calsyntenin 1 (CLSTN1), and neuronal pentraxin receptor (NPR) showed significant changes in AD or PD CSF compared with normal subjects. In 2-DE analysis approximately 747-915 spots were detected in CSF of AD or PD patients, from which 17-24 proteins with more than a 1.2 fold change were identified by tandem MS. Most proteins identified showed consistent changes in LC-MS/MS and 2-DE analysis. Three proteins that showed significant changes were selected for further validation by Western blot analysis. While NCAM-120 and alpha-dystroglycan exhibited higher levels in both AD and PD CSF compared with normal subjects, the level of NPR was increased only in AD CSF in Western blot analysis. The results were consistent with quantitative analysis of 2-DE spots. A higher level of NPR was also found in AD serum. This study suggests that NCAM-120, alpha-dystroglycan, and NPR are candidate biomarkers in CSF for neurodegenerative diseases, and that the changes in the CSF level of NPR may be specific for AD.
Collapse
Affiliation(s)
- Guo Nan Yin
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI, Kyungpook National University School of Medicine, Joong-Gu, Daegu, South Korea
| | | | | | | |
Collapse
|
142
|
Harvey M, Karolat J, Sakai Y, Sokolowski B. PPTX, a pentraxin domain-containing protein, interacts with the T1 domain of K v 4. J Neurosci Res 2009; 87:1841-7. [PMID: 19185023 DOI: 10.1002/jnr.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Voltage-gated K(+) (K(v)) channels reside as tetramers in the membrane. The events that coordinate folding, trafficking, and tetramerization are mediated by an array of associated proteins and phospholipids whose identification is vital to understanding the dynamic nature of channel expression and activity. An interaction between an A-type K(+) channel, K(v)4.2, and a protein containing a pentraxin domain (PPTX) was demonstrated in the cochlea (Duzhyy et al. [ 2005] J. Biol. Chem. 280:15165-15172). Here, we present results based on fold recognition and homology modeling that revealed the tetramerization (T1) domain of K(v)4.2 as a potential docking site for interacting proteins such as PPTX. By using this model, putative sites were experimentally tested with the yeast two-hybrid system to assay interactions between PPTX and the T1 domain of K(v)4.2 wild type (wt) and mutants (mut). Results showed that amino acid residues 86 and 118 in the T1 domain are essential for interaction, because replacing these negatively charged with neutrally charged amino acids inhibits interactions. Cotransfections of Chinese hamster ovary cells with PPTX and K(v)4.2wt further revealed that PPTX increases K(v)4.2 wt expression in vitro when analyzing total lysates, whereas interactions with K(v)4.2 microt resulted in a decrease. These studies suggest that portions of the T1 domain can act as docking sites for proteins such as PPTX, further underscoring the significance of this domain.
Collapse
Affiliation(s)
- Margaret Harvey
- Department of Otolaryngology-HNS, Otology Laboratory, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
143
|
Santos S, Carvalho A, Caldeira M, Duarte C. Regulation of AMPA receptors and synaptic plasticity. Neuroscience 2009; 158:105-25. [DOI: 10.1016/j.neuroscience.2008.02.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/02/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|
144
|
Abstract
The efficient and selective removal of apoptotic cells is an important feature of tissue development, homeostasis and pathology. In the nervous system, synapses and distal axons are selectively eliminated as part of the remodelling that underpins development and pathology, through a process that has some features in common with apoptotic cell removal. Components of the complement cascade are implicated in the efficient removal of apoptotic cells outside the nervous system, and recent evidence suggests that the complement components C1q and C3 have a role in the selective tagging of supernumerary synapses in the developing visual system and in their efficient removal by as yet unidentified cells.
Collapse
Affiliation(s)
- V Hugh Perry
- School of Biological Sciences, University of Southampton, Southampton, SO16 7PX, UK.
| | | |
Collapse
|
145
|
Tiao JY, Bradaia A, Biermann B, Kaupmann K, Metz M, Haller C, Rolink AG, Pless E, Barlow PN, Gassmann M, Bettler B. The sushi domains of secreted GABA(B1) isoforms selectively impair GABA(B) heteroreceptor function. J Biol Chem 2008; 283:31005-11. [PMID: 18765663 PMCID: PMC2576543 DOI: 10.1074/jbc.m804464200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
GABA(B) receptors are the G-protein-coupled receptors for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. GABA(B) receptors are promising drug targets for a wide spectrum of psychiatric and neurological disorders. Receptor subtypes exhibit no pharmacological differences and are based on the subunit isoforms GABA(B1a) and GABA(B1b). GABA(B1a) differs from GABA(B1b) in its ectodomain by the presence of a pair of conserved protein binding motifs, the sushi domains (SDs). Previous work showed that selectively GABA(B1a) contributes to heteroreceptors at glutamatergic terminals, whereas both GABA(B1a) and GABA(B1b) contribute to autoreceptors at GABAergic terminals or to postsynaptic receptors. Here, we describe GABA(B1j), a secreted GABA(B1) isoform comprising the two SDs. We show that the two SDs, when expressed as a soluble protein, bind to neuronal membranes with low nanomolar affinity. Soluble SD protein, when added at nanomolar concentrations to dissociated hippocampal neurons or to acute hippocampal slices, impairs the inhibitory effect of GABA(B) heteroreceptors on evoked and spontaneous glutamate release. In contrast, soluble SD protein neither impairs the activity of GABA(B) autoreceptors nor impairs the activity of postsynaptic GABA(B) receptors. We propose that soluble SD protein scavenges an extracellular binding partner that retains GABA(B1a)-containing heteroreceptors in proximity of the presynaptic release machinery. Soluble GABA(B1) isoforms like GABA(B1j) may therefore act as dominant-negative inhibitors of heteroreceptors and control the level of GABA(B)-mediated inhibition at glutamatergic terminals. Of importance for drug discovery, our data also demonstrate that it is possible to selectively impair GABA(B) heteroreceptors by targeting their SDs.
Collapse
Affiliation(s)
- Jim Y Tiao
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
The genomic determinants of alcohol preference in mice. Mamm Genome 2008; 19:352-65. [PMID: 18563486 DOI: 10.1007/s00335-008-9115-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 05/14/2008] [Indexed: 02/06/2023]
Abstract
Searches for the identity of genes that influence the levels of alcohol consumption by humans and other animals have often been driven by presupposition of the importance of particular gene products in determining positively or negatively reinforcing effects of ethanol. We have taken an unbiased approach and performed a meta-analysis across three types of mouse populations to correlate brain gene expression with levels of alcohol intake. Our studies, using filtering procedures based on QTL analysis, produced a list of eight candidate genes with highly heritable expression, which could explain a significant amount of the variance in alcohol preference in mice. Using the Allen Brain Atlas for gene expression, we noted that the candidate genes' expression was localized to the olfactory and limbic areas as well as to the orbitofrontal cortex. Informatics techniques and pathway analysis illustrated the role of the candidate genes in neuronal migration, differentiation, and synaptic remodeling. The importance of olfactory cues, learning and memory formation (Pavlovian conditioning), and cortical executive function, for regulating alcohol intake by animals (including humans), is discussed.
Collapse
|
147
|
Foster CA, Mechtcheriakova D, Storch MK, Balatoni B, Howard LM, Bornancin F, Wlachos A, Sobanov J, Kinnunen A, Baumruker T. FTY720 rescue therapy in the dark agouti rat model of experimental autoimmune encephalomyelitis: expression of central nervous system genes and reversal of blood-brain-barrier damage. Brain Pathol 2008; 19:254-66. [PMID: 18540945 DOI: 10.1111/j.1750-3639.2008.00182.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
FTY720 (fingolimod) is an oral sphingosine-1 phosphate (S1P) receptor modulator in phase III development for the treatment of multiple sclerosis. To further investigate its mode of action, we analyzed gene expression in the central nervous system (CNS) during experimental autoimmune encephalomyelitis (EAE). FTY720 downregulated inflammatory genes in addition to vascular adhesion molecules. It decreased the matrix metalloproteinase gene MMP-9 and increased its counterregulator--tissue inhibitor of metalloproteinase, TIMP-1--resulting in a proteolytic balance that favors preservation of blood-brain-barrier (BBB) integrity. Furthermore, FTY720 reduced S1P lyase that increases the S1P concentration in the brain, in line with a marked reversal of neurological deficits and raising the possibility for enhanced triggering of S1P receptors on resident brain cells. This is accompanied by an increase in S1P(1) and S1P(5) in contrast with the attenuation of S1P(3) and S1P(4). Late-stage rescue therapy with FTY720, even up to 1 month after EAE onset, reversed BBB leakiness and reduced demyelination, along with normalization of neurologic function. Our results indicate rapid blockade of ongoing disease processes by FTY720, and structural restoration of the CNS parenchyma, which is likely caused by the inhibition of autoimmune T cell infiltration and direct modulation of microvascular and/or glial cells.
Collapse
Affiliation(s)
- Carolyn A Foster
- Novartis Institutes for BioMedical Research, Brunner Strasse 59, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Newpher TM, Ehlers MD. Glutamate receptor dynamics in dendritic microdomains. Neuron 2008; 58:472-97. [PMID: 18498731 PMCID: PMC2572138 DOI: 10.1016/j.neuron.2008.04.030] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 01/08/2023]
Abstract
Among diverse factors regulating excitatory synaptic transmission, the abundance of postsynaptic glutamate receptors figures prominently in molecular memory and learning-related synaptic plasticity. To allow for both long-term maintenance of synaptic transmission and acute changes in synaptic strength, the relative rates of glutamate receptor insertion and removal must be tightly regulated. Interactions with scaffolding proteins control the targeting and signaling properties of glutamate receptors within the postsynaptic membrane. In addition, extrasynaptic receptor populations control the equilibrium of receptor exchange at synapses and activate distinct signaling pathways involved in plasticity. Here, we review recent findings that have shaped our current understanding of receptor mobility between synaptic and extrasynaptic compartments at glutamatergic synapses, focusing on AMPA and NMDA receptors. We also examine the cooperative relationship between intracellular trafficking and surface diffusion of glutamate receptors that underlies the expression of learning-related synaptic plasticity.
Collapse
Affiliation(s)
- Thomas M. Newpher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
149
|
Cho RW, Park JM, Wolff SBE, Xu D, Hopf C, Kim JA, Reddy RC, Petralia RS, Perin MS, Linden DJ, Worley PF. mGluR1/5-dependent long-term depression requires the regulated ectodomain cleavage of neuronal pentraxin NPR by TACE. Neuron 2008; 57:858-71. [PMID: 18367087 DOI: 10.1016/j.neuron.2008.01.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 06/28/2007] [Accepted: 01/04/2008] [Indexed: 11/25/2022]
Abstract
Matrix metalloproteases (MMPs) play a role in remodeling the extracellular matrix during brain development and have been implicated in synaptic plasticity. Here, we report that a member of the neuronal pentraxin (NP) family, neuronal pentraxin receptor (NPR), undergoes regulated cleavage by the MMP tumor necrosis factor-alpha converting enzyme (TACE). NPR is enriched at excitatory synapses where it associates with AMPA-type glutamate receptors (AMPAR) and enhances synaptogenesis. However, in response to activation of group 1 mGluRs (mGluR1/5), TACE cleaves NPR and releases the pentraxin domain from its N-terminal transmembrane domain. Cleaved NPR rapidly accumulates in endosomes where it colocalizes with AMPAR. This process is necessary for mGluR1/5-dependent LTD in hippocampal and cerebellar synapses. These observations suggest that cleaved NPR functions to "capture" AMPAR for endocytosis and reveal a bifunctional role of NPs in both synapse strengthening and weakening.
Collapse
Affiliation(s)
- Richard W Cho
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Synaptic adhesion molecules and PSD-95. Prog Neurobiol 2007; 84:263-83. [PMID: 18206289 DOI: 10.1016/j.pneurobio.2007.10.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/31/2007] [Accepted: 10/26/2007] [Indexed: 11/21/2022]
Abstract
Synaptic adhesion molecules are known to participate in various steps of synapse development including initial contacts between dendrites and axons, formation of early synapses, and their maturation and plastic changes. Notably, a significant subset of synaptic adhesion molecules associates with synaptic scaffolding proteins, suggesting that they may act in concert to couple trans-synaptic adhesion to molecular organization of synaptic proteins. Here, we describe an emerging group of synaptic adhesion molecules that directly interact with the abundant postsynaptic scaffold PSD-95, which include neuroligins, NGLs, SALMs, and ADAM22, and discuss how these proteins and PSD-95 act together to regulate synaptic development. PSD-95 may be one of the central organizers of synaptic adhesion that recruits diverse proteins to sites of synaptic adhesion, promotes trans-synaptic signaling, and couples neuronal activity with changes in synaptic adhesion.
Collapse
|