101
|
Rohlman DS, Anger WK, Lein PJ. Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure. Neurotoxicology 2010; 32:268-76. [PMID: 21182866 DOI: 10.1016/j.neuro.2010.12.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 12/20/2022]
Abstract
There is compelling evidence that adverse neurobehavioral effects are associated with occupational organophosphorous pesticide (OP) exposure in humans. Behavioral studies of pesticide applicators, greenhouse workers, agricultural workers and farm residents exposed repeatedly over months or years to low levels of OPs reveal a relatively consistent pattern of neurobehavioral deficits. However, only two studies have demonstrated a link between neurobehavioral performance and current biomarkers of OP exposure including blood cholinesterase (ChE) activity and urinary levels of OP metabolites. A variety of reasons may explain why so few studies have reported such correlations, including differing individual and group exposure histories, differing methodologies for assessing behavior and exposure, and lack of a reliable index of exposure. Alternatively, these data may suggest that current biomarkers (ChE, urine metabolites) are neither predictive nor diagnostic of the neurobehavioral effects of chronic OP pesticide exposures. This review focuses on the evidence that neurobehavioral performance deficits are associated with occupational OP pesticide exposure and concludes that research needs to return to the basics and rigorously test the relationships between neurobehavioral performance and both current (ChE and urine metabolites) and novel (e.g., inflammation and oxidative stress) biomarkers using human and animal models. The results of such studies are critically important because OP pesticides are widely and extensively used throughout the world, including situations where exposure controls and personal protective equipment are not routinely used.
Collapse
Affiliation(s)
- Diane S Rohlman
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
102
|
Cernak I, Chang T, Ahmed FA, Cruz MI, Vink R, Stoica B, Faden AI. Pathophysiological response to experimental diffuse brain trauma differs as a function of developmental age. Dev Neurosci 2010; 32:442-53. [PMID: 20948187 DOI: 10.1159/000320085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 08/02/2010] [Indexed: 12/28/2022] Open
Abstract
The purpose of experimental models of traumatic brain injury (TBI) is to reproduce selected aspects of human head injury such as brain edema, contusion or concussion, and functional deficits, among others. As the immature brain may be particularly vulnerable to injury during critical periods of development, and pediatric TBI may cause neurobehavioral deficits, our aim was to develop and characterize as a function of developmental age a model of diffuse TBI (DTBI) with quantifiable functional deficits. We modified a DTBI rat model initially developed by us in adult animals to study the graded response to injury as a function of developmental age - 7-, 14- and 21-day-old rats compared to young adult (3-month-old) animals. Our model caused motor deficits that persisted even after the pups reached adulthood, as well as reduced cognitive performance 2 weeks after injury. Moreover, our model induced prominent edema often seen in pediatric TBI, particularly evident in 7- and 14-day-old animals, as measured by both the wet weight/dry weight method and diffusion-weighted MRI. Blood-brain barrier permeability, as measured by the Evans blue dye technique, peaked at 20 min after trauma in all age groups, with a second peak found only in adult animals at 24 h after injury. Phosphorus MR spectroscopy showed no significant changes in the brain energy metabolism of immature rats with moderate DTBI, in contrast to significant decreases previously identified in adult animals.
Collapse
Affiliation(s)
- Ibolja Cernak
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Qi L, Jacob A, Wang P, Wu R. Peroxisome proliferator activated receptor-γ and traumatic brain injury. Int J Clin Exp Med 2010; 3:283-292. [PMID: 21072262 PMCID: PMC2971540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/18/2010] [Indexed: 05/30/2023]
Abstract
Traumatic brain injury (TBI) represents a major health care problem and a significant socioeconomic challenge worldwide. No specific therapy for TBI is available. The peroxisome proliferator activated receptor-γ (PPAR-γ) belongs to the nuclear receptor superfamily. Although PPAR-γ was originally characterized in adipose tissue as a regulator of lipid and glucose metabolism, recent studies showed that PPAR-γ is present in most cell types and plays a central role in the regulation of adipogenesis, glucose homeostasis, cellular differentiation, apoptosis and inflammation. Here, we reviewed the current literature on the molecular mechanisms of PPAR-γ-related neuroprotection after TBI. Growing evidence has indicated that the beneficial effects of PPAR-γ activation in TBI appear to be mediated through downregulation of inflammatory responses, reduction of oxidative stress, inhibition of apoptosis, and promotion of neurogenesis. A thorough understanding of the PPAR-γ pathway will be critical to the development of therapeutic interventions for the treatment of patients with TBI.
Collapse
Affiliation(s)
- Lei Qi
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical CenterManhasset, NY 11030, USA
- The Feinstein Institute for Medical ResearchManhasset, NY 11030, USA
- Department of Neurosurgery, First Affiliated Hospital of Medical School, Xi'an Jiaotong UniversityXi'an, Shaanxi 710061, China
| | - Asha Jacob
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical CenterManhasset, NY 11030, USA
- The Feinstein Institute for Medical ResearchManhasset, NY 11030, USA
| | - Ping Wang
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical CenterManhasset, NY 11030, USA
- The Feinstein Institute for Medical ResearchManhasset, NY 11030, USA
| | - Rongqian Wu
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical CenterManhasset, NY 11030, USA
- The Feinstein Institute for Medical ResearchManhasset, NY 11030, USA
| |
Collapse
|
104
|
Israelsson C, Wang Y, Kylberg A, Pick CG, Hoffer BJ, Ebendal T. Closed head injury in a mouse model results in molecular changes indicating inflammatory responses. J Neurotrauma 2010; 26:1307-14. [PMID: 19317611 DOI: 10.1089/neu.2008.0676] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cerebral gene expression changes in response to traumatic brain injury will provide useful information in the search for future trauma treatment. In order to characterize the outcome of mild brain injury, we studied C57BL/6J mice in a weight-drop, closed head injury model. At various times post-injury, mRNA was isolated from neocortex and hippocampus and transcriptional alterations were studied using quantitative reverse transcriptase PCR and gene array analysis. At three days post-injury, the results showed unilateral injury responses, both in neocortex and hippocampus, with the main effect seen on the side of the skull hit by the dropping weight. Upregulated transcripts encoded products characterizing reactive astrocytes, phagocytes, microglia, and immune-reactive cells. Markers for oligodendrocytes and T-cells were not altered. Notably, strong differences in the responses among individual mice were seen (e.g., for the Gfap transcript expressed by reactive astrocytes and the chemokine Ccl3 transcript expressed by activated microglial cells). In conclusion, mild TBI chiefly activates transcripts leading to tissue signaling, inflammatory processes, and chemokine signaling, as in focal brain injury, suggesting putative targets for drug development.
Collapse
Affiliation(s)
- Charlotte Israelsson
- Developmental Neuroscience, Department of Neuroscience, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
105
|
Israelsson C, Bengtsson H, Lobell A, Nilsson LNG, Kylberg A, Isaksson M, Wootz H, Lannfelt L, Kullander K, Hillered L, Ebendal T. Appearance of Cxcl10-expressing cell clusters is common for traumatic brain injury and neurodegenerative disorders. Eur J Neurosci 2010; 31:852-63. [PMID: 20374285 DOI: 10.1111/j.1460-9568.2010.07105.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Traumatic brain injury (TBI) in the mouse results in the rapid appearance of scattered clusters of cells expressing the chemokine Cxcl10 in cortical and subcortical areas. To extend the observation of this unique pattern, we used neuropathological mouse models using quantitative reverse transcriptase-polymerase chain reaction, gene array analysis, in-situ hybridization and flow cytometry. As for TBI, cell clusters of 150-200 mum expressing Cxcl10 characterize the cerebral cortex of mice carrying a transgene encoding the Swedish mutation of amyloid precursor protein, a model of amyloid Alzheimer pathology. The same pattern was found in experimental autoimmune encephalomyelitis in mice modelling multiple sclerosis. In contrast, mice carrying a SOD1(G93A) mutant mimicking amyotrophic lateral sclerosis pathology lacked such cell clusters in the cerebral cortex, whereas clusters appeared in the brainstem and spinal cord. Mice homozygous for a null mutation of the Cxcl10 gene did not show detectable levels of Cxcl10 transcript after TBI, confirming the quantitative reverse transcriptase-polymerase chain reaction and in-situ hybridization signals. Moreover, unbiased microarray expression analysis showed that Cxcl10 was among 112 transcripts in the neocortex upregulated at least threefold in both TBI and ageing TgSwe mice, many of them involved in inflammation. The identity of the Cxcl10(+) cells remains unclear but flow cytometry showed increased numbers of activated microglia/macrophages as well as myeloid dendritic cells in the TBI and experimental autoimmune encephalomyelitis models. It is concluded that the Cxcl10(+) cells appear in the inflamed central nervous system and may represent a novel population of cells that it may be possible to target pharmacologically in a broad range of neurodegenerative conditions.
Collapse
Affiliation(s)
- Charlotte Israelsson
- Department of Neuroscience, Developmental Neuroscience, Biomedical Center, Uppsala University, PO Box 593, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Yoneyama-Sarnecky T, Olivas AD, Azari S, Ferriero DM, Manvelyan HM, Noble-Haeusslein LJ. Heme oxygenase-2 modulates early pathogenesis after traumatic injury to the immature brain. Dev Neurosci 2010; 32:81-90. [PMID: 20389079 DOI: 10.1159/000258700] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/03/2009] [Indexed: 01/05/2023] Open
Abstract
We determined if heme oxygenase-2 (HO-2), an enzyme that degrades the pro-oxidant heme, confers neuroprotection in the developing brain after traumatic brain injury (TBI). Male HO-2 wild-type (WT) and homozygous knockout (KO) mice at postnatal day 21 were subjected to TBI and euthanized 1, 7, and 14 days later. Relative cerebral blood flow, measured by laser Doppler, cortical and hippocampal pathogenesis, and motor recovery were evaluated at all time points. Cerebral blood flow was found to be similar between experimental groups. Blood flow significantly decreased immediately after injury, returned to baseline by 1 day, and was significantly elevated by 7 days, post-injury. Nonheme iron preferentially accumulated in the ipsilateral cortex, hippocampus, and external capsule in both WT and KO brain-injured genotypes. There were, however, a significantly greater number of TUNEL-positive cells in the hippocampal dentate gyrus and a significantly greater cortical lesion volume in KOs relative to WTs within the first week post-injury. By 14 days post-injury, however, cortical lesion volume and cell density in the hippocampal CA3 region and dorsal thalamus were similar between the two groups. Assays of fine motor function (grip strength) over the first 2 weeks post-injury revealed a general pattern of decreased strength in the contralateral forelimbs of KOs as compared to WTs. Together, these findings demonstrate that deficiency in HO-2 alters both the kinetics of secondary damage and fine motor recovery after TBI.
Collapse
|
107
|
Bentz K, Molcanyi M, Schneider A, Riess P, Maegele M, Bosche B, Hampl JA, Hescheler J, Patz S, Schäfer U. Extract Derived from Rat Brains in the Acute Phase Following Traumatic Brain Injury Impairs Survival of Undifferentiated Stem Cells and Induces Rapid Differentiation of Surviving Cells. Cell Physiol Biochem 2010; 26:821-30. [DOI: 10.1159/000323991] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2010] [Indexed: 01/19/2023] Open
|
108
|
Minocycline reduces neuronal death and attenuates microglial response after pediatric asphyxial cardiac arrest. J Cereb Blood Flow Metab 2010; 30:119-29. [PMID: 19756023 PMCID: PMC2949095 DOI: 10.1038/jcbfm.2009.194] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms leading to delayed neuronal death after asphyxial cardiac arrest (ACA) in the developing brain are unknown. This study aimed at investigating the possible role of microglial activation in neuronal death in developing brain after ACA. Postnatal day-17 rats were subjected to 9 mins of ACA followed by resuscitation. Rats were randomized to treatment with minocycline, (90 mg/kg, intraperitoneally (i.p.)) or vehicle (saline, i.p.) at 1 h after return of spontaneous circulation. Thereafter, minocycline (22.5 mg/kg, i.p.) was administrated every 12 h until sacrifice. Microglial activation (evaluated by immunohistochemistry using ionized calcium-binding adapter molecule-1 (Iba1) antibody) coincided with DNA fragmentation and neurodegeneration in CA1 hippocampus and cortex (assessed by deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), Fluoro-Jade-B and Nissl stain). Minocycline significantly decreased both the microglial response and neuronal degeneration compared with the vehicle. Asphyxial CA significantly enhanced proinflammatory cytokine and chemokine levels in hippocampus versus control (assessed by multiplex bead array assay), specifically tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1alpha (MIP-1alpha), regulated upon activation, normal T-cell expressed and secreted (RANTES), and growth-related oncogene (GRO-KC) (P<0.05). Minocycline attenuated ACA-induced increases in MIP-1alpha and RANTES (P<0.05). These data show that microglial activation and cytokine production are increased in immature brain after ACA. The beneficial effect of minocycline suggests an important role for microglia in selective neuronal death after pediatric ACA, and a possible therapeutic target.
Collapse
|
109
|
Potts MB, Rola R, Claus CP, Ferriero DM, Fike JR, Noble-Haeusslein LJ. Glutathione peroxidase overexpression does not rescue impaired neurogenesis in the injured immature brain. J Neurosci Res 2009; 87:1848-57. [PMID: 19170177 PMCID: PMC3306805 DOI: 10.1002/jnr.21996] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability among young children and is associated with long-term cognitive deficits. These clinical findings have prompted an investigation of the hippocampus in an experimental model of trauma to the developing brain at postnatal day (p21). Previous studies using this model have revealed a progressive loss of neurons in the hippocampus as brain-injured animals mature to young adulthood. Here we determined whether this hippocampal vulnerability is likewise reflected in altered neurogenesis and whether the antioxidant glutathione peroxidase (GPx) modulates neurogenesis during maturation of the injured immature brain. Male transgenic mice that overexpress GPx and wild-type littermates were subjected to controlled cortical impact or sham surgery on p21. At 2 weeks postinjury, the numbers of proliferating cells and immature neurons within the subgranular zone were measured by using Ki-67 and doublecortin, respectively. Bromodeoxyuridine (BrdU) was used to label dividing cells beginning 2 weeks postinjury. Survival (BrdU(+)) and neuronal differentiation (BrdU(+)/NeuN(+)) were then measured 4 weeks later via confocal microscopy. Two-way ANOVA revealed no significant interaction between genotype and injury. Subsequent analysis of the individual effects of injury and genotype, however, showed a significant reduction in subgranular zone proliferation (Ki-67) at 2 weeks postinjury (P = 0.0003) and precursor cell survival (BrdU(+)) at 6 weeks postinjury (P = 0.016) and a trend toward reduced neuronal differentiation (BrdU(+)/NeuN(+)) at 6 weeks postinjury (P = 0.087). Overall, these data demonstrate that traumatic injury to the injured immature brain impairs neurogenesis during maturation and suggest that GPx cannot rescue this reduced neurogenesis.
Collapse
Affiliation(s)
- Matthew B Potts
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA 9414
| | - Radoslaw Rola
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA 9414
| | - Catherine P Claus
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA 9414
| | - Donna M Ferriero
- Department of Neurology and Pediatrics, University of California, San Francisco, CA 9414
| | - John R Fike
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA 9414
| | - Linda J Noble-Haeusslein
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA 9414
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 9414
| |
Collapse
|
110
|
Adaptation to oxidative challenge induced by chronic physical exercise prevents Na+,K+-ATPase activity inhibition after traumatic brain injury. Brain Res 2009; 1279:147-55. [PMID: 19422810 DOI: 10.1016/j.brainres.2009.04.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 11/24/2022]
Abstract
Physical exercise is likely to alter brain function and to afford neuroprotection in several neurological diseases. Although the favorable effects of physical exercise on traumatic brain injury (TBI) patients is well known, little information is available regarding the role of free radicals in the improvement induced by physical exercise in an experimental model of TBI induced by fluid percussion injury (FPI). Thus, we investigated whether 6 weeks of swimming training protects against oxidative damage (measured by protein carbonylation and thiobarbituric acid-reactive substances-TBARS) and neurochemical alterations represented by immunodetection of alpha subunit and activity of Na(+),K(+)-ATPase after FPI in cerebral cortex of rats. Statistical analysis revealed that physical training protected against FPI-induced TBARS and protein carbonylation increase. In addition, physical training was effective against Na(+),K(+)-ATPase enzyme activity inhibition and alpha(1) subunit level decrease after FPI. Pearson's correlation analysis revealed that the decrease in levels of catalytic alpha(1) subunit of Na(+),K(+)-ATPase induced FPI correlated with TBARS and protein carbonylation content increase. Furthermore, the effective protection exerted by physical training against FPI-induced free radical correlated with the immunocontent of the catalytic alpha(1) subunit maintenance. These data suggest that TBI-induced reactive oxygen species (ROS) generation decreases Na(+),K(+)-ATPase activity by decreasing the total number of enzyme molecules, and that physical exercise protects against this effect. Therefore, the effective protection of selected targets, such as Na(+),K(+)-ATPase induced by physical training, supports the idea that physical training may exert prophylactic effects on neuronal cell dysfunction and damage associated with TBI.
Collapse
|
111
|
Potter EG, Cheng Y, Natale JE. Deleterious effects of minocycline after in vivo target deprivation of thalamocortical neurons in the immature, metallothionein-deficient mouse brain. J Neurosci Res 2009; 87:1356-68. [PMID: 19115404 PMCID: PMC4333151 DOI: 10.1002/jnr.21963] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Compared with adults, immature metallothionein I and II knockout (MT(-/-)) mice incur greater neuronal loss and a more rapid rate of microglia accumulation after target deprivation-induced injury. Because minocycline has been proposed to inhibit microglial activation and associated production of neuroinflammatory factors, we investigated its ability to promote neuronal survival in the immature, metallothionein-deficient brain. After ablation of the visual cortex, 10-day-old MT(-/-) mice were treated with minocycline or saline and killed 24 or 48 hr after injury. By means of stereological methods, the number of microglia and neurons were estimated in the ipsilateral dorsal lateral geniculate nucleus (dLGN) by an investigator blinded to the treatment. No effect on neuronal survival was observed at 24 hr, but 48 hr after injury, an unanticipated but significant minocycline-mediated increase in neuronal loss was detected. Further, while failing to inhibit microglial accumulation, minocycline treatment increased the proportion of amoeboid microglia in the ipsilateral dLGN. To understand the molecular mechanisms underlying this neurotoxic response, we identified minocycline-mediated changes in the expression of three potentially proapoptotic/inflammatory genes: growth arrest- and DNA damage-inducible gene 45gamma (GADD45gamma); interferon-inducible protein 1 (IFI1), and cytokine-induced growth factor. We also observed increased mitogen-activated protein kinase p38 phosphorylation with minocycline treatment. Although minocycline inhibited calpain activity at 12 hr after injury, this effect was not sustained at 24 hr. Together, these results help to explain how minocycline has a deleterious effect on neuronal survival in this injury model.
Collapse
Affiliation(s)
- Emily G Potter
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
112
|
Israelsson C, Bengtsson H, Kylberg A, Kullander K, Lewén A, Hillered L, Ebendal T. Distinct cellular patterns of upregulated chemokine expression supporting a prominent inflammatory role in traumatic brain injury. J Neurotrauma 2008; 25:959-74. [PMID: 18665806 DOI: 10.1089/neu.2008.0562] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebral gene expressions change in response to traumatic brain injury (TBI), and future trauma treatment may improve with increased knowledge about these regulations. We subjected C57BL/6J mice to injury by controlled cortical impact (CCI). At various time points post-injury, mRNA from neocortex and hippocampus was isolated, and transcriptional alterations studied using quantitative real-time polymerase chain reaction (PCR) and gene array analysis. Spatial distribution of enhanced expression was characterized by in situ hybridization. Products of the upregulated transcripts serve functions in a range of cellular mechanisms, including stress, inflammation and immune responses, and tissue remodeling. We also identified increased transcript levels characterizing reactive astrocytes, oligodendrocytes, and microglia, and furthermore, we demonstrated a novel pattern of scattered cell clusters expressing the chemokine Cxcl10. Notably, a sustained increase in integrin alpha X (Itgax), characterizing antigen-presenting dendritic cells, was found with the transcript located to similar cell clusters. In contrast, T-cell receptor alpha transcript showed only a modest increase. The induced P-selectin (Selp) expression level in endothelial cells, and chemokines from microglia, may guide perivascular accumulation of extravasating inflammatory monocytes differentiating into dendritic cells. In conclusion, our study shows that following TBI, secondary injury chiefly involves inflammatory processes and chemokine signaling, which comprise putative targets for pharmaceutical neuroprotection.
Collapse
Affiliation(s)
- Charlotte Israelsson
- Department of Neuroscience, Developmental Neuroscience, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
113
|
Na+,K+-ATPase activity impairment after experimental traumatic brain injury: Relationship to spatial learning deficits and oxidative stress. Behav Brain Res 2008; 193:306-10. [DOI: 10.1016/j.bbr.2008.05.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/13/2008] [Accepted: 05/15/2008] [Indexed: 11/22/2022]
|
114
|
Regan RF, Li Z, Chen M, Zhang X, Chen-Roetling J. Iron regulatory proteins increase neuronal vulnerability to hydrogen peroxide. Biochem Biophys Res Commun 2008; 375:6-10. [PMID: 18655771 DOI: 10.1016/j.bbrc.2008.07.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
Iron regulatory protein (IRP)-1 and IRP2 inhibit ferritin synthesis by binding to an iron responsive element in the 5'-untranslated region of its mRNA. The present study tested the hypothesis that neurons lacking these proteins would be resistant to hydrogen peroxide (H(2)O(2)) toxicity. Wild-type cortical cultures treated with 100-300microM H(2)O(2) sustained widespread neuronal death, as measured by lactate dehydrogenase assay, and a significant increase in malondialdehyde. Both endpoints were reduced by over 85% in IRP2 knockout cultures. IRP1 gene deletion had a weaker and variable effect, with approximately 20% reduction in cell death at 300microM H(2)O(2). Ferritin expression after H(2)O(2) treatment was increased 1.9- and 6.7-fold in IRP1 and IRP2 knockout cultures, respectively, compared with wild-type. These results suggest that iron regulatory proteins, particularly IRP2, increase neuronal vulnerability to oxidative injury. Therapies targeting IRP2 binding to ferritin mRNA may attenuate neuronal loss due to oxidative stress.
Collapse
Affiliation(s)
- Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, 1020 Sansom Street, Thompson 239, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
115
|
Abstract
Boswellia resin has been used as a major anti-inflammatory agent and for the healing of wounds for centuries. Incensole acetate (IA), isolated from this resin, was shown to inhibit the activation of nuclear factor-kappaB, a key transcription factor in the inflammatory response. We now show that IA inhibits the production of inflammatory mediators in an in vitro model system of C6 glioma and human peripheral monocytes. Given the involvement of postinjury inflammation in the pathophysiology and outcome of traumatic brain injury, we examined the effect of IA on the inflammatory process and on the recovery of neurobehavioral and cognitive functions in a mouse model of closed head injury (CHI). In the brains of post-CHI mice, IA reduced glial activation, inhibited the expression of interleukin-1beta, and tumor necrosis factor-alpha mRNAs, and induced cell death in macrophages at the area of trauma. A mild hypothermic effect was also noted. Subsequently, IA inhibited hippocampal neurodegeneration and exerted a beneficial effect on functional outcome after CHI, indicated by reduced neurological severity scores and improved cognitive ability in an object recognition test. This study attributes the anti-inflammatory activity of Boswellia resin to IA and related cembranoid diterpenes and suggests that they may serve as novel neuroprotective agents.
Collapse
|
116
|
Defrere S, Lousse J, Gonzalez-Ramos R, Colette S, Donnez J, Van Langendonckt A. Potential involvement of iron in the pathogenesis of peritoneal endometriosis. Mol Hum Reprod 2008; 14:377-85. [DOI: 10.1093/molehr/gan033] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
117
|
Clausen F, Lorant T, Lewén A, Hillered L. T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J Neurotrauma 2007; 24:1295-307. [PMID: 17711391 DOI: 10.1089/neu.2006.0258] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Infiltration of T lymphocytes is a key feature in transplant rejection and in several autoimmune disorders, but the role of T lymphocytes in traumatic brain injury (TBI) is largely unknown. Here we studied trafficking of immune cells in the brain after experimental TBI. We found that scavenging of reactive oxygen species (ROS) at the endothelial level dramatically reduced the infiltration of activated T lymphocytes. Immune cell infiltration was studied 12 h to 7 days after controlled cortical contusion in rats by ex vivo propagation of T lymphocytes (TcR+, CD8+), neutrophils (MPO+), and macrophages/microglia (ED-1+) from biopsies taken from injured cortex and analyzed by flow cytometry, as well as by quantitative immunohistochemistry. T lymphocyte and neutrophil infiltration peaked at 24 h and macrophages/microglia at 7 days post-injury. Pretreatment with 2-sulfophenyl-N-tert-butyl nitrone (S-PBN) produced a dramatic reduction of TcR+ T lymphocytes and a significantly smaller attenuation of neutrophil infiltration at 24 h post-injury, but did not affect CD8+ T lymphocytes or macrophages/microglia. S-PBN significantly reduced the expression of the endothelial adhesion molecules ICAM-1 and VCAM at 24 h for following TBI. We conclude that ROS inhibition at the endothelial level influenced T lymphocyte and neutrophil infiltration following TBI. We submit that the reduction of T lymphocyte infiltration is a key feature in improving TBI outcome after S-PBN treatment. Our data suggest that targeting T lymphocyte trafficking to the injured brain at the microvascular level is a novel concept of neuroprotection in TBI and warrants further exploration.
Collapse
Affiliation(s)
- Fredrik Clausen
- Department of Neuroscience, Section of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | |
Collapse
|
118
|
Abstract
The knowledge of the pathophysiology after traumatic head injury is necessary for adequate and patient-oriented treatment. As the primary insult, which represents the direct mechanical damage, cannot be therapeutically influenced, target of the treatment is the limitation of the secondary damage (delayed non-mechanical damage). It is influenced by changes in cerebral blood flow (hypo- and hyperperfusion), impairment of cerebrovascular autoregulation, cerebral metabolic dysfunction and inadequate cerebral oxygenation. Furthermore, excitotoxic cell damage and inflammation may lead to apoptotic and necrotic cell death. Understanding the multidimensional cascade of secondary brain injury offers differentiated therapeutic options.
Collapse
Affiliation(s)
- C Werner
- Klinik für Anästhesiologie, der Johannes Gutenberg-Universität Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany.
| | | |
Collapse
|
119
|
Kaindl AM, Zabel C, Stefovska V, Lehnert R, Sifringer M, Klose J, Ikonomidou C. Subacute proteome changes following traumatic injury of the developing brain: Implications for a dysregulation of neuronal migration and neurite arborization. Proteomics Clin Appl 2007; 1:640-9. [PMID: 21136719 DOI: 10.1002/prca.200600696] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Indexed: 11/09/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among children and adolescents. To gain insight into developmental events influenced by TBI, we analyzed subacute mouse brain proteome changes in a percussion head trauma model at P7 ipsi- and contralateral to the site of injury. The comparison of brain proteomes of trauma mice and controls revealed reproducible changes in the intensity of 28 proteins (30 protein spots) in response to trauma. The changes detected suggest that TBI leads to apoptosis, inflammation, and oxidative stress. These changes were consistent with our results of histological and biochemical evaluation of the brains which revealed widespread apoptotic neurodegeneration, microglia activation, and increased levels of protein carbonyls. Furthermore, we detected changes in proteins involved in neuronal migration as well as axonal and dendritic growth and guidance, suggesting interference of trauma with these developmental events.
Collapse
Affiliation(s)
- Angela M Kaindl
- Department of Pediatric Neurology, Charité, University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany; Institute of Human Genetics, Charité, University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany; Department of Pediatric Neurology, University Childrens' Hospital, Technical University Dresden, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
120
|
Potter EG, Cheng Y, Knight JB, Gordish-Dressman H, Natale JE. Basic science; metallothionein I and II attenuate the thalamic microglial response following traumatic axotomy in the immature brain. J Neurotrauma 2007; 24:28-42. [PMID: 17263668 DOI: 10.1089/neu.2006.0056.r1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The clinical manifestations of inflicted traumatic brain injury in infancy most commonly result from intracranial hemorrhage, axonal stretch and disruption, and cerebral edema. Often hypoxia ischemia is superimposed, leading to early forebrain and later thalamic neurodegeneration. Such acute and delayed cellular injury activates microglia in the CNS. Although activated microglia provide important benefits in response to injury, microglial release of reactive oxygen species can be harmful to axotomized neurons. We have previously shown that the antioxidants metallothionein I and II (MT I & II) promote geniculocortical neuronal survival after visual cortex lesioning. The purpose of this investigation was to determine the influence of MT I & II on the density and rate of thalamic microglial activation and accumulation following in vivo axotomy. We ablated the visual cortex of 10-day-old and adult MT I & II knock out (MT(-/-)) and wild-type mice and then determined the density of microglia in the dorsal lateral geniculate nucleus (dLGN) over time. Compared to the wild-type strain, microglial activation occurred earlier in both young and adult MT(-/-) mice. Similarly, microglial density was significantly greater in young MT(-/-) mice 30, 36, and 48 hours after injury, and 3, 4, and 5 days after injury in MT(-/-) adults. In both younger and older mice, time and MT I & II deficiency each contributed significantly to greater microglial density. Only in younger mice did MT I & II expression significantly slow the rate (density x time) of microglial accumulation. These results suggest that augmentation of MT I & II expression may provide therapeutic benefits to infants with inflicted brain injury.
Collapse
Affiliation(s)
- Emily G Potter
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | |
Collapse
|
121
|
Nielsen AE, Bohr A, Penkowa M. The Balance between Life and Death of Cells: Roles of Metallothioneins. Biomark Insights 2007; 1:99-111. [PMID: 19690641 PMCID: PMC2716779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Metallothionein (MT) is a highly conserved, low-molecular-weight, cysteine-rich protein that occurs in 4 isoforms (MT-I to MT-IV), of which MT-I+II are the major and best characterized proteins.This review will focus on mammalian MT-I+II and their functional impact upon cellular survival and death, as seen in two rather contrasting pathological conditions: Neurodegeneration and neoplasms. MT-I+II have analogous functions including: 1) Antioxidant scavenging of reactive oxygen species (ROS); 2) Cytoprotection against degeneration and apoptosis; 3) Stimulation of cell growth and repair including angiogenesis/revascularization, activation of stem/progenitor cells, and neuroregeneration. Thereby, MT-I+II mediate neuroprotection, CNS restoration and clinical recovery during neurodegenerative disorders. Due to the promotion of cell survival, increased MT-I+II levels have been associated with poor tumor prognosis, although the data are less clear and direct causative roles of MT-I+II in oncogenesis remain to be identified.The MT-I+II molecular mechanisms of actions are not fully elucidated. However, their role in metal ion homeostasis might be fundamental in controlling Zn-dependent transcription factors, protein synthesis, cellular energy levels/metabolism and cell redox state.Here, the neuroprotective and regenerative functions of MT-I+II are reviewed, and the presumed link to oncogenesis is critically perused.
Collapse
Affiliation(s)
| | | | - Milena Penkowa
- Correspondence: Dr. Milena Penkowa, Section of Neuroprotection, The Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark. Tel: +45-35327222; Fax: +45-35327217;
; http://www.metallothionein.com; http://www.neuroprotection.dk
| |
Collapse
|
122
|
Terashvili M, Pratt PF, Gebremedhin D, Narayanan J, Harder DR. Reactive oxygen species cerebral autoregulation in health and disease. Pediatr Clin North Am 2006; 53:1029-37, xi. [PMID: 17027622 PMCID: PMC2533262 DOI: 10.1016/j.pcl.2006.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-) and hydrogen peroxide (H2O2), act as cellular signaling molecules within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. This article focuses on the actions of ROS, such as O2.- and H2O2, and how they influence mechanisms responsible for the modulation of pressure-induced myogenic tone in the cerebral circulation and blood flow autoregulation in response to elevated arterial pressure. ROS may be a key target for therapeutic interventions in pediatric patients who have hypoxic injury or altered cerebral metabolism induced by trauma or infection.
Collapse
Affiliation(s)
- Maia Terashvili
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Phillip F. Pratt
- Department of Anesthesiology and Pharmacology and Toxicology and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Debebe Gebremedhin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - David R. Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
123
|
Dure LS, Silverstein F. Pediatric neurotherapy. NeuroRx 2006; 3:131-2. [DOI: 10.1016/j.nurx.2006.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|