101
|
Shekhar S, Liu Y, Wang S, Zhang H, Fang X, Zhang J, Fan L, Zheng B, Roman RJ, Wang Z, Fan F, Booz GW. Novel Mechanistic Insights and Potential Therapeutic Impact of TRPC6 in Neurovascular Coupling and Ischemic Stroke. Int J Mol Sci 2021; 22:2074. [PMID: 33669830 PMCID: PMC7922996 DOI: 10.3390/ijms22042074] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is one of the most disabling diseases and a leading cause of death globally. Despite advances in medical care, the global burden of stroke continues to grow, as no effective treatments to limit or reverse ischemic injury to the brain are available. However, recent preclinical findings have revealed the potential role of transient receptor potential cation 6 (TRPC6) channels as endogenous protectors of neuronal tissue. Activating TRPC6 in various cerebral ischemia models has been found to prevent neuronal death, whereas blocking TRPC6 enhances sensitivity to ischemia. Evidence has shown that Ca2+ influx through TRPC6 activates the cAMP (adenosine 3',5'-cyclic monophosphate) response element-binding protein (CREB), an important transcription factor linked to neuronal survival. Additionally, TRPC6 activation may counter excitotoxic damage resulting from glutamate release by attenuating the activity of N-methyl-d-aspartate (NMDA) receptors of neurons by posttranslational means. Unresolved though, are the roles of TRPC6 channels in non-neuronal cells, such as astrocytes and endothelial cells. Moreover, TRPC6 channels may have detrimental effects on the blood-brain barrier, although their exact role in neurovascular coupling requires further investigation. This review discusses evidence-based cell-specific aspects of TRPC6 in the brain to assess the potential targets for ischemic stroke management.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Jin Zhang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| |
Collapse
|
102
|
Ercan S, Aktaş A. Neuroprotective Effects of Sildenafil on Traumatic Brain Injury in an Experimental Rat Model. INDIAN JOURNAL OF NEUROTRAUMA 2021. [DOI: 10.1055/s-0041-1724148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Objective Not only primary injuries, secondary injuries such as posttraumatic biochemical cascades, ischemia, and hypoxia also affect the morbidity and mortality of traumatic brain injury (TBI). Sildenafil released the vasodilatation by relaxing the smooth muscle of the systemic artery and vein. Also, the effects of sildenafil are evidenced in multiple sclerosis, Alzheimer's disease, and memory loss as a part of experimental studies. Sildenafil decreases oxidative stress by increasing the cGMP level. We aimed to examine the protective effects of sildenafil on TBI with histopathological and biochemical parameters.
Method 21 Sprague–Dawley rats were separated into three groups (n = 7). “The weight drop injury model,” which was described by Marmou, was used for the head injury. Group 1: nontraumatic sham group, Group 2: nontreated TBI group, Group 3: sildenafil (100 mg/kg) treated TBI group. The whole brain and serum were collected for histopathological and biochemical study. The histopathological sections were examined under a light microscope.
Results On comparison of total antioxidant status (TAS), total oxidant status (TOS), nitric oxide (NO), and plasma nitrite/nitrate (PNOx) between groups, NO level was significantly high in group 3 (p = 0.013). Even though the TAS level was significantly high in group 3 (p = 0.02), there were no significant differences in TOS level in groups (p = 0.225). Disappearing Nissle granules occurred in a pyknotic situation in the cell nucleus, and acidophilic staining in neuron cells, which describe the neuron degeneration observed in the trauma group. The neuron degeneration markers were not seen in the sildenafil-treated trauma group.
Conclusion Our study has shown that sildenafil decreases the oxygen radicals and affects the recovery of experimental TBI in rats.
Collapse
Affiliation(s)
- Serdar Ercan
- Department of Neurosurgery, Eskisehir City Hospital, Eskisehir, Turkey
| | - Ayfer Aktaş
- Dicle University, Medical Faculty, Department of Histology & Embryology, Diyarbakir, Diyarbakir, Turkey
| |
Collapse
|
103
|
Prasad GL. Steroids for delayed cerebral edema after traumatic brain injury. Surg Neurol Int 2021; 12:46. [PMID: 33654549 PMCID: PMC7911208 DOI: 10.25259/sni_756_2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/15/2021] [Indexed: 11/04/2022] Open
Abstract
Background Brain edema is a common phenomenon after traumatic brain injury (TBI) resulting in increased intracranial pressure and subsequent neurological deterioration. Experimental studies have proven that brain edema is biphasic (cytotoxic followed by vasogenic). Till date, all studies, including the corticosteroid randomization after significant head injury (HI) trial, have used high-dose steroids in the acute period during which the edema is essentially cytotoxic in nature. No clinical data exist pertaining to delayed cerebral edema (vasogenic) and steroids. Methods Patients who had received steroids for delayed cerebral edema after TBI were retrospectively analyzed over a 2-year period. Steroid dose, timing of steroid prescription, time to improvement of symptoms, and complications were noted. Results There were six males and three females. Mean age was 41.1 years. There were no severe HI cases. All subjects had cerebral contusions on imaging. Dexamethasone was the preferred steroid starting with 12 mg/day and tapered in 5-7 days. The mean interval to steroid administration after trauma was 7 days. The mean duration of steroid prescription was 6.3 days. All patients had complete symptomatic improvement. The mean time to symptom resolution was 3.8 days. No patients experienced any complications pertinent to steroid usage. Conclusion This is the first study to document efficacy of steroids for delayed cerebral edema after TBI, at least in mild/moderate head injuries. The timing of steroid usage and dose of steroids is key aspects that might determine its efficacy in TBI which was the drawbacks of the previous studies. Future prospective trials with the above factors in consideration may confirm/refute above findings.
Collapse
Affiliation(s)
- G Lakshmi Prasad
- Department of Neurosurgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
104
|
Biegon A. Considering Biological Sex in Traumatic Brain Injury. Front Neurol 2021; 12:576366. [PMID: 33643182 PMCID: PMC7902907 DOI: 10.3389/fneur.2021.576366] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Published epidemiological studies of traumatic brain injury (TBI) of all severities consistently report higher incidence in men. Recent increases in the participation of women in sports and active military service as well as increasing awareness of the very large number of women who sustain but do not report TBI as a result of intimate partner violence (IPV) suggest that the number of women with TBI is significantly larger than previously believed. Women are also grossly under-represented in clinical and natural history studies of TBI, most of which include relatively small numbers of women, ignore the role of sex- and age-related gonadal hormone levels, and report conflicting results. The emerging picture from recent studies powered to detect effects of biological sex as well as age (as a surrogate of hormonal status) suggest young (i.e., premenopausal) women are more likely to die from TBI relative to men of the same age group, but this is reversed in the 6th and 7th decades of life, coinciding with postmenopausal status in women. New data from concussion studies in young male and female athletes extend this finding to mild TBI, since female athletes who sustained mild TBI are significantly more likely to report more symptoms than males. Studies including information on gonadal hormone status at the time of injury are still too scarce and small to draw reliable conclusions, so there is an urgent need to include biological sex and gonadal hormone status in the design and analysis of future studies of TBI.
Collapse
Affiliation(s)
- Anat Biegon
- Department of Radiology and Neurology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
105
|
Bloodletting Puncture at Hand Twelve Jing-Well Points Relieves Brain Edema after Severe Traumatic Brain Injury in Rats via Inhibiting MAPK Signaling Pathway. Chin J Integr Med 2021; 27:291-299. [PMID: 33515398 DOI: 10.1007/s11655-021-3326-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate whether blood-brain barrier (BBB) served a key role in the edema-relief effect of bloodletting puncture at hand twelve Jing-well points (HTWP) in traumatic brain injury (TBI) and the potential molecular signaling pathways. METHODS Adult male Sprague-Dawley rats were assigned to the sham-operated (sham), TBI, and bloodletting puncture (bloodletting) groups (n=24 per group) using a randomized number table. The TBI model rats were induced by cortical contusion and then bloodletting puncture were performed at HTWP twice a day for 2 days. The neurological function and cerebral edema were evaluated by modified neurological severity score (mNSS), cerebral water content, magnetic resonance imaging and hematoxylin and eosin staining. Cerebral blood flow was measured by laser speckles. The protein levels of aquaporin 4 (AQP4), matrix metalloproteinases 9 (MMP9) and mitogen-activated protein kinase pathway (MAPK) signaling were detected by immunofluorescence staining and Western blot. RESULTS Compared with TBI group, bloodletting puncture improved neurological function at 24 and 48 h, alleviated cerebral edema at 48 h, and reduced the permeability of BBB induced by TBI (all P<0.05). The AQP4 and MMP9 which would disrupt the integrity of BBB were downregulated by bloodletting puncture (P<0.05 or P<0.01). In addition, the extracellular signal-regulated kinase (ERK) and p38 signaling pathways were inhibited by bloodletting puncture (P<0.05). CONCLUSIONS Bloodletting puncture at HTWP might play a significant role in protecting BBB through regulating the expressions of MMP9 and AQP4 as well as corresponding regulatory upstream ERK and p38 signaling pathways. Therefore, bloodletting puncture at HTWP may be a promising therapeutic strategy for TBI-induced cerebral edema.
Collapse
|
106
|
Pergakis M, Badjatia N, Simard JM. An update on the pharmacological management and prevention of cerebral edema: current therapeutic strategies. Expert Opin Pharmacother 2021; 22:1025-1037. [PMID: 33467932 DOI: 10.1080/14656566.2021.1876663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cerebral edema is a common complication of multiple neurological diseases and is a strong predictor of outcome, especially in traumatic brain injury and large hemispheric infarction.Areas Covered: Traditional and current treatments of cerebral edema include treatment with osmotherapy or decompressive craniectomy at the time of clinical deterioration. The authors discuss preclinical and clinical models of a variety of neurological disease states that have identified receptors, ion transporters, and channels involved in the development of cerebral edema as well as modulation of these receptors with promising agents.Expert opinion: Further study is needed on the safety and efficacy of the agents discussed. IV glibenclamide has shown promise in preclinical and clinical trials of cerebral edema in large hemispheric infarct and traumatic brain injury. Consideration of underlying pathophysiology and pharmacodynamics is vital, as the synergistic use of agents has the potential to drastically mitigate cerebral edema and secondary brain injury thusly transforming our treatment paradigms.
Collapse
Affiliation(s)
- Melissa Pergakis
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - Neeraj Badjatia
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
107
|
Deng H, Zusman BE, Nwachuku EL, Yue JK, Chang YF, Conley YP, Okonkwo DO, Puccio AM. B-Cell Lymphoma 2 (Bcl-2) Gene Is Associated with Intracranial Hypertension after Severe Traumatic Brain Injury. J Neurotrauma 2021; 38:291-299. [PMID: 32515262 PMCID: PMC8182479 DOI: 10.1089/neu.2020.7028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Severe traumatic brain injury (TBI) activates the apoptotic cascade in neurons and glia as part of secondary cellular injury. B-cell lymphoma 2 (Bcl-2) gene encodes a pro-survival protein to suppress programmed cell death, and variation in this gene has potential to affect intracranial pressure (ICP). Participants were recruited from a single clinical center using a prospective observational study design. Inclusion criteria were: age 16-80 years; Glasgow Coma Scale (GCS) score 4-8; and at least 24 h of ICP monitoring treated between 2000-2014. Outcomes were mean ICP, spikes >20 and >25 mm Hg, edema, and surgical intervention. Odds ratios (OR), mean increases/decreases (B), and 95% confidence intervals (CIs) were reported. In 264 patients, average age was 39.2 years old and 78% of patients were male. Mean ICPs were 11.4 ± 0.4 mm Hg for patients with homozygous wild-type (AA), 12.8 ± 0.6 mm Hg for heterozygous (AG), and 14.3 ± 1.2 mm Hg for homozygous variant (GG; p = 0.023). Rs17759659 GG genotype was associated with more ICP spikes >20 mm Hg (p = 0.017) and >25 mm Hg (p = 0.048). Multi-variate analysis showed that GG relative to AA genotype had higher ICP (B = 2.7 mm Hg, 95% CI [0.5,4.9], p = 0.015), edema (OR = 2.5 [1.0, 6.0], p = 0.049) and need for decompression (OR = 3.7 [1.5-9.3], p = 0.004). In this prospective severe TBI cohort, Bcl-2 rs17759659 was associated with increased risk of intracranial hypertension, cerebral edema, and need for surgical intervention. The variant allele may impact programmed cell death of injured neurons, resulting in elevated ICP and post-traumatic secondary insults. Further risk stratification and targeted genotype-based therapies could improve outcomes after severe TBI.
Collapse
Affiliation(s)
- Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Benjamin E. Zusman
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Enyinna L. Nwachuku
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John K. Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Biostatistics and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- School of Nursing and Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
108
|
Huntemer-Silveira A, Patil N, Brickner MA, Parr AM. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2021; 14:619707. [PMID: 33505250 PMCID: PMC7829188 DOI: 10.3389/fncel.2020.619707] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
A major consequence of traumatic brain and spinal cord injury is the loss of the myelin sheath, a cholesterol-rich layer of insulation that wraps around axons of the nervous system. In the central nervous system (CNS), myelin is produced and maintained by oligodendrocytes. Damage to the CNS may result in oligodendrocyte cell death and subsequent loss of myelin, which can have serious consequences for functional recovery. Demyelination impairs neuronal function by decelerating signal transmission along the axon and has been implicated in many neurodegenerative diseases. After a traumatic injury, mechanisms of endogenous remyelination in the CNS are limited and often fail, for reasons that remain poorly understood. One area of research focuses on enhancing this endogenous response. Existing techniques include the use of small molecules, RNA interference (RNAi), and monoclonal antibodies that target specific signaling components of myelination for recovery. Cell-based replacement strategies geared towards replenishing oligodendrocytes and their progenitors have been utilized by several groups in the last decade as well. In this review article, we discuss the effects of traumatic injury on oligodendrocytes in the CNS, the lack of endogenous remyelination, translational studies in rodent models promoting remyelination, and finally human clinical studies on remyelination in the CNS after injury.
Collapse
Affiliation(s)
| | - Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan A. Brickner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
109
|
Ma H, Cui LX, Lam PK, Tong CSW, Lo KKY, Wong GKC, Poon WS. Topical application of adipose tissue-derived mesenchymal stem cells (ADMSCs) reduced cerebral edema in experimental traumatic brain injury (TBI)-a preliminary study. Chin Neurosurg J 2021; 7:2. [PMID: 33397513 PMCID: PMC7780686 DOI: 10.1186/s41016-020-00219-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/01/2020] [Indexed: 11/12/2022] Open
Abstract
Background Our previous studies showed that topical application of mesenchymal stem cells (MSCs) improved functional recovery in rat traumatic brain injury (TBI) model, and hypoxic precondition further enhanced the therapeutic effects of MSCs. There was no previous study on the attenuation of cerebral edema by MSCs. We investigated whether topical application of normoxic and hypoxic MSCs could reduce cerebral edema in an experimental TBI model. Methods Two million normoxic (N = 24) and hypoxic (N = 24) MSCs were applied topically to exposed the cerebral cortex in a controlled cortical impact (CCI) model. The MSCs were fixed in position with fibrin glue. No treatment was given to control animals (TBI only: n = 24). After surgery, four animals in each group were sacrificed daily (day 1 to day 6) for edema evaluation. Normal animals without TBI were used as reference (n = 4). The expressions of GFAP, AQP4, and MMP9 were also investigated by immunofluorescence staining and RT-PCR at day 3. Results The edema peaked within 3 days after TBI. Compared with the control, hypoxic MSCs reduced brain water content significantly (p < 0.05). Both hypoxic and normoxic MSCs downregulated the expression of MMP9 and normalized AQP4 distribution to astrocyte end feet. Conclusion Our preliminary study showed that topical application of hypoxic MSCs suppressed both vasogenic and cytotoxic edema formation.
Collapse
Affiliation(s)
- Hui Ma
- Division of Neurosurgery, Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Lian Xu Cui
- Division of Neurosurgery, Department of Surgery, Fo Shan First People's Hospital, Foshan, Guangdong, China
| | - Ping Kuen Lam
- Division of Neurosurgery, Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Cindy S W Tong
- Division of Neurosurgery, Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Kin K Y Lo
- Division of Neurosurgery, Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - George K C Wong
- Division of Neurosurgery, Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Wai Sang Poon
- Division of Neurosurgery, Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.
| |
Collapse
|
110
|
Kim JE, Patel K, Jackson CM. The potential for immune checkpoint modulators in cerebrovascular injury and inflammation. Expert Opin Ther Targets 2021; 25:101-113. [PMID: 33356658 DOI: 10.1080/14728222.2021.1869213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Neuroinflammation has been linked to poor neurologic and functional outcomes in many cerebrovascular disorders. Immune checkpoints are upregulated in the setting of traumatic brain injury, intracerebral hemorrhage, ischemic stroke, central nervous systems vasculitis, and post-hemorrhagic vasospasm, and are potential mediators of pathologic inflammation. Burgeoning evidence suggests that immune checkpoint modulation is a promising treatment strategy to decrease immune cell recruitment, cytokine secretion, brain edema, and neurodegeneration.Areas covered: This review discusses the role of immune checkpoints in neuroinflammation, and the potential for therapeutic immune checkpoint modulation in inflammatory cerebrovascular disorders. A search of Pubmed and clinicaltrials.gov was performed to find relevant literature published within the last 50 years.Expert opinion: The clinical success of immune-activating checkpoint modulators in human cancers has shown the immense clinical potential of checkpoint-based immunotherapy. Given that checkpoint blockade can also precipitate a pathologic pro-inflammatory or autoimmune response, it is plausible that these pathways may also be targeted to quell aberrant inflammation. A limited but growing number of studies suggest that immune checkpoints play a critical role in regulating the immune response in the central nervous system in a variety of contexts, and that immune-deactivating checkpoint modulators may be a promising treatment strategy for acute and chronic neuroinflammation in cerebrovascular disorders.
Collapse
Affiliation(s)
- Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kisha Patel
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
111
|
Kwiecien JM, Dąbrowski W, Yaron JR, Zhang L, Delaney KH, Lucas AR. The Role of Astrogliosis in Formation of the Syrinx in Spinal Cord Injury. Curr Neuropharmacol 2021; 19:294-303. [PMID: 32691715 PMCID: PMC8033977 DOI: 10.2174/1570159x18666200720225222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
A massive localized trauma to the spinal cord results in complex pathologic events driven by necrosis and vascular damage which in turn leads to hemorrhage and edema. Severe, destructive and very protracted inflammatory response is characterized by infiltration by phagocytic macrophages of a site of injury which is converted into a cavity of injury (COI) surrounded by astroglial reaction mounted by the spinal cord. The tissue response to the spinal cord injury (SCI) has been poorly understood but the final outcome appears to be a mature syrinx filled with the cerebrospinal fluid with related neural tissue loss and permanent neurologic deficits. This paper reviews known pathologic mechanisms involved in the formation of the COI after SCI and discusses the integrative role of reactive astrogliosis in mechanisms involved in the removal of edema after the injury. A large proportion of edema fluid originating from the trauma and then from vasogenic edema related to persistent severe inflammation, may be moved into the COI in an active process involving astrogliosis and specifically over-expressed aquaporins.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Wojciech Dąbrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, ul. Jaczewskiego 8, Lublin 20-090 Poland
| | - Jordan R Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| | - Kathleen H. Delaney
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| |
Collapse
|
112
|
The neuroprotective effect of quetiapine in critically ill traumatic brain injury patients. J Trauma Acute Care Surg 2020; 89:775-782. [PMID: 32649611 DOI: 10.1097/ta.0000000000002866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Quetiapine is an atypical antipsychotic commonly used in critical care. Cellular and animal models demonstrated its novel anti-inflammatory properties in traumatic brain injury (TBI). Our study aimed to assess the effect of quetiapine on outcomes in critically ill TBI patients. We hypothesize that quetiapine improves neurological outcomes. METHODS The Multiparameter Intelligent Monitoring in Intensive Care database was queried, and all adult (age, ≥18 years) isolated TBI patients (extracranial Abbreviated Injury Scale, < 2) admitted to the intensive care unit for a period of >48 hours. Patients were stratified into quetiapine (+) and no-quetiapine (-) groups. Propensity score matching was performed (1:2 ratio). Outcome measures were intensive care unit length of stay, discharge Glasgow Coma Scale (GCS), and mortality. A subanalysis was performed for patients who underwent intracranial pressure (ICP) monitoring to ascertain the effect of quetiapine dose on ICP, and cerebral perfusion pressure (CPP). Survival curves and regression analyses were performed. RESULTS A matched cohort of (quetiapine, 116 vs. no-quetiapine, 232) patients was obtained. Mean ± SD age was 65 ± 21 years, median head Abbreviated Injury Scale was 3 (3-4), and median GCS was 10 (9-16). The median quetiapine dose given was 50 (25-125) mg. Patients who received quetiapine had lower mortality (17.2% vs. 27.6%; p = 0.03) and a higher median GCS at discharge (12 [11-14] vs. 11 [10-13]; p < 0.04) but no difference in intensive care unit length of stay (4.1 days vs. 4.7 days; p = 0.75) or discharge to skilled nursing facility (34.5% vs. 31.9%; p = 0.63). On subanalysis of patients who received quetiapine, 40% had ICP monitoring. Higher doses of quetiapine were independently associated with progressively lower ICP (β = -0.022 mm Hg/mg of quetiapine; p = 0.01) and higher CPP (β = 0.031 mm Hg/mg quetiapine; p = 0.01). CONCLUSION Quetiapine may decrease mortality and improve neurological outcomes in critically ill TBI patients. It has a dose-dependent effect to decrease ICP and increase CPP. Quetiapine may be a potential therapeutic modality in critically ill TBI patients, but further studies are required to explore these mechanisms. LEVEL OF EVIDENCE Systematic Review, level III.
Collapse
|
113
|
Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Prediction of in-hospital mortality in patients on mechanical ventilation post traumatic brain injury: machine learning approach. BMC Med Inform Decis Mak 2020; 20:336. [PMID: 33317528 PMCID: PMC7737377 DOI: 10.1186/s12911-020-01363-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Background The study aimed to introduce a machine learning model that predicts in-hospital mortality in patients on mechanical ventilation (MV) following moderate to severe traumatic brain injury (TBI).
Methods A retrospective analysis was conducted for all adult patients who sustained TBI and were hospitalized at the trauma center from January 2014 to February 2019 with an abbreviated injury severity score for head region (HAIS) ≥ 3. We used the demographic characteristics, injuries and CT findings as predictors. Logistic regression (LR) and Artificial neural networks (ANN) were used to predict the in-hospital mortality. Accuracy, area under the receiver operating characteristics curve (AUROC), precision, negative predictive value (NPV), sensitivity, specificity and F-score were used to compare the models` performance. Results Across the study duration; 785 patients met the inclusion criteria (581 survived and 204 deceased). The two models (LR and ANN) achieved good performance with an accuracy over 80% and AUROC over 87%. However, when taking the other performance measures into account, LR achieved higher overall performance than the ANN with an accuracy and AUROC of 87% and 90.5%, respectively compared to 80.9% and 87.5%, respectively. Venous thromboembolism prophylaxis, severity of TBI as measured by abbreviated injury score, TBI diagnosis, the need for blood transfusion, heart rate upon admission to the emergency room and patient age were found to be the significant predictors of in-hospital mortality for TBI patients on MV. Conclusions Machine learning based LR achieved good predictive performance for the prognosis in mechanically ventilated TBI patients. This study presents an opportunity to integrate machine learning methods in the trauma registry to provide instant clinical decision-making support.
Collapse
Affiliation(s)
- Ahmad Abujaber
- Assistant Executive Director of Nursing, Hamad Medical Corporation, Doha, Qatar
| | - Adam Fadlalla
- Management Information Systems, Business, and Economics Faculty, Qatar University, Doha, Qatar
| | - Diala Gammoh
- Industrial Engineering, University of Central Florida, Orlando, USA
| | - Husham Abdelrahman
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Monira Mollazehi
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Ayman El-Menyar
- Department of Surgery, Trauma Surgery, Clinical Research, Hamad Medical Corporation, Doha, Qatar. .,Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar.
| |
Collapse
|
114
|
Defining a Taxonomy of Intracranial Hypertension: Is ICP More Than Just a Number? J Neurosurg Anesthesiol 2020; 32:120-131. [PMID: 31135572 DOI: 10.1097/ana.0000000000000609] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intracranial pressure (ICP) monitoring and control is a cornerstone of neuroanesthesia and neurocritical care. However, because elevated ICP can be due to multiple pathophysiological processes, its interpretation is not straightforward. We propose a formal taxonomy of intracranial hypertension, which defines ICP elevations into 3 major pathophysiological subsets: increased cerebral blood volume, masses and edema, and hydrocephalus. (1) Increased cerebral blood volume increases ICP and arises secondary to arterial or venous hypervolemia. Arterial hypervolemia is produced by autoregulated or dysregulated vasodilation, both of which are importantly and disparately affected by systemic blood pressure. Dysregulated vasodilation tends to be worsened by arterial hypertension. In contrast, autoregulated vasodilation contributes to intracranial hypertension during decreases in cerebral perfusion pressure that occur within the normal range of cerebral autoregulation. Venous hypervolemia is produced by Starling resistor outflow obstruction, venous occlusion, and very high extracranial venous pressure. Starling resistor outflow obstruction tends to arise when cerebrospinal fluid pressure causes venous compression to thus increase tissue pressure and worsen tissue edema (and ICP elevation), producing a positive feedback ICP cycle. (2) Masses and edema are conditions that increase brain tissue volume and ICP, causing both vascular compression and decrease in cerebral perfusion pressure leading to oligemia. Brain edema is either vasogenic or cytotoxic, each with disparate causes and often linked to cerebral blood flow or blood volume abnormalities. Masses may arise from hematoma or neoplasia. (3) Hydrocephalus can also increase ICP, and is either communicating or noncommunicating. Further research is warranted to ascertain whether ICP therapy should be tailored to these physiological subsets of intracranial hypertension.
Collapse
|
115
|
Discoveries for Long Non-Coding RNA Dynamics in Traumatic Brain Injury. BIOLOGY 2020; 9:biology9120458. [PMID: 33321920 PMCID: PMC7763048 DOI: 10.3390/biology9120458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/15/2023]
Abstract
Simple Summary The biomedical studies of traumatic brain injury (TBI) can lead to insight for treatment clinically. However, TBIs are occurred by various risk factors and showing heterogeneity that make difficult to accurate diagnosis for initiation treatment of patients. Therefore, identification of biomarkers requires to prediction and therapeutics for TBI treatment. The canonical function of the long non-coding RNAs (lncRNAs) have been recently shown to promote transcription, post-transcription, and protein activity in many different conditions. Therefore, understanding the molecular mechanisms that are altered by the expression of lncRNAs will allow the design of novel therapeutic strategies. Here, we review the molecular process of lncRNA as new targets and approaches in TBIs treatment. Abstract In recent years, our understanding of long non-coding RNAs (lncRNAs) has been challenged with advances in genome sequencing and the widespread use of high-throughput analysis for identifying novel lncRNAs. Since then, the characterization of lncRNAs has contributed to the establishment of their molecular roles and functions in transcriptional regulation. Although genetic studies have so far explored the sequence-based primary function of lncRNAs that guides the expression of target genes, recent insights have shed light on the potential of lncRNAs for widening the identification of biomarkers from non-degenerative to neurodegenerative diseases. Therefore, further advances in the genetic characteristics of lncRNAs are expected to lead to diagnostic accuracy during disease progression. In this review, we summarized the latest studies of lncRNAs in TBI as a non-degenerative disease and discussed their potential limitations for clinical treatment.
Collapse
|
116
|
Alqahtani F, Assiri MA, Mohany M, Imran I, Javaid S, Rasool MF, Shakeel W, Sivandzade F, Alanazi AZ, Al-Rejaie SS, Alshammari MA, Alasmari F, Alanazi MM, Alamri FF. Coadministration of Ketamine and Perampanel Improves Behavioral Function and Reduces Inflammation in Acute Traumatic Brain Injury Mouse Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3193725. [PMID: 33381547 PMCID: PMC7749776 DOI: 10.1155/2020/3193725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is among the most debilitating neurological disorders with inadequate therapeutic options. It affects all age groups globally leading to post-TBI behavioral challenges and life-long disabilities requiring interventions for these health issues. In the current study, C57BL/6J mice were induced with TBI through the weight-drop method, and outcomes of acutely administered ketamine alone and in combination with perampanel were observed. The impact of test drugs was evaluated for post-TBI behavioral changes by employing the open field test (OFT), Y-maze test, and novel object recognition test (NOR). After that, isolated plasma and brain homogenates were analyzed for inflammatory modulators, i.e., NF-κB and iNOS, through ELISA. Moreover, metabolomic studies were carried out to further authenticate the TBI rescuing potential of drugs. The animals treated with ketamine-perampanel combination demonstrated improved exploratory behavior in OFT (P < 0.05), while ketamine alone as well as in combination yielded anxiolytic effect (P < 0.05-0.001) in posttraumatic mice. Similarly, the % spontaneous alternation and % discrimination index were increased after the administration of ketamine alone (P < 0.05) and ketamine-perampanel combination (P < 0.01-0.001) in the Y-maze test and NOR test, respectively. ELISA demonstrated the reduced central and peripheral expression of NF-κB (P < 0.05) and iNOS (P < 0.01-0.0001) after ketamine-perampanel polypharmacy. The TBI-imparted alteration in plasma metabolites was restored by drug combination as evidenced by metabolomic studies. The outcomes were fruitful with ketamine, but the combination therapy proved more significant in improving all studied parameters. The benefits of this new investigated polypharmacy might be due to their antiglutamatergic, antioxidant, and neuroprotective capacity.
Collapse
Affiliation(s)
- Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Waleed Shakeel
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ahmed Z. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faisal F. Alamri
- College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
117
|
Zheng T, Du J, Yuan Y, Wu S, Jin Y, Shi Q, Wang X, Liu L. Effect of Low Intensity Transcranial Ultrasound (LITUS) on Post-traumatic Brain Edema in Rats: Evaluation by Isotropic 3-Dimensional T2 and Multi-TE T2 Weighted MRI. Front Neurol 2020; 11:578638. [PMID: 33281713 PMCID: PMC7689022 DOI: 10.3389/fneur.2020.578638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Brain edema is one of the important factors affecting the prognosis of traumatic brain injury (TBI). Low-intensity transcranial ultrasound (LITUS) has significant anti-cerebral edema effect. T2-weighted image-based volume and T2 value measurements can sensitively reflect tissue edema. Purpose: To evaluate the effect and possible mechanisms of LITUS on brain edema by iso-voxel 3-dimensional T2WI (iso-3D T2WI) and multi-TE T2WI. Methods: Forty-five rats were randomly divided into sham control, TBI and TBI + LITUS groups (n = 15, respectively). Iso-voxel 3-dimensional T2WI and multi-TE T2WI sequences at 3.0T to obtain T2 value and edema volume of the injury cortex. T2 values were obtained on days 1, 7, 14, 21, 28, 35, and 42 after TBI and brain edema volume were obtained on days 7 and 14. Results: The T2 values of the damaged cortex in the TBI group showed a slow decreasing trend after a significant increase. For TBI+LITUS group, T2 values decreased with continuous LITUS treatment. At day 28, the T2 values were not significantly longer than the control group (adjusted P = 0.0535), but were significantly shorter than the TBI group at day 42 (adjusted P = 0.0003). The edema volume at day 7 and 14 in the LITUS group was significantly lower than the TBI group (P = 0.0004 and P < 0.0001, respectively). AQP-4 and β-APP protein staining showed a strong positive reaction near the CCI point, TBI+LITUS group showed a medium positive reaction, and the sham control group showed a weak positive reaction. Conclusion: The therapeutic effect of LITUS on post-traumatic brain edema was confirmed through T2 value and edema volume, and the mechanism may be related to inhibiting the expression of AQP-4 and promoting the removal of β-APP.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Juan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Shuo Wu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yinglan Jin
- Peking University Health Science Center, Beijing, China
| | - Qinglei Shi
- Scientific Clinical Specialist, Siemens Ltd., Beijing, China
| | - Xiaohan Wang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| |
Collapse
|
118
|
Walter J, Schwarting J, Plesnila N, Terpolilli NA. Influence of Organic Solvents on Secondary Brain Damage after Experimental Traumatic Brain Injury. Neurotrauma Rep 2020; 1:148-156. [PMID: 34223539 PMCID: PMC8240898 DOI: 10.1089/neur.2020.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many compounds tested for a possible neuroprotective effect after traumatic brain injury (TBI) are not readily soluble and therefore organic solvents need to be used as a vehicle. It is, however, unclear whether these organic solvents have intrinsic pharmacological effects on secondary brain damage and may therefore interfere with experimental results. Thus, the aim of the current study was to evaluate the effect of four widely used organic solvents, dimethylsulfoxide (DMSO), Miglyol 812 (Miglyol®), polyethyleneglycol 40 (PEG 40), and N-2-methyl-pyrrolidone (NMP) on outcome after TBI in mice. A total of 143 male C57Bl/6 mice were subjected to controlled cortical impact (CCI). Contusion volume, brain edema formation, and neurological function were assessed 24 h after TBI. Test substances or saline were injected intraperitoneally (i.p.) 10 min before CCI. DMSO, Miglyol, and PEG 40 had no effect on post-traumatic contusion volume after CCI; NMP, however, significantly reduced contusion volume and brain edema formation at different concentrations. The use of DMSO, Miglyol, and PEG 40 is unproblematic for studies investigating neuroprotective treatment strategies as they do not influence post-traumatic brain damage. NMP seems to have an intrinsic neuroprotective effect that should be considered when using this agent in pharmacological experiments; further, a putative therapeutic effect of NMP needs to be elucidated in future studies.
Collapse
Affiliation(s)
- Johannes Walter
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Julian Schwarting
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
119
|
Chauhan R, Panda N, Bhagat H, Bharti N, Luthra A, Soni SL, Kaloria N, Salunke P, Bhaire V, Bloria SD. Comparison of Propofol and Sevoflurane on Cerebral Oxygenation Using Juglar Venous Oximetery (SjVo 2) in Patients Undergoing Surgery for Traumatic Brain Injury. Asian J Neurosurg 2020; 15:614-619. [PMID: 33145215 PMCID: PMC7591162 DOI: 10.4103/ajns.ajns_348_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/25/2019] [Accepted: 03/11/2020] [Indexed: 02/03/2023] Open
Abstract
Background: Traumatic brain injury (TBI) induces major insult to the normal cerebral physiology. The anesthetic agents may infrequently produce deleterious effects and further aggravate damage to the injured brain. This study was conducted to evaluate the effects of propofol and sevoflurane on cerebral oxygenation, brain relaxation, systemic hemodynamic parameters and levels of interleukin-6 (IL-6) in patients with severe TBI undergoing decompressive craniectomy. Methods: A prospective randomized comparative study was conducted on 42 patients undergoing surgery for severe TBI. Patients were randomized into two groups, Group P received propofol and Group S received sevoflurane for maintenance of anesthesia. All patients were induced with fentanyl, propofol, and vecuronium. The effect of these agents on cerebral oxygenation was assessed by jugular venous oxygen saturation (SjVO2). Hemodynamic changes and quality of intraoperative brain relaxation were also assessed. The serum levels of IL-6 were quantitated using enzyme-linked immunosorbent assay technique. Results: SjVO2 values were comparable and mean arterial pressure (MAP) was found to be significantly lower in Group P as compared to those in Group S (P < 0.05). Brain relaxation scores were comparable between the groups. The level of IL-6 decreased significantly at the end of surgery compared to baseline in patients receiving sevoflurane (P = 0.040). Conclusions: Cerebral oxygenation measured by SjVO2 was comparable when anesthesia was maintained with propofol or sevoflurane. However, significant reduction in MAP by propofol needs attention in patients with severe TBI. The decrease in IL-6 level reflects anti-inflammatory effect and probable neuroprotective potential of propofol and sevoflurane.
Collapse
Affiliation(s)
- Rajeev Chauhan
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Nidhi Panda
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Hemant Bhagat
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Neerja Bharti
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Ankur Luthra
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Shiv Lal Soni
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Narender Kaloria
- Department of Anesthesia and Intensive Care, AIIMS, Jodhpur, Rajasthan, India
| | | | - Vishwanath Bhaire
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Summit Dev Bloria
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| |
Collapse
|
120
|
Hu Y, Seker B, Exner C, Zhang J, Plesnila N, Schwarzmaier SM. Longitudinal Characterization of Blood-Brain Barrier Permeability after Experimental Traumatic Brain Injury by In Vivo 2-Photon Microscopy. J Neurotrauma 2020; 38:399-410. [PMID: 33012249 DOI: 10.1089/neu.2020.7271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vasogenic brain edema (VBE) formation remains an important factor determining the fate of patients with traumatic brain injury (TBI). The spatial and temporal development of VBE, however, remains poorly understood because of the lack of sufficiently sensitive measurement techniques. To close this knowledge gap, we directly visualized the full time course of vascular leakage after TBI by in vivo 2-photon microscopy (2-PM). Male C57BL/6 mice (n = 6/group, 6-8 weeks old) were assigned randomly to sham operation or brain trauma by controlled cortical impact. A cranial window was prepared, and tetramethylrhodamine-dextran (TMRM, MW 40,000 Da) was injected intravenously to visualize blood plasma 4 h, 24 h, 48 h, 72 h, or seven days after surgery or trauma. Three regions with increasing distance to the primary contusion were investigated up to a depth of 300 μm by 2-PM. No TMRM extravasation was detected in sham-operated mice, while already 4 h after TBI vascular leakage was significantly increased (p < 0.05 vs. sham) and reached its maximum at 48 h after injury. Vascular leakage was most pronounced in the vicinity of the contusion. The rate of extravasation showed a biphasic pattern, peaking 4 h and 48-72 h after trauma. Taken together, longitudinal quantification of vascular leakage after TBI in vivo demonstrates that VBE formation after TBI develops in a biphasic manner suggestive of acute and delayed mechanisms. Further studies using the currently developed dynamic in vivo imaging modalities are needed to investigate these mechanisms and potential therapeutic strategies in more detail.
Collapse
Affiliation(s)
- Yue Hu
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,First Teaching Hospital of the Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Burcu Seker
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carina Exner
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Junping Zhang
- First Teaching Hospital of the Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Susanne M Schwarzmaier
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Department of Anesthesiology, Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
121
|
Amirkhosravi L, Khaksari M, Soltani Z, Esmaeili-Mahani S, Asadi Karam G, Hoseini M. E2-BSA and G1 exert neuroprotective effects and improve behavioral abnormalities following traumatic brain injury: The role of classic and non-classic estrogen receptors. Brain Res 2020; 1750:147168. [PMID: 33096091 DOI: 10.1016/j.brainres.2020.147168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
The role of classical and non-classical estrogen receptors (ERs) in mediating the neuroprotective effects of this hormone on brain edema and long-term behavioral disorders was evaluated after traumatic brain injury (TBI). Ovariectomized rats were divided as follows: E2 (17 β-estradiol), E2-BSA (E2 conjugated to bovine serum albumin), G1 [G-protein-coupled estrogen receptor agonist (GPER)] or their vehicle was injected following TBI, whereas ICI (classical estrogen receptor antagonist), G15 (GPER antagonist), ICI + G15, and their vehicle were injected before the induction of TBI and the injection of E2 and E2-BSA. Brain water (BWC) and Evans blue (EB) contents were measured 24 h and 5 h after TBI, respectively. Intracranial pressure (ICP) and cerebral perfusion pressure (CPP) were measured before and at different times after TBI. Locomotor activity, anxiety-like behavior, and spatial memory were assessed on days 3, 7, 14, and 21 after injury. E2, E2-BSA, and G1 prevented the increase of BWC and EB content after TBI, and these effects were inhibited by ICI and G15. ICI and G15 also inhibited the beneficial effects of E2, E2-BSA on ICP, as well as CPP, after trauma. E2, E2-BSA, and G1 prevented the cognitive deficiency and behavioral abnormalities induced by TBI. Similar to the above parameters, ICI and G15 also reversed this E2 and E2-BSA effects on days 3, 7, 14, and 21. Our findings indicated that the beneficial effects of E2-BSA and E2 were inhibited by both ICI and G15, suggesting that GPER and classic ERs were involved in mediating the long-term effects of E2.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman, Iran
| | - Mohammad Khaksari
- Neuroscience and Endocrinology and Metabolism Research Centers, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gholamreza Asadi Karam
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Hoseini
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
122
|
Washington PM, Lee C, Dwyer MKR, Konofagou EE, Kernie SG, Morrison B. Hyaluronidase reduced edema after experimental traumatic brain injury. J Cereb Blood Flow Metab 2020; 40:2026-2037. [PMID: 31648593 PMCID: PMC7786840 DOI: 10.1177/0271678x19882780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebral edema and the subsequent increased intracranial pressure are associated with mortality and poor outcome following traumatic brain injury. Previous in vitro studies have shown that the Gibbs-Donnan effect, which describes the tendency of a porous, negatively charged matrix to attract positive ions and water, applies to brain tissue and that enzymatic reduction of the fixed charge density can prevent tissue swelling. We tested whether hyaluronidase, an enzyme that degrades the large, negatively charged glycosaminoglycan hyaluronan, could reduce brain edema after traumatic brain injury. In vivo, intracerebroventricular injection of hyaluronidase after controlled cortical impact in mice reduced edema in the ipsilateral hippocampus at 24 h by both the wet-weight/dry-weight method (78.15 ± 0.65% vs. 80.4 ± 0.46%; p < 0.01) and T2-weighted magnetic resonance imaging (13.88 ± 3.09% vs. 29.23 ± 6.14%; p < 0.01). Hyaluronidase did not adversely affect blood-brain-barrier-integrity measured by dynamic contrast-enhanced magnetic resonance imaging, nor did hyaluronidase negatively affect functional recovery after controlled cortical impact measured with the rotarod or Morris water maze tasks. Reduction of fixed charge density by hyaluronidase was confirmed in cortical explants in vitro (5.46 ± 1.15 µg/mg vs. 7.76 ± 1.87 µg/mg; p < 0.05). These data demonstrate that targeting the fixed charge density with hyaluronidase reduced edema in an in vivo mouse model of traumatic brain injury.
Collapse
Affiliation(s)
- Patricia M Washington
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Changhee Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Mary Kate R Dwyer
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Steven G Kernie
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Barclay Morrison III, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
123
|
Tang S, Gao P, Chen H, Zhou X, Ou Y, He Y. The Role of Iron, Its Metabolism and Ferroptosis in Traumatic Brain Injury. Front Cell Neurosci 2020; 14:590789. [PMID: 33100976 PMCID: PMC7545318 DOI: 10.3389/fncel.2020.590789] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a structural and physiological disruption of brain function caused by external forces. It is a major cause of death and disability for patients worldwide. TBI includes both primary and secondary impairments. Iron overload and ferroptosis highly involved in the pathophysiological process of secondary brain injury. Ferroptosis is a form of regulatory cell death, as increased iron accumulation in the brain leads to lipid peroxidation, reactive oxygen species (ROS) production, mitochondrial dysfunction and neuroinflammatory responses, resulting in cellular and neuronal damage. For this reason, eliminating factors like iron deposition and inhibiting lipid peroxidation may be a promising therapy. Iron chelators can be used to eliminate excess iron and to alleviate some of the clinical manifestations of TBI. In this review we will focus on the mechanisms of iron and ferroptosis involving the manifestations of TBI, broaden our understanding of the use of iron chelators for TBI. Through this review, we were able to better find novel clinical therapeutic directions for further TBI study.
Collapse
Affiliation(s)
- Sicheng Tang
- Medical Clinic and Polyclinic IV, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Pan Gao
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
124
|
Puig J, Ellis MJ, Kornelsen J, Figley TD, Figley CR, Daunis-i-Estadella P, Mutch WAC, Essig M. Magnetic Resonance Imaging Biomarkers of Brain Connectivity in Predicting Outcome after Mild Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2020; 37:1761-1776. [PMID: 32228145 DOI: 10.1089/neu.2019.6623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Josep Puig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Radiology (IDI), Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Michael J. Ellis
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Department of Surgery and Pediatrics and Child Health, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Concussion Program, Winnipeg, Manitoba, Canada
- Childrens Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer Kornelsen
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa D. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| | - Chase R. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pepus Daunis-i-Estadella
- Department of Computer Science, Applied Mathematics and Statistics, Universitat de Girona, Girona, Spain
| | - W. Alan C. Mutch
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marco Essig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| |
Collapse
|
125
|
Goyal N, Kumar P, Chaturvedi J, Siddiqui SA, Agrawal D. Basal Cisternostomy in Traumatic Brain Injury: An Idea whose Time has Come? INDIAN JOURNAL OF NEUROTRAUMA 2020. [DOI: 10.1055/s-0039-1696865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractTraumatic brain injury is associated with high morbidity and mortality. Since the introduction of decompressive craniectomy more than a century ago, no major surgical advancement has been introduced in this field in spite of neurosurgery having seen a sea change in general. Basal cisternostomy, introduced recently, is said to have great promise. In this regard, neurosurgeons need to understand the theory behind the recently introduced basal cisternostomy and whether it holds any merit or not.
Collapse
Affiliation(s)
- Nishant Goyal
- Department of Neurosurgery, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Punit Kumar
- Department of Neurosurgery, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Jitender Chaturvedi
- Department of Neurosurgery, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Saquib Azad Siddiqui
- Department of Neurosurgery, All India India Institute of Medical Sciences, Patna, India
| | - Deepak Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
126
|
Nia HT, Datta M, Seano G, Zhang S, Ho WW, Roberge S, Huang P, Munn LL, Jain RK. In vivo compression and imaging in mouse brain to measure the effects of solid stress. Nat Protoc 2020; 15:2321-2340. [PMID: 32681151 PMCID: PMC11412114 DOI: 10.1038/s41596-020-0328-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
We recently developed an in vivo compression device that simulates the solid mechanical forces exerted by a growing tumor on the surrounding brain tissue and delineates the physical versus biological effects of a tumor. This device, to our knowledge the first of its kind, can recapitulate the compressive forces on the cerebellar cortex from primary (e.g., glioblastoma) and metastatic (e.g., breast cancer) tumors, as well as on the cerebellum from tumors such as medulloblastoma and ependymoma. We adapted standard transparent cranial windows normally used for intravital imaging studies in mice to include a turnable screw for controlled compression (acute or chronic) and decompression of the cerebral cortex. The device enables longitudinal imaging of the compressed brain tissue over several weeks or months as the screw is progressively extended against the brain tissue to recapitulate tumor growth-induced solid stress. The cranial window can be simply installed on the mouse skull according to previously established methods, and the screw mechanism can be readily manufactured in-house. The total time for construction and implantation of the in vivo compressive cranial window is <1 h (per mouse). This technique can also be used to study a variety of other diseases or disorders that present with abnormal solid masses in the brain, including cysts and benign growths.
Collapse
Affiliation(s)
- Hadi T Nia
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Meenal Datta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giorgio Seano
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Tumor Microenvironment Laboratory, Institut Curie Research Center, Paris-Saclay University, PSL Research University, Inserm U1021, CNRS UMR3347, Orsay, France
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peigen Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
127
|
Caplan HW, Prabhakara KS, Kumar A, Toledano‐Furman NE, Martin C, Carrillo L, Moreno NF, Bordt AS, Olson SD, Cox CS. Human cord blood-derived regulatory T-cell therapy modulates the central and peripheral immune response after traumatic brain injury. Stem Cells Transl Med 2020; 9:903-916. [PMID: 32383348 PMCID: PMC7381810 DOI: 10.1002/sctm.19-0444] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/13/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) causes a profound inflammatory response within the central nervous system and peripheral immune system, which contributes to secondary brain injury and further morbidity and mortality. Preclinical investigations have demonstrated that treatments that downregulate microglia activation and polarize them toward a reparative/anti-inflammatory phenotype have improved outcomes in preclinical models. However, no therapy to date has translated into proven benefits in human patients. Regulatory T cells (Treg) have been shown to downregulate pathologic immune responses of the innate and adaptive immune system across a variety of pathologies. Furthermore, cellular therapy has been shown to augment host Treg responses in preclinical models; yet, studies investigating the use of Treg as a therapeutic for TBI are lacking. In a rodent TBI model, we demonstrate that human umbilical cord blood Treg modulate the central and peripheral immune response after injury in vitro and in vivo.
Collapse
Affiliation(s)
- Henry W. Caplan
- Department of Pediatric Surgery, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Akshita Kumar
- Department of Pediatric Surgery, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Naama E. Toledano‐Furman
- Department of Pediatric Surgery, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Cecilia Martin
- Department of Pediatric Surgery, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Louis Carrillo
- Department of Pediatric Surgery, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Nicolas F. Moreno
- Department of Pediatric Surgery, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Andrea S. Bordt
- Department of Pediatric Surgery, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
128
|
唐 兆, 王 文, 刘 自, 孙 晓, 廖 正, 陈 飞, 蒋 光, 霍 钢. [Blocking ERK signaling pathway lowers MMP-9 expression to alleviate brain edema after traumatic brain injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1018-1022. [PMID: 32895167 PMCID: PMC7386209 DOI: 10.12122/j.issn.1673-4254.2020.07.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To investigate the effects of blocking the activation of ERK pathway on the expression of matrix metalloproteinase-9 (MMP-9) and the formation of cerebral edema in SD rats after brain injury. METHODS Ninety SD rats were randomly divided into 3 equal groups, including a sham-operated group, modified Feeney's traumatic brain injury model group, and ERK inhibition group where the ERK inhibitor SCH772984 (500 μg/kg) was injected via the femoral vein 15 min before brain trauma. At 2 h and 2 days after brain trauma, the permeability of blood-brain barrier was assessed by Evans blue method, the water content of the brain tissue was determined, and the phosphorylation level of ERK and the expression level of MMP-9 mRNA and protein were measured by RT-PCR and Western blotting. RESULTS Compared with the sham-operated group, the rats with brain trauma exhibited significantly increased level of ERK phosphorylation at 2 h and significantly increased expression of MMP-9 mRNA and protein 2 days after the injury (P < 0.01). Treatment with the ERK inhibitor significantly decreased the phosphorylation level of ERK after the injury (P < 0.01), suppressed over-expression of MMP-9 mRNA and protein 2 days after the injury (P < 0.01). The permeability of blood-brain barrier increased significantly 2 h after brain trauma (P < 0.05) and increased further at 2 days (P < 0.01); the water content of the brain did not change significantly at 2 h (P > 0.05) but increased significantly 2 d after the injury (P < 0.01). Treatment with the ERK inhibitor significantly lowered the permeability of blood-brain barrier and brain water content after brain trauma (P < 0.01). CONCLUSIONS Blocking the activation of ERK pathway significantly reduced the over-expression of MMP-9 and alleviates the damage of blood-brain barrier and traumatic brain edema, suggesting that ERK signaling pathway plays an important role in traumatic brain edema by regulating the expression of MMP-9.
Collapse
Affiliation(s)
- 兆华 唐
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - 文涛 王
- 西北大学附属医院神经外科,陕西 西安 710018Department of Neurosurgery, Affiliated Hospital of Northwest University, Xi'an, 710018, China
| | - 自力 刘
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - 晓川 孙
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - 正步 廖
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - 飞兰 陈
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - 光远 蒋
- 重庆 市中医院神经外科,重庆 400021Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - 钢 霍
- 重庆医科大学附属第一医院神经外科,重庆 400016Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
129
|
Schweitzer AD, Niogi SN, Whitlow CT, Tsiouris AJ. Traumatic Brain Injury: Imaging Patterns and Complications. Radiographics 2020; 39:1571-1595. [PMID: 31589576 DOI: 10.1148/rg.2019190076] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
While the diagnosis of traumatic brain injury (TBI) is a clinical decision, neuroimaging remains vital for guiding management on the basis of identification of intracranial pathologic conditions. CT is the mainstay of imaging of acute TBI for both initial triage and follow-up, as it is fast and accurate in detecting both primary and secondary injuries that require neurosurgical intervention. MRI is more sensitive for the detection of certain intracranial injuries (eg, axonal injuries) and blood products 24-48 hours after injury, but it has limitations (eg, speed, accessibility, sensitivity to motion, and cost). The evidence primarily supports the use of MRI when CT findings are normal and there are persistent unexplained neurologic findings or at subacute and chronic periods. Radiologists should understand the role and optimal imaging modality to use, in addition to patterns of primary brain injury and their influence on the risk of developing secondary brain injuries related to herniation. ©RSNA, 2019 See discussion on this article by Mathur and Nicolaou.
Collapse
Affiliation(s)
- Andrew D Schweitzer
- From the Department of Radiology, Weill Cornell Medicine/New York-Presbyterian Hospital, 525 E 68th St, Starr 630C, New York, NY 10075 (A.D.S., S.N.N., A.J.T.); and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, N.C. (C.T.W.)
| | - Sumit N Niogi
- From the Department of Radiology, Weill Cornell Medicine/New York-Presbyterian Hospital, 525 E 68th St, Starr 630C, New York, NY 10075 (A.D.S., S.N.N., A.J.T.); and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, N.C. (C.T.W.)
| | - Christopher T Whitlow
- From the Department of Radiology, Weill Cornell Medicine/New York-Presbyterian Hospital, 525 E 68th St, Starr 630C, New York, NY 10075 (A.D.S., S.N.N., A.J.T.); and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, N.C. (C.T.W.)
| | - A John Tsiouris
- From the Department of Radiology, Weill Cornell Medicine/New York-Presbyterian Hospital, 525 E 68th St, Starr 630C, New York, NY 10075 (A.D.S., S.N.N., A.J.T.); and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, N.C. (C.T.W.)
| |
Collapse
|
130
|
Vasogenic edema versus neuroplasticity as neural correlates of hippocampal volume increase following electroconvulsive therapy. Brain Stimul 2020; 13:1080-1086. [DOI: 10.1016/j.brs.2020.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
|
131
|
Mathieu F, Zeiler FA, Ercole A, Monteiro M, Kamnitsas K, Glocker B, Whitehouse DP, Das T, Smielewski P, Czosnyka M, Hutchinson PJ, Newcombe VF, Menon DK. Relationship between Measures of Cerebrovascular Reactivity and Intracranial Lesion Progression in Acute Traumatic Brain Injury Patients: A CENTER-TBI Study. J Neurotrauma 2020; 37:1556-1565. [PMID: 31928143 PMCID: PMC7307675 DOI: 10.1089/neu.2019.6814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Failure of cerebral autoregulation has been linked to unfavorable outcome after traumatic brain injury (TBI). Preliminary evidence from a small, retrospective, single-center analysis suggests that autoregulatory dysfunction may be associated with traumatic lesion expansion, particularly for pericontusional edema. The goal of this study was to further explore these associations using prospective, multi-center data from the Collaborative European Neurotrauma Effectiveness Research in TBI (CENTER-TBI) and to further explore the relationship between autoregulatory failure, lesion progression, and patient outcome. A total of 88 subjects from the CENTER-TBI High Resolution ICU Sub-Study cohort were included. All patients had an admission computed tomography (CT) scan and early repeat scan available, as well as high-frequency neurophysiological recordings covering the between-scan interval. Using a novel, semiautomated approach at lesion segmentation, we calculated absolute changes in volume of contusion core, pericontusional edema, and extra-axial hemorrhage between the imaging studies. We then evaluated associations between cerebrovascular reactivity metrics and radiological lesion progression using mixed-model regression. Analyses were adjusted for baseline covariates and non-neurophysiological factors associated with lesion growth using multi-variate methods. Impairment in cerebrovascular reactivity was significantly associated with progression of pericontusional edema and, to a lesser degree, intraparenchymal hemorrhage. In contrast, there were no significant associations with extra-axial hemorrhage. The strongest relationships were observed between RAC-based metrics and edema formation. Pulse amplitude index showed weaker, but consistent, associations with contusion growth. Cerebrovascular reactivity metrics remained strongly associated with lesion progression after taking into account contributions from non-neurophysiological factors and mean cerebral perfusion pressure. Total hemorrhagic core and edema volumes on repeat CT were significantly larger in patients who were deceased at 6 months, and the amount of edema was greater in patients with an unfavourable outcome (Glasgow Outcome Scale-Extended 1-4). Our study suggests associations between autoregulatory failure, traumatic edema progression, and poor outcome. This is in keeping with findings from a single-center retrospective analysis, providing multi-center prospective data to support those results.
Collapse
Affiliation(s)
- François Mathieu
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Frederick A. Zeiler
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnibeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnibeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnibeg, Manitoba, Canada
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Miguel Monteiro
- Biomedical Image Analysis Group, Imperial College London, London, United Kingdom
| | | | - Ben Glocker
- Biomedical Image Analysis Group, Imperial College London, London, United Kingdom
| | | | - Tilak Das
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, Cambridge, United Kingdom
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, Cambridge, United Kingdom
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter J. Hutchinson
- Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, Cambridge, United Kingdom
| | | | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
132
|
Gatzinsky K, Johansson E, Jennische E, Oshalim M, Lange S. Elevated intracranial pressure after head trauma can be suppressed by antisecretory factor-a pilot study. Acta Neurochir (Wien) 2020; 162:1629-1637. [PMID: 32445122 PMCID: PMC7295841 DOI: 10.1007/s00701-020-04407-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/10/2020] [Indexed: 01/15/2023]
Abstract
Background Control of intracranial pressure (ICP) is a key element in neurointensive care for directing treatment decisions in patients with severe traumatic brain injury (TBI). The anti-inflammatory protein antisecretory factor (AF) has been demonstrated to reduce experimentally induced high ICP in animal models. This report describes the first steps to investigate the uptake, safety, and influence of AF for reduction of elevated ICP in patients with TBI in a clinical setting. Method Four patients with severe TBI (Glasgow Coma Scale < 9) that required neurointensive care with ICP monitoring due to signs of refractory intracranial hypertension were investigated. One hundred milliliters of Salovum®, a commercially available egg yolk powder with high contents of AF peptides, was administrated either via nasogastric (patients 1 and 2) or rectal tube (patients 2, 3, and 4) every 8 h for 2 to 3 days as a supplement to the conventional neurointensive care. ICP was registered continuously. Plasma levels of AF were measured by enzyme-linked immunosorbent assay (ELISA) to confirm that Salovum® was absorbed appropriately into the bloodstream. Results In the first two patients, we observed that when delivered by the nasogastric route, there was an accumulation of the Salovum® solution in the stomach with difficulties to control ICP due to impaired gastric emptying. Therefore, we tested to administer Salovum® rectally. In the third and fourth patients, who both showed radiological signs of extensive brain edema, ICP could be controlled during the course of rectal administration of Salovum®. The ICP reduction was statistically significant and was accompanied by an increase in blood levels of AF. No adverse events that could be attributed to AF treatment or the rectal approach for Salovum® administration were observed. Conclusions The outcomes suggest that AF can act as a suppressor of high ICP induced by traumatic brain edema. Use of AF may offer a new therapeutic option for targeting cerebral edema in clinical practice.
Collapse
Affiliation(s)
- Kliment Gatzinsky
- Department of Neurosurgery, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.
| | - Ewa Johansson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Jennische
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Merna Oshalim
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stefan Lange
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
133
|
Abstract
Therapeutic strategies for traumatic injuries in the central nervous system (CNS) are largely limited to the efficiency of drug delivery. Despite the disrupted blood-CNS barrier during the early phase after injury, the drug administration faces a variety of obstacles derived from homeostatic imbalance at the injury site. In the late phase after CNS injury, the restoration of the blood-CNS barrier integrity varies depending on the injury severity resulting in inconsistent delivery of therapeutics. This review intends to characterize those different challenges of the therapeutic delivery in acute and chronic phases after injury and discuss recent advances in various approaches to explore novel strategies for the treatment of traumatic CNS injury.
Collapse
|
134
|
Lu M, Qi Y, Han Y, Yi Q, Xu L, Sun W, Ni G, Ni X, Xu C. Design and development of novel thiazolidin-4-one-1,3,5-triazine derivatives as neuro-protective agent against cerebral ischemia-reperfusion injury in mice via attenuation of NF-ĸB. Chem Biol Drug Des 2020; 96:1315-1327. [PMID: 32543026 DOI: 10.1111/cbdd.13744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022]
Abstract
The present study enumerates the discovery and development of novel thiazolidin-4-one-1,3,5-triazine as neuro-protective agent against cerebral ischemia-reperfusion injury in mice. These compounds showed significant inhibition of NF-ĸB transcriptional activity in LPS-stimulated RAW264.7 cells, displaying compound 8k as most potent inhibitor among the tested derivative. The compound 8k was further studied in in vivo middle cerebral artery occlusion (MCAO) mice model for neuro-protective action. Results suggest that compound 8k causes attenuation of inflammation (TNF-α, IL-β, and IL-6), oxidative stress (SOD, GSH, and MDA), and apoptosis (Bcl-2, Bax, and cleaved caspase-3) in MCAO mice in concentration-dependent manner. Collectively, our results documented that compound 8k pre-treatment protects cerebral I/R. This novel lead scaffold may be helpful for investigation of new neuro-protective agent by inactivation of NF-ĸB.
Collapse
Affiliation(s)
- Min Lu
- Department of Rehabilitation Medicine, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yujun Qi
- Department of Rehabilitation Medicine, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yu Han
- Department of Rehabilitation Medicine, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Qiong Yi
- Department of Rehabilitation Medicine, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Lei Xu
- Department of Rehabilitation Medicine, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Wenlin Sun
- Department of Rehabilitation Medicine, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Guihua Ni
- Department of Neurology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiaoyu Ni
- Department of Rehabilitation Medicine, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Changsong Xu
- Department of Neurology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
135
|
Michinaga S, Inoue A, Yamamoto H, Ryu R, Inoue A, Mizuguchi H, Koyama Y. Endothelin receptor antagonists alleviate blood-brain barrier disruption and cerebral edema in a mouse model of traumatic brain injury: A comparison between bosentan and ambrisentan. Neuropharmacology 2020; 175:108182. [PMID: 32561219 DOI: 10.1016/j.neuropharm.2020.108182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is induced by the immediate physical disruption of brain tissue. TBI causes disruption of the blood-brain barrier (BBB) and brain edema. In the cerebrospinal fluid (CSF) of TBI patients, endothelin-1 (ET-1) is increased, suggesting that ET-1 aggravates TBI-induced brain damage. In this study, the effect of bosentan (ETA/ETB antagonist) and ambrisentan (ETA antagonist) on BBB dysfunction and brain edema were examined in a mouse model of TBI using lateral fluid percussion injury (FPI). FPI to the mouse cerebrum increased the expression levels of ET-1 and ETB receptors. Administration of bosentan (3 or 15 mg/kg/day) and ambrisentan (0.1 or 0.5 mg/kg/day) at 6 and 24 h after FPI ameliorated BBB disruption and cerebral brain edema. Delayed administration of bosentan from 2 days after FPI also reduced BBB disruption and brain edema, while ambrisentan had no significant effects. FPI-induced expression levels of ET-1 and ETB receptors were reduced by bosentan, but not by ambrisentan. In cultured mouse astrocytes and brain microvessel endothelial cells, ET-1 (100 nM) increased prepro--ET-1 mRNA, which was inhibited by bosentan, but not by ambrisentan. FPI-induced alterations of the expression levels of matrix metalloproteinase-9, vascular endothelial growth factor-A, and angiopoietin-1 in the mouse cerebrum were reduced by delayed administration of bosentan, while ambrisentan had no significant effects. These results suggest that ET antagonists are effective in improving BBB disruption and cerebral edema in TBI patients and that an ETA/ETB non-selective type of antagonists is more effective.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Anna Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Hayato Yamamoto
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Ryotaro Ryu
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Ayana Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe, 668-8558, Japan.
| |
Collapse
|
136
|
Li B, Zhou X, Yi TL, Xu ZW, Peng DW, Guo Y, Guo YM, Cao YL, Zhu L, Zhang S, Cheng SX. Bloodletting Puncture at Hand Twelve Jing-Well Points Improves Neurological Recovery by Ameliorating Acute Traumatic Brain Injury-Induced Coagulopathy in Mice. Front Neurosci 2020; 14:403. [PMID: 32581664 PMCID: PMC7290011 DOI: 10.3389/fnins.2020.00403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) contributes to hypocoagulopathy associated with prolonged bleeding and hemorrhagic progression. Bloodletting puncture therapy at hand twelve Jing-well points (BL-HTWP) has been applied as a first aid measure in various emergent neurological diseases, but the detailed mechanisms of the modulation between the central nervous system and systemic circulation after acute TBI in rodents remain unclear. To investigate whether BL-HTWP stimulation modulates hypocoagulable state and exerts neuroprotective effect, experimental TBI model of mice was produced by the controlled cortical impactor (CCI), and treatment with BL-HTWP was immediately made after CCI. Then, the effects of BL-HTWP on the neurological function, cerebral perfusion state, coagulable state, and cerebrovascular histopathology post-acute TBI were determined, respectively. Results showed that BL-HTWP treatment attenuated cerebral hypoperfusion and improve neurological recovery post-acute TBI. Furthermore, BL-HTWP stimulation reversed acute TBI-induced hypocoagulable state, reduced vasogenic edema and cytotoxic edema by regulating multiple hallmarks of coagulopathy in TBI. Therefore, we conclude for the first time that hypocoagulopathic state occurs after acute experimental TBI, and the neuroprotective effect of BL-HTWP relies on, at least in part, the modulation of hypocoagulable state. BL-HTWP therapy may be a promising strategy for acute severe TBI in the future.
Collapse
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China.,Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiu Zhou
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Tai-Long Yi
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Zhong-Wei Xu
- Central Laboratory of Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Ding-Wei Peng
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Yi Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong-Ming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu-Lin Cao
- Zhenxigu Medical Research Center, Beijing, China
| | - Lei Zhu
- Department of Spine Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Shi-Xiang Cheng
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China
| |
Collapse
|
137
|
Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Prediction of in-hospital mortality in patients with post traumatic brain injury using National Trauma Registry and Machine Learning Approach. Scand J Trauma Resusc Emerg Med 2020; 28:44. [PMID: 32460867 PMCID: PMC7251921 DOI: 10.1186/s13049-020-00738-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/15/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The use of machine learning techniques to predict diseases outcomes has grown significantly in the last decade. Several studies prove that the machine learning predictive techniques outperform the classical multivariate techniques. We aimed to build a machine learning predictive model to predict the in-hospital mortality for patients who sustained Traumatic Brain Injury (TBI). METHODS Adult patients with TBI who were hospitalized in the level 1 trauma center in the period from January 2014 to February 2019 were included in this study. Patients' demographics, injury characteristics and CT findings were used as predictors. The predictive performance of Artificial Neural Networks (ANN) and Support Vector Machines (SVM) was evaluated in terms of accuracy, Area Under the Curve (AUC), sensitivity, precision, Negative Predictive Value (NPV), specificity and F-score. RESULTS A total of 1620 eligible patients were included in the study (1417 survival and 203 non-survivals). Both models achieved accuracy over 91% and AUC over 93%. SVM achieved the optimal performance with accuracy 95.6% and AUC 96%. CONCLUSIONS for prediction of mortality in patients with TBI, SVM outperformed the well-known classical models that utilized the conventional multivariate analytical techniques.
Collapse
Affiliation(s)
- Ahmad Abujaber
- Assistant Executive Director of Nursing, Hamad Medical Corporation, Doha, Qatar
| | - Adam Fadlalla
- College of Business and Economics, Management Information Systems, Qatar University, Doha, Qatar
| | - Diala Gammoh
- Industrial Engineering, University of Central Florida, Orlando, USA
| | - Husham Abdelrahman
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Monira Mollazehi
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Ayman El-Menyar
- Department of Surgery, Trauma Surgery, Clinical Research, Hamad Medical Corporation, Doha, Qatar. .,Department of Clinical Medicine, Weill Cornell Medical College Hamad General Hospital, Doha, Qatar.
| |
Collapse
|
138
|
Pan CT, Chang WH, Kumar A, Singh SP, Kaushik AC, Sharma J, Long ZJ, Wen ZH, Mishra SK, Yen CK, Chaudhary RK, Shiue YL. Nanoparticles-mediated Brain Imaging and Disease Prognosis by Conventional as well as Modern Modal Imaging Techniques: a Comparison. Curr Pharm Des 2020; 25:2637-2649. [PMID: 31603057 DOI: 10.2174/1381612825666190709220139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Multimodal imaging plays an important role in the diagnosis of brain disorders. Neurological disorders need to be diagnosed at an early stage for their effective treatment as later, it is very difficult to treat them. If possible, diagnosing at an early stage can be much helpful in curing the disease with less harm to the body. There is a need for advanced and multimodal imaging techniques for the same. This paper provides an overview of conventional as well as modern imaging techniques for brain diseases, specifically for tumor imaging. In this paper, different imaging modalities are discussed for tumor detection in the brain along with their advantages and disadvantages. Conjugation of two and more than two modalities provides more accurate information rather than a single modality. They can monitor and differentiate the cellular processes of normal and diseased condition with more clarity. The advent of molecular imaging, including reporter gene imaging, has opened the door of more advanced noninvasive detection of brain tumors. Due to specific optical properties, semiconducting polymer-based nanoparticles also play a pivotal role in imaging tumors. OBJECTIVE The objective of this paper is to review nanoparticles-mediated brain imaging and disease prognosis by conventional as well as modern modal imaging techniques. CONCLUSION We reviewed in detail various medical imaging techniques. This paper covers recent developments in detail and elaborates a possible research aspect for the readers in the field.
Collapse
Affiliation(s)
- Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Wei-Hsi Chang
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ajay Kumar
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Satya P Singh
- School of EEE, Nanyang Technological University, Nanyang Ave, Singapore
| | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, ShanghaiJia Tong University, Shanghai 200240, China
| | - Jyotsna Sharma
- Amity School of Applied Sciences, Amity University Haryana, Gurugram-122413, Manesai, Panchgaon, Haryana, India
| | - Zheng-Jing Long
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Sunil Kumar Mishra
- Patronage Institute of Management Studies, Greater Noida, Uttar Pradesh, India
| | - Chung-Kun Yen
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Ravi Kumar Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pardesh, India, India
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| |
Collapse
|
139
|
Cheng Y, Li S, Liu Y, Li J, Chen Y, Zhao H. Treatment of Brain Edema by Wogonoside Is Associated with Inhibition of Neuronal Apoptosis and SIRT1 Activation in Rats. Med Sci Monit 2020; 26:e921250. [PMID: 32221271 PMCID: PMC7133416 DOI: 10.12659/msm.921250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Brain edema and neuronal apoptosis are closely associated with loss of neurological function and death in rats with subarachnoid hemorrhage (SAH). The present study investigated the effect of wogonoside on brain edema induced by SAH in rats and studied the mechanism involved. Material/Methods The rats were intra-gastrically administered 10, 20, 50, 100, 150 and 200 mg/kg doses of wogonoside 24 h prior to SAH induction. Western blotting was used to assess levels of pro-apoptotic protein, SIRT1, ZO-1, and p53 protein expression. Apoptotic nuclei were detected using immunofluorescence and TUNEL staining. Results Wogonoside treatment significantly suppressed edema formation in SAH-induced rats. Pre-treatment with wogonoside exhibited an inhibitory effect on SAH-induced extravascular Evans blue staining in rats. The expression of ZO-1, Occludin, and Claudin-5 proteins was increased by wogonoside in the SAH-induced rats. The inhibitory effect of SAH was completely reversed in the rats treated with the 200 mg/kg dose of wogonoside. The expression of SIRT1 protein was upregulated, and p53 and AC-p53 were downregulated by wogonoside in SAH rats. Wogonoside treatment significantly reduced SAH-mediated promotion of Bax, Puma, Noxa, Bid, and cleaved Caspase-3 expression. In the SAH-induced rats, pre-treatment with wogonoside reduced the TUNEL-positive cell count. Conclusions The present study demonstrated that wogonoside prevents brain edema development and apoptosis of neurons in rats by promoting SIRT1 expression and suppression of p53 activation. Therefore, wogonoside has therapeutic potential for the treatment of edema and needs to be investigated further to completely define the mechanism involved.
Collapse
Affiliation(s)
- Yingqiu Cheng
- Department of Neurology, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Shipeng Li
- Department of Neurosurgery No. 2, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yi Liu
- Department of Neurosurgery No. 2, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Jinghui Li
- Department of Neurosurgery No. 2, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Ye Chen
- Department of Neurosurgery No. 2, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Hexiang Zhao
- Department of Neurosurgery No. 2, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| |
Collapse
|
140
|
Rangasamy SB, Ghosh S, Pahan K. RNS60, a physically-modified saline, inhibits glial activation, suppresses neuronal apoptosis and protects memory in a mouse model of traumatic brain injury. Exp Neurol 2020; 328:113279. [PMID: 32151546 DOI: 10.1016/j.expneurol.2020.113279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Traumatic brain injury (TBI) is a serious health issue that causes long-term neurological disability, particularly in young adults, athletes and war veterans. Despite the use of different medications or surgical procedures, no effective therapy is currently available to halt its pathogenesis. Here, we have undertaken a novel approach to reduce neuroinflammation and improve cognitive, social and locomotor behaviors in a mouse model of TBI. RNS60 is a physiologic saline solution containing oxygen nanobubbles that is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. Recently we have delineated that RNS60 inhibits the expression of proinflammatory molecules in glial cells via type 1A phosphatidylinositol-3 kinase (PI3K)-mediated upregulation of IκBα. In this study, we found that TBI decreased the level of IκBα and increased the activation of NF-κB in hippocampus and cortex as monitored by the upregulation of p-p65. However, intraperitoneal administration of RNS60 increased and/or restored the level of IκBα and inhibited the activation of NF-κB in hippocampus and cortex of TBI mice. Accordingly, RNS60 treatment decreased the activation of astrocytes and microglia and reduced neuronal apoptosis in the brain of TBI mice. RNS60 treatment also reduced vascular damage, attenuated blood-brain barrier leakage and decreased the size of lesion in the brain of TBI mice. Importantly, RNS60 treated mice showed significant improvements in memory, social behavior and locomotor activities while displaying reduction in depression-like behaviors. These results delineate a novel neuroprotective property of RNS60 and suggest its possible therapeutic use in TBI.
Collapse
Affiliation(s)
- Suresh B Rangasamy
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States of America; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Supurna Ghosh
- Revalesio Corporation, 1202 East D Street, Tacoma, WA 98421, United States of America
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States of America; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America.
| |
Collapse
|
141
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
142
|
van der Kleij LA, De Vis JB, Restivo MC, Turtzo LC, Hendrikse J, Latour LL. Subarachnoid Hemorrhage and Cerebral Perfusion Are Associated with Brain Volume Decrease in a Cohort of Predominantly Mild Traumatic Brain Injury Patients. J Neurotrauma 2020; 37:600-607. [PMID: 31642407 PMCID: PMC7045349 DOI: 10.1089/neu.2019.6514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biomarkers are needed to identify traumatic brain injury (TBI) patients at risk for accelerated brain volume loss and its associated functional impairment. Subarachnoid hemorrhage (SAH) has been shown to affect cerebral volume and perfusion, possibly by induction of inflammation and vasospasm. The purpose of this study was to assess the impact of SAH due to trauma on cerebral perfusion and brain volume. For this, magnetic resonance imaging (MRI) was performed <48 h and at 90 days after TBI. The <48-h scan was used to assess SAH presence and perfusion. Brain volume changes were assessed quantitatively over time. Differences in brain volume change and perfusion were compared between SAH and non-SAH patients. A linear regression analysis with clinical and imaging variables was used to identify predictors of brain volume change. All patients had a relatively good status on admission, and 83% presented with the maximum Glasgow Coma Scale (GCS) score. Brain volume decrease was greater in the 11 SAH patients (-3.2%, interquartile range [IQR] -4.8 to -1.3%) compared with the 46 non-SAH patients (-0.4%, IQR -1.8 to 0.9%; p < 0.001). Brain perfusion was not affected by SAH, but it was correlated with brain volume change (ρ = 0.39; p < 0.01). Forty-three percent of brain volume change was explained by SAH (β -0.40, p = 0.001), loss of consciousness (β -0.24, p = 0.035), and peak perfusion curve signal intensity height (0.27, p = 0.012). SAH and lower perfusion in the acute phase may identity TBI patients at increased risk for accelerated brain volume loss, in addition to loss of consciousness occurrence. Future studies should determine whether the findings apply to TBI patients with worse clinical status on admission. SAH predicts brain volume decrease independent of brain perfusion. This indicates the adverse effects of SAH extend beyond vasoconstriction, and that hypoperfusion also occurs separately from SAH.
Collapse
Affiliation(s)
- Lisa A. van der Kleij
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jill B. De Vis
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Matthew C. Restivo
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - L. Christine Turtzo
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Acute Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lawrence L. Latour
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Acute Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland
| |
Collapse
|
143
|
Rauen K, Pop V, Trabold R, Badaut J, Plesnila N. Vasopressin V 1a Receptors Regulate Cerebral Aquaporin 1 after Traumatic Brain Injury. J Neurotrauma 2020; 37:665-674. [PMID: 31547764 PMCID: PMC7045352 DOI: 10.1089/neu.2019.6653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Brain edema formation contributes to secondary brain damage and unfavorable outcome after traumatic brain injury (TBI). Aquaporins (AQP), highly selective water channels, are involved in the formation of post-trauma brain edema; however, their regulation is largely unknown. Because vasopressin receptors are involved in AQP-mediated water transport in the kidney and inhibition of V1a receptors reduces post-trauma brain edema formation, we hypothesize that cerebral AQPs may be regulated by V1a receptors. Cerebral Aqp1 and Aqp4 messenger ribonucleic acid (mRNA) and AQP1 and AQP4 protein levels were quantified in wild-type and V1a receptor knockout (V1a-/-) mice before and 15 min, 1, 3, 6, 12, or 24 h after experimental TBI by controlled cortical impact. In non-traumatized mice, we found AQP1 and AQP4 expression in cortical neurons and astrocytes, respectively. Experimental TBI had no effect on Aqp4 mRNA or AQP4 protein expression, but increased Aqp1 mRNA (p < 0.05) and AQP1 protein expression (p < 0.05) in both hemispheres. The Aqp1 mRNA and AQP1 protein regulation was blunted in V1a receptor knockout mice. The V1a receptors regulate cerebral AQP1 expression after experimental TBI, thereby unraveling the molecular mechanism by which these receptors may mediate brain edema formation after TBI.
Collapse
Affiliation(s)
- Katrin Rauen
- Laboratory of Experimental Neurosurgery, Department of Neurosurgery & Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- University Hospital of Psychiatry Zurich, Department of Geriatric Psychiatry & Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Viorela Pop
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Raimund Trabold
- Laboratory of Experimental Neurosurgery, Department of Neurosurgery & Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| | - Jerome Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
- Aquitaine Institute for Cognitive and Integrative Neuroscience, University of Bordeaux, Bordeaux, France
| | - Nikolaus Plesnila
- Laboratory of Experimental Neurosurgery, Department of Neurosurgery & Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| |
Collapse
|
144
|
Lad KA, Maheshwari A, Saxena B. Repositioning of an anti-depressant drug, agomelatine as therapy for brain injury induced by craniotomy. Drug Discov Ther 2020; 13:189-197. [PMID: 31534070 DOI: 10.5582/ddt.2019.01056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Traumatic brain injury (TBI) leads to the disruption of blood-brain barrier integrity and therefore results in increased brain water content (brain edema). Brain edema is a significant factor for increased intracranial pressure (ICP), which ultimately causes functional disability and death. The decompressive craniotomy (DC) is a surgical procedure widely used for treating increased ICP following TBI. The life-saving craniotomy itself results in brain injury. The objective of this study is to investigate the effect of agomelatine against craniotomy induced brain injury. The craniotomy was performed by a variable speed micro-motor dental driller of 0.8 mm drill bit. The present study, in addition to blood-brain permeability, brain water content (edema) and histological examination of the brain, also estimated locomotor activity, oxidant, and antioxidant parameters. Results show that the craniotomy induced increase in the blood-brain barrier permeability, brain water content (edema), oxidative stress (lipid peroxide and nitric oxide) and impaired antioxidant mechanisms (superoxide dismutase, catalase, and reduced glutathione) in rats. The craniotomy was also found to increase neuronal cell death indicated by augmented chromatolysis and impaired locomotor activity. Administration of agomelatine after the craniotomy ameliorated histopathological, neurochemical and behavioral consequences of craniotomy. Thus agomelatine is effective against brain injury caused by craniotomy.
Collapse
Affiliation(s)
- Krishna A Lad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad
| | - Anurag Maheshwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad
| | - Bhagawati Saxena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad
| |
Collapse
|
145
|
Michinaga S, Tanabe A, Nakaya R, Fukutome C, Inoue A, Iwane A, Minato Y, Tujiuchi Y, Miyake D, Mizuguchi H, Koyama Y. Angiopoietin-1/Tie-2 signal after focal traumatic brain injury is potentiated by BQ788, an ET B receptor antagonist, in the mouse cerebrum: Involvement in recovery of blood-brain barrier function. J Neurochem 2020; 154:330-348. [PMID: 31957020 DOI: 10.1111/jnc.14957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/12/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023]
Abstract
Angiopoietin-1, an angiogenic factor, stabilizes brain microvessels through Tie-2 receptor tyrosine kinase. In traumatic brain injury, blood-brain barrier (BBB) disruption is an aggravating factor that induces brain edema and neuroinflammation. We previously showed that BQ788, an endothelin ETB receptor antagonist, promoted recovery of BBB function after lateral fluid percussion injury (FPI) in mice. To clarify the mechanisms underlying BBB recovery mediated by BQ788, we examined the involvements of the angiopoietin-1/Tie-2 signal. When angiopoietin-1 production and Tie-2 phosphorylation were assayed by quantitative reverse transcription polymerase chain reaction and western blotting, increased angiopoietin-1 production and Tie-2 phosphorylation were observed in 7-10 days after FPI in the mouse cerebrum, whereas no significant effects were obtained at 5 days. When BQ788 (15 nmol/day, i.c.v.) were administered in 2-5 days after FPI, increased angiopoietin-1 production and Tie-2 phosphorylation were observed. Immunohistochemical observations showed that brain microvessels and astrocytes contained angiopoietin-1 after FPI, and brain microvessels also contained phosphorylated Tie-2. Treatment with endothelin-1 (100 nM) decreased angiopoietin-1 production in cultured astrocytes and the effect was inhibited by BQ788 (1 μM). Five days after FPI, increased extravasation of Evans blue dye accompanied by reduction in claudin-5, occludin, and zonula occludens-1 proteins were observed in mouse cerebrum while these effects of FPI were reduced by BQ788 and exogenous angiopoietin-1 (1 μg/day, i.c.v.). The effects of BQ788 were inhibited by co-administration of a Tie-2 kinase inhibitor (40 nmol/day, i.c.v.). These results suggest that BQ788 administration after traumatic brain injury promotes recovery of BBB function through activation of the angiopoietin-1/Tie-2 signal.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Ayami Tanabe
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Ryusei Nakaya
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Chihiro Fukutome
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Anna Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Aya Iwane
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yukiko Minato
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yu Tujiuchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Daisuke Miyake
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
146
|
Dehghanian F, Soltani Z, Khaksari M. Can Mesenchymal Stem Cells Act Multipotential in Traumatic Brain Injury? J Mol Neurosci 2020; 70:677-688. [PMID: 31897971 DOI: 10.1007/s12031-019-01475-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI), a leading cause of morbidity and mortality throughout the world, will probably become the third cause of death in the world by the year 2020. Lack of effective treatments approved for TBI is a major health problem. TBI is a heterogeneous disease due to the different mechanisms of injury. Therefore, it requires combination therapies or multipotential therapy that can affect multiple targets. In recent years, mesenchymal stem cells (MSCs) transplantation has considered one of the most promising therapeutic strategies to repair of brain injuries including TBI. In these studies, it has been shown that MSCs can migrate to the site of injury and differentiate into the cells secreting growth factors and anti-inflammatory cytokines. The reduction in brain edema, neuroinflammation, microglia accumulation, apoptosis, ischemia, the improvement of motor and cognitive function, and the enhancement in neurogenesis, angiogenesis, and neural stem cells survival, proliferation, and differentiation have been indicated in these studies. However, translation of MSCs research in TBI into a clinical setting will require additional preclinical trials.
Collapse
Affiliation(s)
- Fatemeh Dehghanian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Bam University of Medical Sciences, Bam, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
147
|
Wang X, Tong J, Han X, Qi X, Zhang J, Wu E, Huang JH. Acute effects of human protein S administration after traumatic brain injury in mice. Neural Regen Res 2020; 15:2073-2081. [PMID: 32394965 PMCID: PMC7716047 DOI: 10.4103/1673-5374.282258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite years of effort, no effective acute phase treatment has been discovered for traumatic brain injury. One impediment to successful drug development is entangled secondary injury pathways. Here we show that protein S, a natural multifunctional protein that regulates coagulation, inflammation, and apoptosis, is able to reduce the extent of multiple secondary injuries in traumatic brain injury, and therefore improve prognosis. Mice subjected to controlled cortical impact were treated acutely (10–15 minutes post-injury) with a single dose of either protein S (1 mg/kg) or vehicle phosphate buffered saline via intravenous injection. At 24 hours post-injury, compared to the non-treated group, the protein S treated group showed substantial improvement of edema and fine motor coordination, as well as mitigation of progressive tissue loss. Immunohistochemistry and western blot targeting caspase-3, B-cell lymphoma 2 (Bcl-2) along with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay revealed that apoptosis was suppressed in treated animals. Immunohistochemistry targeting CD11b showed limited leukocyte infiltration in the protein S-treated group. Moreover, protein S treatment increased the ipsilesional expression of aquaporin-4, which may be the underlying mechanism of its function in reducing edema. These results indicate that immediate intravenous protein S treatment after controlled cortical impact is beneficial to traumatic brain injury prognosis. Animal Use Protocols (AUPs) were approved by the University Committee on Animal Resources (UCAR) of University of Rochester Medical Center (approval No. UCAR-2008-102R) on November 12, 2013.
Collapse
Affiliation(s)
- Xiaowei Wang
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Jing Tong
- Department of Neurosurgery, 4th Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiaodi Han
- Department of Neurosurgery, Tiantan Hospital, Beijing, China
| | - Xiaoming Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
| | - Jun Zhang
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health; College of Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health; College of Medicine, Texas A&M Health Science Center, Temple, TX, USA
| |
Collapse
|
148
|
Zeynalov E, Jones SM, Elliott JP. Vasopressin and vasopressin receptors in brain edema. VITAMINS AND HORMONES 2020; 113:291-312. [DOI: 10.1016/bs.vh.2019.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
149
|
Travis ZD, Sherchan P, Hayes WK, Zhang JH. Surgically-induced brain injury: where are we now? Chin Neurosurg J 2019; 5:29. [PMID: 32922928 PMCID: PMC7398187 DOI: 10.1186/s41016-019-0181-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Neurosurgical procedures cause inevitable brain damage from the multitude of surgical manipulations utilized. Incisions, retraction, thermal damage from electrocautery, and intraoperative hemorrhage cause immediate and long-term brain injuries that are directly linked to neurosurgical operations, and these types of injuries, collectively, have been termed surgical brain injury (SBI). For the past decade, a model developed to study the underlying brain pathologies resulting from SBI has provided insight on cellular mechanisms and potential therapeutic targets. This model, as seen in a rat, mouse, and rabbit, mimics a neurosurgical operation and causes commonly encountered post-operative complications such as brain edema, neuroinflammation, and hemorrhage. In this review, we elaborate on SBI and its clinical impact, the SBI animal models and their clinical relevance, the importance of applying therapeutics before neurosurgical procedures (i.e., preconditioning), and the new direction of applying venom-derived proteins to attenuate SBI.
Collapse
Affiliation(s)
- Zachary D Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - William K Hayes
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| |
Collapse
|
150
|
Bodanapally UK, Shanmuganathan K, Parikh GY, Schwartzbauer G, Kondaveti R, Feiter TR. Quantification of Iodine Leakage on Dual-Energy CT as a Marker of Blood-Brain Barrier Permeability in Traumatic Hemorrhagic Contusions: Prediction of Surgical Intervention for Intracranial Pressure Management. AJNR Am J Neuroradiol 2019; 40:2059-2065. [PMID: 31727752 PMCID: PMC6975368 DOI: 10.3174/ajnr.a6316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Hemorrhagic contusions are associated with iodine leakage. We aimed to identify quantitative iodine-based dual-energy CT variables that correlate with the type of intracranial pressure management. MATERIALS AND METHODS Consecutive patients with contusions from May 2016 through January 2017 were retrospectively analyzed. Radiologists, blinded to the outcomes, evaluated CT variables from unenhanced admission and short-term follow-up head dual-energy CT scans obtained after contrast-enhanced whole-body CT. Treatment intensity of intracranial pressure was broadly divided into 2 groups: those managed medically and those managed surgically. Univariable analysis followed by logistic regression was used to develop a prediction model. RESULTS The study included 65 patients (50 men; median age, 48 years; Q1 to Q3, 25-65.5 years). Twenty-one patients were managed surgically (14 by CSF drainage, 7 by craniectomy). Iodine-based variables that correlated with surgical management were higher iodine concentration, pseudohematoma volume, iodine quantity in pseudohematoma, and iodine quantity in contusions. The regression model developed after inclusion of clinical variables identified 3 predictor variables: postresuscitation Glasgow Coma Scale (adjusted OR = 0.55; 95% CI, 0.38-0.79; P = .001), age (adjusted OR = 0.9; 95% CI, 0.85-0.97; P = .003), and pseudohematoma volume (adjusted OR = 2.05; 95% CI, 1.1-3.77; P = .02), which yielded an area under the curve of 0.96 in predicting surgical intracranial pressure management. The 2 predictors for craniectomy were age (adjusted OR = 0.89; 95% CI, 0.81-0.99; P = .03) and pseudohematoma volume (adjusted OR = 1.23; 95% CI, 1.03-1.45; P = .02), which yielded an area under the curve of 0.89. CONCLUSIONS Quantitative iodine-based parameters derived from follow-up dual-energy CT may predict the intensity of intracranial pressure management in patients with hemorrhagic contusions.
Collapse
Affiliation(s)
- U K Bodanapally
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., T.R.F.)
| | - K Shanmuganathan
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., T.R.F.)
| | | | - G Schwartzbauer
- Neurosurgery (G.S.), R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - R Kondaveti
- Kasturba Medical College (R.K.), Mangaluru, India
| | - T R Feiter
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., T.R.F.)
| |
Collapse
|