101
|
Torres G, Mourad M, Leheste JR. Indoor Air Pollution and Decision-Making Behavior: An Interdisciplinary Review. Cureus 2022; 14:e26247. [PMID: 35911286 PMCID: PMC9313076 DOI: 10.7759/cureus.26247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
The human brain is constantly exposed to air pollutants, some of which might be disruptive or even lethal to certain neurons implicated in abstract features of cognitive function. In this review, we present new evidence from behavioral and neural studies in humans, suggesting a link between indoor fine particulate matter and decision-making behavior. To illustrate this relationship, we use qualitative sources, such as historical documents of the Vietnam War to develop hypotheses of how aerial transmission of pollutants might obstruct alternative choices during the evaluation of policy decisions. We first describe the neural circuits driving decision-making processes by addressing how neurons and their cognate receptors directly evaluate and transduce physical phenomena into sensory perceptions that allow us to decide the best course of action among competing alternatives. We then raise the possibility that indoor air pollutants might also impact cell-signaling systems outside the brain parenchyma to further obstruct the computational analysis of the social environment. We also highlight how particulate matter might be pathologically integrated into the brain to override control of sensory decisions, and thereby perturb selection of choice. These lines of research aim to extend our understanding of how inhalation of airborne particulates and toxicants in smoke, for example, might contribute to cognitive impairment and negative health outcomes.
Collapse
|
102
|
Saint‐Martin M, Goda Y. Astrocyte–synapse interactions and cell adhesion molecules. FEBS J 2022. [DOI: 10.1111/febs.16540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Margaux Saint‐Martin
- Laboratory for Synaptic Plasticity and Connectivity RIKEN Center for Brain Science Wako‐shi, Saitama Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity RIKEN Center for Brain Science Wako‐shi, Saitama Japan
- Synapse Biology Unit Okinawa Institute of Science and Technology Graduate University Japan
| |
Collapse
|
103
|
de Siqueira Mendes FDCC, de Almeida MNF, Falsoni M, Andrade MLF, Felício APG, da Paixão LTVB, Júnior FLDA, Anthony DC, Brites D, Diniz CWP, Sosthenes MCK. The Sedentary Lifestyle and Masticatory Dysfunction: Time to Review the Contribution to Age-Associated Cognitive Decline and Astrocyte Morphotypes in the Dentate Gyrus. Int J Mol Sci 2022; 23:ijms23116342. [PMID: 35683023 PMCID: PMC9180988 DOI: 10.3390/ijms23116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
As aging and cognitive decline progresses, the impact of a sedentary lifestyle on the appearance of environment-dependent cellular morphologies in the brain becomes more apparent. Sedentary living is also associated with poor oral health, which is known to correlate with the rate of cognitive decline. Here, we will review the evidence for the interplay between mastication and environmental enrichment and assess the impact of each on the structure of the brain. In previous studies, we explored the relationship between behavior and the morphological features of dentate gyrus glial fibrillary acidic protein (GFAP)-positive astrocytes during aging in contrasting environments and in the context of induced masticatory dysfunction. Hierarchical cluster and discriminant analysis of GFAP-positive astrocytes from the dentate gyrus molecular layer revealed that the proportion of AST1 (astrocyte arbors with greater complexity phenotype) and AST2 (lower complexity) are differentially affected by environment, aging and masticatory dysfunction, but the relationship is not straightforward. Here we re-evaluated our previous reconstructions by comparing dorsal and ventral astrocyte morphologies in the dentate gyrus, and we found that morphological complexity was the variable that contributed most to cluster formation across the experimental groups. In general, reducing masticatory activity increases astrocyte morphological complexity, and the effect is most marked in the ventral dentate gyrus, whereas the effect of environment was more marked in the dorsal dentate gyrus. All morphotypes retained their basic structural organization in intact tissue, suggesting that they are subtypes with a non-proliferative astrocyte profile. In summary, the increased complexity of astrocytes in situations where neuronal loss and behavioral deficits are present is counterintuitive, but highlights the need to better understand the role of the astrocyte in these conditions.
Collapse
Affiliation(s)
- Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
- Curso de Medicina, Centro Universitário do Estado do Pará, Belém 66613-903, PA, Brazil
| | - Marina Negrão Frota de Almeida
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Manoela Falsoni
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Marcia Lorena Ferreira Andrade
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - André Pinheiro Gurgel Felício
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Luisa Taynah Vasconcelos Barbosa da Paixão
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Fábio Leite do Amaral Júnior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-004 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
- Correspondence:
| |
Collapse
|
104
|
Lei Z, Xie L, Li CH, Lam YY, Ramkrishnan AS, Fu Z, Zeng X, Liu S, Iqbal Z, Li Y. Chemogenetic Activation of Astrocytes in the Basolateral Amygdala Contributes to Fear Memory Formation by Modulating the Amygdala–Prefrontal Cortex Communication. Int J Mol Sci 2022; 23:ijms23116092. [PMID: 35682767 PMCID: PMC9181030 DOI: 10.3390/ijms23116092] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
The basolateral amygdala (BLA) is one of the key brain areas involved in aversive learning, especially fear memory formation. Studies of aversive learning in the BLA have largely focused on neuronal function, while the role of BLA astrocytes in aversive learning remains largely unknown. In this study, we manipulated the BLA astrocytes by expressing the Gq-coupled receptor hM3q and discovered that astrocytic Gq modulation during fear conditioning promoted auditorily cued fear memory but did not affect less stressful memory tasks or induce anxiety-like behavior. Moreover, chemogenetic activation of BLA astrocytes during memory retrieval had no effect on fear memory expression. In addition, astrocytic Gq activation increased c-Fos expression in the BLA and the medial prefrontal cortex (mPFC) during fear conditioning, but not in the home cage. Combining these results with retrograde virus tracing, we found that the activity of mPFC-projecting BLA neurons showed significant enhancement after astrocytic Gq activation during fear conditioning. Electrophysiology recordings showed that activating astrocytic Gq in the BLA promoted spike-field coherence and phase locking percentage, not only within the BLA but also between the BLA and the mPFC. Finally, direct chemogenetic activation of mPFC-projecting BLA neurons during fear conditioning enhanced cued fear memory. Taken together, our data suggest that astrocytes in the BLA may contribute to aversive learning by modulating amygdala–mPFC communication.
Collapse
Affiliation(s)
- Zhuogui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Li Xie
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
| | - Cheuk Hin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Yuk Yan Lam
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Aruna Surendran Ramkrishnan
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Zhongqi Fu
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
| | - Xianlin Zeng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Shu Liu
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Zafar Iqbal
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong 999077, China
- Correspondence:
| |
Collapse
|
105
|
Lawal O, Ulloa Severino FP, Eroglu C. The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia 2022; 70:1467-1483. [PMID: 35535566 PMCID: PMC9233050 DOI: 10.1002/glia.24191] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Brain circuits undergo substantial structural changes during development, driven by the formation, stabilization, and elimination of synapses. Synaptic connections continue to undergo experience‐dependent structural rearrangements throughout life, which are postulated to underlie learning and memory. Astrocytes, a major glial cell type in the brain, are physically in contact with synaptic circuits through their structural ensheathment of synapses. Astrocytes strongly contribute to the remodeling of synaptic structures in healthy and diseased central nervous systems by regulating synaptic connectivity and behaviors. However, whether structural plasticity of astrocytes is involved in their critical functions at the synapse is unknown. This review will discuss the emerging evidence linking astrocytic structural plasticity to synaptic circuit remodeling and regulation of behaviors. Moreover, we will survey possible molecular and cellular mechanisms regulating the structural plasticity of astrocytes and their non‐cell‐autonomous effects on neuronal plasticity. Finally, we will discuss how astrocyte morphological changes in different physiological states and disease conditions contribute to neuronal circuit function and dysfunction.
Collapse
Affiliation(s)
- Oluwadamilola Lawal
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neuroscience and Psychology, Duke University, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, Durham, North Carolina, USA
| |
Collapse
|
106
|
Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 2022; 21:339-358. [PMID: 35173313 PMCID: PMC9081171 DOI: 10.1038/s41573-022-00390-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Astrocytes are abundant glial cells in the central nervous system (CNS) that perform diverse functions in health and disease. Astrocyte dysfunction is found in numerous diseases, including multiple sclerosis, Alzheimer disease, Parkinson disease, Huntington disease and neuropsychiatric disorders. Astrocytes regulate glutamate and ion homeostasis, cholesterol and sphingolipid metabolism and respond to environmental factors, all of which have been implicated in neurological diseases. Astrocytes also exhibit significant heterogeneity, driven by developmental programmes and stimulus-specific cellular responses controlled by CNS location, cell-cell interactions and other mechanisms. In this Review, we highlight general mechanisms of astrocyte regulation and their potential as therapeutic targets, including drugs that alter astrocyte metabolism, and therapies that target transporters and receptors on astrocytes. Emerging ideas, such as engineered probiotics and glia-to-neuron conversion therapies, are also discussed. We further propose a concise nomenclature for astrocyte subsets that we use to highlight the roles of astrocytes and specific subsets in neurological diseases.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
107
|
Controlling synchronization of gamma oscillations by astrocytic modulation in a model hippocampal neural network. Sci Rep 2022; 12:6970. [PMID: 35484169 PMCID: PMC9050920 DOI: 10.1038/s41598-022-10649-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Recent in vitro and in vivo experiments demonstrate that astrocytes participate in the maintenance of cortical gamma oscillations and recognition memory. However, the mathematical understanding of the underlying dynamical mechanisms remains largely incomplete. Here we investigate how the interplay of slow modulatory astrocytic signaling with fast synaptic transmission controls coherent oscillations in the network of hippocampal interneurons that receive inputs from pyramidal cells. We show that the astrocytic regulation of signal transmission between neurons improves the firing synchrony and extends the region of coherent oscillations in the biologically relevant values of synaptic conductance. Astrocyte-mediated potentiation of inhibitory synaptic transmission markedly enhances the coherence of network oscillations over a broad range of model parameters. Astrocytic regulation of excitatory synaptic input improves the robustness of interneuron network gamma oscillations induced by physiologically relevant excitatory model drive. These findings suggest a mechanism, by which the astrocytes become involved in cognitive function and information processing through modulating fast neural network dynamics.
Collapse
|
108
|
Oliveira JF, Araque A. Astrocyte regulation of neural circuit activity and network states. Glia 2022; 70:1455-1466. [PMID: 35460131 PMCID: PMC9232995 DOI: 10.1002/glia.24178] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/13/2022]
Abstract
Astrocytes are known to influence neuronal activity through different mechanisms, including the homeostatic control of extracellular levels of ions and neurotransmitters and the exchange of signaling molecules that regulate synaptic formation, structure, and function. While a great effort done in the past has defined many molecular mechanisms and cellular processes involved in astrocyte-neuron interactions at the cellular level, the consequences of these interactions at the network level in vivo have only relatively recently been identified. This review describes and discusses recent findings on the regulatory effects of astrocytes on the activity of neuronal networks in vivo. Accumulating but still limited, evidence indicates that astrocytes regulate neuronal network rhythmic activity and synchronization as well as brain states. These studies demonstrate a critical contribution of astrocytes to brain activity and are paving the way for a more thorough understanding of the cellular bases of brain function.
Collapse
Affiliation(s)
- João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
109
|
Astrocytes Modulate Somatostatin Interneuron Signaling in the Visual Cortex. Cells 2022; 11:cells11091400. [PMID: 35563706 PMCID: PMC9102536 DOI: 10.3390/cells11091400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
At glutamatergic synapses, astrocytes respond to the neurotransmitter glutamate with intracellular Ca2+ elevations and the release of gliotransmitters that modulate synaptic transmission. While the functional interactions between neurons and astrocytes have been intensively studied at glutamatergic synapses, the role of astrocytes at GABAergic synapses has been less investigated. In the present study, we combine optogenetics with 2-photon Ca2+ imaging experiments and patch-clamp recording techniques to investigate the signaling between Somatostatin (SST)-releasing GABAergic interneurons and astrocytes in brain slice preparations from the visual cortex (VCx). We found that an intense stimulation of SST interneurons evokes Ca2+ elevations in astrocytes that fundamentally depend on GABAB receptor (GABABR) activation, and that this astrocyte response is modulated by the neuropeptide somatostatin. After episodes of SST interneuron hyperactivity, we also observed a long-lasting reduction of the inhibitory postsynaptic current (IPSC) amplitude onto pyramidal neurons (PNs). This reduction of inhibitory tone (i.e., disinhibition) is counterbalanced by the activation of astrocytes that upregulate SST interneuron-evoked IPSC amplitude by releasing ATP that, after conversion to adenosine, activates A1Rs. Our results describe a hitherto unidentified modulatory mechanism of inhibitory transmission to VCx layer II/III PNs that involves the functional recruitment of astrocytes by SST interneuron signaling.
Collapse
|
110
|
Cathomas F, Holt LM, Parise EM, Liu J, Murrough JW, Casaccia P, Nestler EJ, Russo SJ. Beyond the neuron: Role of non-neuronal cells in stress disorders. Neuron 2022; 110:1116-1138. [PMID: 35182484 PMCID: PMC8989648 DOI: 10.1016/j.neuron.2022.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Stress disorders are leading causes of disease burden in the U.S. and worldwide, yet available therapies are fully effective in less than half of all individuals with these disorders. Although to date, much of the focus has been on neuron-intrinsic mechanisms, emerging evidence suggests that chronic stress can affect a wide range of cell types in the brain and periphery, which are linked to maladaptive behavioral outcomes. Here, we synthesize emerging literature and discuss mechanisms of how non-neuronal cells in limbic regions of brain interface at synapses, the neurovascular unit, and other sites of intercellular communication to mediate the deleterious, or adaptive (i.e., pro-resilient), effects of chronic stress in rodent models and in human stress-related disorders. We believe that such an approach may one day allow us to adopt a holistic "whole body" approach to stress disorder research, which could lead to more precise diagnostic tests and personalized treatment strategies. Stress is a major risk factor for many psychiatric disorders. Cathomas et al. review new insight into how non-neuronal cells mediate the deleterious effects, as well as the adaptive, protective effects, of stress in rodent models and human stress-related disorders.
Collapse
Affiliation(s)
- Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrizia Casaccia
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
111
|
Store-operated Ca2+ entry regulates neuronal gene expression and function. Curr Opin Neurobiol 2022; 73:102520. [DOI: 10.1016/j.conb.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/21/2022]
|
112
|
Hösli L, Binini N, Ferrari KD, Thieren L, Looser ZJ, Zuend M, Zanker HS, Berry S, Holub M, Möbius W, Ruhwedel T, Nave KA, Giaume C, Weber B, Saab AS. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning. Cell Rep 2022; 38:110484. [PMID: 35263595 DOI: 10.1016/j.celrep.2022.110484] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity, and memory are still poorly explored. Astrocytes form large intercellular networks by gap junction coupling, mainly composed of two gap junction channel proteins, connexin 30 (Cx30) and connexin 43 (Cx43). To circumvent developmental perturbations and to test whether astrocytic gap junction coupling is required for hippocampal neural circuit function and behavior, we generate and study inducible, astrocyte-specific Cx30 and Cx43 double knockouts. Surprisingly, disrupting astrocytic coupling in adult mice results in broad activation of astrocytes and microglia, without obvious signs of pathology. We show that hippocampal CA1 neuron excitability, excitatory synaptic transmission, and long-term potentiation are significantly affected. Moreover, behavioral inspection reveals deficits in sensorimotor performance and a complete lack of spatial learning and memory. Together, our findings establish that astrocytic connexins and an intact astroglial network in the adult brain are vital for neural homeostasis, plasticity, and spatial cognition.
Collapse
Affiliation(s)
- Ladina Hösli
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Noemi Binini
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Laetitia Thieren
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Marc Zuend
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Henri S Zanker
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Stewart Berry
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Martin Holub
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Wiebke Möbius
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Torben Ruhwedel
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, 75231 Paris Cedex 05, France
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
113
|
Abstract
Hippocampal place cells, which display location-specific activity, are known to encode spatial information. A recent study in PLOS Biology by Curreli and colleagues shows that hippocampal astrocytes are implicated in encoding complementary spatial information, suggesting the existence of glial place cells.
Collapse
Affiliation(s)
- Xinzhu Yu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
114
|
Curreli S, Bonato J, Romanzi S, Panzeri S, Fellin T. Complementary encoding of spatial information in hippocampal astrocytes. PLoS Biol 2022; 20:e3001530. [PMID: 35239646 PMCID: PMC8893713 DOI: 10.1371/journal.pbio.3001530] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023] Open
Abstract
Calcium dynamics into astrocytes influence the activity of nearby neuronal structures. However, because previous reports show that astrocytic calcium signals largely mirror neighboring neuronal activity, current information coding models neglect astrocytes. Using simultaneous two-photon calcium imaging of astrocytes and neurons in the hippocampus of mice navigating a virtual environment, we demonstrate that astrocytic calcium signals encode (i.e., statistically reflect) spatial information that could not be explained by visual cue information. Calcium events carrying spatial information occurred in topographically organized astrocytic subregions. Importantly, astrocytes encoded spatial information that was complementary and synergistic to that carried by neurons, improving spatial position decoding when astrocytic signals were considered alongside neuronal ones. These results suggest that the complementary place dependence of localized astrocytic calcium signals may regulate clusters of nearby synapses, enabling dynamic, context-dependent variations in population coding within brain circuits.
Collapse
Affiliation(s)
- Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Jacopo Bonato
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sara Romanzi
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- University of Genova, Genova, Italy
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
115
|
Krawczyk MC, Haney JR, Pan L, Caneda C, Khankan RR, Reyes SD, Chang JW, Morselli M, Vinters HV, Wang AC, Cobos I, Gandal MJ, Bergsneider M, Kim W, Liau LM, Yong W, Jalali A, Deneen B, Grant GA, Mathern GW, Fallah A, Zhang Y. Human Astrocytes Exhibit Tumor Microenvironment-, Age-, and Sex-Related Transcriptomic Signatures. J Neurosci 2022; 42:1587-1603. [PMID: 34987109 PMCID: PMC8883850 DOI: 10.1523/jneurosci.0407-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Astrocytes are critical for the development and function of synapses. There are notable species differences between human astrocytes and commonly used animal models. Yet, it is unclear whether astrocytic genes involved in synaptic function are stable or exhibit dynamic changes associated with disease states and age in humans, which is a barrier in understanding human astrocyte biology and its potential involvement in neurologic diseases. To better understand the properties of human astrocytes, we acutely purified astrocytes from the cerebral cortices of over 40 humans across various ages, sexes, and disease states. We performed RNA sequencing to generate transcriptomic profiles of these astrocytes and identified genes associated with these biological variables. We found that human astrocytes in tumor-surrounding regions downregulate genes involved in synaptic function and sensing of signals in the microenvironment, suggesting involvement of peritumor astrocytes in tumor-associated neural circuit dysfunction. In aging, we also found downregulation of synaptic regulators and upregulation of markers of cytokine signaling, while in maturation we identified changes in ionic transport with implications for calcium signaling. In addition, we identified subtle sexual dimorphism in human cortical astrocytes, which has implications for observed sex differences across many neurologic disorders. Overall, genes involved in synaptic function exhibit dynamic changes in the peritumor microenvironment and aging. These data provide powerful new insights into human astrocyte biology in several biologically relevant states that will aid in generating novel testable hypotheses about homeostatic and reactive astrocytes in humans.SIGNIFICANCE STATEMENT Astrocytes are an abundant class of cells playing integral roles at synapses. Astrocyte dysfunction is implicated in a variety of human neurologic diseases. Yet our knowledge of astrocytes is largely based on mouse studies. Direct knowledge of human astrocyte biology remains limited. Here, we present transcriptomic profiles of human cortical astrocytes, and we identified molecular differences associated with age, sex, and disease state. We found that peritumor and aging astrocytes downregulate genes involved in astrocyte-synapse interactions. These data provide necessary insight into human astrocyte biology that will improve our understanding of human disease.
Collapse
Affiliation(s)
- Mitchell C Krawczyk
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Jillian R Haney
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Lin Pan
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Christine Caneda
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Rana R Khankan
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Samuel D Reyes
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Julia W Chang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, UCLA-DOE Institute for Genomics and Proteomics, Institute for Quantitative and Computational Biosciences - The Collaboratory at University of California, Los Angeles, California, 90024
| | - Harry V Vinters
- Department of Pathology and Lab Medicine (Neuropathology) and Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Ronald Reagan UCLA Medical Center, Los Angeles, California, 90024
| | - Anthony C Wang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Inma Cobos
- Department of Pathology, Stanford University, Stanford, California, 94305
| | - Michael J Gandal
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, 90024
| | - Marvin Bergsneider
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Won Kim
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California, 90024
| | - William Yong
- Department of Pathology, University of California, Irvine, California, 90095
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, 77030
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, 77030
- Center for Cell and Gene Therapy, Department of Neuroscience, Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, 77030
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University, Stanford, California, 94305
| | - Gary W Mathern
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Brain Research Institute at UCLA, Los Angeles, California, 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, California, 90095
- Molecular Biology Institute at UCLA, Los Angeles, California, 90095
| |
Collapse
|
116
|
Yu Y, Payne C, Marina N, Korsak A, Southern P, García‐Prieto A, Christie IN, Baker RR, Fisher EMC, Wells JA, Kalber TL, Pankhurst QA, Gourine AV, Lythgoe MF. Remote and Selective Control of Astrocytes by Magnetomechanical Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104194. [PMID: 34927381 PMCID: PMC8867145 DOI: 10.1002/advs.202104194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Indexed: 05/06/2023]
Abstract
Astrocytes play crucial and diverse roles in brain health and disease. The ability to selectively control astrocytes provides a valuable tool for understanding their function and has the therapeutic potential to correct dysfunction. Existing technologies such as optogenetics and chemogenetics require the introduction of foreign proteins, which adds a layer of complication and hinders their clinical translation. A novel technique, magnetomechanical stimulation (MMS), that enables remote and selective control of astrocytes without genetic modification is described here. MMS exploits the mechanosensitivity of astrocytes and triggers mechanogated Ca2+ and adenosine triphosphate (ATP) signaling by applying a magnetic field to antibody-functionalized magnetic particles that are targeted to astrocytes. Using purpose-built magnetic devices, the mechanosensory threshold of astrocytes is determined, a sub-micrometer particle for effective MMS is identified, the in vivo fate of the particles is established, and cardiovascular responses are induced in rats after particles are delivered to specific brainstem astrocytes. By eliminating the need for device implantation and genetic modification, MMS is a method for controlling astroglial activity with an improved prospect for clinical application than existing technologies.
Collapse
Affiliation(s)
- Yichao Yu
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Christopher Payne
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Paul Southern
- Healthcare Biomagnetics LaboratoryUniversity College London21 Albemarle StreetLondonW1S 4BSUK
| | - Ana García‐Prieto
- Healthcare Biomagnetics LaboratoryUniversity College London21 Albemarle StreetLondonW1S 4BSUK
- Departamento Física Aplicada IUniversidad del País VascoBilbao48013Spain
| | - Isabel N. Christie
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Rebecca R. Baker
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular DiseasesQueen Square Institute of NeurologyUniversity College LondonQueen SquareLondonWC1N 3BGUK
| | - Jack A. Wells
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Tammy L. Kalber
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Quentin A. Pankhurst
- Healthcare Biomagnetics LaboratoryUniversity College London21 Albemarle StreetLondonW1S 4BSUK
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| |
Collapse
|
117
|
Lyon KA, Allen NJ. From Synapses to Circuits, Astrocytes Regulate Behavior. Front Neural Circuits 2022; 15:786293. [PMID: 35069124 PMCID: PMC8772456 DOI: 10.3389/fncir.2021.786293] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are non-neuronal cells that regulate synapses, neuronal circuits, and behavior. Astrocytes ensheath neuronal synapses to form the tripartite synapse where astrocytes influence synapse formation, function, and plasticity. Beyond the synapse, recent research has revealed that astrocyte influences on the nervous system extend to the modulation of neuronal circuitry and behavior. Here we review recent findings on the active role of astrocytes in behavioral modulation with a focus on in vivo studies, primarily in mice. Using tools to acutely manipulate astrocytes, such as optogenetics or chemogenetics, studies reviewed here have demonstrated a causal role for astrocytes in sleep, memory, sensorimotor behaviors, feeding, fear, anxiety, and cognitive processes like attention and behavioral flexibility. Current tools and future directions for astrocyte-specific manipulation, including methods for probing astrocyte heterogeneity, are discussed. Understanding the contribution of astrocytes to neuronal circuit activity and organismal behavior will be critical toward understanding how nervous system function gives rise to behavior.
Collapse
Affiliation(s)
- Krissy A Lyon
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
118
|
Chen K, Stieger KC, Kozai TD. Challenges and opportunities of advanced gliomodulation technologies for excitation-inhibition balance of brain networks. Curr Opin Biotechnol 2021; 72:112-120. [PMID: 34773740 PMCID: PMC8671375 DOI: 10.1016/j.copbio.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Recent neuroscience studies have highlighted the critical role of glial cells in information processing. This has increased the demand for technologies that selectively modulate glial cells that regulate the excitation-inhibition balance of neural network function. Engineered technologies that modulate glial activity may be necessary for precise tuning of neural network activity in higher-order brain function. This perspective summarizes how glial cells regulate excitation and inhibition of neural circuits, highlights available technologies for glial modulation, and discusses current challenges and potential opportunities for glial engineering technologies.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi Dy Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
119
|
GnRH neurons recruit astrocytes in infancy to facilitate network integration and sexual maturation. Nat Neurosci 2021; 24:1660-1672. [PMID: 34795451 DOI: 10.1038/s41593-021-00960-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
Neurons that produce gonadotropin-releasing hormone (GnRH), which control fertility, complete their nose-to-brain migration by birth. However, their function depends on integration within a complex neuroglial network during postnatal development. Here, we show that rodent GnRH neurons use a prostaglandin D2 receptor DP1 signaling mechanism during infancy to recruit newborn astrocytes that 'escort' them into adulthood, and that the impairment of postnatal hypothalamic gliogenesis markedly alters sexual maturation by preventing this recruitment, a process mimicked by the endocrine disruptor bisphenol A. Inhibition of DP1 signaling in the infantile preoptic region, where GnRH cell bodies reside, disrupts the correct wiring and firing of GnRH neurons, alters minipuberty or the first activation of the hypothalamic-pituitary-gonadal axis during infancy, and delays the timely acquisition of reproductive capacity. These findings uncover a previously unknown neuron-to-neural-progenitor communication pathway and demonstrate that postnatal astrogenesis is a basic component of a complex set of mechanisms used by the neuroendocrine brain to control sexual maturation.
Collapse
|
120
|
Gzielo K, Nikiforuk A. Astroglia in Autism Spectrum Disorder. Int J Mol Sci 2021; 22:11544. [PMID: 34768975 PMCID: PMC8583956 DOI: 10.3390/ijms222111544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is an umbrella term encompassing several neurodevelopmental disorders such as Asperger syndrome or autism. It is characterised by the occurrence of distinct deficits in social behaviour and communication and repetitive patterns of behaviour. The symptoms may be of different intensity and may vary in types. Risk factors for ASD include disturbed brain homeostasis, genetic predispositions, or inflammation during the prenatal period caused by viruses or bacteria. The number of diagnosed cases is growing, but the main cause and mechanism leading to ASD is still uncertain. Recent findings from animal models and human cases highlight the contribution of glia to the ASD pathophysiology. It is known that glia cells are not only "gluing" neurons together but are key players participating in different processes crucial for proper brain functioning, including neurogenesis, synaptogenesis, inflammation, myelination, proper glutamate processing and many others. Despite the prerequisites for the involvement of glia in the processes related to the onset of autism, there are far too little data regarding the engagement of these cells in the development of ASD.
Collapse
Affiliation(s)
- Kinga Gzielo
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, 12 Smętna Street, 31-343 Kraków, Poland;
| | | |
Collapse
|
121
|
Ben Haim L, Escartin C. Astrocytes and neuropsychiatric symptoms in neurodegenerative diseases: Exploring the missing links. Curr Opin Neurobiol 2021; 72:63-71. [PMID: 34628361 DOI: 10.1016/j.conb.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
Neurodegenerative diseases (NDs) are characterized by primary symptoms, such as cognitive or motor deficits. In addition, the presence of neuropsychiatric symptoms (NPS) in patients with ND is being increasingly acknowledged as an important disease feature. Yet, their neurobiological basis remains unclear and mostly centered on neurons while overlooking astrocytes, which are crucial regulators of neuronal function underlying complex behaviors. In this opinion article, we briefly review evidence for NPS in ND and discuss their experimental assessment in preclinical models. We then present recent studies showing that astrocyte-specific dysfunctions can lead to NPS. Because many astrocyte alterations are also observed in ND, we suggest that they might underlie ND-associated NPS. We argue that there is a need for dedicated preclinical studies assessing astrocyte-based therapeutic strategies targeting NPS in the context of ND.
Collapse
Affiliation(s)
- Lucile Ben Haim
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France.
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
122
|
Ando K, Ishii T, Fukuhara S. Zebrafish Vascular Mural Cell Biology: Recent Advances, Development, and Functions. Life (Basel) 2021; 11:1041. [PMID: 34685412 PMCID: PMC8537713 DOI: 10.3390/life11101041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Recruitment of mural cells to the vascular wall is essential for forming the vasculature as well as maintaining proper vascular functions. In recent years, zebrafish genetic tools for mural cell biology have improved substantially. Fluorescently labeled zebrafish mural cell reporter lines enable us to study, with higher spatiotemporal resolution than ever, the processes of mural cell development from their progenitors. Furthermore, recent phenotypic analysis of platelet-derived growth factor beta mutant zebrafish revealed well-conserved organotypic mural cell development and functions in vertebrates with the unique features of zebrafish. However, comprehensive reviews of zebrafish mural cells are lacking. Therefore, herein, we highlight recent advances in zebrafish mural cell tools. We also summarize the fundamental features of zebrafish mural cell development, especially at early stages, and functions.
Collapse
Affiliation(s)
- Koji Ando
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Tokyo 113 8602, Japan; (T.I.); (S.F.)
| | | | | |
Collapse
|
123
|
Weiss S, Clamon LC, Manoim JE, Ormerod KG, Parnas M, Littleton JT. Glial ER and GAP junction mediated Ca 2+ waves are crucial to maintain normal brain excitability. Glia 2021; 70:123-144. [PMID: 34528727 DOI: 10.1002/glia.24092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/08/2022]
Abstract
Astrocytes play key roles in regulating multiple aspects of neuronal function from invertebrates to humans and display Ca2+ fluctuations that are heterogeneously distributed throughout different cellular microdomains. Changes in Ca2+ dynamics represent a key mechanism for how astrocytes modulate neuronal activity. An unresolved issue is the origin and contribution of specific glial Ca2+ signaling components at distinct astrocytic domains to neuronal physiology and brain function. The Drosophila model system offers a simple nervous system that is highly amenable to cell-specific genetic manipulations to characterize the role of glial Ca2+ signaling. Here we identify a role for ER store-operated Ca2+ entry (SOCE) pathway in perineurial glia (PG), a glial population that contributes to the Drosophila blood-brain barrier. We show that PG cells display diverse Ca2+ activity that varies based on their locale within the brain. Ca2+ signaling in PG cells does not require extracellular Ca2+ and is blocked by inhibition of SOCE, Ryanodine receptors, or gap junctions. Disruption of these components triggers stimuli-induced seizure-like episodes. These findings indicate that Ca2+ release from internal stores and its propagation between neighboring glial cells via gap junctions are essential for maintaining normal nervous system function.
Collapse
Affiliation(s)
- Shirley Weiss
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lauren C Clamon
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kiel G Ormerod
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
124
|
Sinha M, Narayanan R. Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience 2021; 489:111-142. [PMID: 34506834 PMCID: PMC7612676 DOI: 10.1016/j.neuroscience.2021.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/27/2022]
Abstract
Neurons and glial cells are endowed with membranes that express a rich repertoire of ion channels, transporters, and receptors. The constant flux of ions across the neuronal and glial membranes results in voltage fluctuations that can be recorded from the extracellular matrix. The high frequency components of this voltage signal contain information about the spiking activity, reflecting the output from the neurons surrounding the recording location. The low frequency components of the signal, referred to as the local field potential (LFP), have been traditionally thought to provide information about the synaptic inputs that impinge on the large dendritic trees of various neurons. In this review, we discuss recent computational and experimental studies pointing to a critical role of several active dendritic mechanisms that can influence the genesis and the location-dependent spectro-temporal dynamics of LFPs, spanning different brain regions. We strongly emphasize the need to account for the several fast and slow dendritic events and associated active mechanisms - including gradients in their expression profiles, inter- and intra-cellular spatio-temporal interactions spanning neurons and glia, heterogeneities and degeneracy across scales, neuromodulatory influences, and activitydependent plasticity - towards gaining important insights about the origins of LFP under different behavioral states in health and disease. We provide simple but essential guidelines on how to model LFPs taking into account these dendritic mechanisms, with detailed methodology on how to account for various heterogeneities and electrophysiological properties of neurons and synapses while studying LFPs.
Collapse
Affiliation(s)
- Manisha Sinha
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
125
|
Huang TW, Iyer AA, Manalo JM, Woo J, Bosquez Huerta NA, McGovern MM, Schrewe H, Pereira FA, Groves AK, Ohlemiller KK, Deneen B. Glial-Specific Deletion of Med12 Results in Rapid Hearing Loss via Degradation of the Stria Vascularis. J Neurosci 2021; 41:7171-7181. [PMID: 34253626 PMCID: PMC8387121 DOI: 10.1523/jneurosci.0070-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Mediator protein complex subunit 12 (Med12) is a core component of the basal transcriptional apparatus and plays a critical role in the development of many tissues. Mutations in Med12 are associated with X-linked intellectual disability syndromes and hearing loss; however, its role in nervous system function remains undefined. Here, we show that temporal conditional deletion of Med12 in astrocytes in the adult CNS results in region-specific alterations in astrocyte morphology. Surprisingly, behavioral studies revealed rapid hearing loss after adult deletion of Med12 that was confirmed by a complete abrogation of auditory brainstem responses. Cellular analysis of the cochlea revealed degeneration of the stria vascularis, in conjunction with disorganization of basal cells adjacent to the spiral ligament and downregulation of key cell adhesion proteins. Physiologic analysis revealed early changes in endocochlear potential, consistent with strial-specific defects. Together, our studies reveal that Med12 regulates auditory function in the adult by preserving the structural integrity of the stria vascularis.SIGNIFICANCE STATEMENT Mutations in Mediator protein complex subunit 12 (Med12) are associated with X-linked intellectual disability syndromes and hearing loss. Using temporal-conditional genetic approaches in CNS glia, we found that loss of Med12 results in severe hearing loss in adult animals through rapid degeneration of the stria vascularis. Our study describes the first animal model that recapitulates hearing loss identified in Med12-related disorders and provides a new system in which to examine the underlying cellular and molecular mechanisms of Med12 function in the adult nervous system.
Collapse
Affiliation(s)
- Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
| | - Amrita A Iyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas 77030
| | - Jeanne M Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
| | - Navish A Bosquez Huerta
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | - Melissa M McGovern
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Fredrick A Pereira
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030
- Department of Otolaryngology, Baylor College of Medicine, Houston, Texas 77030
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
- Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas 77030
| | - Kevin K Ohlemiller
- Department of Otolaryngolgy, Central Institute for the Deaf, Fay and Carl Simons Center for Biology of Hearing and Deafness, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
126
|
Diaz-Castro B, Bernstein AM, Coppola G, Sofroniew MV, Khakh BS. Molecular and functional properties of cortical astrocytes during peripherally induced neuroinflammation. Cell Rep 2021; 36:109508. [PMID: 34380036 PMCID: PMC8418871 DOI: 10.1016/j.celrep.2021.109508] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/14/2021] [Accepted: 07/20/2021] [Indexed: 01/30/2023] Open
Abstract
Astrocytic contributions to neuroinflammation are widely implicated in disease, but they remain incompletely explored. We assess medial prefrontal cortex (PFC) and visual cortex (VCX) astrocyte and whole-tissue gene expression changes in mice following peripherally induced neuroinflammation triggered by a systemic bacterial endotoxin, lipopolysaccharide, which produces sickness-related behaviors, including anhedonia. Neuroinflammation-mediated behavioral changes and astrocyte-specific gene expression alterations peak when anhedonia is greatest and then reverse to normal. Notably, region-specific molecular identities of PFC and VCX astrocytes are largely maintained during reactivity changes. Gene pathway analyses reveal alterations of diverse cell signaling pathways, including changes in cell-cell interactions of multiple cell types that may underlie the central effects of neuroinflammation. Certain astrocyte molecular signatures accompanying neuroinflammation are shared with changes reported in Alzheimer's disease and mouse models. However, we find no evidence of altered neuronal survival or function in the PFC even when neuroinflammation-induced astrocyte reactivity and behavioral changes are significant.
Collapse
Affiliation(s)
- Blanca Diaz-Castro
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; UK Dementia Research Institute and Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, Scotland EH16 4SB, UK.
| | - Alexander M Bernstein
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
127
|
Durkee C, Kofuji P, Navarrete M, Araque A. Astrocyte and neuron cooperation in long-term depression. Trends Neurosci 2021; 44:837-848. [PMID: 34334233 DOI: 10.1016/j.tins.2021.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/28/2023]
Abstract
Activity-dependent long-term changes in synaptic transmission known as synaptic plasticity are fundamental processes in brain function and are recognized as the cellular basis of learning and memory. While the neuronal mechanisms underlying synaptic plasticity have been largely identified, the involvement of astrocytes in these processes has been less recognized. However, astrocytes are emerging as important cells that regulate synaptic function by interacting with neurons at tripartite synapses. In this review, we discuss recent evidence suggesting that astrocytes are necessary elements in long-term synaptic depression (LTD). We highlight the mechanistic heterogeneity of astrocyte contribution to this form of synaptic plasticity and propose that astrocytes are integral participants in LTD.
Collapse
Affiliation(s)
- Caitlin Durkee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
128
|
Moulson AJ, Squair JW, Franklin RJM, Tetzlaff W, Assinck P. Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity? Front Cell Neurosci 2021; 15:703810. [PMID: 34381334 PMCID: PMC8349991 DOI: 10.3389/fncel.2021.703810] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Astrocytes are essential for the development and homeostatic maintenance of the central nervous system (CNS). They are also critical players in the CNS injury response during which they undergo a process referred to as "reactive astrogliosis." Diversity in astrocyte morphology and gene expression, as revealed by transcriptional analysis, is well-recognized and has been reported in several CNS pathologies, including ischemic stroke, CNS demyelination, and traumatic injury. This diversity appears unique to the specific pathology, with significant variance across temporal, topographical, age, and sex-specific variables. Despite this, there is limited functional data corroborating this diversity. Furthermore, as reactive astrocytes display significant environmental-dependent plasticity and fate-mapping data on astrocyte subsets in the adult CNS is limited, it remains unclear whether this diversity represents heterogeneity or plasticity. As astrocytes are important for neuronal survival and CNS function post-injury, establishing to what extent this diversity reflects distinct established heterogeneous astrocyte subpopulations vs. environmentally dependent plasticity within established astrocyte subsets will be critical for guiding therapeutic development. To that end, we review the current state of knowledge on astrocyte diversity in the context of three representative CNS pathologies: ischemic stroke, demyelination, and traumatic injury, with the goal of identifying key limitations in our current knowledge and suggesting future areas of research needed to address them. We suggest that the majority of identified astrocyte diversity in CNS pathologies to date represents plasticity in response to dynamically changing post-injury environments as opposed to heterogeneity, an important consideration for the understanding of disease pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Aaron J. Moulson
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Jordan W. Squair
- Department of Clinical Neuroscience, Faculty of Life Sciences, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), NeuroRestore, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin J. M. Franklin
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Peggy Assinck
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
129
|
Sanmarco LM, Polonio CM, Wheeler MA, Quintana FJ. Functional immune cell-astrocyte interactions. J Exp Med 2021; 218:212503. [PMID: 34292315 PMCID: PMC8302447 DOI: 10.1084/jem.20202715] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Astrocytes are abundant glial cells in the central nervous system (CNS) that control multiple aspects of health and disease. Through their interactions with components of the blood–brain barrier (BBB), astrocytes not only regulate BBB function, they also sense molecules produced by peripheral immune cells, including cytokines. Here, we review the interactions between immune cells and astrocytes and their roles in health and neurological diseases, with a special focus on multiple sclerosis (MS). We highlight known pathways that participate in astrocyte crosstalk with microglia, NK cells, T cells, and other cell types; their contribution to the pathogenesis of neurological diseases; and their potential value as therapeutic targets.
Collapse
Affiliation(s)
- Liliana M Sanmarco
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Carolina M Polonio
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Neuroimmune Interactions Laboratory, Immunology Department, Instituto de Ciências Biomédicas IV, University of São Paulo, São Paulo, Brazil
| | - Michael A Wheeler
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Francisco J Quintana
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
130
|
Nagai J, Bellafard A, Qu Z, Yu X, Ollivier M, Gangwani MR, Diaz-Castro B, Coppola G, Schumacher SM, Golshani P, Gradinaru V, Khakh BS. Specific and behaviorally consequential astrocyte G q GPCR signaling attenuation in vivo with iβARK. Neuron 2021; 109:2256-2274.e9. [PMID: 34139149 PMCID: PMC8418870 DOI: 10.1016/j.neuron.2021.05.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/14/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022]
Abstract
Astrocytes respond to neurotransmitters and neuromodulators using G-protein-coupled receptors (GPCRs) to mediate physiological responses. Despite their importance, there has been no method to genetically, specifically, and effectively attenuate astrocyte Gq GPCR pathways to explore consequences of this prevalent signaling mechanism in vivo. We report a 122-residue inhibitory peptide from β-adrenergic receptor kinase 1 (iβARK; and inactive D110A control) to attenuate astrocyte Gq GPCR signaling. iβARK significantly attenuated Gq GPCR Ca2+ signaling in brain slices and, in vivo, altered behavioral responses, spared other GPCR responses, and did not alter astrocyte spontaneous Ca2+ signals, morphology, electrophysiological properties, or gene expression in the striatum. Furthermore, brain-wide attenuation of astrocyte Gq GPCR signaling with iβARK using PHP.eB adeno-associated viruses (AAVs), when combined with c-Fos mapping, suggested nuclei-specific contributions to behavioral adaptation and spatial memory. iβARK extends the toolkit needed to explore functions of astrocyte Gq GPCR signaling within neural circuits in vivo.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; RIKEN Center for Brain Science, 2-1 Hirosawa Wako City, Saitama 351-0198, Japan
| | - Arash Bellafard
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Zhe Qu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xinzhu Yu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 514 Burrill Hall, 407 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Matthias Ollivier
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Mohitkumar R Gangwani
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Blanca Diaz-Castro
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Sarah M Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; West LA Veterans Affairs Medical Center, Los Angeles, CA 90073, USA; Intellectual and Developmental Disabilities Research Center, Los Angeles, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, University of California, David Geffen School of Medicine, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
131
|
Lia A, Henriques VJ, Zonta M, Chiavegato A, Carmignoto G, Gómez-Gonzalo M, Losi G. Calcium Signals in Astrocyte Microdomains, a Decade of Great Advances. Front Cell Neurosci 2021; 15:673433. [PMID: 34163329 PMCID: PMC8216559 DOI: 10.3389/fncel.2021.673433] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The glial cells astrocytes have long been recognized as important neuron-supporting elements in brain development, homeostasis, and metabolism. After the discovery that the reciprocal communication between astrocytes and neurons is a fundamental mechanism in the modulation of neuronal synaptic communication, over the last two decades astrocytes became a hot topic in neuroscience research. Crucial to their functional interactions with neurons are the cytosolic Ca2+ elevations that mediate gliotransmission. Large attention has been posed to the so-called Ca2+microdomains, dynamic Ca2+ changes spatially restricted to fine astrocytic processes including perisynaptic astrocytic processes (PAPs). With presynaptic terminals and postsynaptic neuronal membranes, PAPs compose the tripartite synapse. The distinct spatial-temporal features and functional roles of astrocyte microdomain Ca2+ activity remain poorly defined. However, thanks to the development of genetically encoded Ca2+ indicators (GECIs), advanced microscopy techniques, and innovative analytical approaches, Ca2+ transients in astrocyte microdomains were recently studied in unprecedented detail. These events have been observed to occur much more frequently (∼50–100-fold) and dynamically than somatic Ca2+ elevations with mechanisms that likely involve both IP3-dependent and -independent pathways. Further progress aimed to clarify the complex, dynamic machinery responsible for astrocytic Ca2+ activity at microdomains is a crucial step in our understanding of the astrocyte role in brain function and may also reveal astrocytes as novel therapeutic targets for different brain diseases. Here, we review the most recent studies that improve our mechanistic understanding of the essential features of astrocyte Ca2+ microdomains.
Collapse
Affiliation(s)
- Annamaria Lia
- Neuroscience Institute, National Research Council (IN-CNR), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vanessa Jorge Henriques
- Neuroscience Institute, National Research Council (IN-CNR), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Micaela Zonta
- Neuroscience Institute, National Research Council (IN-CNR), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Angela Chiavegato
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, National Research Council (IN-CNR), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, National Research Council (IN-CNR), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Gabriele Losi
- Neuroscience Institute, National Research Council (IN-CNR), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
132
|
Vanderheyden WM, Fang B, Flores CC, Jager J, Gerstner JR. The transcriptional repressor Rev-erbα regulates circadian expression of the astrocyte Fabp7 mRNA. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 34056625 PMCID: PMC8162199 DOI: 10.1016/j.crneur.2021.100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The astrocyte brain-type fatty-acid binding protein (Fabp7) circadian gene expression is synchronized in the same temporal phase throughout mammalian brain. Cellular and molecular mechanisms that contribute to this coordinated expression are not completely understood, but likely involve the nuclear receptor Rev-erbα (NR1D1), a transcriptional repressor. We performed ChIP-seq on ventral tegmental area (VTA) and identified gene targets of Rev-erbα, including Fabp7. We confirmed that Rev-erbα binds to the Fabp7 promoter in multiple brain areas, including hippocampus, hypothalamus, and VTA, and showed that Fabp7 gene expression is upregulated in Rev-erbα knock-out mice. Compared to Fabp7 mRNA levels, Fabp3 and Fabp5 mRNA were unaffected by Rev-erbα depletion in hippocampus, suggesting that these effects are specific to Fabp7. To determine whether these effects of Rev-erbα depletion occur broadly throughout the brain, we also evaluated Fabp mRNA expression levels in multiple brain areas, including cerebellum, cortex, hypothalamus, striatum, and VTA in Rev-erbα knock-out mice. While small but significant changes in Fabp5 mRNA expression exist in some of these areas, the magnitude of these effects are minimal to that of Fabp7 mRNA expression, which was over 6-fold across all brain regions. These studies suggest that Rev-erbα is a transcriptional repressor of Fabp7 gene expression throughout mammalian brain. The transcriptional repressor Rev-erbα binds to the Fabp7 promoter across brain areas. Multiple Rev-erbα response element binding sites exist on the Fabp7 promoter. Rev-erbα is required for Fabp7 transcriptional repression and circadian expression. Rev-erbα depletion does not affect other Fabp-type gene expression in brain.
Collapse
Affiliation(s)
- William M Vanderheyden
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA.,Sleep and Performance Research Center, Washington State University, Spokane, WA. 99202, USA
| | - Bin Fang
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Dr, San Diego, CA 92121
| | - Carlos C Flores
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA
| | - Jennifer Jager
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Jason R Gerstner
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA.,Sleep and Performance Research Center, Washington State University, Spokane, WA. 99202, USA.,Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA. 99202, USA
| |
Collapse
|
133
|
Yu X, Moye SL, Khakh BS. Local and CNS-Wide Astrocyte Intracellular Calcium Signaling Attenuation In Vivo with CalEx flox Mice. J Neurosci 2021; 41:4556-4574. [PMID: 33903221 PMCID: PMC8260243 DOI: 10.1523/jneurosci.0085-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/12/2023] Open
Abstract
Astrocytes exist throughout the CNS and affect neural circuits and behavior through intracellular Ca2+ signaling. Studying the function(s) of astrocyte Ca2+ signaling has proven difficult because of the paucity of tools to achieve selective attenuation. Based on recent studies, we generated and used male and female knock-in mice for Cre-dependent expression of mCherry-tagged hPMCA2w/b to attenuate astrocyte Ca2+ signaling in genetically defined cells in vivo (CalExflox mice for Calcium Extrusion). We characterized CalExflox mice following local AAV-Cre microinjections into the striatum and found reduced astrocyte Ca2+ signaling (∼90%) accompanied with repetitive self-grooming behavior. We also crossed CalExflox mice to astrocyte-specific Aldh1l1-Cre/ERT2 mice to achieve inducible global CNS-wide Ca2+ signaling attenuation. Within 6 d of induction in the bigenic mice, we observed significantly altered ambulation in the open field, disrupted motor coordination and gait, and premature lethality. Furthermore, with histologic, imaging, and transcriptomic analyses, we identified cellular and molecular alterations in the cerebellum following mCherry-tagged hPMCA2w/b expression. Our data show that expression of mCherry-tagged hPMCA2w/b with CalExflox mice throughout the CNS resulted in substantial attenuation of astrocyte Ca2+ signaling and significant behavioral alterations in adult mice. We interpreted these findings candidly in relation to the ability of CalEx to attenuate astrocyte Ca2+ signaling, with regards to additional mechanistic interpretations of the data, and their relation to past studies that reduced astrocyte Ca2+ signaling throughout the CNS. The data and resources provide complementary ways to interrogate the function(s) of astrocytes in multiple experimental scenarios.SIGNIFICANCE STATEMENT Astrocytes represent a significant fraction of all brain cells and tile the entire central nervous system. Unlike neurons, astrocytes lack propagated electrical signals. Instead, astrocytes are proposed to use diverse and dynamic intracellular Ca2+ signals to communicate with other cells. An open question concerns if and how astrocyte Ca2+ signaling regulates behavior in adult mice. We approached this problem by generating a new transgenic mouse line to achieve inducible astrocyte Ca2+ signaling attenuation in vivo We report our data with this mouse line and we interpret the findings candidly in relation to past studies and within the framework of different mechanistic interpretations.
Collapse
Affiliation(s)
- Xinzhu Yu
- Department of Physiology
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704
| | | | - Baljit S Khakh
- Department of Physiology
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095-1751
| |
Collapse
|
134
|
Hughes AN. Glial Cells Promote Myelin Formation and Elimination. Front Cell Dev Biol 2021; 9:661486. [PMID: 34046407 PMCID: PMC8144722 DOI: 10.3389/fcell.2021.661486] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Building a functional nervous system requires the coordinated actions of many glial cells. In the vertebrate central nervous system (CNS), oligodendrocytes myelinate neuronal axons to increase conduction velocity and provide trophic support. Myelination can be modified by local signaling at the axon-myelin interface, potentially adapting sheaths to support the metabolic needs and physiology of individual neurons. However, neurons and oligodendrocytes are not wholly responsible for crafting the myelination patterns seen in vivo. Other cell types of the CNS, including microglia and astrocytes, modify myelination. In this review, I cover the contributions of non-neuronal, non-oligodendroglial cells to the formation, maintenance, and pruning of myelin sheaths. I address ways that these cell types interact with the oligodendrocyte lineage throughout development to modify myelination. Additionally, I discuss mechanisms by which these cells may indirectly tune myelination by regulating neuronal activity. Understanding how glial-glial interactions regulate myelination is essential for understanding how the brain functions as a whole and for developing strategies to repair myelin in disease.
Collapse
Affiliation(s)
- Alexandria N. Hughes
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, Aurora, CO, United States
| |
Collapse
|
135
|
Zhang A, Yan D. C. elegans as a model to study glial development. FEBS J 2021; 289:1476-1485. [PMID: 33570807 DOI: 10.1111/febs.15758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/08/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Glia make up roughly half of all cells in the mammalian nervous system and play a major part in nervous system development, function, and disease. Although research in the past few decades has shed light on their morphological and functional diversity, there is still much to be known about key aspects of their development such as the generation of glial diversity and the factors governing proper morphogenesis. Glia of the nematode C. elegans possess many developmental and morphological similarities with their vertebrate counterparts and can potentially be used as a model to understand certain aspects of glial biology owing to advantages such as its genetic tractability and fully mapped cell lineage. In this review, we summarize recent progress in our understanding of genetic pathways that regulate glial development in C. elegans and discuss how some of these findings may be conserved.
Collapse
Affiliation(s)
- Albert Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
136
|
Hwang SN, Lee JS, Seo K, Lee H. Astrocytic Regulation of Neural Circuits Underlying Behaviors. Cells 2021; 10:cells10020296. [PMID: 33535587 PMCID: PMC7912785 DOI: 10.3390/cells10020296] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Astrocytes, characterized by a satellite-like morphology, are the most abundant type of glia in the central nervous system. Their main functions have been thought to be limited to providing homeostatic support for neurons, but recent studies have revealed that astrocytes actually actively interact with local neural circuits and play a crucial role in information processing and generating physiological and behavioral responses. Here, we review the emerging roles of astrocytes in many brain regions, particularly by focusing on intracellular changes in astrocytes and their interactions with neurons at the molecular and neural circuit levels.
Collapse
Affiliation(s)
- Sun-Nyoung Hwang
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Jae Seung Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea; (J.S.L.); (K.S.)
| | - Kain Seo
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea; (J.S.L.); (K.S.)
| | - Hyosang Lee
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea; (J.S.L.); (K.S.)
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Correspondence: ; Tel.: +82-53-785-6147
| |
Collapse
|
137
|
Brancaccio M, Wolfes AC, Ness N. Astrocyte Circadian Timekeeping in Brain Health and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:87-110. [PMID: 34773228 DOI: 10.1007/978-3-030-81147-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marco Brancaccio
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| | - Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Natalie Ness
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| |
Collapse
|